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Abstract

Large language models (LLMs) have become
the norm in natural language processing (NLP),
excelling in few-shot in-context learning (ICL)
with their remarkable abilities. Nonetheless,
the success of ICL largely hinges on the choice
of few-shot demonstration examples, making
the selection process increasingly crucial. Ex-
isting methods have delved into optimizing the
quantity and semantic similarity of these exam-
ples to improve ICL performances. However,
our preliminary experiments indicate that the
effectiveness of ICL is limited by the length
of the input context. Moreover, varying com-
binations of few-shot demonstration examples
can significantly boost accuracy across differ-
ent test samples. To address this, we pro-
pose a novel method named parallel in-context
learning (ParaICL) that effectively utilizes all
demonstration examples without exceeding the
manageable input context length. ParaICL em-
ploys parallel batching to distribute demonstra-
tion examples into different batches accord-
ing to the semantic similarities of the ques-
tions in the demonstrations to the test ques-
tion. It then computes normalized batch se-
mantic scores for each batch. A weighted av-
erage semantic objective, constrained by adap-
tive plausibility, is applied to select the most
appropriate tokens. Through extensive experi-
ments, we validate the effectiveness of ParaICL
and conduct ablation studies to underscore
its design rationale. We further demonstrate
that ParaICL can seamlessly integrate with
existing methods. Our code is available at
https://github.com/xingxuanli/paraicl.git.

1 Introduction

In recent years, scaling up the parameters of gener-
ative language models has significantly enhanced
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Figure 1: Results of Mistral-7B-Instruct-v0.2 on 100
test samples from GSM8K and WinoGrande using dif-
ferent numbers of few-shot demonstration examples.
Increasing the number of demonstration examples does
not necessarily improve the performance consistently.

their language generation capabilities (Radford
et al., 2019; Brown et al., 2020; OpenAI, 2023).
Large language models (LLM) have demonstrated
their adeptness across a wide range of tasks via
few-shot in-context learning (ICL) (Cheng et al.,
2023; Zhao et al., 2023; Li et al., 2024). In few-
shot ICL, models are expected to generate outputs
directly based on a sequence of given examples
without any parameter modifications, making it the
most efficient method for adapting to new tasks.

However, the effectiveness of ICL is notably in-
fluenced by the few-shot demonstration examples
used (Chen et al., 2023). Various methods have
been developed to select the most effective few-
shot demonstration examples for ICL. Hao et al.
(2022a) demonstrated that scaling up the number of
demonstration examples can improve the ICL per-
formance. Rubin et al. (2022) and Liu et al. (2022)
proposed to utilize the most relevant examples for
each test sample during inference. Nevertheless,
existing few-shot ICL methods mostly focus on
either increasing the number of demonstration ex-
amples or selecting a few that are similar to the test
samples to improve performance.

We have designed two preliminary experiments
to identify key factors for effectively using demon-
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Figure 2: Results of Llama-2-7B-Chat on 100 Wino-
Grande test samples using different combinations of 10-
shot demonstration examples. Different combinations
improve the model’s accuracy on various test samples.

stration examples. Firstly, we increase the number
of demonstration examples. The results, as shown
in Figure 1, reveal that the performance of Mistral-
7B-Instruct-v0.2 on GSM8K and WinoGrande does
not consistently improve with more examples. This
is partly because longer input lengths, resulting
from more examples, can lead to suboptimal re-
sults in LLMs (Liu et al., 2023; Li et al., 2023b).
Therefore, controlling the input context length is
essential in ICL, making the number of few-shot
demonstration examples a critical factor.

Secondly, we focus on the selection of demon-
stration examples. We experiment with Llama-2-
7B-Chat on 100 test samples from WinoGrande
with 32 different 10-shot example combinations.
As shown in Figure 2, we notice that varying com-
binations lead to different accuracy improvements.
These combinations enabled the model to accu-
rately answer 80% of the test samples, a significant
increase compared to the 50.9% average accuracy
of each individual 10-shot combination. This high-
lights the fact that varying demonstration examples
can enhance the model’s accuracy on different test
samples. Therefore, we should leverage all avail-
able demonstration examples when possible.

To combine the best of both worlds, we introduce
parallel in-context learning (ParaICL). ParaICL ef-
fectively utilizes the maximum number of demon-
stration examples without extending the input con-
text length, thus avoiding the potential reduction
in model performance due to larger context sizes.
Given a set of question–answer pairs as demon-
stration examples, ParaICL first assigns them into
various batches based on the semantic similarity
between the demonstrations’ questions and the sam-
ple test question. Consequently, each batch main-
tains a controlled context length while utilizing all
demonstration examples. These batches are then
processed by a causal model in parallel to obtain the

next token distribution for each batch. Afterward,
a weighted average of these distributions is cal-
culated, considering the semantic relation of each
batch to the test question. The final step involves se-
lecting the token with the highest weighted average
probability for continued generation.

