
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12754–12770

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Prototype Conditioned Generative Replay for Continual Learning in NLP

Xi Chen∗, Min Zeng∗

Hong Kong University of Science and Technology
chenxi.mail.1005@gmail.com, min.zeng.u@gmail.com

Abstract

Generative replay has proven effective in ad-
dressing the catastrophic forgetting issue of
continual learning (CL) in natural language pro-
cessing (NLP). However, relying on a single
task-specific token or prompt often falls short
in generating pseudo-samples that accurately
reflect the true data distribution. This leads
to issues of semantic inconsistency and scale
inconsistency. To tackle these challenges, we
propose a Prototype Conditioned Generative
Replay (PCGR) method, which enhances gener-
ative reply by incorporating task-level statistics
through a Prototype Conditioned Variational
Autoencoder (PCVAE). Specifically, task-level
embedding statistics are stored as prototypes
for each old task. When a new task is in-
troduced, PCVAE draws samples from task-
specific prototype-based distributions to gen-
erate pseudo-samples. By incorporating the
prototype, the generated pseudo-samples are
both more representative and sufficiently di-
verse to reflect the real data distribution. Fur-
thermore, as previously stored prototypes may
become outdated due to evolving model param-
eters, we propose a Prototype Shift Estimation
(PSE) to adjust for these changes. Experiments
on NLP tasks across two different scenarios
show that PCGR outperforms previous state-of-
the-art (SOTA) methods.

1 Introduction

Continual learning (CL) aims at enabling models to
continually acquire, accumulate, and exploit novel
knowledge from a non-i.i.d. stream of tasks while
retaining previously learned knowledge (Wu et al.,
2022; Wang et al., 2024a). In practice, however,
when learning new tasks, models often encounter
the notorious issue of catastrophic forgetting (CF),
which refers to the model updating its parameters
for the new task at the cost of forgetting previously
acquired knowledge (McCloskey and Cohen, 1989;

*The two authors contribute equally.

Parisi et al., 2019). In NLP, pre-trained large lan-
guage models (LMs) have demonstrated promising
performance, leading to an increasing focus on
integrating these models into dynamic data distri-
butions, evolving task structures, and shifting user
preferences.

Generative replay methods (Sun et al., 2020;
Zhao et al., 2022; Zeng et al., 2024) have emerged
as promising approaches to tackle the problem of
CF in CL. The core idea is to generate authen-
tic pseudo-samples of previous tasks and combine
them with the current training data to jointly tune
the model. However, existing generative replay ap-
proaches typically rely on a single task-specific to-
ken (Sun et al., 2020) or prompt (Zhao et al., 2022;
Zeng et al., 2024) to generate pseudo-samples.
Due to the limited information (Sun et al., 2020)
provided by the task-specific tokens or prompts,
the generated pseudo-samples often fail to accu-
rately reflect the real data distribution. This leads
to two underlying issues: semantic inconsistency,
where the pseudo-samples are not semantically
aligned with the real data, causing unclear bound-
aries among tasks and unintended modifications
of important parameters; and scale inconsistency,
where the pseudo-samples lack the diversity of real
data, leading the model to overfit the new task and
exacerbating CF.

To tackle these problems, we propose the Pro-
totype Conditioned Generative Rehearsal method
(PCGR), which employs Prototype Conditioned
Variational Autoencoder (PCVAE) to generate
pseudo-samples that more accurately reflect the
real data distribution, effectively mitigating catas-
trophic forgetting. Drawing inspiration from class
incremental learning (CIL) in computer vision
(CV) (Belouadah et al., 2021), which utilize pro-
totypes (Belouadah and Popescu, 2019; Tan et al.,
2024), the previously saved representation statis-
tics, to mitigate CF in feature classification tasks,
we introduce the concept of prototypes into CL in

12754



NLP. Prototypes, which carry rich ”dark knowl-
edge,” can faithfully reflect the real data distribu-
tion, making them well-suited to address the issues
of semantic and scale inconsistency in CL in NLP.
In our context, to tackle the semantic and scale in-
consistency issues, we define the prototype as the
task-level representation mean and standard devi-
ation. PCVAE then approximates task-level data
distribution by conditioning on the prototype, and
utilizes samples drawn from the prototype-based
Gaussian distribution to guide pseudo generation.
This ensures that the pseudo-samples are both rep-
resentative and sufficiently diverse to accurately re-
flect the real data distribution. Moreover, as model
parameters evolve with the introduction of new
tasks, the prototypes for previous tasks shift ac-
cordingly. However, due to the unavailability of
previous data, recalculating these prototypes is not
feasible. Inspired by (Yu et al., 2020; Tan et al.,
2024), which estimates representation mean drift
using only the current task data, we introduce a
Prototype Shift Estimation (PSE) method to com-
pensate for the shift of previous prototypes without
requiring access to prior data. In summary, our key
contributions include:
• We propose PCGR, which introduces the concept

of prototype from CV to CL in NLP. PCGR lever-
ages a PCVAE to generate pseudo-samples that
are both representative and diverse, accurately re-
flecting the real data distribution. This approach
effectively mitigates catastrophic forgetting in
continual learning.

• We propose PSE, which estimates the shift of pro-
totypes for old tasks without the need for access
to previous data.

• Extensive experiments and comprehensive analy-
ses demonstrate the remarkable performance of
PCGR and the superior quality of the generated
pseudo-samples.

2 Related Work

2.1 Continual Learning

Continual learning approaches can be categorized
into three main strategies:

Regularization approaches aim at striking a bal-
ance between protecting already learned tasks and
granting sufficient flexibility for a new task by in-
corporating regularization terms into the loss func-
tion(Kirkpatrick et al., 2017; Aljundi et al., 2018;
Mi et al., 2020a; Mundt et al., 2023). However,
adding multiple regularization terms may overly

constrain the model, potentially downgrade model
performance (Parisi et al., 2019).

Architectural approaches mitigate CF by con-
structing task-specific parameters rather than incre-
mentally training all tasks with a shared set of pa-
rameters (Hu et al., 2019; Zhai et al., 2020; Madotto
et al., 2021; Geng et al., 2021; Zhang et al., 2022;
Wang et al., 2023; Ke et al., 2023; Zhao et al., 2024).
However, architectural approaches may overlook
knowledge sharing among tasks and model param-
eter increases as the number of tasks increases.

Rehearsal approaches, also known as replay-
based approaches, address CF by approximating
and recovering previous data distribution (Wang
et al., 2024a). Depending on whether the replayed
data is real data or the pseudo generated data, re-
hearsal approaches can be categorized into experi-
ence replay (Rebuffi et al., 2017; Lopez-Paz and
Ranzato, 2017) and generative replay (Mi et al.,
2020b; Sun et al., 2020; Chuang et al., 2020; Kan-
watchara et al., 2021; Zhao et al., 2022; Zeng et al.,
2024). However, experience replay can be imprac-
tical due to memory limitations and the privacy
concerns, while generative replay may suffer from
limited diversity or poor alignment with the desig-
nated task (Zeng et al., 2024).

In this paper, we focus on generative replay
due to its impressive performance. Specifically,
LAMOL (Sun et al., 2020) leverages the generative
capability of language models to produce pseudo-
samples using task-specific tokens while learning
new tasks. L2KD (Chuang et al., 2020) enhances
LAMOL by employing knowledge distillation to
retain previously learned knowledge. PCLL (Zhao
et al., 2022) utilizes a prompt-conditioned VAE
to enhance generative replay. DCL (Zeng et al.,
2024) refines PCLL by leveraging the flexibility
of the Dirichlet distribution (Zeng et al., 2019) to
model the latent variables in VAE. All these pre-
vious works rely on a single task-specific token
or prompt to generate pseudo-samples, which may
not be representative and diverse enough to approx-
imate the true data distribution of previous tasks.

