Mastering the Craft of Data Synthesis for CodeLLMs
Meng Chen, Philip Arthur, Qianyu Feng, Cong Duy Vu Hoang, Yu-Heng Hong, Mahdi Kazemi Moghaddam, Omid Nezami, Duc Thien Nguyen, Gioacchino Tangari, Duy Vu, Thanh Vu, Mark Johnson, Krishnaram Kenthapadi, Don Dharmasiri, Long Duong, Yuan-Fang Li
Abstract
Large language models (LLMs) have shown impressive performance in code understanding and generation, making coding tasks a key focus for researchers due to their practical applications and value as a testbed for LLM evaluation. Data synthesis and filtering techniques have been widely adopted and shown to be highly effective in this context. In this paper, we present a focused survey and taxonomy of these techniques, emphasizing recent advancements. We highlight key challenges, explore future research directions, and offer practical guidance for new researchers entering the field.- Anthology ID:
- 2025.naacl-long.620
- Volume:
- Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
- Month:
- April
- Year:
- 2025
- Address:
- Albuquerque, New Mexico
- Editors:
- Luis Chiruzzo, Alan Ritter, Lu Wang
- Venue:
- NAACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 12484–12500
- Language:
- URL:
- https://preview.aclanthology.org/fix-sig-urls/2025.naacl-long.620/
- DOI:
- Cite (ACL):
- Meng Chen, Philip Arthur, Qianyu Feng, Cong Duy Vu Hoang, Yu-Heng Hong, Mahdi Kazemi Moghaddam, Omid Nezami, Duc Thien Nguyen, Gioacchino Tangari, Duy Vu, Thanh Vu, Mark Johnson, Krishnaram Kenthapadi, Don Dharmasiri, Long Duong, and Yuan-Fang Li. 2025. Mastering the Craft of Data Synthesis for CodeLLMs. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 12484–12500, Albuquerque, New Mexico. Association for Computational Linguistics.
- Cite (Informal):
- Mastering the Craft of Data Synthesis for CodeLLMs (Chen et al., NAACL 2025)
- PDF:
- https://preview.aclanthology.org/fix-sig-urls/2025.naacl-long.620.pdf