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Abstract
Large language models (LLMs) are increas-
ingly recognized for their exceptional genera-
tive capabilities and versatility across various
tasks. However, the high inference costs asso-
ciated with these models have not received ade-
quate attention, particularly when compared to
the focus on training costs in existing research.
In response to this gap, our study conducts a
comprehensive benchmarking of LLM infer-
ence energy across a wide range of NLP tasks,
where we analyze the impact of different mod-
els, tasks, prompts, and system-related factors
on inference energy. Specifically, our experi-
ments reveal several interesting insights, includ-
ing strong correlation of inference energy with
output token length and response time. Also,
we find that quantization and optimal batch
sizes, along with targeted prompt phrases, can
significantly reduce energy usage. This study
is the first to thoroughly benchmark LLM in-
ference across such a diverse range of aspects,
providing insights and offering several recom-
mendations for improving energy efficiency in
model deployment.

1 Introduction

Recent discussions on the energy and carbon im-
pact of machine learning (ML) algorithms have
mainly concentrated on quantifying energy usage
during the training phase of these models (Dodge
et al., 2022; Luccioni et al., 2023; Patterson et al.,
2021; Raffel et al., 2020). Studies on inference
energy are much rarer because a single inference
operation consumes considerably less energy and
resources. However, under deployment, inference
is performed many more times, making its energy
impact significant and warranting separate investi-
gation (Wu et al., 2022; Patterson et al., 2022). For
example, 90% of total cloud computing demand
for AWS, the largest global cloud provider, were
for model inference purpose (Barr, 2019). More-
over, a key motivation for training large language
models is that a single model can achieve state-
of-the-art performance across diverse NLP tasks

due to its impressive zero-shot and few-shot capa-
bilities, making it energy-efficient from a training
perspective. However, when we consider the to-
tal carbon footprint of the entire lifetime of the
model, the energy requirement for model inference
plays a significant role, considering the number of
inferences that are carried out during the model’s
lifetime. Thus it is crucial to conduct a systematic
study to quantify the energy requirements and car-
bon emissions for model inference across various
models and tasks.

1.1 Literature survey
Existing works have attempted to study the infer-
ence energy of LLMs from various perspectives.
Everman et al. (2023) evaluated energy usage of
GPT models on question-answering tasks, employ-
ing Software Carbon Intensity (SCI) released by
green software. Samsi et al. (2023) provides a de-
tailed account of energy usage during inference
for question-answering tasks for Llama models on
various GPU architectures. Liu et al. (2022) study
the energy consumption trade-off for fine-tuning
vs few-shot learning for both encoder-decoder and
decoder-only models on SuperGLUE and RAFT
tasks, measuring energy in FLOPS. These prelimi-
nary works mostly ignore the performance-energy
tradeoff.

In recent times, Li et al. (2024) compare the ef-
fect of prompt directives on inference energy and
performance for Llama-2 models for 3 question-
answering tasks. Luccioni et al. (2024) offers a
comparatively detailed account of inference energy
usage while choosing LLMs and tasks from a di-
verse range, showing the dependency of energy
with model size and architecture, task type, and
output token length. While these works provide an
initial account of inference energy usage of LLMs
in different configurations, they are often limited by
the number and diversity of the models and tasks
(Check Appendix A for details).
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Fine- Top- Task Response Model size Batch Quanti- Targeted
grained I/O level I/O Complexity time & family size zation phrase

Our Work Yes Yes Yes Yes Yes Yes Yes Yes
Luccioni et al.
(2024)

No Yes No No Yes No No No

Li et al. (2024) No No No No No No No Yes
Everman et al.
(2023)

No No No No Yes No No No

Desislavov et al.
(2021)

No No No No Yes No No No

Samsi et al. (2023) No No No No Yes No No No

Table 1: Comparing our approach with existing literature on energy for specific experimental settings

1.2 Our contributions & differences with
prior works

In this work, we present a comprehensive study of
LLMs, running models from both encoder-decoder
and decoder-only models on both discriminative
and generative NLP tasks, while analyzing the
impact of different models, tasks, prompts, and
system-related factors on inference energy. Specifi-
cally, (i) We start with a detailed analysis of vari-
ous model-related factors that affect the inference
energy of LLMs, where we systematically study
the correlation between inference energy and influ-
encing factors like input and output token length,
response time, model size and complexity. (ii) We
conduct various experiments to study the connec-
tion between inference energy and batch size, level
of quantization, and prompt editing. (iii) We then
complement our analysis by introducing the Nor-
malized Accuracy metric, providing an accuracy-
energy usage tradeoff analysis across tasks and
models. (iv) Finally, we present a list of efficiency
guidelines in Section 4.

In particular, our contributions include an energy
analysis from eight aspects, as given in Table 1.
Out of these aspects, several were primarily un-
explored in the literature, as per our knowledge -
these are indicated in the table. We vary the input
and output token length at a finer granular level
while reporting the variation in energy to have a
better understanding of the correlation between en-
ergy and these factors, revealing several valuable
insights (Section 3.2). A more thorough analysis
of energy with variation of input or output while
keeping the other fixed provides a more accurate in-
sight into their comparative influence in inference
energy, implying immediate solutions for energy-
efficient inference approaches. The correlation be-
tween energy and response time validates response
time as a good proxy of inference energy in black-

box models (Section 3.1). Our work first explores
task complexity’s effect with inference energy (Sec-
tion 3.3). We also provide the performance change
for quantization (Section 3.5) and use of targeted
phrases (Section 3.6) along with improvement in
energy. While the effects of quantization and in-
creasing batch size have been studied individually,
we show that using them together under fixed mem-
ory constraints can help speed up the computations.
Finally, we explore each of the above aspects for
a diverse range of LLMs from both architecture
families along with a diverse range of tasks, which
was mostly lacking in previous attempts.

2 Experimental setup

In this section, we describe the models, datasets
and various settings we use for our experiments.

