
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12620–12635

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CoRAC: Integrating Selective API Document Retrieval with Question
Semantic Intent for Code Question Answering

YunSeok Choi, CheolWon Na, Jee-Hyong Lee†

College of Computing and Informatics
Sungkyunkwan University, South Korea
{ys.choi, ncw0034, john}@skku.edu

Abstract

Automatic code question answering aims to
generate precise answers to questions about
code by analyzing code snippets. To provide an
appropriate answer, it is necessary to accurately
understand the relevant part of the code and cor-
rectly interpret the intent of the question. How-
ever, in real-world scenarios, the questioner of-
ten provides only a portion of the code along
with the question, making it challenging to
find an answer. The responder should be ca-
pable of providing a suitable answer using such
limited information. We propose a knowledge-
based framework, CoRAC, an automatic code
question responder that enhances understand-
ing through selective API document retrieval
and question semantic intent clustering. We
evaluate our method on three real-world bench-
mark datasets and demonstrate its effectiveness
through various experiments. We also show that
our method can generate high-quality answers
compared to large language models, such as
ChatGPT.

1 Introduction

Online communities such as Stack Overflow, Red-
dit, and GitHub have become essential resources
for developers seeking solutions to coding chal-
lenges. Developers frequently rely on these plat-
forms to overcome obstacles, deepen their under-
standing of programming concepts, and enhance
their productivity. These communities serve as
knowledge hubs for a wide audience, ranging from
professional software developers to students study-
ing programming, and they have accumulated vast
amounts of information. The growing volume of
question-and-answer interactions on these plat-
forms has led to a need for automated methods
to efficiently provide accurate and relevant answers
to code-related queries.

† Corresponding author.

Code
def mw_snippet(server, query):
 snippet_url = u'https://' + server
 snippet_url += query
 snippet = json.loads(web.get(snippet_url))
 snippet = snippet[u'query'][u'pages’]
 snippet = snippet[list(snippet.keys())[0]]
 return snippet[u'extract']

Question #2
What is the function of the
keys() method?
Answer #2
The keys() method is used to
retrieve all the keys in a
dictionary.

Question #1
How is the JSON data
retrieved from the URL?
Answer #1
The JSON data is retrieved
from the URL using the
web.get() function.

Figure 1: An illustration of code question answering.
The knowledge of necessary API functions varies de-
pending on the specific question and the intended pur-
pose behind each question also differs.

Recently, many pre-trained language models
(PLMs) for programming and natural language
have been developed, such as CodeBERT (Feng
et al., 2020), PLBART (Ahmad et al., 2021), Unix-
Coder (Guo et al., 2022), CodeT5 (Wang et al.,
2021), and CodeGen (Nijkamp et al., 2023). These
models have achieved remarkable success across
various code understanding tasks, including defect
detection (Zhou et al., 2019), clone detection (Sva-
jlenko et al., 2014; Mou et al., 2016), code transla-
tion (Lu et al., 2021), code summarization (Husain
et al., 2019), and code generation (Iyer et al., 2018).
This success is due to the utilization of large-scale
corpora of code and text. These PLMs learn not
only from code (uni-modal data) but also code-
comment pairs (bi-modal data) in the pre-training
stage. This allows the models to learn both the se-
mantic information of code and the relationships
between code and natural language. These mod-
els have shown significant performance on various
tasks after fine-tuning. Liu and Wan (2021) also
showed the possibility of PLMs for code question
answering.

However, these PLMs were fine-tuned by sim-

12620

ply providing a pair of code and question as input
and the answer as output, which is the typical ap-
proach for tasks such as code translation and code
summarization. Unlike these tasks, code question
answering requires a deeper understanding of the
code’s meaning and context, along with the ability
to make inferences. There are three main aspects
to the challenging issues of code question answer-
ing. First, answering questions about code often
requires capabilities for inference and reasoning.
This requires a higher level of understanding and
reasoning than just generating or translating code.
Second, it needs to recognize which API functions
are utilized in the given code and understand the
purpose and usage of those API functions. This is
crucial for understanding the usage and function-
ality of the API function and providing accurate
responses to code questions. Third, code questions
can encompass a variety of problem types. For in-
stance, they might involve tasks such as debugging
code errors, solving algorithmic problems, reason-
ing, or providing explanations. The model needs to
comprehend these various problem types.

To address these challenging aspects of code
question answering, we utilize specific domain
knowledge used within the code and a precise
understanding of the question’ intent to generate
answers. For example, as shown in Figure 1, re-
sponders should have knowledge of the API func-
tions used in the code, such as loads(), get(),
and keys(), to understand the code and infer the
answer. If they lack knowledge of it, API docu-
mentation can provide information on how to use
functions and their parameters.

The key point is to identify the API functions
relevant to the question being asked. Question #1
involves understanding API function calls related
to JSON, while Question #2 specifically requires
knowledge of the keys() function. Therefore, it is
important to identify which API function documen-
tation is helpful in answering the questions.

Furthermore, to provide more accurate and rele-
vant answers, responders should understand the
intent of the questions. As shown in Figure 1,
Question #1 asks about the process of retrieving
JSON data from a URL using the given code,
so the answer should provide information about
Usage of APIs. In contrast, Question #2 inquires
about the purpose and functionality of the given
code, so the answer should provide Purpose or
Functionality information. By understanding
the underlying purpose of the question, responders

can generate a more tailored and relevant answer
that directly addresses the asker’s concerns.

However, in real-world scenarios, questioners
often provide only code and questions without ex-
plicitly indicating their question intent. Misinter-
preting the intent can result in answers that fail to
meet the questioner’s expectations. For example,
if a question seeks the “purpose” of a code block
but the response focuses on its “usage”, the answer
may mislead the questioner even when utilizing
specific domain knowledge such as API documen-
tation. Thus, accurately understanding the intent
of questions is crucial in generating accurate and
relevant answers.

