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Abstract

Next location prediction plays a crucial role
in various real-world applications. Recently,
due to the limitation of existing deep learning
methods, attempts have been made to apply
large language models (LLMs) to zero-shot
next location prediction task. However, they
directly generate the final output using LLMs
without systematic design, which limits the po-
tential of LLMs to uncover complex mobility
patterns and underestimates their extensive re-
serve of global geospatial knowledge. In this
paper, we introduce AgentMove, a systematic
agentic prediction framework to achieve gen-
eralized next location prediction. In Agent-
Move, we first decompose the mobility predic-
tion task and design specific modules to com-
plete them, including spatial-temporal memory
for individual mobility pattern mining, world
knowledge generator for modeling the effects
of urban structure and collective knowledge ex-
tractor for capturing the shared patterns among
population. Finally, we combine the results of
three modules and conduct a reasoning step
to generate the final predictions. Extensive
experiments utilizing mobility data from two
distinct sources reveal that AgentMove sur-
passes the leading baseline by 3.33% to 8.57%
across 8 out of 12 metrics and it shows ro-
bust predictions with various LLMs as base
and also less geographical bias across cities.
Our codes are available via https://github.
com/tsinghua-fib-lab/AgentMove.

1 Introduction

Mobility prediction is of great importance in many
real-world scenarios, e.g., recommending travel
services, pre-activating mobile applications for po-
tential usage, seamless switching of cellular net-
work signals and efficient traffic management. Next
location prediction is one of the most important
task in human mobility prediction. In recent years,
deep learning based models (Liu et al., 2016; Wu
et al., 2017; Feng et al., 2018; Yang et al., 2020,

2022) have been widely applied and have achieved
promising results due to their ability to capture the
high-order transition dynamics and mining shared
mobility patterns among users. However, existing
approaches have several key drawbacks. First, the
success of deep learning models rely on the col-
lection of large amounts of private mobility data.
Second, the trained model are challenging to ap-
ply in zero-shot mobility prediction settings. Fi-
nally, the prediction accuracy remains limited due
to the constrained sequential modelling capability
of smaller deep learning models and a lack of deep
understanding of commonsense in human daily life
and urban structures.

Recently, large language models (LLMs) have
made significant progress, achieving advanced re-
sults that far surpass previous methods in areas
such as dialogue-based role-playing, code gener-
ation and testing, and mathematics problem solv-
ing. In the field of spatial-temporal data mining,
researchers are exploring the potential of applying
LLMs to various real-world tasks, including time
series forecasting (Gruver et al., 2024; Li et al.,
2024b), travel planning (Xie et al., 2024; Li et al.,
2024a), trajectory analysis (Luo et al., 2024; Zhang
et al., 2023; Du et al., 2024). Furthermore, several
recent works (Wang et al., 2023; Beneduce et al.,
2024) investigate the feasibility of using LLMs as
the base model of mobility prediction, addressing
the limitations of deep learning based models and
achieving promising results. These works typically
convert trajectories to a language based sentence
and leverage the powerful sequential modelling ca-
pacities of LLMs to directly generate the mobility
predictions. However, due to the lack of a sys-
tematic design throughout the entire process, they
overlook the crucial components of human mobil-
ity modeling, resulting in limited performance. In
summary, these methods fail to effectively capture
the complex individual mobility patterns, neglect
to model the effects of urban structure and do not
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Figure 1: The framework of AgentMove, including three key components: spatial temporal memory unit for
capturing individual mobility pattern, world knowledge generator for multi-level urban structure, and collective
knowledge extractor for extracting shared mobility patterns among users.

discover the shared mobility patterns among popu-
lations.