2.1 Models

We select 6 popular and recent GPT-style models
from the decoder-only family and 4 Flan-T5 mod-
els from the encoder-decoder family, adding to 10
models in total (details in Appendix B).
Decoder-only Models generate output in an au-
toregressive manner by predicting the next to-
ken in the sequence based on the context (key-
value-query) vectors corresponding to the input
and previously generated tokens. We consider
the following models from decoder family in our
study. (D1) Tiny-LLama (1.1B params); (D2) Phi-
3-mini (3.8B params); (D3) Mistral-7B (7.2B
params); (D4) Llama-2-7B (6.7B params);
(D5) Llama-3-8B (8.0B params); (D6) Llama-2-
13B (13B params);
Encoder-Decoder models process the input data
and convert it into context (key-value) vectors.
Then the decoder takes these vectors and gen-
erates output autoregressively. Models from
this family, considered in our study, include:
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(ED1) Flan-T5-base (248M params); (ED2) Flan-
T5-large (783M params); (ED3) Flan-T5-xl (2.8B
params); (ED4) Flan-T5-xxl (11B params);

2.2 Tasks and Datasets

In this work, we select a diverse range of NLP
tasks, from generative to question-answering, clas-
sification, and single-sentence tasks. This includes
both general GLUE / SuperGLUE benchmarks, as
well as domain specific VAX-STANCE and CAVES

(for studying effect of task complexity). We de-
scribe the tasks and their corresponding datasets in
Table 2. For each dataset, we selected 1024 data
samples randomly and performed all experiments
on the same set for comparable results. Perfor-
mance metrics are chosen depending on the tasks.
For summarization tasks, average of ROUGE1,
ROUGE2, and ROUGE-L are reported, whereas
some form of F1 score are reported for the other
tasks. Description/prompts of the datasets and the
individual metrics have been given in Appendix C.

Normalized Accuracy (NA) Metric: Since differ-
ent tasks use different metrics on different scales,
it is difficult to compare the accuracy performance
of models across the tasks. To gauge the overall
performance of the models across multiple tasks,
we introduce the NA metric that is obtained as fol-
lows. For each dataset, we first perform Z-score
normalization across all the models, followed by a
sigmoid operation to scale models between 0 and 1.
We then average the scores for each model across
all datasets and multiply by 100. Note that this
metric depends on the set of models used and will
vary if models are added/removed. However, it
allows us to quantify how well a model performs
compared to others in the set.

2.3 Hardware and Energy metrics

We perform our experiments on a single NVIDIA
A6000 GPU with 48GB VRAM hosted in a lo-
cal server with Intel Xeon Silver 4210R processor
and 128GB RAM, running Ubuntu 20.04-LTS. The
server also hosted an NVIDIA A5000 GPU (24
GB), which was used for only one experiment, but
otherwise was unused. We also performed some
experiments on two other systems to verify the
generalizability of our findings, as detailed in Ap-
pendix G. We use Pytorch version 2.3 (with CUDA
12.1) and huggingface transformers version 4.41.

We use the popular Code Carbon (Schmidt et al.,
2021) and Carbon Tracker (Anthony et al., 2020)

Task Dataset

Linguistic acceptability check COLA (GLUE)
Logical entailment Mnli (GLUE)
Sentiment classification SST2 (GLUE)
Contextual question answering Boolq (SuperGLUE)
Causal reasoning COPA (SuperGLUE)
Entity Question answering ReCoRD (Super-

GLUE)
Extractive question answering SQuAD v2 (Rajpurkar

et al., 2016)
Document summary generation CNN-DM (Nallapati

et al., 2016)
Dialogue summary generation SAMSum (Gliwa et al.,

2019)
3 class vaccine-stance classifica-
tion

VAX-Stance (Poddar
et al., 2022a)

12 class multi-label anti-vaccine
concerns classification

CAVES (Poddar et al.,
2022b)

Table 2: List of tasks/datasets we experimented on.
Most tasks are taken from the GLUE (Wang et al.,
2019b) and SuperGLUE(Wang et al., 2019a) bench-
marks. Description/prompts are been given in Ap-
pendix C.

packages to measure the energy consumed in differ-
ent experiments. Jay et al. (2023) demonstrated the
suitability and accuracy of CarbonTracker, Code-
Carbon, Energy Scope, and Experiment Impact
Tracker across various software-based power me-
ter setups, while Bouza et al. (2023) further estab-
lished the superiority of CodeCarbon and Carbon-
Tracker among these tools. CodeCarbon is espe-
cially the most user-friendly and works out of the
box, provided appropriate NVIDIA libraries and
permissions to Intel RAPL files.

These two packages measure the GPU-power
usage using pynvml and CPU-power using Intel
RAPL files every X seconds, and integrates it over
time. Carbon-tracker reports sum of these as the
total energy. Code-carbon also adds an estimate
of the RAM-power being used depending on the
RAM size. We use X = 10secs for a balance
between overhead costs and tracking accuracy. We
keep the Power Usage Effectiveness (PUE) to the
default 1.0 since we run all experiments on the
same server, but this implies that the actual energy
usage is higher than reported.

During inference, we provide test samples in
batches to the LLM, and measure the total energy
required for 1024 samples per dataset using these
tools. This includes both the input tokenization
process by each model’s tokenizer and the output
generation from the model. We keep the batch size
to 8 for most experiments, except on the CNN-DM
and SAMSUM dataset for which we use a batch
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size of 4. While reporting results, we average the
energy usage and report the energy per sample in
mWh (milli-Watt-hour). Unless otherwise stated,
these are the default settings used for experiments.

3 Factors Affecting Energy / Accuracy

In this section, we discuss how different task,
model, and setup-related factors contribute to the
inference energy and accuracy metrics.

3.1 Response time
Response time is an important indicator for ac-
tual inference energy, as given a (somewhat) fixed
amount of power draw, the energy consumed is pro-
portional to inference response time. To this end,
we track the energy for each batch where the track-
ing interval is set to 1sec for the energy-measuring
libraries. The batches were formed after sorting the
inputs (prompt + query) by length (so that similar-
length queries end up together, allowing optimal
padding and energy usage).