We conduct extensive experiments across a
range of reasoning, natural language inference,
and coding tasks to validate the effectiveness of
ParaICL. We further demonstrate that ParaICL
is compatible with both open- and closed-source
causal language models. Our study includes abun-
dant ablation studies and analyses to justify the
design of ParaICL and demonstrate how it can be
integrated with other ICL methods. In summary,
our main contributions are the following: (1) We
introduce ParaICL, a simple but effective method
that leverages all available demonstration examples
while maintaining the input context length man-
ageable. (2) We conduct thorough experiments to
prove the effectiveness of our method, along with
ablation studies to justify its design. (3) We illus-
trate how our method can enhance and work in
conjunction with other methods.

2 Related Work

ICL has surged as a transformative approach in the
NLP domain, with its significance evident across
various applications, including knowledge ground-
ing (Zhao et al., 2023; Li et al., 2024), code gen-
eration (Li et al., 2023b), and other industrial ap-
plications (Cheng et al., 2023; Chen et al., 2024).
Despite its promise, challenges such as sensitivity
to the prompts and context window length limita-
tions, highlight areas for further research and devel-
opment in making ICL more robust and versatile.

As aforementioned, various studies have under-
scored that ICL exhibits significant sensitivity to
the quality of prompts, particularly concerning
the demonstration examples provided (Li and Qiu,
2023a; Gupta et al., 2023; Raventos et al., 2023).
Chen et al. (2023) discovered that increasing the
number of examples only leads to slight improve-
ments. Liu et al. (2022) proposed to select exam-
ples that have the highest semantic similarity to the
test question. Contrarily, Levy et al. (2023) found
that leveraging a diverse set of demonstration ex-
amples could improve in-context compositional
generalization. Qin et al. (2023) proposed iterative
demonstration selection, which considers both the
diversity and similarity dimensions of ICL demon-
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stration selection for LLMs. Additionally, Chia
et al. (2023) explored the potential of contrastive
examples in improving the reasoning capabilities
of causal language models. Nevertheless, these
methods primarily focus on choosing a subset of
demonstration examples from a pool of candidates
based on certain perspectives. Furthermore, these
methods necessitate a substantial number of candi-
dates to efficiently select the best examples, which
constrains their applicability across all situations.

Another line of research is dedicated to utilizing
extended context in ICL. Ratner et al. (2023) pro-
posed parallel context window (PCW), a method
that alleviates the context window limitations for
any open-source LLMs without necessitating ad-
ditional training. However, PCW overlooked the
semantic connections between the demonstration
examples and the test samples. As evidenced by
Chen et al. (2023), merely increasing the quan-
tity of demonstration examples does not correlate
with a substantial improvement in performance.
In fact, this strategy might detract from overall
performance due to the inclusion of incorrect or
misleading content within some of the examples.

The implementation of our ParaICL method is
also inspired by the ensemble of models (Ganaie
et al., 2022), which use multiple slightly different
models to contribute probability “votes” before pro-
ducing the final answer by (weighted) averaging the
votes’ probabilities. Vastly different from the en-
semble of models, ParaICL uses the same language
model prompted with different sets of in-context
exemplars to produce varying vote probabilities be-
fore aggregating the output distributions to produce
the final answer. As such, ParaICL does not require
many models and is efficient to compute.

3 Methodology

We first formulate the problem setting for few-shot
ICL in Section 3.1. Following this, in Section
3.2, we introduce ParaICL, a novel method that
efficiently processes demonstration examples in
batches and effectively utilizes a novel parallel se-
mantic decoding strategy for generation. Subse-
quently in Section 3.3, we introduce the weighted
average semantic objective alongside the adaptive
plausibility constraint. Finally we define the par-
allel semantic decoding method, which employs
the weighted average semantic objective subject
to the plausibility constraint. A demonstration of
ParaICL can be found in Figure 3.

3.1 Few-Shot In-Context Learning

Few-shot ICL focuses on understanding and ex-
ecuting tasks with a set of demonstration exam-
ples (Brown et al., 2020). It leverages a num-
ber of selected examples, known as “shots”, to
quickly adapt to new tasks. Specifically, within
the framework of k-shot ICL, the model is pro-
vided with k demonstration examples, represented
as D = {(x1, y1), ..., (xk, yk)}, incorporated into
the input prompt for context.

3.2 Parallel Batching

The preliminary experiments in Section 1 demon-
strate the importance of employing varied com-
binations of demonstration examples without ex-
tending the length of the input context. Conse-
quently, we proceed by organizing the demonstra-
tion examples D = {(x1, y1), ..., (xk, yk)} into
batches. Previous studies have shown that the
selection of semantically significant demonstra-
tion examples enhances ICL performances (Liu
et al., 2022; Luo et al., 2023). Therefore, for each
test question x̂i ∈ D̂ = {(x̂1, ŷ1), ..., (x̂n, ŷn)},
we first sequence the demonstration examples in
D by their question semantic similarities to the
test question x̂i. This results in an ordered se-
quence Di

sorted = {(xi(1), yi(1)), ..., (xi(k), yi(k))},
where the similarity function fsim determines the
order based on the cosine similarity of the input
embeddings:

fsim(xi(1), x̂i) ≥ ... ≥ fsim(xi(k), x̂i). (1)

fsim is formulated as below,

fsim(t1, t2) =
femb(t1) · femb(t2)

∥femb(t1)∥∥femb(t2)∥
, (2)

where t1 and t2 are the input texts, and femb(·) is
a model to compute the sentence semantic embed-
ding of the input text.