In this paper, we propose AgentMove, a system-
atic agentic framework for generalized mobility
prediction. By integrating domain knowledge of
human mobility, we implement the core compo-
nents in the general agentic framework (Wang et al.,
2024; Xi et al., 2023), including the planning mod-
ule, memory module, world knowledge module,
external tool module and reasoning module. For
the planning module in AgentMove, we introduce a
manually designed mobility prediction task decom-
position module that considers the most important
factors influencing mobility prediction. This de-
composition generates three sub-tasks: individual
mobility pattern mining, shared mobility pattern
discovery and urban structure modelling. First,
we implement a spatial-temporal memory module
for individual mobility pattern mining. This mod-
ule contains three submodules–short-term memory,
long-term memory and user profiles–to capture the
multi-level mobility patterns of individuals. Com-
pared to pure LLM methods, the memory module
enables AgentMove to retain past mobility history
and efficiently learn from experiences. Second, we
design a world knowledge generator to explicitly
extract inherent geospatial knowledge from LLMs,
aiding in the modelling the effects of multi-scale ur-
ban structures on the human mobility, particularly
in relation to the exploration behavior of human
mobility. Third, we equip AgentMove with the
capability to discover the shared mobility patterns
from various user trajectories through a collective

knowledge extractor. This extractor utilizes Net-
workX as an external tool to organize trajectories
into a global location transition graph and then ex-
tract important neighboring locations for prediction.
Finally, we combine the results from all the mod-
ules and perform a final reasoning step to generate
the predictions. In summary, our contributions are
as follows,

• To the best of our knowledge, this is the first at-
tempt to apply LLM-based agentic framework
to the field of mobility prediction. We build an
effective mobility prediction framework by in-
corporating the crucial characteristics of human
mobility into the design of core components.

• In AgentMove, we design a spatial-temporal
memory module for individual mobility pattern
mining, a world knowledge generator for model-
ing effects of urban structures, and a graph based
collective knowledge extractor for discovering
the shared mobility patterns among populations.

• Extensive experiments on mobility trajectories
from two sources in 12 cities demonstrate the
effectiveness of proposed AgentMove, which
outperforms the best baseline, achieving perfor-
mance improvements ranging from 3.33% to
8.57% in most cases. Additionally, AgentMove
presents superior adaptability to different LLMs,
as well as greater stability and reduced bias in pre-
diction results across various cities worldwide.

2 Preliminaries

We define the mobility prediction task and related
concepts for use in the following section.
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Figure 2: Deep learning and LLM-based mobility pre-
dictors work in different ways. Deep learning models
need to learn from training data for specific regions,
while LLMs predict directly using zero-shot reasoning
with its world knowledge.

Definition 1 (Location) A location point p ∈ P
is represented as a tuple ⟨id, cate, lon, lat, addr⟩,
where id is the unique identifier, cate is the cate-
gory (e.g., restaurant), lon and lat are the coordi-
nates of the location, addr is the text address of
location.

Definition 2 (User Trajectory) A trajectory of
user u ∈ U is represented as Tu =
{(p1, t1), (p2, t2), . . . , (pn, tn)}, where pi ∈ P is
the i-th location visited by the user and ti is the
timestamp of the visit.

Definition 3 (Contextual Stays) Contextual
stays of user u is defined as the most re-
cent sub-sequence in trajectory: Cu =
{(pn−k, tn−k), . . . , (pn−1, tn−1), (pn, tn)},
which captures the user’s short-term mobility
patterns. k is the window size of contextual stays.

Definition 4 (Historical Stays) Historical
stays of user u is defined as the sub-
sequence before contextual stays: Hu =
{(p1, t1), (p2, t2), . . . , (pn−k−1, tn−k−1)}, which
captures the user’s long-term mobility patterns.

Given the historical movement data Cu, Hu as
well as available external knowledge K (e.g., world-
wide geospatial information), the objective is to
predict the next location pn+1 that user u will visit.
Formally, this paper aims to learn a mapping func-
tion f :

f : (Cu,Hu,K) → pn+1. (1)

Figure 2 illustrates the differences between the
deep learning based paradigm and the LLM based
paradigm in the mobility prediction task. The
deep learning model needs collecting training data
before conduct the prediction task, which means
it cannot directly used in the zero-shot scenario.
LLM based method can directly applied into any
scenario after carefully ‘format converter’ (known

as prompt engineering). While LLM based meth-
ods can be adapted easily to new scenarios, their
effectiveness may not improve as the scenarios ac-
cumulates more data. In this way, the deep learning
models with more data can achieve better perfor-
mance when LLM based methods fail to improving.
In this paper, we propose the LLM based agent
solution AgentMove for mobility prediction task
which enables the continue learning and improving
of LLM based mobility predictor.

