
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12451–12469

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

SCIURus: Shared Circuits for Interpretable
Uncertainty Representations in Language Models

Carter Teplica
New York University

carterteplica@nyu.edu

Yixin Liu
Yale University

yixin.liu@yale.edu

Arman Cohan
Yale University

arman.cohan@yale.edu

Tim G. J. Rudner
New York University
tim.rudner@nyu.edu

Abstract

We investigate the mechanistic sources of un-
certainty in large language models (LLMs), an
area with important implications for language
model reliability and trustworthiness. To do so,
we conduct a series of experiments designed
to identify whether the factuality of generated
responses and a model’s uncertainty originate
in separate or shared circuits in the model archi-
tecture. We approach this question by adapting
the well-established mechanistic interpretabil-
ity techniques of causal tracing and two styles
of zero-ablation to study the effect of different
circuits on LLM generations. Our experiments
on eight different models and five datasets, rep-
resenting tasks predominantly requiring factual
recall, provide strong evidence that a model’s
uncertainty is produced in the same parts of the
network that are responsible for the factuality
of generated responses.

1 Introduction
Uncertainty quantification (UQ) in large language
models (LLMs) for knowledge-intensive tasks
(Petroni et al., 2020) remains a critical yet under-
studied area. Despite achieving human-level perfor-
mance on various benchmarks, LLMs often strug-
gle with reliable uncertainty estimation, leading
to issues such as overconfidence and hallucination
(Zhang et al., 2024). This limitation has strong
implications for their trustworthiness and safety in
high-stakes applications. While recent research has
explored verbalized uncertainty in LLMs (Band
et al., 2024; Kadavath et al., 2022; Kuhn et al.,
2022), significant gaps remain in our understanding
of and ability to improve uncertainty quantification.
In particular, existing UQ techniques typically pro-
vide little insight into the factors responsible for
an uncertainty estimate, limiting their usefulness
both as practical tools for improving trustworthi-
ness and as methods for understanding uncertainty
reasoning. We propose leveraging mechanistic in-

terpretability, an approach focused on characteriz-
ing models’ internal reasoning mechanisms, to ad-
vance our capabilities for and understanding of un-
certainty quantification in large language models.

To better understand how LLMs generate uncer-
tainty estimates, we trained P(IK) (probability that
I know) probes that represent the model’s uncer-
tainty based on multiple generated answers (Ka-
davath et al., 2022). We then used these probes’
predicted confidences as target metrics for causal
tracing and zero-ablation, two interpretability tech-
niques which identify the components of a model
that are relevant for a task by testing the effect of
an intervention made on activations in the model
during evaluation. We compared the mechanistic
signatures of changes in the model’s accuracy and
the probe’s output to evaluate whether the same
circuits were responsible for the answer and the
predicted confidence.

In our empirical evaluation, we performed causal
tracing and leave-one-out and COAR-style (Shah
et al., 2024) zero-ablation for a large range of
model–dataset combinations. We found that model
accuracy and probe behavior largely responded to
the same interventions, indicating that circuits re-
sponsible for the factuality of responses and for the
model’s uncertainty are located in the same parts
of the model.

For a group of knowledge-intensive question an-
swering tasks (Petroni et al., 2020), model accuracy
and probe confidence are (highly) positively related
to one another. We conclude that, at least on re-
call tasks, a language model’s representation of
confidence may derive mainly from “uncertainty
introspection” on its question-answering process,
rather than from separate reasoning specific to its
uncertainty.

To summarize, the key contributions of this pa-
per are as follows:

1. We use mechanistic interpretability and uncer-
tainty quantification tools to investigate the
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Figure 1: Left: P(IK) probing. The LLM takes a question as input and returns an answer and last-layer activations.
Answers are checked for correctness. The probe learns to predict whether the model’s answer is correct, based on
the last-layer activations. Our analysis uses the probe as a proxy for an LLM’s P(IK). We conduct path patching
and zero ablation studies on the probe and the corresponding LLM. Right: Locations used in interventions. Path-
patching restorations are at mlp.resid, mlp.out, layer.out, and embed.out. Zero-ablations are at attn.out and
mlp.out.

mechanistic sources of uncertainty in large
language models. To do so, we use a logis-
tic P(IK) probe with causal tracing and zero-
ablation to examine whether LLM uncertainty
and the factuality of answers generated by
an LLM reside in shared or separate circuits
within the model.

2. We perform an extensive empirical analysis on
eight different models and five recall-intensive
datasets, and find evidence that for knowledge
recall, uncertainty and the factuality of an-
swers generated by an LLM are handled by
the same parts of the model.