With m defined as the divisor of k that indicates
the number of examples per batch, we form s
batches, where s = k

m . These sorted demonstration
examples Di

sorted are then divided into s parallel
batches, denoted as Bi = {bi

1, ...,bi
z, ...,bi

s},
with each bi

z including demonstration examples
{(xi((z−1)m+1), y

i
((z−1)m+1)), ..., (x

i
(zm), y

i
(zm))},

where 1 ≤ z ≤ s.
For each batch, we calculate normalized batch

similarity scores Oi = {oi1, ..., oiz, ..., ois}, where
each oiz represents the semantic similarity of the
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Figure 3: Our proposed parallel in-context learning (ParaICL) method. Colored squares with black borders denote
demonstration samples. Squares filled in grey with matching borders denote test sample x̂i.

batch’s demonstration questions to the test question,
determined by:

oiz =

∑m
r=1 fsim(xi((z−1)m+r), x̂i)∑s

z=1

∑m
r=1 fsim(xi((z−1)m+r), x̂i)

. (3)

These scores measure the semantic similarity be-
tween the demonstration examples in each batch
and the test question.

Finally, we compile the input prompts for each
batch by incorporating the test question, creating
U i = {ui

1, ...,ui
z, ...,ui

s}, where ui
z = {bi

z, x̂i}.

3.3 Parallel Semantic Decoding
We first define a generative language model flm(·).
For given inputs ui

prev, the model generates a con-
tinuation ui

cont according to the formula:

flm(ui
cont|ui

prev) =

qi∏

j=1

flm(uij |ui<j ,ui
prom), (4)

where uij is a generated token in ui
cont, q

i represents
the total number of generated tokens, and ui

prom is
the provided input prompt.

Weighted average semantic objective As
demonstration examples have varying semantic
contributions to the test sample, we propose the
weighted average semantic (WAS) objective. The
WAS objective for test sample x̂i is defined as:

LWAS(ui
cont,Oi,U i) =

s∑

z=1

oiz · flm(ui
cont|ui

z).

(5)

The WAS objective rewards batches with demon-
stration examples that exhibit greater semantic sim-
ilarity to the test question, while simultaneously

leveraging all examples to enrich the generation
process comprehensively. This advantage makes
ParaICL superior to PCW, which arranges exam-
ples randomly. However, certain batches may con-
tain noise that could adversely affect the perfor-
mance. To address this problem, we adopt the
adaptive plausibility constraint from the contrastive
decoding method (Li et al., 2023a).

Adaptive plausibility constraint The adaptive
plausibility constraint Vhead leverages the confi-
dence level in the foremost batch to mitigate the
impact of potentially less relevant demonstration
batches. Explicitly, the adaptive plausibility con-
straint for test sample x̂i is defined as:

Vhead(u
i
<j)

= {uij ∈ V : flm(uij |ui<j ,ui
1)

≥ αmax
wi

flm(wi|ui<j ,ui
1)},

(6)

where V represents the model’s vocabulary, ui
1 is

the first batch (i.e., the most semantically aligned
with the test question x̂i), and α is a hyperparam-
eter between [0, 1] 1. A higher α value signifies a
preference for tokens with higher generation prob-
abilities, whereas smaller α allows tokens of lower
probabilities to be generated.

Final method The final parallel semantic decod-
ing method combines the WAS objective with the
adaptive plausibility constraint to optimize the gen-
eration process:

max
ui
cont

LWAS(ui
cont,Oi,U i)

subject to uij ∈ Vhead(u
i
<j), ∀uij ∈ ui

cont.
(7)

1Following the contrastive decoding method (Li et al.,
2023a), we set α as 0.1 for all experiments.
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Given the complexity at the sequence level, we
simplify the optimization to the token level as fol-
lows:

LWAS(ui
cont,Oi,U i)

=
s∑

z=1

oiz · flm(ui
cont|ui

z)

=

qi∏

j=1

WAS-score(uij , u
i
<j ,Oi,U i),

(8)

where WAS-score(uij , u
i
<j ,Oi,U i) is the token

level score formulated as:

WAS-score(uij , u
i
<j ,Oi,U i)

=





s∑
z=1

oiz · flm(uij |ui<j ,ui
z) if uij ∈ Vhead(u

i
<j),

− inf otherwise.
(9)

We first apply plausibility constraints Vhead(u
i
<j)

to filter tokens, discarding those that do not reach
the required probability threshold within the most
semantically pertinent demonstration batch. Sub-
sequently, the surviving tokens are evaluated using
the weighted average semantic scores derived from
all batches. Consequently, this process allows for
the selection of a token that incorporates informa-
tion from every batch of examples.