Figure 1 (left column) compares per-sample av-
erage response time and inference energy. They
report the comparison for Mistral (rest of the mod-
els in Appendix D). Points in the plot correspond
to the average scores per query for the individual
batches, with distinct color for each dataset.

We find a strong correlation between response
time and the inference energy (pearson r = 0.996,
spearman rs = 0.968), indicating a strong possi-
bility of using the response time as a reliable proxy
for the energy consumed if demographic factors
like location, energy grid, model, etc, are fixed.
However, for different datasets, the slope of the
dependency is different, which may be because
of slightly different power draws due to datasets
having different-sized inputs. We also compare
the energy measures returned by CarbonTracker
and CodeCarbon package and find a good correla-
tion (pearson r = 0.610, spearman rs = 0.912),
indicating reliable tracking.

3.2 Input and Output token length
The complexity of each attention block in a trans-
former decoder model is given by the following
equation (Vaswani et al., 2017), where n is the
#input tokens, d is the hidden dimension, and t is
the #output tokens.

O(n, d, t) = (n.d2 + n2.d).t (1)

This equation suggests input and output length
play a major role in deciding the computational

complexity of large language models, which con-
sist of several consecutive layers of multiple such
attention blocks, and thereby, the required infer-
ence energy. In this section, we attempt to explore
the influence of the aforementioned factors in a
more systematic manner. Toward that, we first ex-
plore a similar setup explained in Section 3.1 to
plot the batch-wise energy. Sorting the inputs by
their length before batching is especially important
because the batches with random input lengths can
all get averaged out to have similar values other-
wise, making it difficult to visualize the effect of
energy with input/output sizes.

Input Length: Figure 1 (middle column) com-
pares per-sample average inference energy with
per-sample average input token length. The big-
ger, spread out clusters primarily belong to the
generative tasks, namely, CNN-DM and SAM-
SUM datasets, due to their larger outputs than
the other discriminative tasks, which lay in the
bottom clusters. Even though the input size ap-
pears as a quadratic term in Eq. 1, we see a linear
variation of energy usage with input size. This
discrepancy can be attributed to various factors –
hardware-related optimizations such as parallel pro-
cessing, caching mechanisms, and memory hierar-
chies – that significantly influence the relationship
between computational complexity and energy us-
age. For instance, Transformer models (including
LLMs) leverage GPU parallelism to process the in-
put, which effectively mitigates the quadratic scal-
ing predicted by theoretical calculations (Vaswani
et al., 2017). Additionally, mechanisms like key-
value (KV) caching ensure that input tokens are
processed only once, further reducing energy de-
mands compared to the theoretical worst-case sce-
nario (Pope et al., 2022). These optimizations are
likely the primary contributors to the observed lin-
ear correlation between input token length and en-
ergy consumption.

Output Length: Figure 1 (right column) com-
pares per-sample average output token length with
per-sample average inference energy for individual
batches. Here we observe a similar trend indicat-
ing linear increment of energy with output size, in
accordance with Eq. 1. Here most tasks except
CNN-DM and SAMSUM cluster around the bot-
tom left because of their short outputs, whereas
the widespread clusters of CNN-DM and SAM-
SUM towards the top provide a better visualization
of the linear dependency. Note that, the slope of
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Figure 1: Inference energy vs response time, input and output-token length averaged across samples in a batch
plotted across all datasets for Mistral-7B. Dots correspond to distinct batches of different datasets.
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Figure 2: Inference energy on CNN-DM where we vary
input token lengths fixing #output tokens to 1.

variation of energy consumption is steeper for the
output length, in comparison to the slope for the
input length despite the input being larger than the
output (input Pearson r = 0.697, output Pearson
r = 0.952). These observations indicate a stronger
role played by output length (than the input length)
in deciding the inference energy, which can be ex-
plained as follows. During inference, LLMs lever-
age key-value (KV) caching, which allows tokens
to be processed only once, avoiding repeated prior
token processing. Furthermore, input processing
can be parallelized on GPUs, leading to significant
speedups and lower energy consumption (Vaswani
et al., 2017). In contrast, generating output tokens
is inherently a sequential process, as each token de-
pends on the previous one. This lack of parallelism
for output token generation leads to the steeper
slope of output token length.

Controlled setup: For better and more exclusive
insights into the relation between inference time
and input and output length, we perform the fol-
lowing controlled experiment where we fix either
input or output length and vary the other.
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Figure 3: Inference energy on CNN-DM dataset when
the output length is varied, keeping input length fixed.

Effect of varying input length: For CNN-DM
dataset, we truncated each input text into N tokens
and ask the model to summarize the input, where
we vary N from 100 to 400 at fixed intervals of 50
tokens, by means of truncation/padding. If input
has more than N token, the query text is truncated,
and if the input contains less than N tokens, then
padding tokens are added to the left of the input.
To eliminate the influence of generated output on
inference energy, we stop generation after the first
token, which allows us to monitor the influence
of input length on model inference energy in an
exclusive manner.

Figure 2 plots the inference energy (in terms of
%) relative to the energy required for the input with
100 tokens. The results indicate a linear increase
in energy with longer input lengths, with a steeper
slope observed for decoder-only models. This is
likely due to the longer decoder modules present in
these models.
Effect of varying output length: Similarly, to study
the effect of output length on inference energy ex-
clusively, we take the CNN-DM dataset, fix the
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input text length and allow the generation length to
vary from 1 to 25 tokens. Specifically, we instruct
the model to summarize the input text but force the
model to stop after it generates the required number
of tokens.

Figure 3 plots the energy (in %) relative to the
energy required for generating a single token, con-
firming linear energy increment with generation
length. However, the energy of generating the 1st

token is much more than additional tokens, e.g.
generating 2 tokens takes only about 12% more
energy than generating 1 token. This is because
the model processes the entire input in the first
time step, but only 1 token for subsequent steps (by
means of caching the K-V computations for prior
tokens). Also, note that, the increment of energy
is larger with increasing output length, compared
to input length. Contrary to Figure 2, the relative
increase is higher for the encoder-decoder family
here, attributed to the fact that initial energy re-
quirement is smaller for these families, along with
higher jumps in energy with output length.