2 Related Work

2.1 Uncertainty Quantification in Large
Language Models

Uncertainty quantification in large language mod-
els is crucial for enhancing reliability, particularly
in high-stakes applications. While LLMs’ token
probabilities are often well-calibrated for next-
token prediction, practical applications of UQ often
require quantifications of the uncertainty in the se-
mantic content of the output (Gawlikowski et al.,
2023). Language models’ ability to quantify se-
mantic uncertainty remains limited, especially for
open-ended tasks. Various techniques have been
proposed to address this.

A well-studied set of techniques involves multi-
ple sampling and clustering based on consistency.

This can be effective when clustering of responses
is straightforward, but this is often not the case ex-
cept on simple tasks (Kuhn et al., 2022; Fomicheva
et al., 2020; Lin et al., 2024; Ao et al., 2024). An-
other approach, sometimes called verbalized un-
certainty, is to ask the model to state a verbal or
quantitative confidence estimate (Kadavath et al.,
2022); the performance of such methods is often
inconsistent. On multiple-choice questions, the
token probabilities may yield well-calibrated un-
certainty estimates (Kadavath et al., 2022). An-
other option is to train a P(IK) probe, a binary
classifier predicting whether the model knows the
answer. This approach is among the most effective
in-distribution (Orgad et al., 2024) but struggles
with generalization to out-of-distribution data (Ka-
davath et al., 2022; Orgad et al., 2024).

In this work, we focus on P(IK) probing, as
it provides a potentially interpretable view into a
model’s self-assessed uncertainty by identifying a
specific feature direction within the model. Beyond
the introduction of P(IK) probing itself (Kadavath
et al., 2022), little research has been conducted on
interpreting the mechanisms behind uncertainty rea-
soning in LLMs. While most UQ techniques rely
on eliciting information about uncertainty through
explicit or indirect methods, we still lack an un-
derstanding of how this information is represented
internally. Analyzing these mechanisms could im-
prove UQ techniques and provide insights into
broader epistemic weaknesses in LLMs.
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2.2 Mechanistic Interpretability

Mechanistic interpretability (MI) aims to under-
stand how neural networks function internally, with
a focus on understanding the internal mechanisms
and computational processes involved in perform-
ing a task. MI work often revolves around identify-
ing “circuits” responsible for specific tasks (Olah
et al., 2020). To achieve this, several intervention
techniques have been developed, with tradeoffs in
resolution, breadth of applicability, and computa-
tional cost.

Ablation (or knockout) involves removing parts
of the model, such as layers or neurons, to observe
changes in behavior. We use zero-ablation for one
analysis because it is very general, well-supported
in the literature (Wang et al., 2023; Elhage et al.,
2021) and computationally inexpensive, albeit less
precise than other methods.

In earlier ablation work, a common approach has
been to use “leave-one-out” ablation, i.e., to ablate
a single layer on each trial. However, other ap-
proaches may perform better in cases where mod-
els are very robust to ablations (as is commonly
the case for LLMs, especially with larger mod-
els). COAR (component attribution via regression)
(Shah et al., 2024) is a recently proposed technique
which ablates random subsets of components in a
model and produces attributions using linear regres-
sion. We perform both leave-one-out and COAR
ablations and compare the results of the two.

Causal tracing, also called activation patching,
treats the model’s hidden states as a causal graph
(Pearl, 2009), which can be analyzed with an ap-
proach based on causal mediation analysis (Vig
et al., 2020). (We discuss this further in Section 3.)
Causal tracing is more precise than ablation, at the
cost of higher computational demands and a need
for more careful setup.

Probing techniques (Alain and Bengio, 2018)
involve training a simple probe (commonly a one-
layer binary classifier) on model activations, in
order to find places in the model’s representation
space that represent specific functions of the input.
The P(IK) probes used in this paper are an example
of this.

2.3 Applications of Interpretable Uncertainty
Quantification in Large Language Models

Reliable UQ could help to improve LLM trust-
worthiness by allowing auditing of LLMs in high-
stakes domains, such as medical and legal applica-

tions (Gawlikowski et al., 2023) and applications
of LLM-based agents (Yang et al., 2023). Inter-
pretability could also help to ensure that UQ tech-
niques remain reliable under distribution shifts, and
could contribute to detecting deception (Hendrycks
et al., 2021a). Finally, if limitations in UQ are
related to broader epistemic weaknesses in LLMs,
interpretable UQ could shed light on problems such
as hallucination (Zhang et al., 2023; Manakul et al.,
2023) and could deepen our understanding of rea-
soning and knowledge in LLMs in general, possibly
helping to address problems such as eliciting latent
knowledge (Christiano et al., 2024).

3 Methods

Probe Design We use a P(IK) probing approach
in part because of the difficulty of reasoning about
uncertainty using token probabilities. Token proba-
bilities for open-ended questions are a highly im-
perfect proxy for a model’s confidence, because
they conflate semantic uncertainty, or uncertainty
about content, with syntactic uncertainty, or uncer-
tainty about form (Kuhn et al., 2022). Furthermore,
we are most interested in improving uncertainty
quantification for fine-tuned chat models, for which
token probabilities do not correspond to an under-
lying distribution over possible text strings.