3 Methods

3.1 Overview

As shown in Figure 1, AgentMove comprises five
core components: task decomposition module,
spatial-temporal memory module, world knowl-
edge generator, collective knowledge extractor and
the final reasoning module. Serving as the high-
level planning module, the task decomposition
module is designed to break down the overall mo-
bility prediction task into subtasks—personalized
mobility pattern mining, collective mobility pat-
tern discovery and modelling the effects of urban
structures—by considering the crucial factors influ-
encing mobility. The detailed design of the other
components is introduced as follows.

3.2 Spatial-temporal Memory

The spatial-temporal memory module is designed
to effectively capture, store and leverage mobility
patterns, providing crucial insights for the person-
alized and multi-scale periodicity behavior mod-
elling in mobility prediction. Inspired by the
memory design principles in general LLM-based
agents (Zhang et al., 2024), our spatial-temporal
memory functions through three essential pro-
cesses: memory organization, memory writing, and
memory reading. The whole framework of spatial–
temporal memory module is presented in Figure 3.

3.2.1 Memory Organization
The spatial-temporal memory is structured into
three components to capture multifaceted nature of
user mobility patterns: User Profile Unit. This unit
provides a summary description of the user’s mobil-
ity behavior as the user mobile profile, which offers
deeper insights into when and why the user visits
certain locations. The user profile is dynamically
generated based on the current long-term memory
introduced in the following part, allowing Agent-
Move to adapt to the evolving user preferences;
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Figure 3: Illustration of spatial-temporal memory.

Long-term Memory Unit. This unit retains users’
long-term mobility patterns, capturing overarching
trends and recurring sequences in their movement
history. It functions similarly to how LLMs store
long-term dependencies in textual data; Short-term
Memory Unit. This unit focuses on users’ recent
mobility patterns, providing dynamic updates that
reflect the latest movements and short-term varia-
tions.

All users’ memories are stored in a central mem-
ory pool, organized as key-value pairs. Each key
corresponds to a unique user identifier, and the
value consists of the long-term memory, short-term
memory, and user profile info. This organization
ensures a comprehensive extraction and storage
of mobility data, enabling efficient retrieval and
utilization for mobility prediction.

3.2.2 Memory Writing

Writing to the memory involves the extraction and
structured storage of spatial-temporal patterns hid-
den in user’s trajectories. This process consists of
two main steps:

Long-term Memory Writing. Given the histori-
cal stays Hu, this module extracts long-term spatial-
temporal information of user u ∈ U , including: 1)
location to category mapping. Associating visited
locations with their respective categories. 2) top-k
active times and locations. Identifying the most
active time periods and the most frequently visited
locations. 3) location visit frequency. Recording
how often various locations are visited. 4) transi-
tion matrix. A matrix that represents the transition
probabilities between locations.

Short-term Memory Writing. Given the con-
textual stay Cu, this module extracts fine-grained
short-term spatial-temporal information of user

u ∈ U , including: 1) time sequence of recent visits.
Documenting the sequence of recent visit times.
2) visit frequency of different locations. Tracking
how frequently different locations are visited in the
short term. 3) details of the last visit. Recording
specific details about the latest location visit.

By systematically organizing and storing this
information by processing the trajectories, Agent-
Move can easily access to both long-term and short-
term mobility patterns. This structured approach is
crucial for enhancing the accuracy of next location
predictions.

3.2.3 Memory Reading

The memory reading process involves generating
spatial-temporal context relevant prompts from the
structured memory to enhance AgentMove’s pre-
dictive capabilities. This process consists of three
key steps:

User Profile Prompt Generation. Utilizing
the long-term memory, AgentMove constructs user
profile prompts that encapsulate the intrinsic move-
ment patterns and habitual behaviors of the user.
These prompts include summaries of peak activ-
ity times, preferred locations, and temporal-spatial
associations, providing a comprehensive mobility
profile of user.

Long-term Memory Prompt Generation. Also
based on the long-term memory, AgentMove gen-
erates prompts by summarizing the user’s general
mobility trends from the long-term view. These
prompts include details on the most active times,
frequently visited locations, and the relationships
between these factors. This helps the LLM under-
stand the user’s regular movement patterns.