4 Experiments

4.1 Datasets

ParaICL is a versatile approach applicable to a
broad range of tasks that can be framed into the
few-shot ICL setting. We evaluate ParaICL exten-
sively on several task categories, including reason-
ing, natural language inference (NLI), and coding.
For reasoning tasks, we evaluate on three datasets:
(1) GSM8K (Cobbe et al., 2021), a mathematical
reasoning dataset consisting of a collection of high-
quality math word problems. (2) WinoGrande
(Sakaguchi et al., 2019), a commonsense reason-
ing dataset of improved complexity beyond the
Winograd Schema Challenge benchmark. (3) ARC
(Clark et al., 2018), a knowledge reasoning dataset
consisting of grad-school level science questions
in a multiple-choice format. We adopt the chal-
lenge set of ARC. For the NLI tasks, we select Hel-
laSwag (Zellers et al., 2019), a commonsense NLI
task that examines a model by predicting the most
logical continuation of a described event. In the

coding category, we assess using MBPP (Austin
et al., 2021), a benchmark consisting of Python
programming problems designed to be solvable by
entry-level programmers.

4.2 Baselines

To provide a more comprehensive overview of
where our framework stands, we use the follow-
ing baselines: (1) Standard few-shot (Standard)
(Brown et al., 2020): Directly generating the re-
sults based on few-shot demonstration examples.
(2) Semantically sorted few-shot (Sorted) (Chen
et al., 2023): Utilizing the same few-shot demon-
stration examples, this approach organizes the ex-
amples by the semantic similarity between each
example’s question and the test question. Sorted+
indicates examples sorted in ascending similar-
ity and Sorted- in descending similarity. (3)
Coverage-based selection (CBS) (Gupta et al.,
2023): CBS selects examples from more salient as-
pects such as reasoning patterns of the test input by
using BERTScore-Recall. (4) Filter-then-search
(LENS) (Li and Qiu, 2023b): LENS utilizes In-
foScore to evaluate and progressively selects exam-
ples. (5) Parallel context window (PCW) (Ratner
et al., 2023): Carving a long context into batches,
PCW restricts the attention mechanism to apply
within each batch. To ensure a fair comparison,
we maintain the same number of batches as used
in ParaICL. (6) Structured prompting (SP) (Hao
et al., 2022b): In SP, demonstration examples are
separately encoded with well-designed position em-
beddings and jointly attended by the test example
using a rescaled attention mechanism.

4.3 Experiment Setup for ParaICL

When setting up experiments for ParaICL, we main-
tain consistency with the demonstration examples
used in baseline methods to ensure a fair compari-
son. To demonstrate the effectiveness of ParaICL,
we conduct experiments with varying numbers of
total demonstration examples, specifically 3, 9, and
15, while keeping the count of parallel batches at
three 2. Consequently, this results in 1, 3, and 5
demonstration examples per batch across the three
settings. The impact of batch numbers will be elab-
orated in Section 5.1. Each experimental run is
carried out with three random seeds for the selec-
tion of demonstration examples, and the results

2ParaICL focuses on optimally using any number of avail-
able examples, and as such, we do not experiment with hun-
dreds or thousands of examples.
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Llama-2-7B-Chat Mistral-7B-Instruct-v0.2

Method GSM8K WinoGrande ARC-C HellaSwag MBPP GSM8K WinoGrande ARC-C HellaSwag MBPP
3-shot

Standard 19.9 ± 0.9 52.7 ± 1.1 54.1 ± 1.2 32.9 ± 1.7 19.5 ± 0.6 40.7 ± 1.9 58.0 ± 2.1 70.5 ± 0.6 58.6 ± 1.2 30.2 ± 2.1

Sorted+ 20.1 ± 0.8 53.1 ± 1.3 53.9 ± 0.8 33.6 ± 1.1 18.7 ± 1.9 39.2 ± 1.4 58.8 ± 0.7 72.1 ± 1.8 58.9 ± 1.1 31.5 ± 0.8

Sorted- 18.4 ± 1.6 52.3 ± 0.6 54.3 ± 0.9 33.2 ± 0.5 19.6 ± 2.4 40.9 ± 1.2 57.7 ± 1.3 71.2 ± 0.9 58.5 ± 0.5 30.6 ± 0.9

CBS 17.3 ± 1.2 51.9 ± 1.0 52.8 ± 1.1 31.5 ± 1.6 17.2 ± 0.7 38.1 ± 1.5 56.6 ± 1.1 69.9 ± 1.4 57.7 ± 1.3 30.9 ± 1.4

LENS 16.8 ± 0.7 52.5 ± 0.9 53.4 ± 1.3 32.1 ± 0.7 16.8 ± 1.8 39.5 ± 1.7 55.3 ± 1.4 69.4 ± 1.8 57.1 ± 1.6 29.3 ± 1.3

PCW 17.6 ± 1.1 53.4 ± 0.7 52.2 ± 0.7 33.5 ± 0.8 16.2 ± 1.3 40.5 ± 0.8 58.9 ± 1.2 70.1 ± 1.3 58.2 ± 0.8 31.9 ± 1.7

SP 19.4 ± 1.5 51.6 ± 1.5 51.6 ± 1.9 31.9 ± 1.9 19.1 ± 1.5 37.4 ± 2.5 56.1 ± 1.1 70.6 ± 1.1 57.5 ± 0.9 30.4 ± 0.8

ParaICL 22.1 ± 1.3 52.9 ± 0.5 55.3 ± 0.6 33.7 ± 2.2 20.9 ± 0.6 41.1 ± 1.3 59.2 ± 0.9 71.9 ± 0.6 59.2 ± 1.5 32.6 ± 1.1