2.2 Prototype
Prototype (Yu et al., 2020; Zhu et al., 2021a,b;
Tan et al., 2024) refers to representation statistics,
typically the representation means (Wang et al.,
2024a), and is widely used to recover original rep-
resentation distribution in the deep feature space
in CIL in CV. Class incremental learning (Zhou
et al., 2024) is a subfield of CL, where tasks arrive

12755



sequentially with each task containing a set of new
classes. In CIL, a feature extractor and a unified
classifier should be learned to classify all classes.
Specifically, PASS (Zhu et al., 2021b) memorizes
class-level prototypes and arguments the prototypes
via Gaussian noise to preserve discrimination be-
tween old and new classes. SemanAug (Zhu et al.,
2021a) memorizes class-level distribution informa-
tion as prototypes and uses it to approximate the
original feature distribution to avoid CF.

A central challenge with prototypes is the repre-
sentation shift caused by the sequential updating
of the feature extractor, compounded by the un-
availability of previous data for recalculating the
prototypes. Specifically, SDC (Yu et al., 2020) is
an effective method to alleviate the representation
mean shift challenge without requiring access to
previous data.

In this paper, as mentioned in Section 2.1,
pseudo-samples generated by current methods may
not accurately approximate the previous data distri-
bution. Therefore, PCGR proposes to incorporate
the prototype into the generative replay, as it have
proven effective in reflecting real data distribution.
However, PCGR also encounters the representation
shift issue. Inspired by SDC, we introduce PSE to
mitigate this challenge. Furthermore, it is essential
to note that we cannot directly adapt prototypes
for CL in NLP. Unlike CIL in CV, CL in NLP en-
compasses not merely classification tasks and faces
additional challenges due to the complexity and
diversity of natural language (Ke and Liu, 2022;
Mehta et al., 2023).

3 Methodology

3.1 Problem Definition

A CL model fθ in NLP learns a stream of tasks T =
{T1, · · · , TN} sequentially, where N represents
the total task number and can potentially be infinite.
For each task Tn, corresponding dataset and CL
model are denoted as Dn = {xni , yni )}Nni=1 and fnθ ,
respectively, where (xni , y

n
i ) represents a general

input-output pair and Nn is the sample number. CL
aims to develop a model that excels in every task
it encounters while minimizing the forgetting of
previously learned knowledge.

3.2 Overview

Figure 1(a) depicts the overview of PCGR, com-
prising three steps: prototype-conditioned pseudo
generation, new task learning, and prototype updat-

ing. (i) Prototype-conditioned pseudo generation:
Before learning the new task, different from pre-
vious works which only use a single prompt or
token to generate pseudo-samples, PCVAE utilizes
samples drawn from prototype-based distributions
to generate pseudo-samples that are representative
and diverse enough to reflect the real data distri-
bution of prior tasks. (ii) New task learning: Sub-
sequently, the LM, along with PCVAE, continues
training with the generated pseudo-samples and
current task samples to learn the new task while
minimizing CF. (iii) Prototype updating: Once the
new task is learned, the prototype for the new task
is calculated, and the prototypes for previous tasks
are updated using PSE.

3.3 Prototype

Prototype p is defined as the mean and standard
deviation (std) of data sample representations, re-
ferred to as the prototype’s semantic part µ and the
prototype’s distribution scale part σ, respectively.
Denoting (xni , y

n
i ) ∈ Dn as uni , corresponding rep-

resentation rni ∈ Rd in the deep feature space of fnθ
is calculated as the average self-attention (Vaswani,
2017) over the hidden states of fnθ (u

n
i ) in the last

layer, where d denotes the dimension of the hidden
state. The prototype pmn = (µmn , σ

m
n ) for task Tn is

calculated as follows:

µmn =
1

Nn

∑Nn
i=1r

n
i ,

(σmn )2 =
1

Nn − 1

∑Nn
i=1(r

n
i − µmn )

2.

(1)

3.4 Prototype Conditioned VAE

PCVAE employs the prototype-based distribution
as the prior distribution and samples from the
corresponding distribution to generate authentic
pseudo-samples. It is essential to note that the LM
shares parameters with the encoder and decoder of
PCVAE, facilitating the construction of a unified
model for CL. The graphical model of PCVAE is
illustrated in Figure 1(b), please refer to Figure 3
in Appendix A for detail model architecture and
data flow.
Inferencing Stage For a given prototype p =
(µ, σ), the corresponding prototype-based distri-
bution, is defined as the Gaussian distribution
N (µ, σ2). During inference, as shown in Figure
1(b), PCVAE samples s ∼ N (µ, σ2), maps it into
the latent variable z using the Prior Network with
parameters ϕ, and generates a pseudo utterance ũ

12756



(iii) Prototype updating

… …
updated

newly added

Prototype Shift 

Estimation 

Prototype 

Calculation

𝑓𝜃
𝑛

(i) Prototype-conditioned pseudo generation

…

prototypes

Language Model 

𝑓𝜃
𝑛−1

PCVAE

pseudo data

Sampling

(ii) New task learning

new data

Language Model 

𝑓𝜃
𝑛

PCVAE

(a). Overview of PCGR

(c). Prototype Shift Estimation (PSE)(b). Prototype Conditioned VAE (PCVAE)

z u
𝑝𝜙 𝑧 𝑠

𝑝𝜙 𝑢 𝑧

𝑝𝜙 𝑢 𝑠

𝑞𝜓 𝑧 𝑢 ≈ 𝑝𝜙 𝑧 𝑠

prototype-based 

distribution

posterior distribution 

of real data

Figure 1: (a) Overview of PCGR. PCGR consists of three steps: (i) Before learning the new task, PCVAE generates
pseudo-data by sampling from prototype-based distributions. (ii) The LM and PCVAE are trained with both
pseudo-data and new data. (iii) After learning, the prototype for the new task is calculated, and prototypes for
previous tasks are updated using PSE. (b) The graphical model of PCVAE. (c) PSE which estimates the unknown
shift of previous prototypes based on the observed drift in new data.

using the decoder. This generative inference pro-
cess can be expressed by the following conditional
distribution:

pϕ(ũ|s) = pϕ(z|s)pϕ(ũ|z). (2)

Training Stage According to the inference stage
depicted in Equation 2, PCVAE aims to approx-
imate pϕ(z|s) and pϕ(ũ|z). As shown in Fig-
ure 1(b), PCVAE learns pϕ(z|s) by approximating
it with the posterior distribution of the real data
qψ(z|u) using a Recognition Network with param-
eters ψ and an encoder. It acquires the generative
capability of pϕ(u|z) by maximizing the likelihood
of the reconstructed samples based on z. Con-
sequently, the loss of PCVAE, LPCV AE , can be
expressed as:

LPCV AE(θ, ϕ,ψ;u, z, s) = −Eqψ(z|u)[log pϕ(u|z)]
+ λDKL(qψ(z|u)||pϕ(z|s)),

(3)
where Eqψ(z|u)[log pϕ(u|z)] denotes the reconstruc-
tion loss, DKL represents the non-negative Kull-
back–Leibler divergence (Kullback and Leibler,
1951), and λ represents corresponding weight. Ad-
ditionally, since the LM fθ, along with PCVAE,
keeps updating during the training stage, rendering
the prototype for the current task inaccessible, we
use the batch-level sample representation mean as
a proxy for s ∼ N (µ, σ2).