In this paper, we propose a knowledge-based
framework, CoRAC, an automatic Code question
Responder by utilizing API documentation as ex-
ternal domain knowledge and Clustered question
intent instruction. We propose selective API doc-
ument retrieval that extracts helpful API function
descriptions highly relevant to the question through
an external PLM. Also, we design question intent
instruction that represents the semantic intent of
the question about the code. By training question
semantic intent instruction with the cluster prompt
template, we can indirectly inform the type of ques-
tion and guide the model to improve the quality of
answers to code-related questions. To demonstrate
the effectiveness of our model, we conduct exper-
iments on three real-world datasets: two Github
datasets (Java and Python) and one introductory
programming course dataset (Python). We show
that our model can generate high-quality answers
compared to recent large language models (LLMs).

2 Related Work

Automatic question answering has been consis-
tently studied in the field of natural language pro-
cessing (Yang et al., 2015; Rajpurkar et al., 2016,
2018; Yang et al., 2018). Recently, attention has
shifted toward automatic code question answer-
ing in program language processing. Xu et al.
(2017) introduced a system that generates answers
to technical questions from StackOverflow. Simi-
larly, Bansal et al. (2021) designed an answering
system for questions about subroutines using an
RNN encoder-decoder network (Cho et al., 2014).
However, questions in these datasets tend to be sim-
ple, where answers can be easily obtained without
requiring complex inference or reasoning about the
code.

12621

import pandas as pd

data = {
 'Apples': [3, 2, 0, 1],
 'Oranges': [0, 3, 7, 2]
}
purchases = pd.DataFrame(data)
purchases['Bananas'] = [1, 2, 1, 0]
purchases.to_csv('purchases.csv')
df = pd.read_csv('purchases.csv')
df.set_index('Apples', inplace=True)
print(df.head())

Code

Which function is utilized to write a CSV file?

Question

DataFrame()

to_csv()

read_csv()

set_index()

head()

Two-dimensional, size-mutable, heterogeneous tabular data.

Write object to a comma-separated values (csv) file.

Read a comma-separated values (csv) file into DataFrame.

Set the DataFrame index using existing columns.

Return the first n rows.

D
a
ta

b
a
s
e

DataFrame()

to_csv()

read_csv()

set_index()

head()

Relevance Score

Decoder

0.02

★ 0.40

★ 0.34

0.17

0.07

(b) Selective API Document Retrieval (c) Question Semantic Intent Clustering

Code

Question

Question Intent Instruction

(a) CoRAC Encoder (d) CoRAC Decoder

Free-form Answer

API Function Description API function Features

Question Feature

: Centroid Point

E
x
te

rn
a

l P
L

M

E
n

c
o

d
e
r

E
n

c
o

d
e
r

Relevant API Document

Parser

Figure 2: Overview of CoRAC framework. (a) For code question answering, not only code and question but also
important API documents selected by our method and instruction containing the semantic intent of the question are
given as inputs for training the end-to-end model (Sec. 3.1). (b) For selecting helpful API documents, we parse the
code to extract all API functions and match them with the corresponding database for each programming language
to obtain the description of the respective API function. We then select the important API documentation relevant to
the question based on semantic features utilizing an external PLM (Sec. 3.2). (c) To grasp the intent of the question,
we create a question semantic intent instruction from clustering-based questions based on the semantic features
(Sec. 3.3). (d) With the selected important API function’s documents and question intent instruction, the decoder is
trained to generate free-form answers (Sec. 3.4).

Liu and Wan (2021) constructed a more complex
code question answering dataset, which consists
of free-form answers requiring a deep understand-
ing of both the code and the associated question
to provide comprehensive answers. They were the
first to apply this dataset to the PLMs such as Code-
BERT (Feng et al., 2020) for the task. Addition-
ally, Lee et al. (2022) introduced a more real-world
dataset, CS1QA, that focuses on the introductory
programming education domain.

Recently, the rise of LLMs in program-
ming and natural language processing, such
as Llama3.1 (Dubey et al., 2024), Code
Llama (Roziere et al., 2023), Qwen2.5-Coder (Hui
et al., 2024) has led to notable improvements in
various code intelligence tasks. However, when it
comes to code question answering, these LLMs
often produce responses that are overly detailed
and focused on the code itself, which makes it
difficult to align with the user’s specific intent or
request. GPT-4 (OpenAI et al., 2024) also shows
impressive abilities across various domains due
to its extensive training with vast data, resources,
and instructions. Yet, when given only fragments
of code and questions, GPT-4 also struggles to

provide accurate answers and it also requires
well-structured prompts for proper responses.

3 Proposed Method

In this section, we introduce a knowledge-based
framework, CoRAC, to leverage helpful API doc-
umentation related to the question and to utilize
the semantic intent of the question as shown in
Figure 2.

3.1 CoRAC Encoder

Given a set of source code C and a natural lan-
guage question Q, the goal of the code question an-
swering task is to generate a free-form natural lan-
guage answer A. This task requires understanding
the entire code to generate an appropriate answer.
However, when questioners ask about code, they
provide only a portion of it, making it challenging
for the respondent to give an accurate answer based
on the limited code. To gain a deeper understand-
ing of the code in question, we incorporate external
knowledge by leveraging question-related essential
API documents and question intent instructions for
guiding the proper answer. Our CoRAC encodes

12622

all inputs into features as follows:

X = [C;S;Q; I] (1)

FX = EncoderCT(X)

where C, S, Q, and I denote the source code, the
retrieved API documentation, the question, and the
question semantic intent instruction, respectively,
and EncoderCT is the Code-Text PLM encoder. We
concatenate the inputs as X = [C;S;Q; I].

In the following subsection, we describe the
methods for selecting the important API descrip-
tion (Figure 2 (b)) and for obtaining the question
semantic intent instruction (Figure 2 (c)).