3.3 Task complexity
Next, we explore whether task ‘complexity’ has
a significant impact on inference energy. Toward
that, we conduct a series of controlled experiments
where inference energy of two tasks with identical
input and output length and distinctly different lev-
els of complexity are compared. Here, we interpret
"complexity" based on human cognition.

We compare the inference energy between the
VAX-STANCE and CAVES datasets, where the
input texts are similar—tweets related to vac-
cines—but the tasks differ: a 3-class single-label
classification for VAX-STANCE versus a 12-class
multi-label classification for CAVES. We ensure
consistent input length via padding and fix the out-
put to a single token. We find the difference in
energy consumption between the two tasks to be
very small (< 1%), as shown in Table 3.

Similarly, we compare the average inference en-
ergy for the summarization (hard) vs returning the
first three sentences of the input (trivial) over the
CNN-DM dataset. We find the energy difference
between the two tasks as less than 1.3% (Table 3),
again indicating that task complexity has hardly
any impact on inference energy if input and output
lengths are kept fixed. This observation follows
from the fact that the computational steps per token
are fixed by the model’s architecture, with LLMs
processing the inputs uniformly, without additional

CAVES vs Summarization vs
VAX-Stance first 3 sent extraction

fT5-large −0.2% 1.3%
fT5-xl 0.5% −0.6%
Phi3-mini 0.4% −0.1%
Mistral-7B 0.4% −0.3%
Llama3-8B 0.5% 0.8%

Table 3: Percentage difference in energy consumption
for two tasks with very different complexities, keeping
input and output lengths same. The differences are very
small.

branches or conditional logic that would increase
the load for more complex tasks.

Although we explore task complexity as per-
ceived by humans, results could be different in
more complex Chain of Thought (Wei et al., 2022;
Wang et al., 2022), Tree of Thought (Yao et al.,
2023) and other reasoning frameworks. These
frameworks have different ways of processing a
task, which could impact the energy consumption
based on the settings used. Comparing energy con-
sumption for these different settings would need a
study of its own, and is left as future work.

3.4 Model family and size

We now compare the energy usage and normalized
accuracy of different models with respect to their
size (number of parameters). The model sizes and
family have been listed in Section 2.1. Figure 4
compares the size of models with per-sample infer-
ence energy, averaged across all samples, showing
a linear increase with the size of the model (note
that only Y-axis is in log scale in Fig 4), that are
individually visible for both the encoder-decoder
and the decoder-only models.

Encoder-decoder models typically consume less
energy than decoder-only models with a compara-
ble number of parameters. For instance, Flan-T5-xl
and Phi-3-mini have a similar parameter count but
use significantly less energy. The same pattern
holds true for Flan-T5-large versus tinyLlama, and
Flan-T5-xxl versus Llama-2-13B. This is because
the decoder part in the encoder-decoder models
is half the size, which reduces computational de-
mands during the autoregressive decoding phase.

Accuracy metrics: The top row of Table 4 lists the
Normalized accuracy (NA) scores for each model
across all datasets (performance on each dataset
given in Appendix E). Here, we observe that per-
formance depends on both model size and family.
Smaller models perform poorly, with TinyLlama
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flan-t5 flan-t5 flan-t5 flan-t5 TinyLlama Phi-3 Mistral Llama-2 Llama-3 Llama-2
base large xl xxl 1.1B mini 7B 7B 8B 13B

I. Average Normalized Accuracy across all datasets with original settings
default 42.85 69.77 55.45 58.12 23.5 41.82 59.91 42.83 55.09 52.31

II. Average change in performance (%) on Quantization
8-bit 0.47 0.03 -1.16 1.43 0.9 -2.92 -0.55 -0.46 -2.43 -4.66
4-bit 1.78 -1.83 -0.63 -0.61 9.66 -4.19 4.27 -1.57 -1.95 -2.76

III. Average change in performance (%) on introducing targeted phrases in prompts
fix-output -1.7 -2.42 -1.22 0.39 4.71 -8.21 11.64 -12.54 -8.53 3.24
energy-eff -1.28 -4.2 -0.89 0.84 1.44 9.55 2.52 0.33 -5.19 5.2

+ fix-output -1.33 -2.68 -1.78 0.74 4.07 4.11 12.4 -15.73 -10.07 5.38
quick 1.29 -3.88 -0.41 -1.71 2.63 8.14 5.82 -4.24 -14.88 3.69

+ fix-output -0.72 -5.48 -0.27 0.2 4.64 -2.55 12.45 -13.23 -18.88 2.64

Table 4: Accuracy metrics for LLM inferences averaged across all datasets. I. Encoder-Decoder models perform
better or close to Decoder only models. II. Quantization does not decrease performance by much (< 5%)
III. Performance degrades with most phrases, more so where energy / output token length had also reduced.
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Figure 4: Average per-prompt inference energy vs
model size for all models and datasets. The black lines
join the median energy for each model family.

giving the worst performance, followed by Phi-
3-mini and flan-t5-base. Llama models tend to
perform inferior to flan-t5 models of similar size
(flan-t5-large, -xl, and -XXL). Mistral-7B is the
only exception among the decoder-only models
that performs comparably with the flan-t5 family.

As a general statement, it can be commented that
selecting models from the encoder-decoder family
for NLP tasks is recommended from an energy-
efficiency perspective, as well as their performance
which is improved by sequence to sequence in-
struction tuning. In contrast, decoder-only models
trained on vast amounts of general data is more
suited as an informational chatbot (though instruc-
tion tuned versions of Llama3, Mistral and Phi-3
try to bridge the gap).