3.5 Prototype Shift Estimation

Sample representations drift in the deep feature
space when the LM is learned in a sequential man-
ner, causing previously memorized prototypes to
be outdated. Using these outdated prototypes in
pseudo-generation results in a performance drop.
When previous data is unavailable, PSE, as shown
in Figure 1(c), aims to estimate the unknown shift
of previous prototypes based on the known drift of
the current task data, before and after learning a
new task. PSE consists of two components: Seman-
tic Drift Estimation (SDE), drawn from (Yu et al.,
2020), and Distribution Scale Variation Estimation
(DSVE), a newly proposed method that focuses
on estimating changes in the prototype distribution
scale.
Semantic Drift Estimation Given Tk, with k < t,
we define the prototype semantic part drift from the
deep feature space of fn−1

θ to fnθ as: △µn−1→n
k =

µnk − µn−1
k . After the LM learning Tn, △µn−1→n

k

is estimated as the weighted average of current
data’s drifts, where the weights are determined by
their respective distance to the previous prototype
semantic part µn−1

k :

△̃µn−1→n
k =

∑Nn
i=1 αi(r

n
i − rn−1

i )
∑Nn

i=1 αi
,

αi = e−
∥rn−1
i

−µn−1
k ∥

2s2 ,

(4)

12757



where s is a hyperparameter, rn−1
i and rni are avail-

able before and after the LM learning Tn, respec-
tively. The prototype semantic part can be updated
as:

µnk = µn−1
k + △̃µn−1→n

k . (5)

Distribution Scale Variation Estimation Given
task Tk, the prototype distribution scale variation
from the deep feature of fn−1

θ to fnθ is defined as:

△σn−1→n
k =

σnk
σn−1
k

. (6)

Equation 6 can be transformed from the multiplica-
tive form to the additive form by taking its loga-
rithm:

△ log σn−1→n
k = log σnk − log σn−1

k . (7)

After the LM learns Tn, the variation
△ log σn−1→n

k is estimated as the weighted aver-
age of current data’s distance change to the corre-
sponding prototype :

△̃ log σn−1→n
k =

∑Nn
i=1 βi[log(r

n
i − µnn)− log(rn−1

i − µn−1
n )]

∑Nn
i=1 βi

,

βi = e−
∥log(rn−1

i
−µn−1

n )−log σn−1
k ∥

2c2 ,
(8)

where c is a hyperparameter. The prototype distri-
bution scale part can be updated via:

σnk = e(log σ
n−1
k +△̃ log σn−1→n

k ). (9)

3.6 Integrated Objective of PCGR
In the new task learning stage of PCGR, given task
Tn, the LM fnθ is learned with PCVAE simultane-
ously by minimizing:

LLM = −∑Nn
i=1 log pθ(x

n
i , y

n
i ) + log pθ(y

n
i |xni ).

(10)
To further mitigate CF, we leverage knowledge dis-
tillation (KD) (Hinton, 2015) to retain previously
learned knowledge in fn−1

θ by minimizing:

LKD =
∑Nn

i=1[γ · τ2 · LKL(lni , ln−1
i )

+ (1− γ)LCE(lni , uni )],
(11)

where lni and ln−1
i are logits of fnθ and fn−1

θ with
temperature τ , respectively, and γ is hyperparame-
ter. Consequently, the integrated learning objective
of PCGR is:

L = LPCV AE + LLM + LKD. (12)

4 Experiments

4.1 Evaluation Benchmark

Following (Zhang et al., 2022), we evaluate our
method under two common scenarios.
CL on similar tasks All tasks in the sequential
order share the same task pattern. In this scenario,
we select 12 natural language generation tasks.
CL on dissimilar tasks Tasks in the sequential
order exhibit various task patterns. The task distri-
butions vary relatively large, posing a bigger chal-
lenge for CL methods to maintain previous knowl-
edge while learning new tasks. In this scenario,
we select 12 tasks spanning five task types: pro-
gramming language generation, intent detection,
dialogue state tracking, natural language genera-
tion, and question answering.

In each scenario, we explore four task sequential
orders. For details on datasets and tasks, please re-
fer to Appendix B.1, and for task sequential orders,
see Appendix B.2.

4.2 Metrics

Let ai,j denote the testing performance on the j-th
task after the CL method has learned the i-th task.
The evaluation metrics for CL methods are defined
as follows:
Average Performance (AP) (Chaudhry et al.,
2018) The average performance of all tasks af-
ter the CL model learning the last task, AP =
1
N

∑N
i=1aN,i.

Forward Transfer (FWT) (Lopez-Paz and Ran-
zato, 2017) FWT measures the influence of learn-
ing previous tasks on the new task, FWT =
1
N

∑N
i=1(ai,i − a0,i), where a0,i refers the perfor-

mance of learning the i-th task individually.
For evaluation metrics on each individual task,

please refer to Appendix B.3.

4.3 Baselines

We evaluate PCGR using 12 methods, categorized
as follows: (2) is a regularization method, (3)-(6)
are architectural methods, (7)-(11) are rehearsal
methods, and (12) represents the upper bound.
Specifically, (1) Finetune (Yogatama et al., 2019)
sequentially tunes the language model on new
tasks; (2) EWC (Kirkpatrick et al., 2017) adds regu-
larization to the loss function to avoid updating im-
portant parameters for previous tasks; (3) Adapter
(Madotto et al., 2021) adds task-specific adapters to
avoid CF; (4) ACM (Zhang et al., 2022) is a modi-
fication of Adapter. It reuses previous adapter mod-

12758



Method Similar Dissimilar
AP ↑ FWT ↑ AP ↑ FWT ↑

Finetune (Yogatama et al., 2019) 8.38±3.02 -9.82±0.34 12.86±1.49 -6.50±0.17
EWC (Kirkpatrick et al., 2017) 22.31±3.93 -10.57±0.57 19.17±1.41 -19.53±13.19
Adapter (Madotto et al., 2020) 33.60±0.00 N/A 45.16±0.00 N/A
ACM (Zhang et al., 2022) 37.12±0.59 -9.97±0.22 41.60±2.70 -8.24±0.75
O-LoRA (Wang et al., 2023) 33.92±2.15 -8.65±0.42 19.32±1.34 -23.59±1.19
SAPT (Zhao et al., 2024) 43.80±0.22 -5.47±0.33 55.40±1.09 -9.43±0.62
InsCL (Wang et al., 2024b) 41.69±2.19 -4.87±0.34 52.35±2.50 -9.77±0.82
LAMOL-g (Sun et al., 2019) 36.97±1.45 -9.53±0.44 43.32±4.01 -6.20±0.73
LAMOL-t (Sun et al., 2019) 37.78±0.52 -9.81±0.64 44.56±1.83 -7.02±0.44
PCLL (Zhao et al., 2022) 33.75±2.76 0.64±0.17 43.94±1.98 -0.24±1.01
DCL (Zeng et al., 2024) 43.75±1.28 0.73±0.20 56.44±1.04 -0.55±0.45
PCGR (Ours) 46.10±0.86 0.99±0.35 59.48±0.55 0.43±0.44
Multi (Upper Bound) 49.70 N/A 70.98 N/A

Table 1: Comparison results of PCGR and baselines. The best results are emphasized in bold.

ules based on task similarity to enlarge knowledge
sharing; (5) O-LoRA (Wang et al., 2023) learns
tasks in orthogonal low-rank vector subspaces, min-
imizing interference while incurring only marginal
additional parameter costs; (6) SAPT (Zhao et al.,
2024) is a novel shared attention framework that
aligns task-specific knowledge acquisition with a
selection module, effectively addressing CF and
enlarging knowledge transfer; (7) InsCL (Wang
et al., 2024b) dynamically replays previous data
based on task similarity, using wasserstein distance
and an instruction information metric to enhance
replay strategies; (8) LAMOL-g (Sun et al., 2019)
uses a global generation token to control pseudo
generation; (9) LAMOL-t (Sun et al., 2019) uses
task-specific tokens to control pseudo generation;
(10) PCLL (Zhao et al., 2022) takes task-specific
prompts as input and utilizes a CAVE model to
generate pseudo-samples; (11) DCL (Zeng et al.,
2024), the current SOTA method, is a modification
of PCLL. It leverages the flexibility of Dirichlet
distribution to improve the generation power of
CAVE; (12) Multi-task learning (Multi) is com-
monly regarded as the upper bound for CL, where
all tasks are learned concurrently.