9-shot
Standard 21.9 ± 0.5 50.8 ± 0.7 57.0 ± 1.9 31.7 ± 1.5 18.5 ± 1.0 41.5 ± 1.5 59.3 ± 0.8 70.5 ± 1.5 54.5 ± 1.2 31.9 ± 0.9

Sorted+ 22.3 ± 0.9 51.4 ± 1.1 55.3 ± 1.3 32.1 ± 0.8 18.8 ± 3.5 41.2 ± 0.6 58.9 ± 1.2 71.1 ± 1.7 55.6 ± 0.5 30.5 ± 0.6

Sorted- 22.1 ± 0.7 49.9 ± 1.6 55.8 ± 0.5 32.4 ± 2.1 20.1 ± 2.3 40.9 ± 0.5 60.1 ± 1.1 70.8 ± 0.6 55.2 ± 0.9 31.2 ± 1.7

CBS 18.5 ± 1.3 52.1 ± 1.8 56.2 ± 2.1 32.3 ± 0.9 18.7 ± 1.0 38.7 ± 2.5 59.9 ± 1.2 70.2 ± 2.3 51.9 ± 2.9 31.7 ± 1.6

LENS 21.5 ± 1.0 52.3 ± 1.4 57.4 ± 1.3 30.9 ± 2.1 17.4 ± 3.2 39.6 ± 1.1 59.4 ± 2.3 69.1 ± 2.5 54.7 ± 2.2 33.6 ± 1.2

PCW 23.5 ± 1.2 51.7 ± 0.8 54.9 ± 0.7 32.8 ± 1.6 19.6 ± 1.7 41.3 ± 0.9 61.5 ± 1.6 71.3 ± 1.2 52.1 ± 1.4 32.8 ± 1.1

SP 23.4 ± 1.4 53.1 ± 1.5 55.6 ± 0.9 30.8 ± 1.4 17.5 ± 2.9 40.1 ± 2.2 62.7 ± 1.9 69.9 ± 2.4 53.3 ± 3.3 32.4 ± 2.1

ParaICL 25.4 ± 0.8 54.3 ± 0.9 58.1 ± 2.3 33.9 ± 1.7 20.5 ± 0.4 42.8 ± 0.5 63.2 ± 0.9 72.9 ± 1.3 55.8 ± 3.8 34.8 ± 1.3
15-shot

Standard 21.2 ± 1.0 50.3 ± 0.9 54.8 ± 3.6 29.0 ± 2.2 18.1 ± 1.3 40.4 ± 0.5 61.9 ± 2.7 60.6 ± 4.7 49.9 ± 2.5 32.9 ± 0.6

Sorted+ 22.4 ± 0.8 49.8 ± 0.6 55.4 ± 2.1 30.1 ± 1.5 19.3 ± 0.9 41.7 ± 1.6 62.5 ± 1.3 60.3 ± 2.1 52.7 ± 0.9 33.0 ± 0.9

Sorted- 21.8 ± 1.1 50.9 ± 1.7 55.2 ± 1.8 30.6 ± 2.9 18.7 ± 0.6 39.4 ± 0.7 62.1 ± 2.1 63.5 ± 3.4 51.2 ± 1.8 33.2 ± 2.1

CBS 20.1 ± 1.0 50.2 ± 0.8 52.2 ± 3.3 29.7 ± 0.6 19.0 ± 1.9 40.3 ± 0.5 61.2 ± 2.0 61.4 ± 1.3 50.8 ± 1.3 30.4 ± 2.2

LENS 21.3 ± 2.3 48.5 ± 3.5 54.8 ± 2.2 32.1 ± 3.2 18.8 ± 1.6 42.4 ± 2.6 62.2 ± 2.4 66.0 ± 2.2 52.6 ± 1.4 31.7 ± 2.3

PCW 23.8 ± 0.9 49.7 ± 1.4 55.1 ± 0.9 32.9 ± 0.7 19.9 ± 1.1 41.8 ± 0.3 62.7 ± 1.5 66.2 ± 1.3 50.1 ± 0.7 32.8 ± 0.8

SP 22.6 ± 1.4 50.1 ± 1.1 54.9 ± 3.2 31.8 ± 2.3 18.6 ± 1.4 41.5 ± 0.9 60.9 ± 3.1 65.7 ± 2.9 53.1 ± 2.6 32.9 ± 1.4

ParaICL 24.9 ± 0.6 51.0 ± 2.1 56.3 ± 1.3 31.3 ± 0.9 20.6 ± 0.5 42.9 ± 1.1 63.2 ± 3.2 65.8 ± 0.8 53.7 ± 1.0 33.5 ± 1.5

Table 1: Experimental results of Llama-2-7B-Chat and Mistral-7B-Instruct-v0.2 on various reasoning, natural
language inference, and coding benchmarks. Underlined indicates the highest scores for each shot group and bold
indicates overall highest scores.