3.2 Selective API Document Retrieval
To extract API functions used in code for code ques-
tion answering, we first parse the source code as an
Abstract Syntax Tree (AST) parser. By traversing
the AST nodes, we check whether a node repre-
sents an API function call, and we extract the name
of the API function, such as to_csv(). We ob-
tain a list of all API functions used in the code,
denoted as F = {f1, f2, ..., fl}. Next, we use a
database of API-document pairs for each program-
ming language and leverage Elastic Search1 with
the standard BM25 (Robertson et al., 2009) to re-
trieve the document of each API function. Then,
the description for all API functions, denoted as
D = {d1, d2, ..., dl} is obtained and each API func-
tion is matched with its corresponding document.
We then build API-description pairs, denoted as
FD = {fd1, fd2, ..., fdl} where fdi = [fi; di].

However, descriptions of all the functions used
in the code do not necessarily help in generating an-
swers to questions. There may be unnecessary API
functions that are not relevant to the given question,
which can lead to confusion in code question an-
swering. Therefore, we need to consider only the
API functions that are relevant to the given ques-
tion. To select the descriptions of API functions
that are helpful in answering the question, we com-
pute a confidence score for all API documentation
used in the code based on how relevant they are to
the question. To do this, we use an external PLM
to obtain semantic features of the question and the
descriptions of API function.

FQ = EncoderExt(Q) (2)

Ffdi = EncoderExt(fdi) (3)
1https://github.com/elastic/elasticsearch

where the number of Ffd is l and EncoderExt is
external PLM Encoder. Next, we compute their co-
sine similarity between the features of the question
and all API-descriptions used in the code as:

si = similarity(FQ,Ffdi) (4)

Finally, we calculate the relevance score of API
documents for a given question based on a similar-
ity score.

ri =
esi

∑L
j=1 e

sj
(5)

Based on the obtained relevance scores, we select
the top-n important API function documents S as
the input for the CoRAC encoder.

3.3 Question Semantic Intent Clustering

Understanding the intent of the question is crucial
in generating accurate answers. It not only helps re-
sponders provide more relevant and comprehensive
responses but also guides the answer’s formulation.
Different problem types of questions require dif-
ferent kinds of answers, and recognizing the intent
can help generate the appropriate answer.

However, in the real world, questioners typically
do not provide specific intent-related information
about their questions but rather provide only code
and questions. As a result, responders need to infer
the intent of the questions solely from the question
sentences.

If questions have similar intents and problem
types, they should produce similar answers. In situ-
ations where intent is not provided for such ques-
tions, i.e., in unlabelled scenarios, we propose an
effective method to learn question semantic intent.

If we have sufficient data for code-related ques-
tions, we first obtain the semantic features of all
questions based on an external PLM. Then, we ap-
ply the K-means clustering method to group all
questions in the training dataset into K clusters.

V =

N∑

i=1

K∑

j=1

||FQi − uj ||2 (6)

where N is the total number of questions for clus-
tering and K is the number of clusters. We obtain
the centroid points u of group j minimizing V us-
ing Euclidean distance. This can group questions
with similar semantic intent together. K centroid
ids mean representative points for K semantic in-
tents.

12623

Then, when a question is given in the training
or inference stage, we extract the feature of the
question using the external PLM and identify the
cluster id closest to the centroid points u based on
the Euclidean distance.

k = argmin
j=1,...,K

||FQ − uj ||2 (7)

Then, we use “Question intent is [cluster id]” as
the instruction I for the CoRAC encoder.

3.4 CoRAC Decoder
We utilize the PLM decoder for program and lan-
guage to generate free-form natural language an-
swers. The decoder of our CoRAC takes the feature
FX as input, finally generating the answer.

y = DecoderCT(FC) (8)

where FC is a vector, y denotes the predicted
answer, and DecoderCT represents the Code-Text
PLM decoder model. The decoder generates words
in an autoregressive manner until the </s> token
is produced.

4 Experiment Setup

4.1 Datasets
We conduct experiments on two public datasets,
CodeQA Java and Python (Liu and Wan, 2021),
and a more real-life dataset, CS1QA Python dataset
(Lee et al., 2022), which is collected from an intro-
ductory programming course. Table 6 in Appendix
A.1 provides the detailed statistics of the datasets.

Database of API function documentation are
obtained from Devdocs2 API documentation for
Python language and Oracles3 API documentation
for Java language. We pre-processed API function
documentation and stored about 33,000 pairs for
Python language and about 51,000 pairs for Java
language.

4.2 Evaluation Metrics
We use three evaluation metrics, smoothed BLEU-
4 (Lin and Och, 2004), METEOR (Banerjee and
Lavie, 2005), and ROUGE-L (Lin, 2004) to mea-
sure the quality of the generated answers. The
ground truth consists of the answers provided in
each dataset, including CodeQA and CS1QA, both
of which are hand-curated to ensure quality, accu-
racy, and relevance. Detailed descriptions of the
evaluation metrics are reported in Appendix A.2

2https://devdocs.io/
3https://docs.oracle.com

4.3 Baselines

We compare our proposed model with two cate-
gories: (1) Pre-trained Language Models for code
intelligence (Feng et al., 2020; Ahmad et al., 2021;
Wang et al., 2021; Guo et al., 2022; Nijkamp et al.,
2023), and (2) Large Language Models (Roziere
et al., 2023; Hui et al., 2024; Dubey et al., 2024;
OpenAI et al., 2024).

• CodeBERT (Feng et al., 2020), an encoder-
only model based on RoBERTa (Liu et al.,
2019), designed for code representation and
understanding tasks.

• PLBART (Ahmad et al., 2021), an encoder-
decoder model to support code generation
tasks using BART (Lewis et al., 2020).

• CodeT5 (Wang et al., 2021), a pre-trained
encoder-decoder model based on T5 (Raffel
et al., 2010), to facilitate generation tasks for
source code.

• UnixCoder (Guo et al., 2022), a unified cross-
modal pre-trained language model for pro-
gramming language.

• CodeGen (Nijkamp et al., 2023), a pre-trained
decoder model for programming language.
from 350M up to 16B parameters. They train
a family of large language models from 350M
up to 16.1B parameters.