We construct a dataset on which to train the
P(IK) probe according to the following steps.

1. Perform 32 forward passes for each question
on the question-answering task. We used few-
shot prompting with 5 examples to ensure that
the model answered in the right format.

2. Check whether a model’s answers are correct.
Specifically, we check whether a model’s an-
swer contains any correct answer as a sub-
string, ignoring case. (See Appendix B.1 for
validation of this approach.)

3. For each question in the dataset, save the num-
ber of correct and incorrect answers (implying
a “true probability” of the model answering
correctly).

4. Also, for each question, save the output of the
model’s last layer (before the unembedding).
This is a vector in Rdmodel .

The P(IK) probe is a logistic classifier p :
Rdmodel → (0, 1) which takes these last layer activa-
tions as input and returns the proportion of correct
answers. For example, if the model answers a ques-
tion correctly 47% of the time, the probe should
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Figure 2: Representative results of causal tracing, shown for Gemma 2 9B Instruct (top) and Llama 2 7B (bottom)
on three questions in CounterFact. The vertical axis shows the layer. Only layer.out locations are shown (plus
embed.out in the first row). The input embeddings for the starred tokens (e.g., *Abdullah) are replaced with zeros
in the corrupted and restored runs. We chose these questions to be representative of typical behavior. In the left
column, the sets of components for which restorations have substantial effects on m and p are almost identical.
In the middle column, the sets are very similar except at the Google token. (Restoring this token decreases the
probability of the correct output token—also Google—even below the corrupted baseline, but increases the model’s
certainty in its answer.) This pattern was common across examples in which the correct answer appeared in the
question. In the right column, the model is confidently wrong. We exclude cases like this (with very low mclean)
from this analysis, since we cannot meaningfully select a set of components which contribute to correctness.

output 0.47 on the last-layer activations at the last
token of that question. We trained with binary
cross-entropy loss, using dropout and a triangular
learning rate schedule, and used a low learning rate
(η = 3× 10−6) as in Kadavath et al. (2022).

We used between 2048 and 8192 examples per
task (using fewer than 8192 when we were limited
by the size of the dataset), and held out 20% of the
data as a test split. Experiments were done with
examples from the test split.

Models and Datasets We studied eight models,
including Llama 2 and 3 and Gemma 2 models
with two to thirteen billion parameters, and five
datasets; these are described in detail in Appendix
B. All of the datasets studied, with the partial ex-
ception of MMLU (Hendrycks et al., 2021b), are
“recall-intensive” in that they largely depend on re-
calling factual information learned during training;

we studied both multiple-choice datasets (MMLU,
ARC (Clark et al., 2018)1) and open-ended ones
(TriviaQA (Joshi et al., 2017), WebQuestions (Be-
rant et al., 2013), CounterFact (Meng et al., 2022)).
Based on some preliminary zero-ablation experi-
ments, we believe that models may exhibit similar
behavior on some non-recall tasks such as simple
math questions (see Appendix D for details).

We used the CounterFact dataset (Meng et al.,
2022) exclusively for causal tracing. We reformu-
lated CounterFact prompts as questions to match
the format of our other datasets. Because we
used the TriviaQA probe for the causal tracing ex-
periment with CounterFact, we also did few-shot
prompting with the prompt from TriviaQA.

1ARC includes both the ARC-Easy and ARC-Challenge
splits. ARC questions are drawn from standardized tests; the
datasets listed as ARC (Hg) and ARC (Other) correspond to
the “Mercury” test and to a combination of the other 20 tests.
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Causal Tracing. Causal tracing is a causal in-
tervention method that aims to trace and identify
important components in neural models for a given
task (Meng et al., 2022; Wang et al., 2023), which is
a generalization of causal mediation analysis (Vig
et al., 2020). In this work, we use causal trac-
ing (Meng et al., 2022) to examine the importance
and role of individual circuits and components in
LLMs. Specifically, given a specific input q, causal
tracing involves three runs: (1) a clean run, in
which the original input q is given to the model,
which is used to obtain the hidden states of each
layer; (2) a corrupted run, in which the input em-
beddings of certain tokens are corrupted by adding
noise or (in this paper) replaced with zeros; and
(3) a corrupted-with-restoration run, in which the
computation is similar to the corrupted run except
that the hidden states at specific locations ℓ in the
model are restored using the hidden states obtained
from the clean run. By comparing the differences
between the output (predicted probabilities) of the
clean, corrupted, and restored runs, causal tracing
allows the identification of important components
in LLMs. That is, if the restored run achieves a
similar effect as the clean run, it is likely that the
corresponding restored component plays an impor-
tant role in the model’s processing.