Method GSM8K HellaSwag

Retrieval (5-shot) 22.1 28.3
ParaICL (15-shot) 24.9 31.3

Table 2: ParaICL vs. retrieval-based ICL methods on
GSM8K and HellaSwag.

are averaged for reporting. Our main experiments
are conducted using open-source models3, includ-
ing Llama-2-7B-Chat and Mistral-7B-Instruct-v0.2.
We utilize supervised SimCSE (Gao et al., 2021)
with BERT base to compute sentence embeddings.

4.4 Experiment Results

ParaICL consistently outperforms baseline
methods We present the experimental results of
all datasets from Llama-2-7B-Chat and Mistral-7B-
Instruct-v0.2 in Table 1. ParaICL consistently out-
performs baseline methods on all datasets, demon-
strating the effectiveness of our method. On reason-
ing tasks, the average improvements with Llama-
2-7B-Chat are 1.2%, 2.7%, and 2.0% for 3-shot, 9-
shot, and 15-shot settings, respectively. Mistral-7B-

3Due to cost concern, the validation of ParaICL’s effective-
ness on closed-source models is conducted on a more compact
dataset in Section 5.4.

Instruct-v0.2 shows improvements of 1.0%, 2.9%,
and 3.0% for the same settings, demonstrating
ParaICL’s adaptability across different large lan-
guage models. On commonsense NLI and coding
tasks, ParaICL presents an average performance
boost of 1.8% and 2.0% for Llama-2-7B-Chat, and
1.9% and 2.0% for Mistral-7B-Instruct-v0.2, re-
spectively. Moreover, ParaICL consistently sur-
passes CBS and PCW in all settings and on virtu-
ally all datasets, underscoring the advantages of
utilizing semantic information in our approach. An
observation is made regarding the performance sim-
ilarity between the Sorted+ and Sorted- methods.
Sorted+ sometimes outperforms Sorted- and vice
versa. This finding is consistent with prior research
by Levy et al. (2023) and Liu et al. (2022). With
ParaICL, this issue is lessened due to the reduced
number of demonstration examples per batch.

Number of demonstration examples As shown
in Table 1, ParaICL consistently exhibits enhanced
performance across multiple datasets under 3-shot,
9-shot, and 15-shot settings. However, the perfor-
mance gain in the 3-shot setting is less marked
compared to the 9-shot and 15-shot settings. This
variation is attributed to the fact that the quantity of
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Figure 4: Results of Mistral-7B-Instruct-v0.2 on
GSM8K using different batches of five-shot demon-
stration examples.

demonstration examples in each batch sets a limit
on ParaICL’s maximum performance. It is also
observed that on certain datasets, an increase in
demonstration examples can actually degrade per-
formance. For instance, in the HellaSwag dataset,
the Standard method’s performance decreases as
the number of shots increases: 32.9% for 3-shot,
31.7% for 9-shot, and 29.0% for 15-shot. This
decline is likely due to potential label bias within
the demonstration examples, a phenomenon noted
in various studies (Wang et al., 2023). Addition-
ally, HellaSwag demands commonsense knowl-
edge. Earlier research has indicated that merely
increasing the number of demonstrations does not
guarantee improved the performance (Yao et al.,
2023; Li et al., 2024).

ParaICL vs. retrieval-based ICL methods
Retrieval-based ICL methods are designed to select
the most relevant demonstration examples from a
pool of candidates, in contrast, ParaICL utilizes all
available demonstration examples. We compare the
performance of ParaICL with retrieval-based ICL
methods in a 15-shot setting on the GSM8K and
HellaSwag datasets. Retrieval-based ICL methods
are restricted to choosing the optimal demonstra-
tion examples based on sentence similarity (Liu
et al., 2022) from a set of 15 candidates. As shown
in Table 2, ParaICL surpasses the retrieval-based
method on both GSM8K and HellaSwag datasets.
The necessity for a large candidate pool to select
from, which retrieval-based ICL methods rely on,
hampers their adaptability when only a limited
number of demonstration examples are available.
ParaICL, however, is capable of efficiently utilizing
any quantity of demonstration examples, showcas-
ing its superior versatility.

Method GSM8K HellaSwag

w/o S.S. (9-shot) 21.1 32.2
w/ S.S. (9-shot) 25.4 33.9

Table 3: With vs. without semantic sorting on GSM8K
and HellaSwag. S.S. stands for semantic sorting.

Method Llama-2 Mistral

w/ Vhead (9-shot) 25.4 42.8
w/o Vhead (9-shot) 2.9 3.1

Table 4: Results of ParaICL on GSM8K with and with-
out Vhead.