• Code Llama (Roziere et al., 2023), an ad-
vanced LLM, specifically designed to assist
with code generation and understanding tasks.
We use CodeLlama-7b-Instruct-hf model.

• Llama3.1 (Dubey et al., 2024), a new state-of-
the-art model of the LLaMA language model
series. This is trained on trillions of tokens.
We use the Llama3.1-8B-Instruct model.

• Qwen2.5-Corder (Hui et al., 2024), a
specialized variant of the Qwen language
model series, optimized for programming
tasks such as code generation. We use the
Qwen2.5-Coder-7B-Instruct model.

• GPT-4 (OpenAI et al., 2024), a state-of-the-
art LLM developed by OpenAI, designed
to handle complex language understand-
ing and generation tasks. We utilized the
GPT-4-o-mini on 4-shot in-context learning.

12624

Models #Param CodeQA (Java) CodeQA (Python) CS1QA

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

In-context Learning
Code Llama (4-shot) 7B 2.45 0.81 2.61 3.54 1.57 4.07 1.87 5.87 5.22
Llama3.1 (4-shot) 8B 2.20 0.90 2.33 3.07 1.77 3.49 1.25 4.01 4.81
Qwen2.5-Corder (4-shot) 7B 2.60 0.99 2.88 3.38 1.46 3.78 1.80 5.62 4.35
GPT-4 (4-shot) - 14.97 8.58 21.11 18.37 9.41 23.19 4.91 9.30 12.62

Fine-tuning
CodeBERT 172M 23.93 9.90 27.86 25.37 11.92 29.89 5.51 5.08 12.68
PLBART 139M 25.04 12.04 30.35 28.72 15.70 34.36 7.26 9.59 16.30
UnixCoder 126M 24.11 10.24 26.57 28.63 14.43 31.42 6.06 7.43 14.27
CodeT5 220M 26.59 12.43 32.70 30.18 16.74 36.35 7.31 9.49 16.49
CodeGen 350M 26.69 12.36 32.28 30.03 16.10 36.13 6.71 9.11 14.87

CoRAC (ours) 220M 28.05 13.51 33.57 32.14 17.72 38.42 7.52 9.77 18.07

Table 1: Comparison of our proposed method with the baseline models on the three benchmark datasets. We
conducted statistical testing using paired-sample z-tests to confirm the statistical significance of our results. CoRAC
shows a statistically significant performance improvement over baselines with p < 0.01.

4.4 Implementation Details

We implemented our proposed method and base-
lines based on the Hugging Face Transformer mod-
els4 (Wolf et al., 2020) on 4 Nvidia 3090ti GPUs
(24GB). We selected the CodeT5-base model as
the PLMs for program and language. Our models
were trained using the Adam optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 5e-5 and a
linear learning rate scheduler. We set the input code
and question length to 300, the target answer length
to 32, and the batch size to 32 for all datasets. The
maximum training epoch is 20, with early stopping
applied if the performance does not improve for
3 epochs. The models generate answers using the
beam search with a beam size of 10. For all experi-
ments, including all baselines, we report the mean
value of three folds.

For our external PLM, we selected paraphrase-
MiniLM, which has only 22 million parameters
significantly fewer than other PLMs and LLMs.
This is one of the SentenceBERTs to map sen-
tences and paragraphs to a 384-dimensional dense
vector space and demonstrates strong performance
in tasks such as clustering and semantic search.
Based on initial experiments, we set the number of
API documents to 3 and the maximum length of
API function descriptions to 100. Additionally, we
set the number of clusters K to 10 for the cluster-
based question semantic intent. More details are
discussed in subsection 5.5

4https://github.com/huggingface/transformers

5 Experiment Result

5.1 Overall Result
Table 1 shows the comparison between our CoRAC
and recent state-of-the-art on three benchmark
datasets for code question answering. Among the
fine-tuning methods, the CodeT5 model has the
best performance in the PLMs for program and
language. PLBART and CodeT5 models, which
are encoder-decoder models, show better perfor-
mance than CodeBERT and UnixCoder, which are
only encoder models paired with a randomly initial-
ized Transformer decoder. CodeGen-350M, which
is only a decoder model, has compatible perfor-
mance with CodeT5. Our CoRAC shows a signifi-
cant improvement on the three benchmark datasets.
Rather than simply using code and questions as in-
put (CodeT5), incorporating relevant API function
documents and question semantic intent instruc-
tion results in a much better performance. This
demonstrates that API function documents relevant
to the question help the model gain a deeper un-
derstanding of the code and the question semantic
intent instruction aids in generating appropriate
responses.

Large language models in a four-shot setting
showed poor performance. Code Llama, which
was trained mainly for code generation during pre-
training, struggled with the natural language an-
swer generation task. While Llama is known to
perform adequately in in-context learning for cloze-
test question answering, it showed poor perfor-
mance in our study due to the more challenging
requirement of understanding code and generating
free-form answers. Although GPT4 showed good

12625

Models BLEU METEOR ROUGE-L

CodeQA (Java)

CodeT5 26.59 12.43 32.70
+ SDR 27.32 (+2.7%) 13.29 (+6.9%) 33.24 (+1.7%)
+ QSI 27.91 (+5.0%) 12.63 (+1.6%) 33.20 (+1.5%)

CoRAC 28.05 (+5.5%) 13.51 (+8.7%) 33.57 (+2.7%)

CodeQA (Python)

CodeT5 30.18 16.74 36.35
+ SDR 31.43 (+4.1%) 17.47 (+4.4%) 37.98 (+4.5%)
+ QSI 31.59 (+4.7%) 17.36 (+3.7%) 37.83 (+4.1%)

CoRAC 32.14 (+6.5%) 17.72 (+5.9%) 38.42 (+5.7%)

CS1QA

CodeT5 7.31 9.49 16.49
+ SDR 7.42 (+1.5%) 9.37 (-1.3%) 17.49 (+6.1%)
+ QSI 7.34 (+0.4%) 9.49 (+0.0%) 17.53 (+6.3%)

CoRAC 7.52 (+2.8%) 9.77 (+3.0%) 18.07 (+9.6%)

Table 2: Ablation Study on two modules of our CoRAC:
Selective API Document Retrieval (SDR) and Question
Semantic Intent Clustering (QSI).

performance due to its extensive training on vast
datasets, it incurs a significant cost and time. Our
CoRAC demonstrates comparable results without
incurring such expenses.