3.5 Batch size and Quantization

We try to understand the effect of batch size on the
energy usage during inference. Intuitively, increas-

ing the batch size should require more energy per
batch but we show that it requires less energy per
individual sample.

We have used the bitsandbytes package to load
the transformers model weights in 8-bit and 4-bit
quantized format. These quantized versions take
up much less GPU memory to load (and thus can
be run with larger batch sizes), though the compu-
tations still get executed in 16-bit single precision
format. We run 4-bit quantized models on all the
tasks under different batch sizes and plotted the
average energy consumption per sample across all
tasks in Figure 5. We observe that increasing the
batch size leads to a decrease in per-sample infer-
ence energy.

However, the maximum batch size possible is
limited by size of the GPU VRAM (48GB for
A6000). For certain datasets and larger model com-
binations, higher batch sizes can result in out-of-
memory errors, suggesting that there is an optimal
batch size for each dataset and model size com-
bination. To achieve energy-efficient inferences,
it is advisable to perform inferences close to this
optimal batch size.

A5000 GPU: We repeated this experiment on an
NVIDIA A5000 GPU instead of the A6000, re-
ported in Appendix F; however, we did not find a
significant difference in the inference time. This
also signifies that GPUs with similar usable power
require similar energy. Instead, the GPU VRAM
size plays a more important role, allowing larger
batches.

Quantization Energy: Figure 5 shows the average
change in energy for the 4-bit quantized model,
while the energy required by original model is
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Figure 5: Per-sample inference energy with 4-bit quan-
tized models when the batch size is varied, averaged
across all datasets.

given in the Appendix F. Interestingly, keeping
all factors same, quantization increases the energy
used to almost 2×, because of the overhead of addi-
tional data format conversions to 16-bit. However,
using the 4-bit quantized model with larger batch
size of 256 reduces the energy to about 0.33× of
the original 16-bit model with batch size of 64. We
noticed very similar results with 8-bit quantization
and thus, its energy plot is given in Appendix F.

Quantization Accuracy metrics: the change in
performance of the quantized models compared to
the original is given in the middle set of rows of
Table 4. Quantization seems to reduce the perfor-
mance by less than 5% for some models (mostly
decoder-only models in 8-bit quantization and most
of the models for 4-bit quantization) and even in-
creases performance slightly for some smaller mod-
els, which may have been overfitting earlier. Thus,
quantization does not seem to degrade performance
too much and should be used to speed up inference
time by increasing batch size.

3.6 Effect of targeted phrases in prompts on
inference energy

Finally, we attempt to find whether addition of
phrases targeted towards energy optimization can
affect the inference energy. Specifically, we wanted
to see if adding a few more input tokens can lead to
a larger decrease in energy by reducing the output
token length. In this experiment, for each dataset,
we append certain targeted phrases after the default
prompt, as shown in Table 5.

Figure 6 reports the % inference energy usage us-
ing modified prompts compared to default prompts,
averaged across the two generative and rest dis-
criminative tasks. Significant energy reduction is

Directive Targeted Phrases

default Read the passage and answer the question
with True or False.

quick <default> Answer as quickly as possible.
fix-output <default> Do not output anything else.
energy-eff <default> Answer in energy-efficient way.

Table 5: List of targeted phrases that are used to instruct
the LLM for energy-efficient inference.
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Figure 6: Effect of inserting targeted phrases in prompt
on inference energy, as a percentage of default prompt.
’ee’: energy-efficient, ’q’: quick (see Table 5).

observed for Mistral and Llama-2 models. The
reduction is less pronounced in generative tasks,
where it mainly results from slightly shorter out-
puts. However, for discriminative tasks, the reduc-
tions are much more significant. This difference
arises because these models typically include ex-
planations with their answers, leading to longer
outputs by default. By instructing the model to be
concise we can limit the output length and, thus,
reduce inference energy. However, the change in
energy is negligible for the encoder-decoder mod-
els, Llama-3 and Phi-3-mini, as they typically gen-
erate short, brief answers, leaving little scope for
reducing the output. Thereby, additional phrases
in the prompt increase the input without reducing
the generation, resulting in higher inference energy.
TinyLlama always generates long outputs, often
stopping only at the generation limit, rendering the
targeted phrases useless.

Accuracy metrics: The performance metrics for
modified prompts are given in bottom rows of Ta-
ble 4, we observe that the introduction of such
phrases in prompts results in diverse behavior de-
pending on model size and architecture. Perfor-
mance degrades in most of the cases, especially
where output token length had also reduced, tak-
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ing lesser energy. In summary, we can see that the
introduction of such phrases turns out to be useful
only for Mistral-7B and Llama-2-13B, considering
energy efficiency without affecting performance.

4 Concluding discussions

In this study, we benchmarked the power consump-
tion of various large language models (LLMs) dur-
ing inference across diverse NLP tasks.

General implications: Our primary high-level
takeaways can be summarized as follows: (1) In-
ference energy displays a strong correlation with
response time for locally run open-source LLMs,
making it a reliable proxy for estimating energy
consumption, with significantly less overhead com-
pared to using specialized energy measurement
tools. In the case of models accessed through on-
line APIs (such as closed-source models), in the
absence of energy-related metrics from the API
providers, response time can play as a proxy for
energy estimation (see Appendix H). (2) While
input size shows a linear relationship with energy
use, output length has a stronger influence on infer-
ence energy. (3) Task complexity has little impact
on inference time independent of input and output
lengths. (4) Selecting models from the encoder-
decoder family for NLP tasks is recommended
from an energy-efficiency perspective, as well as
their performance. (5) Increasing batch size re-
duces inference energy. However, it is constrained
by the GPU memory availability, recommending an
optimal batch size for a particular model, task pair.
(6) Quantization allows larger batches, resulting in
lower energy use without degrading the inference
accuracy much. (7) Introducing targeted phrases
achieves energy reduction for older decoder-only
models by restricting their output for discriminative
tasks.