5 Ablation Studies and Analysis

5.1 Number of Batches

ParaICL keeps the context length for each batch
manageable, allowing for the increasing of batch
numbers as hardware capabilities allow. In this
experiment, we set the number of demonstration
examples in each batch as five, and progressively
increase the number of batches. The results of
Mistral-7B-Instruct-v0.2 on GSM8K is in Figure 4.
With the increment in batch numbers, ParaICL’s
improvements tend to converge at five batches. Fur-
ther increase in batch numbers leads to instability in
results. We attribute this to the higher likelihood of
incorporating batches that negatively affect token
selection. Consequently, we set the batch number
to three in our main experiments to ensure stable
performance improvements.

5.2 Parallel Batching with vs. without
Semantic Sorting

The demonstration examples are sequenced by their
question semantic similarities to the test question
before parallel batching. This ensures that semanti-
cally similar examples are batched together, allow-
ing them to share the same batch similarity score
during decoding. According to results shown in
Table 3, parallel batching with semantic sorting
significantly outperforms without semantic sorting.
In fact, Parallel batching without semantic sorting
even performs worse than the standard approach
on GSM8K. This is because, without semantic sort-
ing, a single batch can contain both relevant and
irrelevant demonstration examples. This mix of
examples reduces the overall decoding probability
from the relevant examples in the batch.
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Method Llama-2-13B-Chat Llama-3.1-70B-Instruct Mixtral-8x7B-Instruct-v0.1 gpt-3.5-turbo-instruct

Standard (9-shot) 23.1 86.4 58.1 62.0
ParaICL (9-shot) 25.6 87.1 59.2 66.0

Table 5: Experimental results of ParaICL on GSM8K using more open- and closed-source LLMs.

Method Llama-2 Mistral

Standard (9-shot) 21.9 41.5
ParaICL (9-shot) 25.4 42.8
ParaICL w. C.D. (9-shot) 26.1 43.1
Standard (15-shot) 21.1 40.4
ParaICL (15-shot) 24.9 42.9
ParaICL w. C.D. (15-shot) 25.2 43.5

Table 6: Results of ParaICL with contrastive decoding
on GSM8K. C.D. stands for contrastive decoding.

5.3 Adaptive Plausibility Constraint

The adaptive plausibility constraint plays a crucial
role in our approach, akin to its importance in con-
trastive decoding as noted by Li et al. (2023a). To
assess the impact of this constraint, we carried out
an ablation study by eliminating it from our method.
The outcomes clearly show a substantial decline in
performance, as detailed in Table 4. This observa-
tion is consistent with findings from the contrastive
decoding paper.

5.4 More Open- and Closed-Source LLMs

In this section, we demonstrate that ParaICL is
effective in both open- and closed-source LLMs.

We first conduct experiments on GSM8K using
three additional open-source models spanning a
range of parameter counts, including Llama-2-13B-
Chat, Llama-3.1-70B-Instruct, and Mixtral-8x7B-
Instruct-v0.1. As shown in Table 5, ParaICL con-
sistently enhances the performances, highlighting
its adaptability to open-source models.

Our method necessitates the next token probabil-
ities from the model (i.e., the softmax of the raw
scores generated by the final layer) for computing
the semantic weighted average. However, closed-
source LLMs, due to their proprietary nature, do
not make these probabilities available. For instance,
OpenAI’s gpt-3.5-turbo-instruct model only
allows access to a maximum of five tokens that
have top log probabilities, which represents the
extent of information available for our use. We
employ the same steps as shown in Section 3.3
to execute parallel semantic decoding using the
provided log probabilities from OpenAI models.
Concerns regarding API costs lead us to limit our
experimentation to a randomly chosen set of 50

data points from the GSM8K datasets. Table 5
illustrates that ParaICL enhances performance be-
yond the standard method, further showcasing its
adaptability even with limited information on to-
ken distributions. In contrast, PCW is restricted to
open-source models as it requires modifications to
the attention mask.

5.5 Integration with Other Methods

In this section, we demonstrate that ParaICL is
compatible with other methods. Specifically, we
explore its integration with contrastive decoding
(CD) (Li et al., 2023a). Building upon the con-
cept of contrastive objectives introduced by Li et al.
(2023a), which leverages the differential signals
between larger and smaller language models for
decoding, we incorporate contrastive batches into
ParaICL. This integration involves calculating the
weighted average distributions for both positive
and contrastive batches individually, then applying
the contrastive objective by subtracting the log-
arithmic values of these two distributions. This
process helps in selecting tokens generated from
the positive batches that are least similar to those
from the contrastive batches, thus refining the se-
lection for more plausible outcomes. We experi-
ment on GSM8K. We adopt the contrastive chain-
of-thought as outlined by Chia et al. (2023), cre-
ating a batch consisting of five reasoning failure
cases. These cases encompass invalid reasoning,
incoherent objects, incoherent language, irrelevant
objects, and irrelevant language. The specifics
of these demonstration examples are provided in
Appendix A.2. The integration of ParaICL with
CD has shown to enhance performance on both
the Llama-2-7B-Chat and Mistral-7B-Instruct-v0.2
models, particularly in 9- and 15-shot settings, as
illustrated in Table 6. This further evidences the
flexibility and improved effectiveness of ParaICL
when combined with other methodologies.