Short-term Memory Prompt Generation.
AgentMove creates prompts from the short-term
memory to reflect recent mobility patterns and con-
textual information of user. These prompts cover re-
cent visit sequences, current visit frequencies, and
specifics of the latest visits, which ensure LLMs ef-
ficiently adapt to recent changes in user’s behavior.

Finally, these memory-based prompts are consol-
idated into a cohesive spatial-temporal summary of
the original trajectory, which is then integrated as
the first part of AgentMove’s prompts. This spatial-
temporal summary enhances the LLM’s ability to
engage in more logical and efficient reasoning, lead-
ing to more precise mobility predictions.
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3.3 World Knowledge Generator
Numerous studies (Jiang et al., 2016) indicate that
individual movement typically encompasses two
types of behaviors: returning and exploring. As in-
troduced before, the return behavior has been well-
captured by the spatial-temporal memory module.
In this section, we introduce the world knowledge
generator, which extracts geospatial knowledge
from LLMs and constructs a multi-scale urban
structure to enable the modelling of explore behav-
ior in mobility. To extract geospatial knowledge
effectively, we propose aligning the knowledge of
LLMs and the urban space of trajectory via text ad-
dresses. Once the spaces are aligned, we explicitly
prompt the LLMs to generate potential candidate
places for exploration from the perspective of the
multi-scale urban structure.

3.3.1 Alignment via Address
Many existing works (Feng et al., 2018; Luo et al.,
2021; Lin et al., 2021; Cui et al., 2021; Qin et al.,
2022; Hong et al., 2023) on mobility prediction
usually represent the locations directly using lati-
tude and longitude coordinates or discrete spatial
area IDs. While this approach facilitates the easy
construction of deep learning-based spatial encod-
ing, it is not suitable for LLMs. Since LLMs are
trained on large scale human-generated text, they,
like human, are not inherently adept at understand-
ing the precise coordinates (Gurnee and Tegmark,
2023) or discrete area IDs. Thus, we propose to
utilize the text address which human is familiar to
describe the coarse location of trajectory. While
text address is not precise as the coordinates, it
is more natural and easy to be aligned with the
existing spatial knowledge in the LLMs.

Thus, we adapt the address searching service 1

from Open Street Map to build address for each
point in the trajectory. Due to cultural and insti-
tutional differences, address information formats
vary greatly across different countries. To address
this, we leverage the common-sense knowledge
of LLMs to extract unified structured address in-
formation from the original address information.
LLMs can easily pinpoint a user’s current and past
locations, laying a solid foundation for subsequent
modeling.

3.3.2 Multi-scale Urban Structure
Based on the real structured address information,
we design prompts to motivate LLMs to generate

1https://nominatim.org/

multi-scale potential places which may be explored
by user in the future. We introduce multi-scale
generation mechanism to help LLMs reduce hal-
lucination and improve the accuracy and usability
of generate places. The multi-scale location in-
formation covers four level: district, block, street
and POI name. We first ask LLMs to generate the
potential districts in the future. Then, based on
these districts and the past blocks in the trajectory
to generate the potential blocks in the future and
so on. Finally, we can generate potential location
information from different levels as the potential
exploration candidate for the user.

3.4 Collective Knowledge Extractor
In the previous two sections, we introduce the
spatial-temporal memory module and world knowl-
edge generator for the individual-level mobility
modelling. Here, we introduce the collective
knowledge extractor, which captures shared mo-
bility patterns among users to further enhance the
mobility predictions. First, we construct a global lo-
cation transition graph using NetworkX 2 by aggre-
gating the location transitions from various users.
We then employ a LLM to perform simple reason-
ing on the graph, utilizing functions in NetworkX
as tool to generate potential locations visited by
other users with similar mobility patterns.

3.4.1 Building Location Transition Graph
In the location graph, the node is location ID with
various attributes, e.g., address information, func-
tion of location. The edge between nodes is con-
structed by considering the 1-hop transition be-
tween nearby trajectory points in each trajectory.
The edge is weighted without direction. Based on
the definition of graph, we use NetWorkX to build
the graph from scratch and update it when infer tra-
jectories for various users. If any history trajectory
data, e.g. training data used by the deep learning
based models, are available, the location graph can
be initialized by them.