5.2 Ablation Study

We conduct an ablation experiment that focuses on
two modules: Selective API Document Retrieval
(SDR) and Question Semantic Intent Clustering
(QSI). CoRAC (only SDR), CoRAC (only QSI),
and CoRAC (SDR + QSI) correspond to our mod-
els that use only the selective API document re-
trieval, only the question semantic intent clustering,
and both modules, respectively. In Table 2, we ob-
served a significant improvement in code question
answering performance when utilizing just the first
module, CoRAC (only SDR). Instead of merely us-
ing code and questions as input, integrating API
function documents with the code markedly en-
hances performance. This demonstrates that our
method effectively selects important API docu-
ments to address questions relevant to the code.
Moreover, CoRAC (only QIC) employs the ques-
tion semantic intent instruction within the CodeT5
model, proving particularly effective, especially
in terms of BLEU scores. By training the cluster-
based question semantic intent, it helps generate
more appropriate responses. Finally, our CoRAC,
which uses both relevant API document retrieval
and question semantic intent clustering, shows a
significant improvement in all evaluation metrics
compared to CodeT5.

1-gram 2-gram 3-gram
n-gram

0

5

10

15

20

BL
EU

CodeQA (Java)
code-answer
question-answer
document-answer

1-gram 2-gram 3-gram
n-gram

0

5

10

15

20

25

BL
EU

CodeQA (Python)

1-gram 2-gram 3-gram
n-gram

0

5

10

15

20

BL
EU

CS1QA

Figure 3: BLEU score of n-gram overlap recall on code-
answer (orange), question-answer (red), and document-
answer (blue).

PLMs #Param BLEU METEOR ROUGE-L

CodeQA (Java))

SBERT 22M 28.05 13.51 33.57
CodeT5 220M 26.49 12.37 32.58
Llama 7B 27.98 13.47 33.59

CodeQA (Python)

SBERT 22M 32.14 17.72 38.42
CodeT5 220M 30.09 16.34 36.12
Llama 7B 32.16 17.65 38.36

CS1QA

SBERT 22M 7.52 9.77 18.07
CodeT5 220M 6.97 8.84 15.37
Llama 8B 7.61 9.81 18.13

Table 3: Investigation of external PLMs for semantic
feature extraction.

5.3 Effectiveness of API Documents

In Figure 3, we present n-gram overlap recall
between code-answer, question-answer, and API
document-answer to examine whether the API
function documents used in answering the ques-
tions are actually helpful. The result shows that
the overlaps between code-answer and question-
answer are very low in all datasets. There are al-
most no shared words between code and answer,
and there is only a slight overlap between question
and answer. However, in the case of API docu-
ment and answer, we observe that there are many
overlapped words, which means that words in API
documents but not in code or question help in gen-
erating relevant and accurate answers.

5.4 Investigation of External PLMs

We analyzed the results of our investigation into
various external PLMs for extracting the semantic
features of questions and API documentation, as
shown in Table 3. The parameter sizes for SBERT,
CodeT5, and Llama are 22M, 220M, and 8B, re-
spectively. CodeT5, a PLM for code and language,
is trained solely on code and its corresponding com-
ments rather than a variety of textual contexts. As

12626

1 2 3 4 5
Number of APIs

26.4

26.6

26.8

27.0

27.2

27.4

27.6
BL

EU
CodeQA (Java)

SDR
Random in code
Random in database

1 2 3 4 5
Number of APIs

30.5

31.0

31.5

32.0

BL
EU

CodeQA (Python)

1 2 3 4 5
Number of APIs

7.15

7.20

7.25

7.30

7.35

7.40

7.45

BL
EU

CS1QA

Figure 4: Results for varying numbers of relevant API
documents by our selective API document retrieval.

5 10
number of cluster

27.00

27.25

27.50

27.75

28.00

28.25

28.50

BL
EU

CodeQA (Java)

5 10
number of cluster

30.5

31.0

31.5

32.0

32.5

BL
EU

CodeQA (Python)

5 10
number of cluster

7.2

7.3

7.4

7.5

7.6

BL
EU

CS1QA

Figure 5: Results for varying numbers of clusters in our
question semantic intent clustering.

a result, when obtaining the semantic feature of
natural language questions and API documentation,
it performed poorly performance in clustering and
semantic search tasks. This shows the importance
of selecting PLMs appropriate for input relevance
rather than relying solely on a single model like
CodeT5. While Llama showed performance compa-
rable to SBERT, considering that SBERT’s param-
eter size is over 300 times smaller, it demonstrates
that our method effectively performs clustering and
semantic search on questions and API documenta-
tion even with significantly fewer parameters.

5.5 Exploration of Various Parameters
Number of API Documents Figure 4 presents
the results with different numbers of important API
documents by selective API document retrieval.
We selected API documents based on three criteria:
those chosen by our proposed method (blue), those
randomly used in the code (orange), and those ran-
domly selected from the database (red), ranging
from 1 to 5 API documents. As the number of un-
related API documents (red) increased, there was a
noticeable decrease in performance. This can hin-
der the understanding of the code. When randomly
providing documentation of the API functions used
in the code (orange), performance improved as the
count increased. However, since the length of the
input API documentation is limited to 100, the im-
pact was not significantly beneficial. Our method,
which selects relevant API documents for gener-
ating answers to code-related questions, showed
superior performance even with fewer API docu-
ments.