4.4 Implementation Details

All methods are trained on a Tesla-V100 GPU, with
each sequential task order taking around 12 hours.
We utilize Adam optimizer (Kingma, 2014). The
batch size, learning rate, and epoch number are set
to 8, 5e-5, and 10 separately.

When learning the new task Tn, PCGR generates
ratio×Nn pseudo-samples, where ratio denotes

the pseudo-sample ratio. Following previous works
(Sun et al., 2020; Zhao et al., 2022; Zeng et al.,
2024), we set ratio to 0.2.

In PCVAE, the encoder and decoder share pa-
rameters with the LM, specifically GPT-2 (Radford
et al., 2019), which is the backbone of this work.
The Prior Network and Recognition Network are
implemented as 2-layer MLPs (Pinkus, 1999), with
the dimension of the latent variable set to 128. Hy-
perparameters s for SDE and c for DSVE are both
set to 4. γ and τ in knowledge distillation are set to
1.0 and 2.0, separately, while λ for training PCVAE
is set to 0.5. All hyperparameters in PCGR are
selected using grad search.

To foster reproducibility and comparison of
PCGR, we make our code publicly available at
Github1.

5 Results and Analysis

5.1 Main Results

Table 1 presents the performance comparison of
PCGR and various baselines, with the upper bound
included, for both scenarios. For each scenario,
we report the average AP and FWT over the four
corresponding task sequential orders. The detailed
results of each task sequential order are provided
in Appendix C.1.
• Compared to all the baseline methods, includ-

ing regulation, architectural, and rehearsal meth-
ods, PCGR achieves SOTA performance in AP
and FWT in both similar and dissimilar scenar-
ios. Moreover, PCGR only lags behind the upper

1https://github.com/OzymandiasChen/PCGR

12759

https://github.com/OzymandiasChen/PCGR


bound by 3.80 in the similar scenario, and it is
the only method that achieves a positive aver-
age FWT in the dissimilar scenario, which im-
plies positive knowledge transfer from previous
to new tasks. These superior performances can be
attributed to PCGR’s considering prototypes to
guide pseudo generation. By utilizing task-level
statistics from prototypes, PCGR can generate
more representative and diverse pseudo-samples,
facilitating a better approximation of the data dis-
tribution of previous tasks when learning a new
task, thereby alleviating CF.

• Compared to other generative replay methods, in-
cluding LAMOL-g, LMAOL-t, PCLL, and DCL,
which rely solely on a single task-specific token
or prompt to guide pseudo-generation, PCGR out-
performs them all. This superior performance in-
dicates that a single task-specific token or prompt
is insufficient to guide pseudo generation. In
contrast, prototypes in PCGR serve as a more ro-
bust and effective mechanism for guiding pseudo-
generation.

• PCGR outperforms InsCL, which replays previ-
ous real data, by a significant margin, with 4.49
higher AP in the similar scenario and 7.13 higher
AP in the dissimilar scenario. This superior per-
formance highlights the high quality of pseudo-
samples in PCGR. Furthermore, this suggests
that PCGR is a promising approach for mitigat-
ing CF without privacy concerns and memory
overhead.

5.2 Ablation Study
We conduct ablation studies to verify the effective-
ness of prototypes and Prototype Shift Estimation
in pseudo-generation. (1) w/o PSE means Proto-
type Shift Estimation is not performed after the
LM learns new tasks. (2) w/o PSE, w/o Prototype
means the prototype is not considered in pseudo-
generation. In this setting, the prior distribution
is no longer prototype-based Gaussian distribution
but Normal distribution. Corresponding VAE sam-
ples from the Normal distribution and utilizes a
task-specific prompt to generate pseudo-samples.

The comparison between PCGR and w/o PSE
verifies the effectiveness of Prototype Shift Esti-
mation in Section 3.5. As shown in Table 2, Com-
paring w/o PSE and PCGR, w/o PSE lags behind
PCGR by 2.71 on Order similar_0 and 4.21 on Or-
der dissimilar_0. This performance decrease is be-
cause previously saved prototypes become outdated
after the LM learning new tasks. In other words,

AP ↑ FWT ↑
Similar

PCGR 46.10±0.86 0.99±0.35
w/o PSE 43.39±1.37 0.53±0.09
w/o PSE, w/o Prototype 41.50±2.11 0.68±0.65

Dissimilar
PCGR 59.48±0.55 0.43±0.44
w/o PSE 55.27±2.01 -0.24±0.71
w/o PSE, w/o Prototype 53.32±6.00 -0.63±0.62

Table 2: Ablation study on the effectiveness of prototype
and PSE.

the previously saved prototypes can no longer ac-
curately reflect the previous real data distribution
in the updated feature space of LM.

The comparison between PCGR and w/o PSE,
w/o Prototype verifies the effectiveness of Proto-
type in Section 3.3. As shown in Table 2, discard-
ing the prototype, the performance of w/o PSE, w/o
Prototype drops even further, with around 4.6 drop
on Order similar_0 and 6.16 drop on Order dissim-
ilar_0. This performance drop demonstrates that,
even with the powerful generative model VAE, a
single task-specific prompt is insufficient to gener-
ate representative and diverse pseudo-samples that
accurately reflect the real data distribution.

5.3 Analysis

5.3.1 Pseudo-sample Quality Evaluation

Objective Evaluation We utilize Distinction
Scores (Dist-n) (Li et al., 2015) to evaluate the
pseudo-sample quality of PCGR and other genera-
tive replay methods. Dist-n calculates the propor-
tion of unique n-grams in a given corpus, where a
higher distinction score indicates more corpus di-
versity. In generative replay, more diverse pseudo-
samples are preferable, as they can better approx-
imate previous data distribution and enhance sep-
arability among tasks in the deep feature space
of LM, thereby facilitating mitigating CF. Follow-
ing (Zeng et al., 2024; Zhao et al., 2022), we take
n = 1, 2, 3, 4 in Dist-n for evaluation.

As shown in Table 3, except for Dist-4 on Or-
der dissimilar_0, which is slightly 0.0027 inferior
to the best, PCGR outperforms DCL and PCLL
on all distinction scores. This superior perfor-
mance shows that PCGR can generate more diverse
pseudo-samples.
Human Evaluation Please refer to Appendix C.2
for human evaluation of the pseudo-samples.

12760



Sequential Order Length

A
ve

ra
ge

 P
er

fo
rm

an
ce

 

45

55

65

75

1 2 3 4 5 6 7 8 9 10 11 12

PCGR PCLL DCL SAPT O-LoRA InsCL
LAMOL-g LAMOL-t ACM Adapter Finetune EWC

(a) Similar Scenario. (Any average performance below 35 is
excluded.)