3.4.2 Reasoning on Graph
After obtaining the location graph, we can utilize
LLM to perform reasoning on the whole graph via
the function of NetworkX as tool. The most naive
strategy is to query the k-hop neighbors of the cur-
rent location. When the number of the neighbors is
too much, LLMs need to filter the most promising
ones from them by considering the attributes of

2https://networkx.org/documentation/stable/index.html
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each node. Furthermore, we can extend the query
nodes into the last n locations and generate the most
promising ones from all the neighbors of them. In
this way, we obtain the most relevant locations that
has been visited by the users with similar mobility
patterns.

3.5 Summarization and Prediction

Finally, we design prompts to employ LLM to ana-
lyze and summarize the information from different
views and perform a final reasoning step to gener-
ate the prediction with reasons. The prompts for
output format requirements are also be placed here
to ensure that the output format meets the require-
ments as much as possible. Detailed prompts can
refer to the appendix.

4 Evaluation

4.1 Settings

4.1.1 Datasets
We use the global Foursquare checkin data (Yang
et al., 2016) and recent public released ISP GPS
trajectory data (Feng et al., 2019) to conduct
the experiments. The Foursquare data contains
checkins from 415 cities which covers about 18
months from April 2012 to September 2013. The
ISP GPS trajectory data is from the mobile net-
work logs in Shanghai with 325215 records, cover-
ing April 19 to April 26 in 2016. Compared with
Foursquare data, ISP data is much denser and was
open-sourced in June 2024 3, which is beyond the
training period of all the LLMs used in the experi-
ment. This ensures that the evaluation results are
not affected by potential data leakage.

To evaluate the general mobility prediction abil-
ity of AgentMove, we select 12 cities from the
Foursquare dataset and the entire ISP trajectory
data to conduct the experiments. We follow the
preprocessing procedure (Hong et al., 2023; Feng
et al., 2019) to process the trajectories data. For
Foursquare checkin data, we divide each trajectory
dataset into training, validation, and test sets in a
ratio of 7:1:2. While the ISP data lasts only 7 days,
we split the whole data into training set, validation
set and testing data in a ratio of 4:1:5 for preserv-
ing enough testing data. Detailed description about
preprocessing can refer to the appendix. We follow
the data license in the original paper and use these
trajectory data only for academic purpose.

3https://github.com/vonfeng/DPLink/tree/master/data

We select Tokyo, Moscow and SaoPaulo with
the largest amount of Foursquare check-in data and
the ISP data from Shanghai to conduct the main
analysis in the experiments and results of 12 cities
are discussed in the final section of experiment. We
divide each trajectory dataset into training, valida-
tion, and test sets. The training and validation sets
are only used to train the deep learning model, and
the resulting models are compared with the LLM-
based methods on the test set. Due to the cost of
the various API calling, e.g., Llama3.1-405B, we
randomly sample 200 instances from the testing set
for each city to calculate the performance in the
experiments.

4.1.2 Baselines

We compare proposed models with following
baselines: FPMC (Rendle et al., 2010), five
deep learning models (RNN (Feng et al., 2018),
DeepMove (Feng et al., 2018), LSTPM (Sun
et al., 2020), GETNext (Yang et al., 2022),
STHGCN (Yan et al., 2023)) and three LLM-based
methods(LLM-Mob (Wang et al., 2023), LLM-
ZS (Beneduce et al., 2024), LLM-Move (Feng
et al., 2024c)). We use widely used Accuracy@1,
Accuracy@5, and NDCG@5 as the main evalua-
tion metrics (Sun et al., 2020; Luca et al., 2021) in
the experiments.

4.1.3 Implementation

We use LibCity (Jiang et al., 2023) to implement
the FPMC, RNN, DeepMove and LSTPM. We use
the official codes from author to implement GET-
Next 4 and STHGCN5. We follow the default pa-
rameter settings of these models in the library and
official codes for training and inference. For LLMs,
we use OpenAI API 6 for accessing GPT4omini,
DeepInfra 7 and SiliconFlow 8 for accessing other
open source LLMs. Detailed parameter settings for
those baselines can be found in the appendix.

4.2 Main Results

In this section, we compare AgentMove with 9
baselines in 4 cities at Table 1. In the experiments,
we use GPT4omini as the default base LLM for all
LLM-based methods.