Zero-Ablation. Zero-ablation is a mechanistic
intervention technique that takes advantage of a
transformer’s residual structure by treating atten-
tion or MLP layers as separable modules which
read from and write to the residual stream (Elhage
et al., 2021; Nostalgebraist, 2020). A component
ℓ (in this paper, an attention or MLP layer) is “ab-
lated” by replacing its output with zero. The drop
in model performance on a given task after an inter-
vention removing a component ℓ provides a mea-
sure of the importance of ℓ for the task.

Leave-one-out and COAR interventions. Inter-
pretability work using ablation commonly employs
leave-one-out style interventions, in which an in-
tervention is applied to a single component at a
time. Since larger Transformer LMs are often in-
sensitive to smaller interventions, leave-one-out
interventions may struggle to meaningfully affect
the target metrics. COAR (Shah et al., 2024) is a
recent approach which addresses this by applying
ablation interventions to random subsets of model
components. In a COAR experiment, ablations are
performed for many dataset examples and subsets

of components, and linear regression is used to pre-
dict the target metrics from a vector of ablated com-
ponents; the coefficients of the linear predictor then
reflect the predicted effect of ablating each compo-
nent on the target metric. (We refer the reader to
Shah et al. (2024) for details.)

4 Uncertainty Introspection and the
Shared Circuits Hypothesis

The aim of this paper is to make progress toward
characterizing the mechanistic structures used for
UQ in language models. To this end, we propose
a theoretical hypothesis (“shared circuits”) about
the locations of these structures, along with opera-
tionalizations which we test experimentally.

Shared Circuits Hypothesis. Uncertainty
quantification in question-answering (QA)
systems may be carried out in a variety of
ways. We hypothesize that language models
are capable of expressing uncertainty using
shared circuits that both solve the underly-
ing question-answering task and output un-
certainty information. This contrasts with
the possibility that uncertainty quantifica-
tion emerges in separate circuits, either to
post-process messy uncertainty signals from
question-answering circuits or to do uncer-
tainty calculations of their own.

Language models are known to be capable of
introspective behavior in some contexts (Binder
et al., 2024). The shared circuits hypothesis, to
the extent that it is true, suggests that uncertainty
quantification is one such context. We refer to this
phenomenon as “uncertainty introspection”.

We use a P(IK) probing approach as in (Kada-
vath et al., 2022) in part because of the difficulty of
reasoning about uncertainty using token probabili-
ties. Token probabilities for open-ended questions
are a highly imperfect proxy for a model’s confi-
dence, because they conflate semantic uncertainty,
or uncertainty about content, with syntactic un-
certainty, or uncertainty about form (Kuhn et al.,
2022). For details on models, datasets, and probes,
see Appendices B through C.

4.1 Experiment Design: Causal Tracing

On a given question qi in a dataset Q, for each
causal tracing run (clean, corrupted, and restored)
we compute the model’s sample probability m(qi)
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for the correct first token of the answer, and the
probe’s confidence p(qi).2 We consider each ques-
tion individually because this allows a particularly
fine-grained test for shared circuits—we ask here
whether the same circuits are used for QA and UQ
on an in individual question, and in the next section
whether this is true in aggregate for a task. Lo-
cations ℓ where mrestored(ℓ) ≈ mclean correspond
to parts of the model which are important for
solving the QA task; likewise, locations ℓ where
prestored(ℓ) ≈ pclean correspond to parts of the model
which are important for the UQ task.34

For causal tracing, we operationalize the shared
circuits hypothesis in the claim that mrestored can
be predicted from prestored by interpolating be-
tween the clean and corrupted values: e.g., if the
model’s correct-token probability on a restored run
is halfway between the clean and corrupted prob-
abilities, then the probe’s confidence should be
halfway between the clean and corrupted confi-
dences.

Specifically, for each question qi ∈ Q, we con-
sider the linear predictor m̂restored defined by

m̂restored(ℓ) −mcorrupted

mclean −mcorrupted
=

prestored(ℓ) − pcorrupted

pclean − pcorrupted
.

That is: we predict that a restoration at a loca-
tion ℓ will have the same proportional effect on
the model’s performance and the probe’s response,
relative to the clean condition where there is no
intervention and the corrupted condition where no
data on the subject is available. We claim that this
predictor explains most of the variance in mrestored
(i.e., has a high R2). As a (somewhat weak) formal-
ization of this, we attempt to reject the null hypoth-
esis5 H0 : R2 is no greater than expected under
random permutations of the set of locations ℓ.

2Correct-first-token probability is in this case a closely
aligned proxy for correct-answer probability. To test validity,
we checked 100 examples by hand and found that 98% were
graded correctly (see Appendix B.1).

3Although note that the converse is not strictly true; see
Appendix 5 for details.