Sequential Order Length

A
ve

ra
ge

 P
er

fo
rm

an
ce

 

25

35

45

55

1 2 3 4 5 6 7 8 9 10 11 12

PCGR PCLL DCL SAPT O-LoRA InsCL
LAMOL-g LAMOL-t ACM Adapter Finetune EWC

(b) Dissimilar Scenario. (Any average performance below 25
is excluded.)

Figure 2: Average performance of PCGR under different sequential order length.

Method Dist-1 Dist-2 Dist-3 Dist-4
Order similar_0

PCLL 0.4597 0.7154 0.8287 0.8908
DCL 0.5018 0.7638 0.8540 0.9015
PCGR 0.5662 0.7928 0.8684 0.9117
Real Data 0.6221 0.8725 0.9359 0.9634

Order dissimilar_0
PCLL 0.2078 0.4709 0.5916 0.6492
DCL 0.2352 0.5468 0.6887 0.7482
PCGR 0.2480 0.5503 0.6892 0.7455
Real Data 0.2463 0.5713 0.6930 0.7396

Table 3: Distinction scores for pseudo-samples of PCGR
and the generative replay baselines.

5.3.2 Influence of Pseudo-sample Ratio

We conduct experiments of different pseudo-
sample ratios on PCGR to evaluate the impact of
pseudo-sample number in PCGR. As shown in Ta-
ble 4, except for being inferior to DCL by 0.16 on
the pseudo-sample ratio of 0.1 in Order dissimi-
lar_0, PCGR constantly outperforms other genera-
tive replay baselines. This demonstrates PCGR’s
superior power in generating representative pseudo-
samples.

Moreover, the performance of LAMOL-t stops
increasing after the pseudo-sample ratio reaches
0.5 in Order similar_0 and 0.2 in Order dissimi-
lar_0. In contrast, the performance of PCGR con-
tinues to increase as the pseudo-sample ratio in-
creases. This phenomenon occurs because a single
task-specific token cannot fully capture the scale
of task-level data distribution. As more low-quality
pseudo-samples are included, LAMOL-t’s perfor-
mance may degrade.

5.3.3 Impact of Task Sequential Order Length

We test the performance of CL methods after learn-
ing each task to evaluate the impact of task sequen-

Pseudo-sample Ratio LAMOL-t PCLL DCL PCGR
Order similar_0

0.05 33.863 30.994 38.727 41.991
0.1 38.103 32.266 44.136 44.587
0.2 38.187 32.665 44.421 47.192
0.5 39.305 33.658 45.370 48.202
0.8 38.608 37.028 45.826 48.756
Upper Bound 49.70

Order dissimilar_0
0.05 36.125 38.563 47.222 47.252
0.1 40.366 41.454 54.810 54.565
0.2 48.025 46.313 55.743 59.792
0.5 40.269 50.633 61.470 65.077
0.8 40.751 52.887 63.562 66.038
Upper Bound 70.98

Table 4: Average Performance of different pseudo-
sample ratios on PCGR and the generative replay base-
lines.

tial order length. As shown in Figure 2, PCGR
outperforms the baselines on different task sequen-
tial order lengths. Notably, as the sequential or-
der length increases, PCGR exceeds the previous
SOTA method, DCL, by an even greater margin.
This superior performance indicates that PCGR re-
mains robust with the introduction of additional
new tasks, highlighting its effectiveness in mitigat-
ing CF, which is the ultimate goal of CL.

5.3.4 Scalability of PCGR

We conduct experiments on GPT-2 backbones of
different sizes to verify PCGR’s scalability. As
shown in Table 5, PCGR consistently outperforms
LAMOL-t, PCLL, and DCL across GPT-2 (124M),
GPT-2-medium (355M), and GPT-2-large (774M).
It demonstrates the scalability of PCGR and this
scalability is particularly desirable in the current
era of large language models.

12761



Backbone LAMOL-t PCLL DCL PCGR
Order similar_0

GPT-2 (124M) 38.190 32.670 44.420 47.190
GPT-2-medium (355M) 40.955 35.081 45.394 46.831
GPT-2-large (774M) 41.743 37.644 44.809 45.038

Order dissimilar_0
GPT-2 (124M) 43.576 46.313 55.743 59.792
GPT-2-medium (355M) 52.865 49.624 62.036 62.568
GPT-2-large (774M) 58.200 51.144 60.621 61.588

Table 5: Comparison of PCGR and baselines based on
different sizes of backbones.

6 Conclusions

This paper proposes PCGR, a rehearsal method
that incorporates task-level statistics to enhance
generative replay. In PCGR, task-level embedding
statistics are stored as prototypes for each old task.
When new task comes, PCGR utilizes samples
drawn from task-specific prototype-based distri-
butions to generate pseudo-samples that are both
representative and diverse enough to reflect the pre-
vious real data distribution. Experiments show that
PCGR achieves SOTA performance, demonstrates
greater robustness to sequential order length com-
pared to other baselines, and can be scaled to larger
backbones.

7 Limitations

Our method is the generative replay method, which
typically tunes the whole language model. Given
the large number of learnable parameters, the time
required for generative replay is substantial, as is
the case with our PCGR. In the future, we can
explore hybridizing our PCGR with architectural
methods to reduce training costs.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-

seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European conference on
computer vision (ECCV), pages 139–154.

Eden Belouadah and Adrian Popescu. 2019. Il2m: Class
incremental learning with dual memory. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 583–592.

Eden Belouadah, Adrian Popescu, and Ioannis Kanellos.
2021. A comprehensive study of class incremental
learning algorithms for visual tasks. Neural Net-
works, 135:38–54.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Daniel Duckworth,

Semih Yavuz, Ben Goodrich, Amit Dubey, Andy
Cedilnik, and Kyu-Young Kim. 2019. Taskmaster-1:
Toward a realistic and diverse dialog dataset. arXiv
preprint arXiv:1909.05358.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. arXiv
preprint arXiv:2003.04807.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam
Ajanthan, and Philip HS Torr. 2018. Riemannian
walk for incremental learning: Understanding forget-
ting and intransigence. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages
532–547.

Yung-Sung Chuang, Shang-Yu Su, and Yun-Nung Chen.
2020. Lifelong language knowledge distillation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2914–2924.

Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen,
Ruifeng Xu, and Min Yang. 2021. Continual learning
for task-oriented dialogue system with iterative net-
work pruning, expanding and masking. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 517–523.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar,
and Mike Lewis. 2018. Semantic parsing for task ori-
ented dialog using hierarchical representations. arXiv
preprint arXiv:1810.07942.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proceedings of the 2015 conference on empiri-
cal methods in natural language processing, pages
643–653.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Geoffrey Hinton. 2015. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531.

Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao,
Zhengwei Tao Tao, Dongyan Zhao, Jinwen Ma, and
Rui Yan. 2019. Overcoming catastrophic forgetting
for continual learning via model adaptation. In Inter-
national conference on learning representations.

Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat
Lertvittayakumjorn, Boonserm Kijsirikul, and Peer-
apon Vateekul. 2021. Rational lamol: A rationale-
based lifelong learning framework. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2942–2953.

12762



Zixuan Ke and Bing Liu. 2022. Continual learning of
natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701.