Implications in energy-constrained environ-
ments: In situations where LLMs are to be de-
ployed in resource/energy constrained settings, our
experiments lead to the following insights: (i) The
response time can be used as a proxy for energy
consumed. This is useful not only since measuring
power/energy may be difficult on most hardware
but also because measuring response time requires
much less overhead (in terms of energy/latency)
than actually measuring the energy consumption.
In low resource settings, this overhead can be large
in terms of percentage. For example, we found
that removing the energy-tracking libraries and just

recording the system time can reduce inference
time between 15%–50% under different scenarios.
(ii) Where possible, input compression and output
optimization should be employed. At least, some
targeted phrases should be incorporated so that the
model generates only what is needed. (iii) Fine-
tuned encoder-decoder models (especially Flan-T5
models), are better suited for low-resource settings,
particularly for NLP tasks such as classification,
summarization, etc. (iv) Quantized models should
be employed, allowing larger batches and larger
models on such settings, from the point of memory
constraint.

Limitations

Despite the comprehensive analysis and valuable
insights provided by this study, the following limi-
tations should be considered. First, the benchmark-
ing experiments were conducted under controlled
conditions, which may not fully capture the vari-
ability and complexity of real-world deployment
environments. The results might differ when mod-
els are deployed on different hardware, infrastruc-
ture or in varying operational contexts. Also, the
study focuses primarily on specific NLP tasks and
may not generalize fully to other domains like vi-
sion or time series analysis. Additionally, while the
study explores a range of system-related factors,
it does not account for all possible variables that
could influence inference energy, such as network
latency or hardware-specific optimizations.

Ethical Considerations

One of the main ethical issues in our experimenta-
tion was the substantial energy consumption and
carbon emissions it produced. We perform 1024
inferences for 11 datasets over 10 models in several
configurations, necessitating multiple repetitions
of the inferences, along with several pilot experi-
ments to finalize the experimental setup. This led
to an approx total energy use of 3000 kWh. To
reduce our environmental impact, we limited our
experiments to only 1024 test examples sampled
from the datasets. We hope that the insights from
this study will lead the community to a much larger
reduction of the energy consuption of LLMs.
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Eldar Kurtić, Elias Frantar, and Dan Alistarh. 2024. Zi-
plm: Inference-aware structured pruning of language
models. Advances in Neural Information Processing
Systems, 36.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning. arXiv
preprint arXiv:1910.09700.

Loïc Lannelongue, Jason Grealey, and Michael In-
ouye. 2021. Green algorithms: quantifying the car-
bon footprint of computation. Advanced science,
8(12):2100707.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh
Tiwari. 2024. Toward sustainable genai using gen-
eration directives for carbon-friendly large language
model inference. arXiv preprint arXiv:2403.12900.

Gauthier Limpens, Stefano Moret, Hervé Jeanmart, and
Francois Maréchal. 2019. Energyscope td: A novel
open-source model for regional energy systems. Ap-
plied Energy, 255:113729.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

12697

https://doi.org/10.5281/zenodo.11171501


Alexandra Sasha Luccioni et al. 2023. Counting car-
bon: A survey of factors influencing the emissions of
machine learning. arXiv preprint arXiv:2302.08476.

Sasha Luccioni, Yacine Jernite, and Emma Strubell.
2024. Power hungry processing: Watts driving the
cost of ai deployment? In The 2024 ACM Conference
on Fairness, Accountability, and Transparency, pages
85–99.

Joseph McDonald, Baolin Li, Nathan Frey, Devesh Ti-
wari, Vijay Gadepally, and Siddharth Samsi. 2022.
Great power, great responsibility: Recommendations
for reducing energy for training language models.
arXiv preprint arXiv:2205.09646.

Gianluca Moro, Luca Ragazzi, and Lorenzo Valgimigli.
2023. Carburacy: summarization models tuning
and comparison in eco-sustainable regimes with a
novel carbon-aware accuracy. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 14417–14425.

Rakshit Naidu, Harshita Diddee, Ajinkya Mulay, Aleti
Vardhan, Krithika Ramesh, and Ahmed Zamzam.
2021. Towards quantifying the carbon emissions
of differentially private machine learning. arXiv
preprint arXiv:2107.06946.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
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A Additional Literature Survey

Sustainable Large Language Models: Schwartz
et al. (Schwartz et al., 2020) discuss the growing
compute cost of deep learning research and advo-
cate for making efficiency an evaluation criterion
alongside accuracy and related measures with a
focus on making AI both greener and more inclu-
sive. Lacoste et al. (Lacoste et al., 2019) consider
various factors like energy grid, energy draw of
server, make and model of training hardware to as-
sess the environmental impact of machine learning
algorithms. Following that trend, recent literature
focuses on various alternatives to reduce the in-
ference energy of large language models. Among
the black-box approaches, Li et al (Li et al., 2024)
append generation directives to user prompts for
carbon-friendly LLM inferences. (McDonald et al.,
2022) focus on techniques to measure energy us-
age and propose various hardware and datacenter-
oriented settings that can be tuned to reduce en-
ergy consumption for training and inference for
language models. Frugal GPT (Chen et al., 2023b)
explores strategies like prompt adaptation, LLM
cascade, and LLM approximation for reducing the
inference cost for a large set of queries. On the
contrary, white-box approaches include speculative
decoding (Leviathan et al., 2023), speculative sam-
pling (Chen et al., 2023a), prunning (Kurtić et al.,
2024), embedding recycling (Saad-Falcon et al.,
2022), quantization (Bai et al., 2022; Frantar et al.,
2022; Xiao et al., 2023), and many more.