Question Intent BLEU METEOR ROUGE-L

CodeQA (Java)

None 26.59 12.43 32.70
Type 27.14 12.59 33.15
Semantic 27.91 12.63 33.20

CodeQA (Python)

None 30.18 16.74 36.35
Type 31.28 17.19 37.47
Semantic 31.59 17.36 37.83

CS1QA

None 7.31 9.49 16.49
Type 7.27 9.48 16.74
Semantic 7.34 9.49 17.53

Table 4: Comparison of different question intents ap-
proaches.

Number of Clusters In Figure 5, we present
the results for different numbers of clusters in our
question semantic intent clustering. Grouping the
questions into fewer, broader clusters was not as
effective as clustering them into more specific cat-
egories, such as those with 10 to 14 clusters. This
indicates that, due to the high diversity of question
types, it is beneficial to group them into a larger
number of clusters.

5.6 Analysis of Question Semantic Intent

We compared the effectiveness of the clustered
question semantic intent with cases where the ac-
tual intent, such as “How”, “What”, or “Purpose”
was provided. Table 4 presents the result across
three different conditions: (1) without providing
any intent information for the question (None), (2)
providing the actual intent label of the question
(Type), and (3) using question semantic intent ob-
tained by our method (Semantic). The result shows
that providing question intent (Type) and (Seman-
tic) leads to better performance compared to the
CodeT5 model without question intent (None). In
particular, the question semantic intent (Semantic)
demonstrates a significant performance improve-
ment compared to using the actual intent label
(Type). Notably, in the CS1QA dataset, which con-
sists of more complex questions, there is a substan-
tial improvement in ROUGE-L scores. This proves
that rather than providing categorized intent from
the questioner, the clustered question semantic in-
tent based on semantic features for similar ques-
tions provides a more accurate understanding of
the question’s intent, and generates more accurate
answers.

12627

Cluster 1
For what purpose will it be broken if any of the specified
rows contains a new-line character on that character?
Does the code dump the parse stack for debugging pur-
poses?
What does the code dump for debugging purposes?
For what purpose do rotation change?

Cluster 2
Does the code convert a number into a bit string with
separators between each group of 8?
Does the code convert an unsigned 32-bit integer to a
string?
Does the matrix need to be translated after rotating?
Does the code convert it into string?

Cluster 3
What does this method return?
Does the code return the given charset or the default charset
if the given charset is null?
What does the code return if the given charset is null?
What does the code add to the output suffix?

Cluster 4
What does the code send to ourselves to update the execu-
tion stage?
How does execution cease?
What is performed inside a separate thread of execution?
How can the operation work?

Table 5: Clustering results of question semantic intent
in the CodeQA (Java) dataset.

5.7 Qualitative Results of Clustering

Table 5 presents how effectively questions are se-
mantically clustered using our Question Seman-
tic Intent Clustering method. We extracted sample
questions closest to each cluster centroid. In the
first cluster, questions related to the “purpose” of
the code were grouped together. The second cluster
consists of questions about code transformation,
while the third cluster includes questions regarding
the values returned by the code. Examining each ex-
ample reveals that the questions within each cluster
share similar intents and are well-clustered. There-
fore, our proposed method effectively clusters ques-
tions based on their semantic intent, demonstrating
its usefulness in guiding answer generation.

6 Conclusion

We proposed a knowledge-based framework that
leveraged helpful API function documents (Selec-
tive API Document Retrieval) and instruction of
question semantic intent (Question Semantic Intent
Clustering) to generate more accurate and relevant
answers to code questions. We demonstrated the
effectiveness of our methods and highlighted the
need for more efficient ways to obtain accurate and
relevant answers to code-related inquiries.

In this paper, we focus on generating natural lan-
guage answers that include concise function calls
rather than full function-level code. As future work,
we could explore generating answers that integrate
textual explanations with full function-level code
snippets.

7 Limitation

GPT-4 demonstrates good performance not only in
many natural language tasks but also in code intelli-
gence tasks. However, there are issues with human
evaluation of GPT4 for the dataset discussed in this
paper. The average length of ground truth answers
is between 4 to 5 words as shown in Table 1. GPT4
tends to generate lengthy responses even in few-
shot prompting. This characteristic makes it easy to
detect which method generated an answer, leading
to the conclusion that a comparison might not be
meaningful. Instead, we presented the qualitative
examples generated by GPT4.

For open LLMs like CodeGen and Llama, nei-
ther model was trained with PEFTs like LoRA in
our GPU setting. CodeGen, as an LLM for code
generation, was not sufficiently trained during the
pre-training phase to generate natural language in
the decoder, which is why it performs poorly on
tasks like Code-to-NL. Llama, as an LLM for nat-
ural language, was not primarily trained for code
data. We chose not to use all LLMs as baselines for
our study, as those designed for code generation
performed poorly on Code-to-NL tasks. We believe
solving this issue is a challenge for the field of code
intelligence.

Acknowledgments

This work supported by Institute of Information
& communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea gov-
ernment(MSIT) (RS-2019-II190421, AI Gradu-
ate School Support Program(Sungkyunkwan Uni-
versity), 10%) (No.1711195788, Development of
Flexible SW/HW Conjunctive Solution for on-
edge self-supervised learning, 45%) (IITP-2025-
RS-2024-00437633, ITRC(Information Technol-
ogy Research Center), 45%)

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings

12628

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211

of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

A. Bansal, Z. Eberhart, L. Wu, and C. McMillan. 2021.
A neural question answering system for basic ques-
tions about subroutines. In 2021 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 60–71, Los Alamitos,
CA, USA. IEEE Computer Society.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
ArXiv preprint, abs/2009.08366.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv preprint, abs/1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 14165–14178.

Changyoon Lee, Yeon Seonwoo, and Alice Oh. 2022.
CS1QA: A dataset for assisting code-based question
answering in an introductory programming course.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2026–2040, Seattle, United States. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501–507, Geneva,
Switzerland. COLING.