Zixuan Ke, Bing Liu, Wenhan Xiong, Asli Celikyilmaz,
and Haoran Li. 2023. Sub-network discovery and
soft-masking for continual learning of mixed tasks.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 15090–15107.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evalua-
tion dataset for intent classification and out-of-scope
prediction. arXiv preprint arXiv:1909.02027.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. Ad-
vances in neural information processing systems, 30.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, and Zhiguang Wang. 2020. Continual
learning in task-oriented dialogue systems. arXiv
preprint arXiv:2012.15504.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul A Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, Pascale Fung, and Zhiguang Wang.
2021. Continual learning in task-oriented dialogue
systems. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7452–7467.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar,
and Emma Strubell. 2023. An empirical investiga-
tion of the role of pre-training in lifelong learning.
Journal of Machine Learning Research, 24(214):1–
50.

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang,
and Boi Faltings. 2020a. Continual learning for natu-
ral language generation in task-oriented dialog sys-
tems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3461–3474.

Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi
Faltings. 2020b. Generalized class incremental learn-
ing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops,
pages 240–241.

Martin Mundt, Yongwon Hong, Iuliia Pliushch, and
Visvanathan Ramesh. 2023. A wholistic view of con-
tinual learning with deep neural networks: Forgotten
lessons and the bridge to active and open world learn-
ing. Neural Networks, 160:306–336.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural networks, 113:54–71.

Allan Pinkus. 1999. Approximation theory of the mlp
model in neural networks. Acta numerica, 8:143–
195.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 8689–8696.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2020.
Lamol: Language modeling for lifelong language
learning. In International Conference on Learning
Representations.

12763



Yuwen Tan, Qinhao Zhou, Xiang Xiang, Ke Wang,
Yuchuan Wu, and Yongbin Li. 2024. Semantically-
shifted incremental adapter-tuning is a continual vi-
transformer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 23252–23262.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu.
2024a. A comprehensive survey of continual learn-
ing: theory, method and application. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan-Jing
Huang. 2023. Orthogonal subspace learning for lan-
guage model continual learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 10658–10671.

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen
Chen, Haonan Lu, and Yujiu Yang. 2024b. Inscl: A
data-efficient continual learning paradigm for fine-
tuning large language models with instructions. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 663–677.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. arXiv
preprint arXiv:1508.01745.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state genera-
tor for task-oriented dialogue systems. arXiv preprint
arXiv:1905.08743.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan Fang
Li, Guilin Qi, and Gholamreza Haffari. 2022. Pre-
trained language model in continual learning: A com-
parative study. In International Conference on Learn-
ing Representations 2022.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Her-
ranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. 2020. Semantic drift compen-
sation for class-incremental learning. in 2020 ieee.
In CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6980–6989.

Min Zeng, Yisen Wang, and Yuan Luo. 2019. Dirich-
let latent variable hierarchical recurrent encoder-
decoder in dialogue generation. In Proceedings of

the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1267–1272.

Min Zeng, Haiqin Yang, Wei Xue, Qifeng Liu, and Yike
Guo. 2024. Dirichlet continual learning: Tackling
catastrophic forgetting in nlp. In The 40th Confer-
ence on Uncertainty in Artificial Intelligence.

Mengyao Zhai, Lei Chen, Jiawei He, Megha Nawhal,
Frederick Tung, and Greg Mori. 2020. Piggyback
gan: Efficient lifelong learning for image conditioned
generation. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXI 16, pages 397–413.
Springer.

Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. 2022.
Continual sequence generation with adaptive compo-
sitional modules. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3653–3667.

Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao,
Bing Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Sapt: A shared attention
framework for parameter-efficient continual learning
of large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11641–
11661.

Yingxiu Zhao, Yinhe Zheng, Zhiliang Tian, Chang Gao,
Jian Sun, and Nevin L Zhang. 2022. Prompt condi-
tioned vae: Enhancing generative replay for lifelong
learning in task-oriented dialogue. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11153–11169.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia
Ye, De-Chuan Zhan, and Ziwei Liu. 2024. Class-
incremental learning: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin
Liu. 2021a. Class-incremental learning via dual aug-
mentation. Advances in Neural Information Process-
ing Systems, 34:14306–14318.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and
Cheng-Lin Liu. 2021b. Prototype augmentation and
self-supervision for incremental learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5871–5880.

A Additional Methodology Details

We provide detail model architecture and data flow
of PCVAE in Figure 3.

12764



Mean
Prior 

𝑝𝜙 𝑧′ 𝑠

Recognition

𝑞𝜓 𝑧 𝑢

𝑧′

z

Kullback–Liebler 

divergence LM 𝑓𝜃
𝑛 (dencoder)

prompt

Reconstruction Loss

utterance

LM 𝑓𝜃
𝑛

(encoder)

batchprompt utterance

…

…Training

Inferencing

prototype

utterance

prompt

LM 𝑓𝜃
𝑛 (dencoder)

prototype-based 

distribution

Prior 

𝑝𝜙 𝑧 𝑠
Z

Sampling

Figure 3: Model architecture and data flow of PCVAE.

B Experiment Details

B.1 Task and Dataset Details

To evaluate the CL methods, we take into consider-
ation of five task patterns:
Programming Language Generation involves au-
tomatically generating code snippets or full pro-
grams from natural language descriptions. It aims
to bridge the gap between human intentions and
machine code. For example, in a SQL language
generation task, the natural language description is
“the table has columns rank , name , team
, goals , appearances , minutes played
and key words max , min , count , sum ,
avg , = , > , < , op , select , where
, and , col , table , caption , page ,
section , op , cond , question , agg ,
aggops , condops - - what rank has a team
of roma ?”, corresponding SQL code is “select
rank from table where team = roma”.

In this paper, we take into consideration of a
SQL language generation task of WikiSQL (Zhong
et al., 2017).
Intent Detection focuses on identifying the pur-
pose behind a user’s input, commonly used in chat-
bots and virtual assistants. It classifies user queries
into predefined categories. For example, given user
input “I believe someone is using my card
without my agreement!”, corresponding intent
is “compromised_card”.

In this paper, we task into consideration of
three intent detection tasks, including banking
(Casanueva et al., 2020), top_split2 (Gupta et al.,
2018), and clinic (Larson et al., 2019).
Dialogue State Tracking (DST) involves main-
taining the context and state of a conversation in
dialog systems. It keeps track of user intents, enti-
ties, and any relevant information throughout the

interaction. For example, in a restaurant book-
ing system, if the user says “I want to book
a table for two at Italian cuisine”,
the DST would update the state to reflect the in-
tent “booking”, “number_of_people=two”, and
“cuisine_type=Italian”.

In this paper, we task into consideration of
three DST tasks, including dst8 (Rastogi et al.,
2020), atis_slot (Hemphill et al., 1990), and
mit_movie_eng2.
Natural Language Generation (NLG) refers
to the process of converting structured data
into human-readable text. For example,
given structured data “Temperature=75,
Condition=Sunny”, an NLG system might
produce the output “The weather today is
sunny with a temperature of 75 degrees
Fahrenheit.”.

In this paper, we take into consid-
eration of 12 NLG tasks, including
tm20_flight_nlg, tm20_sport_nlg, tm20_hotel_nlg,
tm20_restaurant_nlg, and tm20_music_nlg from
(Byrne et al., 2019), sgd_events_nlg from (Rastogi
et al., 2020), tm19_movie_nlg from (Byrne et al.,
2019), e2enlg from (Novikova et al., 2017),
and rnnlg_restaurant, rnnlg_tv, rnnlg_hotel, and
rnnlg_laptop from (Wen et al., 2015).
Question Answering (QA) aims at answering the
questions given the context. For example, give con-
text “the stock pot should be chilled and
the solid lump of dripping which settles
when chilled should be scraped clean and
re-chilled for future use .” and question
“what settles ?”, the answer should be “the
solid lump of dripping”.