Tools for measuring energy impact: Re-
searchers propose various tools for tracking the
realtime energy consumption and carbon emissions
during model training and inferences. These tools
include CodeCarbon (Courty et al., 2024), Car-
bonTracker (Anthony et al., 2020), Experiment
impact tracker (Henderson et al., 2020), Ener-
gyScope (Limpens et al., 2019), etc. Green Al-
gorithms (Lannelongue et al., 2021) is another on-
line tool, enabling a user to estimate and report the
carbon footprint of their computation. Eco2AI is
another open-source package to help data scien-
tists and researchers to track energy consumption
and equivalent CO2 emissions of their models in a
straightforward way (Plosskaya et al., 2022). Car-
buracy (Moro et al., 2023) proposes the first carbon-
aware accuracy measure that captures both model
effectiveness and eco-sustainability for generative
transformer-based models (Moro et al., 2023). Re-
searchers explore energy impact analysis in terms
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of carbon footprints of ML algorithms in various
domains, namely differential privacy (Naidu et al.,
2021), medical image analysis (Selvan et al., 2022),
etc.

Benchmarking energy tools: Researchers
benchmark the tools for measuring carbon foot-
prints in various configurations for various deep
learning based ML models. Cao et al (Cao et al.,
2020) compare energy returned by software-based
energy measurements with hardware power meter
(WhattsUPMeter) on various NLP models and re-
port experiment impact tracker as not so accurate.
Jay et al (Jay et al., 2023) qualitatively and exper-
imentally compare several software-based power
meters against high-precision physical power me-
ters while executing various intensive workloads,
where they conclude that for measuring energy,
Carbon Tracker, Code Carbon, Energy Scope, and
Experiment Impact Tracker are suitable fits. How-
ever, Bouza et al (Bouza et al., 2023) establish that
the energy value reported by CodeCarbon is clos-
est to Wattmeter, followed by CarbonTracker, with
more variability between infrastructures.

Benchmarking LLMs: Existing works have at-
tempted to study the inference energy of LLMs
from various perspectives. Everman et al. (2023)
evaluated energy usage of GPT models on question-
answering tasks, employing Software Carbon Inten-
sity (SCI) released by green software. Samsi et al.
(2023) provides a detailed account of energy usage
during inference for question-answering tasks for
Llama models on various GPU architectures. Liu
et al. (2022) study the energy consumption trade-
off for fine-tuning vs few-shot learning for both
encoder-decoder and decoder-only models on Su-
perGLUE and RAFT tasks, measuring energy in
FLOPS. These preliminary works mostly ignore
the performance-energy tradeoff.

In recent times, Li et al. (2024) compare the ef-
fect of prompt directives on inference energy and
performance for Llama-2 models for 3 question-
answering tasks. Luccioni et al. (2024) offers a
comparatively detailed account of inference energy
usage while choosing LLMs and tasks from a di-
verse range, showing the dependency of energy
with model size and architecture, task type, and
output token length. While these works provide an
initial account of inference energy usage of LLMs
in different configurations, they are often limited by
the number and diversity of the models and tasks.
Our work is the first to provide a comprehensive
benchmarking of energy consumption of LLMs dur-

ing inference for a diverse range of configurations,
i.e., variation of input and output token length (for
both coarse and granular level), correlation with
response time, model size and family, task com-
plexity, batch size, quantization level, presence of
targeted phrases, and energy directives in prompt
for a more complete set of LLM and tasks. Table 6
presents an overview of existing approaches and
their limitations.

B Model Descriptions

Check Table 7

C Dataset Examples and Metrics

Check Table 8

D Scatter Plots of batch-wise energy
tracking

Check Figure 7

E Original Accuracy Metrics of
individual datasets

Check Table 9

F Batch Size & Quantization experiments

Check Figure 9

G Testing on other systems

To verify the generalizability of our findings, we ad-
ditionally ran limited experiments on two different
systems.
System Descriptions: The first system contains
an NVIDIA Tesla P100 GPU with 16GB VRAM
paired with Intel Xeon Gold 6126 CPU and 128GB
RAM. For the second system we used Kaggle 1

which contains an NVIDIA Tesla T4 GPU with
16GB VRAM, Intel Xeon CPU and 30GB RAM.
Experiments: Figure 8 shows the energy consump-
tions of 2 representative models from each family
– Mistral-7B and flan-t5-large on the different sys-
tems. The results are averaged over 4 representative
datasets – BOOLQ, MNLI, CNN-DM and SQUAD-
V2. We observe very similar trends for each model
across different systems, even though the magni-
tude is different. We found that the system with
P100 required less energy than our original setup,
though with a limited GPU VRAM, which does
not allow very high batch sizes. Interestingly, the

1www.kaggle.com/code

12700



Reference LLM Tasks/Datasets Observations

(Everman et al.,
2023)

GPT-styled models (4) 10 manual prompts Study on the energy-performance tradeoff of LLMs.

(Samsi et al., 2023) LlaMA models (3) QA tasks (2) Study inference cost on diverse GPUs.
(Desislavov et al.,
2021)

DNN-based NLP mod-
els (7)

GLUE (9) Study model complexity vs inference cost.

(Liu et al., 2022) T5 models (3), GPT-
styled models (3)

NLP tasks (9),
RAFT

Study energy consumption of few-shot PEFT vs
in-context learning.

(Li et al., 2024) Llama models (2) QA tasks (3) Study effect of prompt directives on inference cost.
(Luccioni et al.,
2024)

Flan-T5 models (4),
BLOOMz models (4)

NLP + vision tasks
(10)

Study inference energy vs model complexity, task
type, output, etc.

Our work GPT styled models
(6), Flan-T5 models
(4)

NLP tasks (11) Study inference cost vs input, output, response time,
model size & family, task complexity, quantization,
batch size, targeted phrases

Table 6: Comparison of our approach with existing literature on benchmarking inference cost of LLMs

Model Model description link

Tiny-LLama (1.1B params) https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
Phi-3-mini (3.8B params) https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
Mistral-7B (7.2B params) https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Llama-2-7B (6.7B params) https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Llama-3-8B (8.0B params) https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
Llama-2-13B (13B params) https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

Flan-T5-base (248M params) https://huggingface.co/google/flan-t5-base
Flan-T5-large (783M params) https://huggingface.co/google/flan-t5-large
Flan-T5-xl (2.8B params) https://huggingface.co/google/flan-t5-xl
Flan-T5-xxl (11B params) https://huggingface.co/google/flan-t5-xxl

Table 7: Links to specific models versions we used in our experiments

system with T4 GPU consumes a lot more power
even though it is a weaker system.