4Here, mrestored(ℓ) and prestored(ℓ) represent the correct token
probability and p probe output for a run with the hidden state
restored at location ℓ in the model; notation is likewise for
clean and corrupted runs.

5We report our p-values as continuous variables in Appen-
dices F and G, and caution against assigning undue value to
the p = 0.05 threshold.

4.2 Experiment Design: Zero-Ablation

We also test the shared circuits hypothesis via zero-
ablation on layers. Unlike for causal tracing, we
sample and evaluate multi-token answers. We de-
fine m(qi) as the probability of the model sampling
a correct answer when prompted on the question
qi ∈ Q, and p(qi) as the probe output on that ques-
tion. Averaging over Q, we can compare changes
in the model accuracy m and the average probe
output p.

4.2.1 Leave-One-Out Ablation
Under the shared circuits hypothesis, the change
in the probe output from ablation |pablated(ℓ) −
pclean| is large when the change in model accuracy
|mablated(ℓ) −mclean| is large. Concretely, we claim
that the predictor m̂ defined by

mclean − m̂ablated(ℓ) = |pablated(ℓ) − pclean|

explains most of the variance in mablated (has a
high R2), and attempt to reject the null hypothesis
H0 : R

2 is no greater than expected under random
permutations of the layers ℓ. We consider absolute
changes in the probe output only, because inter-
ventions which severely damage the model may
increase the value of the probe output, but gener-
ally do not improve the model’s correctness.

4.2.2 COAR
COAR constructs least-squares predictors for
model accuracy and probe output based on vec-
tors of ablated components, in which the coeffi-
cient corresponding to a component ℓ represents
the expected effect of ablating ℓ. Under the shared
circuits hypothesis, the predictors wm and wp for
the model accuracy and probe output should be
similar. Concretely, we attempt to reject the null
hypothesis H0 : The correlation between wm and
wp is no greater than expected under random per-
mutations of the layers ℓ. We see COAR as a useful
complement to leave-one-out ablation because it
addresses cases where models are highly resilient
to ablations, a common challenge for ablation on
larger models.

4.3 Permutation testing

We tested our hypotheses using permutation tests
with Monte Carlo sampling. Specifically, for each
test, we compared the goodness-of-fit of the ob-
served data with that of a synthetic dataset made
by shuffling the locations and (for causal tracing)
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Figure 3: Top. Results of leave-one-out style zero ablation for Llama 3 8B Instruct on five different datasets. Circle,
triangle, and small X markers represent MLP ablations, attention ablations, and clean runs respectively. Warmer
colors represent earlier layers. Bottom. Coefficients for zero ablation with COAR, for Gemma 2 9B Instruct on four
different datasets. Circle and triangle markers represent MLP and attention respectively. Warmer colors represent
earlier layers.

token positions. To exclude the simple explanation
that some types of locations performed better than
others, we shuffled locations of different types (e.g.,
attention and MLP outputs) independently.

4.4 Testing the Hypothesis

Causal Tracing We performed causal tracing
with all eight models on a random sample of 100
questions from CounterFact (Meng et al., 2022).
We considered only questions with mclean > 0.05
(since otherwise predicting mrestored is trivial). We
used the probe and few-shot prompt for TriviaQA.
Across this sample, the predictors m̂restored esti-
mated mrestored well, with R2 > 0.6 in most cases.
On each question qi, we tested the null hypothe-
sis by sampling 1000 permutations.6 In almost all
cases (see Fig. 5), we reject H0 with p < 0.05.

Based on manual inspection,7 we conclude that
R2 < 1 both due to small discrepancies between
UQ and QA circuitry and due to nonlinearity in

6Specifically, we shuffled the values of mrestored(ℓ)
independently for the mlp.out, mlp.resid, and
layer.out/embed.out locations, to exclude the expla-
nation that the predictor works well because the mlp.out
and mlp.resid states each carry less information than
layer.out.

7See graphs in the supplementary materials online (see
Appendix A).

the UQ/QA relationship. In the cases studied, the
model is more resilient than the probe: that is, in-
terventions generally have a greater effect on the
probe than the model (creating the convex shape
in Figure 4, left); this depends to some extent on
the model architecture. In some cases, when the
probe is confidently wrong (see Figure 2, right), the
probe may be following the path for the model’s
(incorrect) highest-probability token.

As in Meng et al. (2022), highly important loca-
tions generally fall into two clusters: one in earlier
layers at the token positions in the subject, and one
at later layers at the last token position. We note
that uncertainty information and answer informa-
tion are often transferred to the last position by
attention heads in different layers (Fig. 2.8 These
small differences suggest that our P(IK) probes
are using the model’s question-answering circuitry
directly, rather than by performing separate or post-
hoc uncertainty calculations.