4https://github.com/songyangme/GETNext
5https://github.com/ant-research/Spatio-Temporal-

Hypergraph-Model
6https://platform.openai.com/
7https://deepinfra.com/
8https://siliconflow.cn/models
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Model FSQ@Tokyo FSQ@SaoPaulo FSQ@Moscow ISP@Shanghai
Acc@1 Acc@5 NDCG@5 Acc@1 Acc@5 NDCG@5 Acc@1 Acc@5 NDCG@5 Acc@1 Acc@5 NDCG@5

FPMC 0.060 0.165 0.121 0.045 0.085 0.066 0.020 0.065 0.043 0.13 0.355 0.249
RNN 0.105 0.240 0.176 0.095 0.230 0.169 0.090 0.185 0.140 0.065 0.175 0.123
DeepMove 0.175 0.320 0.251 0.150 0.310 0.236 0.165 0.335 0.258 0.175 0.320 0.251
LSTPM 0.145 0.280 0.218 0.190 0.365 0.281 0.140 0.255 0.196 0.095 0.17 0.135
GETNext 0.205 0.450 0.317 0.165 0.375 0.258 0.175 0.380 0.269 0.115 0.260 0.178
STHGCN 0.198 0.430 0.300 0.175 0.398 0.299 0.180 0.372 0.265 0.125 0.277 0.195

LLM-Mob 0.175 0.370 0.277 0.140 0.275 0.210 0.080 0.175 0.129 0.100 0.345 0.221
LLM-ZS 0.175 0.410 0.299 0.165 0.385 0.277 0.120 0.340 0.233 0.170 0.425 0.298
LLM-Move 0.145 0.285 0.243 0.220 0.355 0.325 0.155 0.270 0.226 0.140 0.410 0.308

AgentMove 0.185 0.465 0.331 0.230 0.415 0.326 0.160 0.365 0.265 0.190 0.450 0.329
vs Deep Learning -9.76% 3.33% 4.42% 25.71% 4.27% 9.03% -11.11% -3.95% -1.49% 8.57% 40.63% 31.08%
vs Best Baselines -9.76% 3.33% 4.42% 4.55% 4.27% 0.31% -11.11% -3.95% -1.49% 8.57% 5.88% 6.82%

Table 1: The main results of baselines and AgentMove. GPT4omini is used as the base LLM for all the LLM-based
methods in the table. Deep learning methods are first trained on the training set of each city and LLM-based models
are directly evaluated on the test set with the zero-shot prediction settings.

As the representative deep learning models,
GETNEext and STHGCN achieve best or second-
best results in 4 out of 12 metrics. Compared with
the deep learning baselines, the best LLM-based
baseline LLM-Move can achieve better results than
GETNext and STHGCN in 3 out of 12 metrics,
which present the powerful sequential pattern dis-
covery and reasoning ability of LLM in modeling
mobility. It is noted that the results of LLM-based
methods are zero-shot prediction while the deep
learning based methods rely on sufficient training
with enough mobility data. Compared with these
baselines, our proposed method AgentMove is the
best method and achieves the best results in 8 out
of 12 metrics in 4 datasets. Although AgentMove
falls slightly behind the best baseline, GETNext, in
three metrics, two of them are very close. These
results in Table 1 demonstrate the effectiveness of
proposed framework in stimulating the comprehen-
sive ability of LLM-based agentic framework for
mobility prediction.

4.3 Ablation Study on Model Designs

In this section, we provide a more detailed analy-
sis of the proposed method under varying model
designs to further demonstrate its effectiveness.