We further hypothesize that modern improve-
ments like flash-attention-2 will benefit newer GPU
architectures and newer models like Phi-3 and
Llama-3 more. However, the overall trends should
still be similar.

H Energy proxy for black-box models

Our work demonstrates that for locally run open-
source LLMs, inference time is a reliable proxy
for estimating energy consumption, with signifi-
cantly less overhead compared to using specialized
energy measurement tools. However, in the case
of models accessed through online APIs (such as
closed-source models), it is difficult to estimate the
energy from just the response time due to a vari-
ety of factors, including network latency, number
of concurrent user requests, type of batch schedul-
ing/processing, etc. However, to date, the API
providers do not provide any energy-related met-
rics; hence, there exists no way yet to estimate the
energy for such black-box models. For the purpose
of improving sustainability research, API providers
should provide some energy metrics with the out-
puts. In the absence of such estimates, inference

time can be used to compare energy use of different
black-box strategies. A workaround for variations
in network latency could be to run experiments
multiple times and averaging the time taken across
all experiments. This will hopefully even out the
effects of the varying factors such as network la-
tency, when comparing different settings under the
same hardware. Though this would not completely
eliminate the effect of network latency, as it is not
a mean-zero random variable, and is influenced by
a variety of complex, hardware-related factors, this
is the most straightforward workaround for now.
In future work, it would be beneficial to develop a
model that accounts for network latency variations
to improve energy consumption estimation.
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Task Dataset Metric Input Prompt with query

Linguistic acceptability check COLA
(GLUE)

Macro-F1 Answer in binary whether the given sentence is gram-
matically, semantically, and logically acceptable.

Logical entailment Mnli
(GLUE)

Macro-F1 Select the stance of the premise towards the hypothesis:
Entailment (0), Neutral (1) or Contradiction (2).

Sentiment classification SST2
(GLUE)

Macro-F1 Classify the sentiment of the sentence as positive (1) or
negative (0).

Contextual question answering Boolq (Su-
perGLUE)

Macro-F1 Read the passage and answer the question with True (1)
or False (0).

Causal reasoning COPA (Su-
perGLUE)

Macro-F1 Select Choice1 (0) or Choice2 (1) that is a cause/effect
of a given premise.

Entity Question answering ReCoRD
(Super-
GLUE)

F1 Read the passage and find the entity that replaces
“@placeholder” inside the query.

Extractive question answering SQuAD v2 F1 Read the context and answer the question with a phrase
from the context.

Document summary generation CNN-DM avgROUGE-
1,2,L

Summarize a given news article.

Dialogue summary generation SAMSum avgROUGE-
1,2,L

Summarize a given dialogue sequence.

3 class vaccine-stance classifica-
tion

VAX-Stance Macro-F1 Classify into one of the following three vaccine stances:
Pro-Vaccine, Anti-Vaccine or Neutral.

12 class multi-label anti-vaccine
concerns classification

CAVES Macro-F1 Classify into one or more of these anti-vax classes:
0: ineffective, 1: ingredients, 2: rushed ... 11: side-
effect.

Table 8: List of tasks/datasets we experimented on along with input prompts/descriptions

Dataset flan-t5 flan-t5 flan-t5 flan-t5 TinyLlama Phi-3 Mistral Llama-2 Llama-3 Llama-2
base large xl xxl 1.1B mini 7B 7B 8B 13B

cola 23.5 68.8 31.2 24.9 22.1 44.1 54.1 22.1 55.6 30.3
mnli 54.2 88.0 79.4 87.6 22.6 24.6 46.1 28.5 50.6 41.3
sst2 33.0 74.5 32.7 40.2 47.4 51.8 75.1 48.6 71.1 57.7

boolq 71.3 86.4 91.6 88.5 45.5 46.4 74.7 61.4 65.2 64.5
copa 33.3 41.9 26.0 42.7 36.7 64.9 60.3 53.2 73.7 56.1
squad 57.2 59.5 59.5 58.4 18.3 20.2 31.0 47.6 16.9 44.1
cnndm 21.4 20.8 16.5 16.2 12.7 18.4 21.7 18.9 19.6 22.9

samsum 40.0 44.6 46.1 45.3 21.9 16.0 25.8 28.4 22.1 29.3
caves 11.9 30.0 37.0 38.9 4.8 24.3 34.5 12.5 28.2 20.8
vax 20.3 53.0 52.1 54.6 23.0 47.9 52.7 50.2 52.5 54.2

Table 9: Original average ROUGE/F1 metrics for LLM inferences averaged across all datasets.
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Figure 7: Average per-sample inference energy vs average per-sample response time, input and output-token length
across all datasets for different models where points in the image correspond to individual batches of different
datasets.
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Figure 8: Energy consumption of running Mistral-7B and flan-T5-large on different systems (identified by their
GPUs), averaged across 4 datasets. A6000 refers to the original setup.

4 8 16 32 64 128 256
Batch Size

10 1

100

101

102

Av
g.

 p
er

 p
ro

m
pt

 e
ne

rg
y 

in
 m

W
h

Llama-2-13b
Llama-2-7b
Llama-3-8B
Mistral-7B
Phi-3-mini

TinyLlama-1.1B
flan-t5-base
flan-t5-large
flan-t5-xl
flan-t5-xxl

(a) Per-sample inference energy averaged across all
datasets when the batch size is varied. Overhead of
using 4-bit precision can increase energy to almost 2×
for the same batch size. However, a 4-bit model in
BS=256 takes only about 0.33× the energy as default
model in BS=64
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(b) Per-sample inference energy averaged across all
datasets when the batch size is varied, on the A5000 GPU
instead of A6000.
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(c) Per-sample inference energy averaged across all
datasets with 8-bit quantized models.

Figure 9: Additional Batch size experiments on the A5000 GPU, and using 8-bit quantization.
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