8Other discrepancies occasionally occur: in particular,
when an answer token (often a proper noun) is present in
the question, restorations at the corresponding token position
show suppressed model accuracy but normal probe perfor-
mance. One possible explanation is that the model may be
using circuitry similar to the “negative name movers” in Wang
et al. (2022) to avoid spuriously copying input tokens to the
output.
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Figure 4: Left and center. Predicting the correct-token probability m given the probe output p, for Gemma 2 9B
Instruct (left) and Llama 2 7B (center). The black and red X (small, top-right and bottom-left) show the clean and
corrupted runs; all others show restored runs. Yellow points are later in the sequence. The grey line shows the
predictor m̂. Right. Values of R2 for the causal tracing predictor. “<” signifies cases where R2 < −1 (which is
possible because the predictor is not a linear-regression line).

Zero-Ablation (Leave-One-Out). We per-
formed 500 ablation trials each with eight models
across five question-answering datasets. Across
this sample, the predictors m̂ablated generally
estimated mablated better than chance, with a
median of R2 = 0.33. For each model–dataset
combination, we tested the null hypothesis by
sampling 10,000 permutations. As with the causal
tracing analysis, we shuffled attention and MLP
layer interventions independently, to exclude
the explanation that one type of layer was more
important than the other in a way not specific
to the QA and UQ tasks. We reject the null
hypothesis with p < 0.05 in 36 out of 38 cases,
and p < 0.0001 in 31 out of 38 cases.

In many cases, the model’s uncertainty represen-
tation plays particularly nicely with zero-ablation,
remaining calibrated on average even after an in-
tervention: using the same statistical framework as
above, the very simple predictor m̂ablated = pablated
does better than expected under random permuta-
tions in 27 out of 38 cases (at p < 0.05).9

While other explanations may be possible, one
interpretation of these results is that a given compo-
nent makes a nonzero contribution to the model’s
uncertainty representation if and only if it can also
contribute information about the answer.

Zero-Ablation (COAR). We performed 2000
COAR trials each with all models and four

9If R2 is the fraction of the variance in mablated explained
by m̂ablated = pablated, we reject the null hypothesis R2 is no
greater than expected under random permutations of the set
of layers at p < 0.05 in 27/38 cases.

datasets.10 For each trial, the probability of ab-
lating any given component was set at α = 0.2.
We reject the null hypothesis with p < 0.05 in all
but one case. Particularly strong correlations were
present for the Gemma models; this may be related
to our choice of α and these models’ robustness to
interventions in the leave-one-out experiments.

5 Discussion and Conclusion

The results of the causal tracing and zero-ablation
analyses presented in the previous section broadly
support the shared circuits hypothesis, implying
that—across the setups we considered—the sets
of model components used for question-answering
and uncertainty quantification were largely, albeit
not entirely, the same. This suggests that P(IK)
probing may be a viable way of eliciting introspec-
tive, interpretable uncertainty estimates. Based
on these findings, further research could analyze
the mechanisms responsible for P(IK) estimates in
greater detail, or apply P(IK) probing as an inter-
pretability tool to study phenomena such as halluci-
nation in LLMs. Similar analyses of other methods
of uncertainty quantification (e.g., verbalized un-
certainty) may provide insight further insight into
the role of uncertainty introspection in uncertainty
quantification. More broadly, we see interpretable
uncertainty quantification as a potentially useful
approach for understanding and improving LLM
reasoning, in order to improve trustworthiness and
reliability and inform technical AI governance.

10We excluded MMLU because of computational resource
constraints.
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Limitations

Causal tracing and zero-ablation, like many inter-
pretability techniques, yield results which can im-
perfectly reflect the contributions of model inter-
nals to a task. In particular:

Zero-ablation. We chose to ablate activations
in the model with zeros. While the zero vector
is far from an arbitrary choice, especially given
its relevance to dropout and the additive residual
structure of a transformer, this approach may lack
specificity. For example, zero-ablating an early
or late MLP layer sometimes severely damages a
model’s ability to produce coherent language in
general, so accuracies from ablation do not neces-
sarily correspond to the flow of question-specific
information through the model. Approaches such
as causal scrubbing (Chan et al., 2022) avoid this
limitation but are generally more computationally
expensive.

Causal tracing. The “path” through the model
identified comprises, to a first approximation, the
set of points in the model at which all informa-
tion relevant to the task is present. As such, when
information relevant to a question passes along mul-
tiple paths in parallel, it may be that no individual
path shows a substantial difference between the re-
stored and baseline conditions. For example, in the
question in Fig. 2 (center), restoring the input em-
bedding for any one token of “Google Street View”
without the others has little effect on the model.
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A Reproducibility

Code to reproduce our results can be found at https://github.com/crtep/sciurus.

B Models and Datasets

Table 1: Models studied.