5.6 Majority Voting vs. Standard Average vs.
Weighted Average

As aforementioned in Section 3.3, demonstration
examples have varying semantic contribution to the
test sample. As such, we utilize weighted average
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Method GSM8K HellaSwag

Majority Voting (9-shot) 20.3 32.7
Standard average (9-shot) 23.6 32.8
Weighted average (9-shot) 25.4 33.9

Table 7: Majority Voting vs. Weighted Average on
GSM8K and HellaSwag.

semantic objective during the parallel semantic de-
coding. We study the effectiveness of the weighted
average method by comparing it with the majority
voting and standard average methods. According to
the results presented in Table 7, utilizing weighted
average during parallel semantic decoding substan-
tially surpasses the performance achieved through
majority voting and standard average. Notably,
the application of majority voting on the GSM8K
dataset results in performance that is even worse
than the standard method. This can be attributed
to irrelevant batches contributing votes that may
dominate over the more desired tokens. In contrast,
the weighted average method ensures that batches
with the highest relevance have the greatest impact
on the selection of subsequent tokens, leading to
more accurate outcomes.

5.7 Performance-Efficiency Tradeoff

ParaICL introduces additional inference time due
to the computation of embeddings for both the
demonstrations and test examples. Nevertheless,
this overhead is minimal when computations are
conducted in parallel. Across various datasets, the
average time to compute embeddings using Sim-
CSE (Gao et al., 2021) is merely 5.1 seconds.

6 Conclusions

In this work, we introduce a novel approach known
as parallel in-context learning (ParaICL), designed
to enhance the effectiveness of few-shot in-context
learning. ParaICL aims to fully leverage all avail-
able demonstration examples while keeping within
the limits of a manageable input context size. It
starts by executing parallel batching, grouping
demonstration examples into various batches based
on the semantic similarities between the questions
in the demonstrations and the test questions. After-
ward, for each batch, normalized semantic scores
are calculated. The process culminates in the de-
coding of the final tokens, optimizing a weighted
average semantic objective under an adaptive plau-
sibility constraint. ParaICL has been proven to
yield consistent performance improvements across

a diverse set of benchmarks and exhibits a high
degree of compatibility for integration with other
methodologies.

Limitations

We only study the effectiveness of ParaICL in
decoder-only language models. In future works,
we aim to extend our evaluation of ParaICL to
language models that utilize different structures,
including those with encoder-only and encoder-
decoder structures. In this paper, we only demon-
strate that ParaICL can be easily integrated with
contrastive objectives. We would like to explore the
integration of ParaICL with other methods, such as
retrieval-augmented generation.

Ethical Impact

We do not foresee any potential ethical issues with
our proposed method.
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A Appendix

A.1 Datasets

GSM8K (Cobbe et al., 2021) and HellaSwag
(Zellers et al., 2019) are under the MIT License.
WinoGrande (Sakaguchi et al., 2019) and MBPP
(Austin et al., 2021) are under the Apache-2.0 Li-
cense. ARC (Clark et al., 2018) is under the GPL-
3.0 License.

A.2 Contrastive demonstration examples for
GSM8K

Invalid reasoning: Question: Janet’s ducks lay
16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every
day with four. She sells the remainder at the farm-
ers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the
farmers’ market? Answer: Janet sells 16 - 3 - 4
= <<16-3-4=9>>9 duck eggs a day. She makes 9
+ 2 = $<<9+2=11>>11 every day at the farmer’s
market. #### 11

Incoherent objects: Question: Janet’s ducks lay
16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every
day with four. She sells the remainder at the farm-
ers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the
farmers’ market? Answer: Janet sells 9 * 2 =
<<9*2=18>>18 duck eggs a day. She makes 16 -
3 - 4 = $<<16-3-4=9>>9 every day at the farmer’s
market.#### 18

Incoherent language: Question: Janet’s ducks
lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends
every day with four. She sells the remainder at the
farmers’ market daily for $2 per fresh duck egg.
How much in dollars does she make every day at
the farmers’ market? Answer: Janet sells 16 - 3
- 4 = <<16-3-4=9>>9 duck eggs a day.She makes
9 - 2 = $<<9-2=7>>7 every day at the farmer’s
market.#### 7

Irrelevant objects: Question: Janet’s ducks lay
16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every

day with four. She sells the remainder at the farm-
ers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the
farmers’ market? Answer: Janet sells 17 - 5 - 6 =
<<17-5-6=6>>6 duck eggs a day. She sells 6 * 3 =
$<<6*3=18>>18 every day at the duck eggs.####
18

Irrelevant language: Question: Janet’s ducks
lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends
every day with four. She sells the remainder at the
farmers’ market daily for $2 per fresh duck egg.
How much in dollars does she make every day at
the farmers’ market? Answer: Janet sells 16 - 3 -
4 = <<16-3-4=9>>9 duck eggs a day. She wants
her hair to be 9 * 2 = $<<9*2=18>>18 inches long
when she cuts it.#### 18
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