Chenxiao Liu and Xiaojun Wan. 2021. CodeQA: A
question answering dataset for source code compre-
hension. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2618–2632,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,

12629

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.1109/SANER50967.2021.00015
https://doi.org/10.1109/SANER50967.2021.00015
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/2022.naacl-main.148
https://doi.org/10.18653/v1/2022.naacl-main.148
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://doi.org/10.18653/v1/2021.findings-emnlp.223
https://doi.org/10.18653/v1/2021.findings-emnlp.223
https://doi.org/10.18653/v1/2021.findings-emnlp.223
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. ArXiv
preprint, abs/2102.04664.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial
Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 1287–1293. AAAI Press.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
ICLR.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2024. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2010. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. ArXiv preprint, abs/10.5555.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.

Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo,
Chanchal K Roy, and Mohammad Mamun Mia. 2014.
Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 476–
480. IEEE.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo.
2017. Answerbot: Automated generation of answer
summary to developers’ technical questions. In 2017
32nd IEEE/ACM international conference on auto-
mated software engineering (ASE), pages 706–716.
IEEE.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vulnera-
bility identification by learning comprehensive pro-
gram semantics via graph neural networks. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 10197–10207.

12630

https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/10.5555
https://arxiv.org/abs/10.5555
https://arxiv.org/abs/10.5555
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

A Appendix

A.1 Datasets

Dataset CodeQA CS1QA

Java Python Python

Train 95,778 56,085 5,542
Valid 12,000 7,000 1,847
Test 12,000 7,000 1,847

Avg. tokens in code 119.52 48.97 83.87
Avg. tokens in question 9.48 8.15 15.73
Avg. tokens in answer 4.74 4.07 19.60

Avg. API Func. in code 6.60 5.06 7.07
Avg. tokens in API Doc. 27.56 21.95 34.61

Table 6: Statistics of CodeQA and CS1QA datasets.

CodeQA Dataset is a dataset for question-
answering designed for the comprehension of
source code (Liu and Wan, 2021). It consists of
two programming languages, Java and Python, con-
taining 119,778 and 70,085 question-answer pairs,
respectively.

CS1QA Dataset is a dataset designed for code-
based question answering in a real-world class-
room setting (Lee et al., 2022). It consists of 9,237
question-answer pairs collected from chat logs in
an introductory Python programming class. Each
question in the dataset includes the student’s code,
as well as the position of the code related to the
question.

A.2 Evaluation Metrics

• BLEU (Lin and Och, 2004) is a BiLingual
Evaluation Understudy to evaluate the qual-
ity of generated answers. Liu and Wan (Liu
and Wan, 2021) used Corpus BLEU (Papineni
et al., 2002), but higher order n-grams may
not overlap because the generated answers
are short. We solve this problem by using
smoothed sentence BLEU, which is widely
used in PLMs’s document generation tasks
(Feng et al., 2020; Guo et al., 2020; Ahmad
et al., 2021; Wang et al., 2021).

• METEOR(Banerjee and Lavie, 2005) is used
to measure the correlation between the metric
scores and human judgments of translation
quality.

• ROUGE-L(Lin, 2004) is used to apply the
Longest Common Subsequence in code ques-
tion answering evaluation.

A.3 Analysis of Answer Lengths

In Figure 6, we analyze the performance with
respect to answer lengths on CodeQA datasets.
Specifically, there are 822 /562 instances with an
answer length of 1, 9656 /5887 instances with an
answer length between 1-10, 1237 /502 instances
with an answer length between 10-20, and 229 /47
instances with an answer length over 20. Our model
shows better performance across all answer lengths
for both datasets. It demonstrates that our SDR and
CQI help generate appropriate answers regardless
of length.

1 1~10 10~20 20~

10

20

30

40

50
BLEU-4 Java (CodeQA)

1 1~10 10~20 20~
15
20
25
30
35
40
45
50

ROUGE-L Java (CodeQA)

1 1~10 10~20 20~

10

20

30

40

50
BLEU-4 Python (CodeQA)

1 1~10 10~20 20~
15
20
25
30
35
40
45
50

ROUGE-L Python (CodeQA)

CoREP CodeT5 PLBART CodeBERT

Figure 6: BLEU and ROUGE-L scores with respect to
answer lengths (x axis is answer length, y axis is BLEU
or ROUGE-L).

A.4 Versatility Across Diverse PLMs

We conducted an experiment to evaluate the appli-
cability of our framework to other PLMs for both
code and language. Table 7 presents the results of
these experiments, focusing on the performance
of the framework. Our model has an end-to-end
framework by utilizing selective API document re-
trieval and question semantic intent clustering. We
applied our method to PLBART and CodeGen. We
can see that the results improve performance com-
pared to when only code and a question are used as
inputs. This demonstrates that our approach can be
applied to various PLMs without regard to whether
they are encoder-decoder or only decoder.

A.5 LLM based Evaluation

We conduct an LLM-based evaluation on the three
datasets to check the quality of generate answers.
We adopt the GPT-Rank template for the evalua-
tor (Jiang et al., 2023). We randomly select 1,500
code-question samples and shuffle them. For each

12631

Models BLEU METEOR ROUGE-L

CodeQA (Java)

PLBART 26.12 12.44 31.07
CodeGen 28.12 13.47 33.38
CodeT5 28.05 13.51 33.57

CodeQA (Python)

PLBART 29.87 16.34 35.97
CodeGen 31.98 17.27 38.04
CodeT5 32.14 17.72 38.42

CS1QA

PLBART 7.44 9.86 18.04
CodeGen 6.98 9.35 16.21
CodeT5 7.52 9.77 18.07

Table 7: Versatility across other PLMs for program and
language.

CodeQA (Java) CodeQA (Python) CS1QA

Flu. Rel. Flu. Rel. Flu. Rel.