In this paper, we take into consideration of one

2https://sls.csail.mit.edu/downloads/

12765

https://sls.csail.mit.edu/downloads/


Task Sequential Order Scenario Task Sequence

Order similar_0 Similar rnnlg_tv, tm20_music_nlg, tm20_flight_nlg, tm20_sport_nlg,
e2enlg, tm20_restaurant_nlg, rnnlg_hotel, rnnlg_laptop,
tm19_movie_nlg, rnnlg_restaurant, sgd_events_nlg, tm20_hotel_nlg

Order similar_1 Similar tm20_music_nlg, sgd_events_nlg, e2enlg, rnnlg_restaurant,
rnnlg_hotel, tm20_sport_nlg, rnnlg_laptop, rnnlg_tv,
tm20_restaurant_nlg, tm20_hotel_nlg, tm19_movie_nlg, tm20_flight_nlg

Order similar_2 Similar rnnlg_laptop, sgd_events_nlg, e2enlg, rnnlg_restaurant,
tm20_sport_nlg, rnnlg_hotel, tm20_restaurant_nlg, rnnlg_tv,
tm19_movie_nlg, tm20_flight_nlg, tm20_hotel_nlg, tm20_music_nlg

Order similar_3 Similar tm20_flight_nlg, tm20_sport_nlg, e2enlg, tm20_hotel_nlg,
sgd_events_nlg, tm19_movie_nlg, rnnlg_restaurant, tm20_restaurant_nlg,
rnnlg_tv, rnnlg_hotel, tm20_music_nlg, rnnlg_laptop

Order dissimilar_0 Dissimilar top_split2, WikiSQL, tm20_sport_nlg, dstc8,
clinc, e2enlg, banking, atis_slot,
rnnlg_laptop, mit_movie_eng, srl, sgd_events_nlg

Order dissimilar_1 Dissimilar dstc8, tm20_sport_nlg, banking, top_split2,
e2enlg, atis_slot, mit_movie_eng, sgd_events_nlg,
clinc, rnnlg_laptop, WikiSQL, srl

Order dissimilar_2 Dissimilar atis_slot, banking, sgd_events_nlg, tm20_sport_nlg,
e2enlg, WikiSQL, srl, top_split2,
clinc, mit_movie_eng, rnnlg_laptop, dstc8

Order dissimilar_3 Dissimilar WikiSQL, dstc8, srl, atis_slot,
top_split2, e2enlg, tm20_sport_nlg, banking,
mit_movie_eng, rnnlg_laptop, clinc, sgd_events_nlg

Table 6: The detail of eight task sequential orders across two scenarios.

QA dataset, srl (He et al., 2015).
For each task, following (Wang et al., 2023;

Zhao et al., 2024), we randomly select 3,000 sam-
ples for training and 256 samples for evaluating
and testing.

B.2 Task Sequential Orders

We provide the details of eight task sequential or-
ders across two scenarios in Table 6.

B.3 Metric Details

The evaluation metrics for each task are as follows:
Programming Language Generation we employ
the Exact Match (EM), which assesses the percent-
age of generated code snippets that exactly match
the expected output, ensuring precision in code gen-
eration.
Intent Detection We utilize the Exact Match met-
ric to determine the accuracy of identifying the
user’s intent from their input, reflecting the sys-
tem’s ability to understand user queries correctly.
Dialogue State Tracking we adopt the Joint Goal
Accuracy (JGA) (Wu et al., 2019), where the intent
keyword and the corresponding value should ex-

actly match with the gold. It measures the system’s
capability to maintain and track multiple dialogue
goals simultaneously, thus ensuring a coherent in-
teraction.
Natural Language Generation We use BLEU
score (Papineni et al., 2002), which measures the
overlap between the generated text and one or more
reference texts based on n-grams.
Question Answering We also use the BLEU score.

C More Results and Analysis

C.1 Detail Results on each task sequential
order

We provide detailed results of each task sequen-
tial order for the similar and dissimilar scenarios.
As shown in Table 7, our PCGR outperforms the
baselines on AP regardless of the task sequential
order.

C.2 Human Evaluation of Pseudo-samples

We present pseudo-samples generated by PCGR
and other generative replay baselines, including
DCL, PCLL, and LAMOL-t, as shown in Tables

12766



Order similar_0 Order similar_1 Order similar_2 Order similar_3
Method AP FWT AP FWT AP FWT AP FWT
Finetune (Yogatama et al., 2019) 16.00 -9.41 16.22 -9.96 18.82 -9.71 22.48 -10.19
EWC (Kirkpatrick et al., 2017) 20.13 -10.07 19.77 -10.39 21.21 -10.43 28.13 -11.40
Adapter (Madotto et al., 2020) 33.60 N/A 33.60 N/A 33.60 N/A 33.60 N/A
ACM (Zhang et al., 2022) 37.47 -9.83 37.74 -10.07 36.79 -9.76 36.47 -10.24
O-LoRA (Wang et al., 2023) 35.36 -8.07 31.08 -8.99 33.46 -8.60 35.79 -8.94
SAPT (Zhao et al., 2024) 43.95 -5.62 43.53 -5.78 44.01 -5.02 43.73 -5.44
InsCL (Wang et al., 2024b) 39.53 -4.76 43.80 -5.36 40.10 -4.80 43.35 -4.58
LAMOL-g (Sun et al., 2019) 38.64 -9.06 35.34 -9.25 36.29 -9.91 37.60 -9.91
LAMOL-t (Sun et al., 2019) 38.19 -10.13 37.10 -10.46 38.18 -8.99 37.66 -9.65
PCLL (Zhao et al., 2022) 32.67 0.86 31.75 0.64 37.84 0.60 32.77 0.45
DCL (Zeng et al., 2024) 44.42 0.59 45.14 1.02 43.13 0.61 42.29 0.68
PCGR (Ours) 47.19 1.10 46.37 1.07 45.33 1.29 45.49 0.49
Multi (Upper Bound) 49.70 N/A 49.70 N/A 49.70 N/A 49.70 N/A

Order dissimilar_0 Order dissimilar_1 Order dissimilar_2 Order dissimilar_3
Method AP FWT AP FWT AP FWT AP FWT
Finetune (Yogatama et al., 2019) 13.67 -6.49 13.46 -6.73 13.67 -6.33 10.63 -6.45
EWC (Kirkpatrick et al., 2017) 20.69 -31.10 17.49 -9.24 18.62 -7.02 19.9 -30.74
Adapter (Madotto et al., 2020) 45.16 N/A 45.16 N/A 45.16 N/A 45.16 N/A
ACM (Zhang et al., 2022) 41.63 -7.55 39.43 -8.35 39.96 -9.24 45.40 -7.80
SAPT (Zhao et al., 2024) 53.84 -9.43 56.23 -9.12 55.43 -8.88 56.08 -10.30
O-LoRA (Wang et al., 2023) 18.88 -25.31 17.80 -23.44 19.60 -22.72 21.01 -22.90
InsCL (Wang et al., 2024b) 53.29 -9.02 51.22 -10.12 49.57 -10.76 55.32 -9.18
LAMOL-g (Sun et al., 2019) 48.03 -5.18 43.23 -6.68 43.79 -6.17 38.24 -6.79
LAMOL-t (Sun et al., 2019) 43.58 -7.07 46.27 -6.68 45.91 -7.62 42.48 -6.72
PCLL (Zhao et al., 2022) 46.31 1.19 42.43 -0.24 42.19 -1 44.83 -0.92
DCL (Zeng et al., 2024) 55.74 -0.50 57.09 -0.46 57.53 -0.07 55.38 -1.15
PCGR (Ours) 59.79 0.15 59.48 0.11 59.94 0.40 58.72 1.07
Multi (Upper Bound) 70.98 N/A 70.98 N/A 70.98 N/A 70.98 N/A

Table 7: Comparison results of PCGR and the baselines on on each task sequential order.