Model Parameters Layers

Llama 2 7B 7B 32
Llama 2 7B Chat 7B 32
Llama 2 13B 13B 40
Llama 2 13B Chat 13B 40
Llama 3 8B 8B 32
Llama 3 8B Instruct 8B 32
Gemma 2 2B Instruct 2B 26
Gemma 2 9B Instruct 9B 42

B.1 Validation of Answer-Checking Procedure

For substring matching, we manually checked 100 answers each from TriviaQA and WebQuestions,
generated by Gemma 2 2B Chat (the smallest of our models).

For TriviaQA, substring matching graded 98 out of 100 model answers correctly, as evaluated by a
human, with 2 false “incorrect”s where the model formatted the answer unacceptably.

For WebQuestions, substring matching graded 86 out of 100 model answers correctly, as evaluated
by a human, with 11 false “incorrect”s where the model formatted the answer unacceptably and 3 false
“correct”s where the model gave additional details that made the answer incorrect.

For CounterFact, first-token matching graded 98 out of 100 model answers correctly, as evaluated by a
human, with 2 false “incorrect”s where the model formatted the answer unacceptably.

B.2 Licenses for Models and Datasets

Models:

• Llama 2 (Llama 2 Team, Meta AI, 2023) is licensed under the Llama 2 Community License Agree-
ment, available at https://ai.meta.com/llama/license/.

• Llama 3 (Llama 3 Team, Meta AI, 2024) is licensed under the Meta Llama 3 License, available at
https://llama.meta.com/llama3/license/.

• Gemma 2 (Gemma Team, Google AI, 2024) is licensed under the Gemma Terms of Use, available at
https://ai.google.dev/gemma/terms.

Datasets:

• TriviaQA (Joshi et al., 2017) is licensed under the Apache License 2.0, available at
https://www.apache.org/licenses/LICENSE-2.0.

• WebQuestions (Berant et al., 2013) is licensed under the Creative Commons Attribution 4.0 Interna-
tional License, available at https://creativecommons.org/licenses/by/4.0/.

• MMLU (Massive Multitask Language Understanding) (Hendrycks et al., 2021b) is licensed under the
MIT License, available at https://opensource.org/licenses/MIT.
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• ARC (AI2 Reasoning Challenge) (Clark et al., 2018) is licensed under the Cre-
ative Commons Attribution-ShareAlike 4.0 International License, available at
https://creativecommons.org/licenses/by-sa/4.0/.

• CounterFact (Meng et al., 2022) is licensed under the MIT License, available at
https://opensource.org/licenses/MIT.
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C Model and Probe Performance

Model Dataset Model accuracy Probe accuracy (bal.) ECE

Llama 2 7B

TriviaQA 0.6006 0.7787 0.0342
WebQuestions 0.4016 0.6674 0.0320

MMLU 0.3984 0.6571 0.0265
ARC (Mercury) 0.5845 0.6731 0.0363

ARC (Other) 0.6260 0.7011 0.0327
Math (2 Digit) 0.7495 0.8374 0.0287
Math (3 Digit) 0.6797 0.8701 0.0143
Math (4 Digit) 0.6494 0.8407 0.0207

Llama 2 7B Chat

TriviaQA 0.5850 0.7819 0.0315
WebQuestions 0.4343 0.7051 0.0213

MMLU 0.4688 0.6701 0.0272
ARC (Mercury) 0.6973 0.6375 0.0294

ARC (Other) 0.7632 0.6719 0.0395
Math (2 Digit) 0.7090 0.8617 0.0317
Math (3 Digit) 0.6252 0.8219 0.0292
Math (4 Digit) 0.5864 0.7924 0.0346

Llama 3 8B

TriviaQA 0.6582 0.7026 0.0366
WebQuestions 0.4158 0.7034 0.0405

MMLU 0.6055 0.7455 0.0171
ARC (Mercury) 0.8496 0.6035 0.0459

ARC (Other) 0.8423 0.5991 0.0313

Llama 3 8B Instruct

TriviaQA 0.6509 0.7037 0.0397
WebQuestions 0.4460 0.7213 0.0530

MMLU 0.6445 0.7201 0.0300
ARC (Mercury) 0.8779 0.6014 0.0495

ARC (Other) 0.8569 0.6658 0.0362
Math (2 Digit) 0.9365 0.7935 0.0502
Math (3 Digit) 0.7861 0.9797 0.0421
Math (4 Digit) 0.7437 0.9661 0.0408