Win 637 650 625 621 706 761
Tie 279 590 291 280 336 323

Loss 584 260 584 599 458 416

Table 8: LLM evaluation of the appropriateness of the
generated answers on three datasets. Flu. and Rel. de-
note Fluency and Relevance.

selected code-question, we provide two answers
generated by CodeT5 and our CoRAC to the LLM
evaluator. We use gpt-3.5-turbo API for LLM eval-
uation. When providing the two generated answers,
we randomly show them without indicating which
model generated them as shown in Table 12. We
ask the LLM to evaluate the two following metrics:
1) Fluency (grammatical correctness) and 2) Rele-
vance (selection of the relevant content in source
code). The LLM evaluator compares the generated
answers with the input code and chooses one of
win, tie, and loss in terms of two metrics. Table 8
summarizes the results of LLM-based evaluation
on the generated answers on the datasets. The win
counts for both fluency and relevance are higher
in CoRAC than in CodeT5. In particular, the rel-
evance of CoRAC significantly outperforms that
of CodeT5 in all the datasets, indicating that our
CoRAC generates more suitable answers.

A.6 Qualitative Analysis

Table 9 and 10 show the answers generated from
our proposed model, CoRAC, and baseline models
on the CodeQA Java and Python datasets. In Table
10, the answers generated by other baseline models
fail to detect the keyword rendered. Also, they

only include specific words such as html or course
info, without fully capturing the overall purpose of
the code. On the other hand, our model generates
appropriate keywords as answers to the question,
which reflects the API function documentation of
render and render_to_string.

12632

Original Code
@SuppressWarnings("unchecked")
private Class validateClass(ClientConfig cfg) {

Class clazz = null;
try {

clazz = Class.forName(cfg.getAccessRequestHandlerClassname());
} catch (final ClassNotFoundException e) {

LOG.error("Unable to load Handler Class ’" + cfg.getAccessRequestHandlerClassname()
+ "’ for RADIUS client ’" + cfg.getName() + "’. Requests from this client will be ignored.", e);

return null;
}
Object inst = null;
try {

inst = InjectorHolder.getInstance(clazz);
} catch (ConfigurationException | ProvisionException e) {

LOG.error("Unable to instantiate Handler Class ’" + cfg.getAccessRequestHandlerClassname()
+ "’ for RADIUS client ’" + cfg.getName() + "’. Requests from this client will be ignored.", e);

return null;
}
AccessRequestHandler handler = null;
try {

handler = (AccessRequestHandler) inst;
} catch (final ClassCastException e) {

LOG.error("Unable to use Handler Class ’" + cfg.getAccessRequestHandlerClassname()
+ "’ for RADIUS client ’" + cfg.getName() + "’. Requests from this client will be ignored.", e);

return null;
}
return clazz;

}

Question: What does this return?

CodeT5: access request handler
ChatGPT: an access request handler
CoRAC: the access request handler interface
Gold: the proper interface

Table 9: An example of the qualitative comparison on Java dataset (CodeQA).

Original Code
def get_course_info_section(request, user, course, s_key):

info_module = get_course_info_section_module(request, user, course, s_key)
html = ‘’
if (info_module is not None):

try:
html = info_module.render(S_VIEW).content

except Exception:
html = render_to_string(‘error-message.html’, None)
log.exception(u‘Error rendering course_id=%s, s_key=%s’, unicode(course.id), s_key)

return html

Question: What does this return?

CodeT5: the html
ChatGPT: This function return the rendered html content representing the course information section
CoRAC: the snippet of html to be rendered on the course info section
Gold: the snippet of html to be rendered on the course info page

Table 10: An example of the qualitative comparison on Python dataset (CodeQA).

12633

Original Code
from cs1robots import *

load_world("worlds/hurdles1.wld")
hubo = Robot()
hubo.set_trace(’blue’)
hubo.set_pause(0.3)

def turn_right():
for i in range(3):

hubo.turn_left()

def hurdle():
hubo.turn_left()
hubo.move()
turn_right()
hubo.move()
turn_right()
hubo.move()
hubo.turn_left()

for i in range(4):
hubo.move()
hurdle()
if i == 3:

hubo.move()
hubo.pick_beeper()

Question: Please explain why you used the if statement in task2

CodeT5: If i is 3, the beeper is picked up if there is a beeper in its place after Hubo moves, and if i is 4, the beeper is picked
up if.

ChatGPT: The if statement in task2 is used to check if the robot hubo is on the last hurdle (the fourth one in this case).
CoRAC: If the if statement is used, the robot moves one space, picks it up, and moves it another space.
Gold: To pick up the beeper after crossing the last hurdle.

Table 11: An example of the qualitative comparison on CS1QA dataset.

12634

Instruction
Please read the original text and the two adversarial texts (Candidate-A and Candidate-B), then evaluate and
rank texts generated by two different methods.

Original Text
{orig_text}

Generated Answers
Candidate-A : {generated_text1}
Candidate-B : {generated_text2}

Questions
Template Given the instruction and input above, please compare the two candidates based on the {metric}.

"{metric}" {metric_desc}

You only have 3 choices to output:
If you think A is better, please output: 1. Candidate-A is better
If you think B is better, please output: 2. Candidate-B is better
If you think A and B are tie, please output: 3. tie

Do not output anything else except the 3 choices above.

Output your choice below Comparison Option (1 or 2 or 3)
1. Candidate-A is better
2. Candidate-B is better
3. tie

Variables {orig_text} is original sentence.

{generated_text} is adversarial generated examples by attack methods.

{metric} is metric to evaluate the quality of generated answer. we use two metrics as follows:
Fluency and Relevance.

{metric_desc} is description of the metric. The description is paired with the following two metrics:
Fluency : “evaluates the generated answer is grammatical correctness.”
Relevance : “evaluates the relevance between the generated answer and the given code and question.”

Table 12: Prompt for LLM evaluation. We adopt GPT-rank template for the evaluation prompt. To ensure a fair com-
parison, we randomly select 1,500 examples that were generated by CodeT5 and CoRAC. We use gpt-3.5-turbo
API. To aovid naming bias, we use "candidate-A" instead of the method’s name to avoid naming bias. Additionally,
the generated answer were randomly assigned to the {generated_text1} and {generated_text2} positions to prevent
positional bias.

12635