12767



Invalid Type Description

x− y mismatch
The output y does not semantically align with the input x.
For example, in the seventh pseudo-sample from PCGR, the correct output for the input “Can
you tell me what currencies I can use to top up my account?” should be
“supported_cards_and_currencies”, not “op_up_by_cash_or_cheque”.

corpus duplication
The pseudo-sample is identical to previous pseudo-samples, indicating that the generative replay
method fails to produce sufficiently diverse data.
For example, the fifth and tenth pseudo-samples in LAMOL-t are identical to the third pseudo-
sample in LAMOL-t.

corpus incoherent
There are syntax or semantic errors in the input x or output y.
For example, in the fifth pseudo-sample of DCL, the input x “How do I track the card
I received?” is problematic because if someone has already received the card, tracking it is
unnecessary, as they already possess it.

Table 8: Invalid pseudo-sample type.

9, 10, 11, and 12 for human evaluation of pseudo-
sample quality. All models were trained under the
Order dissimilar_0. To ensure a fair comparison,
we selected the first ten generated pseudo-samples
from the same task: "banking", which is an intent
detection task. Additionally, we define three types
of invalid pseudo-samples, as shown in Table 8.

When comparing the pseudo-samples generated
by PCGR with those from other generative replay
baselines, we find that the pseudo-samples gener-
ated by PCGR are more representative and diverse,
contributing to its state-of-the-art performance:
• Representativeness of Pseudo-samples: PCGR

has only 2 out of 10 invalid pseudo-samples,
while DCL, PCLL, and LAMOL-t have 4 out
of 10, 4 out of 10, and 7 out of 10 invalid
samples, respectively. This lower ratio of in-
valid pseudo-samples in PCGR indicates that the
prototype-guided pseudo-samples are more rep-
resentative and better semantically aligned with
real data. In contrast, the pseudo-samples from
PCLL, LAMOL-t, and DCL exhibit more noise,
leading to their inferior performance.

• Diversity of Pseudo-samples: (1) Regardless
of validity, 3 out of 10 pseudo-samples in PCLL
share the same intent type, and 3 out of 10 in
LAMOL-t have issues with corpus duplication.
In contrast, both PCGR and DCL have only 1
out of 10 pseudo-samples sharing the same in-
tent type. (2) Additionally, 2 out of 10 pseudo-
samples in DCL start with "How long," whereas
PCGR does not have this issue. Both (1) and (2)
indicate that PCGR can generate more diverse
pseudo-samples than the other generative replay
baselines.

12768



Index Input x Output y

1 I’m waiting for my card to arrive. card_arrival
2 I would like to have a virtual card. getting_virtual_card
3 Where’s my card PIN? get_physical_card
4 What’s the reason I can’t top up? top_up_failed
5 There is a charge showing on my account. card_payment_fee_charged
6 How do I complete the ID check? verify_my_identity
7 Can you tell me what currencies I can use to top up my account? top_up_by_cash_or_cheque
8 Hi, I would like to make a card payment that is pending. pending_card_payment
9 What are the charges I see on my statement? card_payment_fee_charged
10 Please explain the exchange rate. exchange_rate

Index Explanation for the Invalid Pseudo-sample

3 Invalid type: x− y mismatch
Invalid reason: The input x has nothing to do with ‘physical card’.

7 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘supported_cards_and_currencies’.

Table 9: Pseudo-samples from PCGR. Invalid pseudo-samples are highlighted in italic bold with explanation
provided.

Index Input x Output y

1 Why did my payment go through? pending_card_payment
2 I got my new card, but it’s not working. card_not_working
3 Transfer could not be completed. failed_transfer
4 A payment I made to get my card is showing up twice. card_payment_not_recognised
5 How do I track the card I received? card_arrival
6 I was charged twice transaction_charged_twice
7 I bought something with my card, but the money didn’t go through card_payment_not_recognised
8 How long is the transfer to show up in my account? transfer_timing
9 How long does it take to verify my identity? verify_my_identity
10 For topping up by card I have been charged a fee. top_up_by_card_charge

Index Explanation for the Invalid Pseudo-sample

1 Invalid type: x− y mismatch
Invalid reason: The input x indicates that the payment was successful
and not intended to be processed. Therefore, the payment is confirmed
as successful rather than pending. As a result, there is a mismatch between
input x and output y.

4 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘transaction_charged_twice’.

5 Invalid type: corpus incoherent
Invalid Reason: It is clear that if someone has already received the card, tracking
it is unnecessary since they already have possession of it.
As a result, there is a semantic error, which makes the pseudo-sample incoherent.

7 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘declined_card_payment’.

Table 10: Pseudo-samples from DCL. Invalid pseudo-samples are highlighted in italic bold with explanation
provided.

12769



Index Input x Output y

1 I have a bank transfer that was approved. transfer_not_received_by_recipient
2 Can I have a second card issued to another family member? getting_spare_card
3 I do not recognize this card payment. card_payment_not_recognised
4 How do I get my card refund? card_payment_not_recognised
5 In which countries does your app work? country_support
6 I can’t log in with the passcode being rejected. passcode_forgotten
7 How do I get my card renewed? activate_my_card
8 I have a charge for using my card. card_payment_not_recognised
9 Is there any way I can get a second card issued to another family member? getting_spare_card
10 Can I transfer using a bank transfer? transfer_into_account

Index Explanation for the Invalid Pseudo-sample

1 Invalid type: x− y mismatch
Invalid Reason: The input does not indicate that the transfer was not received.

4 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘request_refund’.

7 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘card_about_to_expire’.

8 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘card_payment_fee_charged’.

Table 11: Pseudo-samples from PCLL. Invalid pseudo-samples are highlighted in italic bold with explanation
provided.

Index Input x Output y

1 Where can I change my pin? change_pin
2 I got a refund and I don’t remember where I ordered it from Refund_not_showing_up
3 What currencies can I use to get money? fiat_currency_support
4 I got a refund and I don’t remember where I ordered it from Refund_not_showing_up
5 What currencies can I use to get money? fiat_currency_support
6 I see a pending payment on my card. I thought I had withdrawn funds earlier. pending_card_payment
7 I got a refund and I don’t remember where I ordered it from Refund_not_showing_up
8 Why am I getting an error code when I make a transfer? beneficiary_not_allowed
9 How long does it take to get an actual card? card_delivery_estimate

10 What currencies can I use to get money? fiat_currency_support

Index Explanation for the Invalid Pseudo-sample

2 Invalid type: x− y mismatch
Invalid reason: It indicates an unrecognized refund in the input x .

4 Invalid type: x− y mismatch, corpus duplication
Invalid reason: The pseudo-sample is identical to the second pseudo-sample.

5 Invalid type: corpus duplication
Invalid reason: The pseudo-sample is identical to the third pseudo-sample.

6 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘dechashlined_cash_withdrawal’.

7 Invalid type: x− y mismatch, corpus duplication
Invalid reason: The pseudo-sample is identical to the second pseudo-sample.

8 Invalid type: x− y mismatch
Invalid reason: The output y should be ‘failed_transfer’.

10 Invalid type: corpus duplication
Invalid reason: The pseudo-sample is identical to the third pseudo-sample.

Table 12: Pseudo-samples from LAMOL-t. Invalid pseudo-samples are highlighted in italic bold with explanation
provided.

12770