Llama 2 13B

TriviaQA 0.6680 0.6938 0.0324
WebQuestions 0.4346 0.6948 0.0403

MMLU 0.4958 0.7252 0.0284
ARC (Mercury) 0.7290 0.5010 0.1029

ARC (Other) 0.7764 0.6691 0.0239

Llama 2 13B Chat

TriviaQA 0.6377 0.7020 0.0414
WebQuestions 0.4468 0.7202 0.0306

MMLU 0.4902 0.6913 0.0208
ARC (Mercury) 0.7134 0.6395 0.0475

ARC (Other) 0.7637 0.5973 0.0192

Gemma 2 2B Instruct

TriviaQA 0.4180 0.7221 0.0136
WebQuestions 0.2910 0.6501 0.0517

MMLU 0.4617 0.6803 0.0344
ARC (Mercury) 0.7876 0.6310 0.0228

ARC (Other) 0.7705 0.6051 0.0612
Math (2 Digit) 0.8276 0.7194 0.0357
Math (3 Digit) 0.6611 0.8437 0.0219
Math (4 Digit) 0.6367 0.8289 0.0308

Gemma 2 9B Instruct
TriviaQA 0.6392 0.7374 0.0306

WebQuestions 0.3579 0.7264 0.0529
ARC (Other) 0.9126 0.5786 0.0354

Table 2: Model performance metrics
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D Experiments on Non-Recall Tasks

To explore whether our results were specific to recall-based tasks, we repeated our leave-one-out ablation
analysis on a set of simple math datasets.

We constructed datasets of 2-, 3-, and 4-digit math problems, consisting of equal mixes of addition,
subtraction, multiplication, and division. We validated answers for addition, subtraction and multiplication
by extracting the first valid integer from the answer and testing whether it matched the answer exactly.
We validated answers for division by extracting the first decimal real number and testing whether it was
within one percent of the correct answer. We ran our leave-one-out ablation analysis for these datasets
with four models. Using the same hypothesis test as in the main analysis, we rejected the null hypothesis
at p < 0.05 in 11 of 12 cases.
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Figure 5: Results of zero-ablation for selected models on math datasets. Circle, triangle, and X markers represent
MLP ablations, attention ablations, and clean runs respectively. Warmer colors represent earlier layers. Error bars
for individual points are omitted for legibility, but std. err. < 0.032 in all cases (by the bounds on p and m).

E Statistics for Causal Tracing

Model p < 0.05 p ≥ 0.05

Llama 2 7B 55 0
Llama 2 7B Chat 51 0
Llama 3 8B 53 1
Llama 3 8B Instruct 51 2
Llama 2 13B 51 3
Llama 2 13B Chat 45 4
Gemma 2 2B Instruct 47 1
Gemma 2 9B Instruct 50 0

Table 3: Number of occurrences of p-values for causal tracing.
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F Full Results for Zero-Ablation (Leave-One-Out)
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Figure 6: Results of zero-ablation for eight models and five datasets. Circle, triangle, and X markers represent MLP
ablations, attention ablations, and clean runs respectively. Warmer colors represent earlier layers. Error bars for
individual points are omitted for legibility, but std. err. < 0.032 in all cases (by the bounds on p and m).
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Figure 7: (continued) Results of zero-ablation for eight models and five datasets. Circle, triangle, and X markers
represent MLP ablations, attention ablations, and clean runs respectively. Warmer colors represent earlier layers.
Error bars for individual points are omitted for legibility, but std. err. < 0.032 in all cases (by the bounds on p and
m).

12466



G Full Results for Zero-Ablation (COAR)
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Figure 8: COAR coefficients for zero-ablation for eight models and four datasets. Circle and triangle markers
represent MLP and attention ablations respectively. Warmer colors represent earlier layers. Error bars for individual
points are omitted for legibility. The two values for R2

COAR are the fraction of variance in m and p explained by the
COAR prediction from the set of ablations.
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Figure 9: (continued) COAR coefficients for zero-ablation for eight models and four datasets. Circle and triangle
markers represent MLP and attention ablations respectively. Warmer colors represent earlier layers. Error bars
for individual points are omitted for legibility. The two values for R2

COAR are the fraction of variance in m and p
explained by the COAR prediction from the set of ablations.
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H Computational Resources

This project has used approximately 1200 GPU-hours of computation time on an academic cluster, mainly
on RTX8000 GPUs with 48 GB of memory, including approximately 600 GPU-hours for results used
directly in this paper. Results for individual model/dataset combinations can be reproduced independently;
for example, the code to produce the TriviaQA / Llama 3 8B Instruct results ran in approximately 20
GPU-hours.

I Ethics Statement

This paper intends to advance the areas of interpretability and uncertainty quantification for language
models, with the primary aim of making language models more reliable and more trustworthy. We expect
these research directions in general to reduce societal risks from machine learning (for example, by
allowing for warning signals in situations where a model might be lying or making a dangerous mistake).
Nevertheless, since reliability work also makes systems more useful, some caution is warranted: for
example, users might be tempted to deploy the resultant more-reliable systems in higher-stakes contexts
in which tail risks from failures are greater.

The humanoid and sciuroid robots in Fig. 1 were created using DALL-E 3.
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