We first conduct ablation study to demonstrate
the contribution of each component in AgentMove
for its excellent performance, which are presented
in Table 2. We first discuss the impact of three core
components individually, as detailed in the top four
lines of Table 2. Overall, all components contribute
to performance improvement in most cases. How-
ever, the performance gains vary across different
metrics. For example, while memory design leads

Models FSQ@SaoPaulo ISP@Shanghai
Acc@1 Acc@5 NDCG@5 Acc@1 Acc@5 NDCG@5

base 0.165 0.385 0.277 0.170 0.425 0.298
+STM 0.190 0.315 0.255 0.170 0.445 0.312
+WKG 0.175 0.365 0.269 0.155 0.390 0.276
+CKE 0.175 0.380 0.275 0.175 0.465 0.317
+STM+WKG 0.240 0.390 0.317 0.215 0.455 0.342
AgentMove 0.230 0.415 0.326 0.190 0.450 0.329
vs base 45.45% 7.79% 17.99% 11.76% 5.88% 10.30%

Table 2: Ablation studies of AgentMove. ‘base’ denotes
the basic prompts which is similar to the baseline LLM-
ZS, ‘+STM’ denotes adding spatial-temporal memory,
‘+WKG’ denotes adding world knowledge generator,
‘+CKE’ denotes adding collective knowledge extractor.

to better performance in the Acc@1 in SaoPaulo,
the performance in other three metrics are dropped.
The effects of the combination of the core compo-
nents in the last three lines in Table 2. In summary,
compared with the base prompt design, the com-
bination of proposed designs introduce 7%-45%
performance gain in all the datasets.

Besides, to demonstrate the effects of the World
Knowledge Generator (WKG) in exploring new
locations, we analyze whether our model explores
more potential locations that are not present in the
user’s recent contextual stays after incorporating
the WKG module. The results are presented in
the Table 3. A higher percentage indicates that the
model tends to revisit locations from the recent
contextual stays, while a lower percentage sug-
gests that the model explores more new locations.
The results demonstrate that the WKG successfully
encourages the model to explore new locations,
which is particularly beneficial for improving per-
formance.
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Location return rate FSQ@SaoPaulo↓ ISP@Shanghai↓

LLama3-8b
w/ WKG 94% 75.6%
w/o WKG 93% 87.8%

LLama3-70b
w/ WKG 87.5% 73.2%
w/o WKG 90% 85.4%

Table 3: Effectiveness of word knowledge generator
(WKG) for encouraging mobility exploration, which
is measured by the location return rates. The location
return rate measures the tendency to revisit previously
visited locations based on recent contextual stays.

4.4 Geographical Bias and LLM Effects

While LLMs are trained with the online web text
which can be geographically bias (Manvi et al.,
2024) around the world. We investigate the po-
tential geographical bias in LLM based mobility
prediction methods and attempt to answer whether
AgentMove can alleviate the geographical bias in-
herent in LLMs to some extent. Experiment results
conducted on 12 cities are presented in Figure 4.

In Figure 4(a), we can find significant differ-
ences in the accuracy of three LMM-based meth-
ods across cities. For instance, cities like Tokyo,
Paris, and Sydney generally achieve higher accu-
racy, while cities like Cape Town and Nairobi see
notably lower performance. This suggests the pres-
ence of geographical bias in trained LLMs. We
also find that proposed AgentMove performs best
in most of the cities. Figure 4(b) provides a box-
plot test by comparing the Acc@5 of the three
LLM-based methods in 12 cities. Results demon-
strate that AgentMove not only outperforms the
other methods in terms of overall accuracy but also
exhibits a smaller range of error. The performance
of AgentMove is more consistent across different
cities, suggesting a reduced impact of geographical
bias with carefully designs in it.

As the core foundation of AgentMove, the capa-
bilities of base LLM play a critical role in its perfor-
mance. Thus, we evaluate the impact of different
LLMs with varying sizes and structures in Figure 5
by using FSQ@Tokyo. Figure 5(a) presents the
impact of various 7B LLM with different train-
ing data and model structures. The results show
that proposed AgentMove performs best adaptabil-
ity among different LLMs. While LLM-Mob per-
forms stable in all the 7B-LLMs, its performance
on Gemma2-9B is far worse than other two meth-
ods. We then discuss the detailed impacts of LLM
size on AgentMove’s performance across different
data. Figure 5(b) reveals that that larger models,
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Figure 4: Geospatial bias analysis of various methods in
mobility prediction across 12 cities, where AgentMove
outperforms most methods and exhibits lower geospatial
bias.

LLM-Mob LLM-ZS AgentMove0.0

0.1

0.2

0.3

0.4

A
cc

ur
ac

y@
5 

Mistral-7B
Qwen2-7B

Llama3-8B
GLM4-9B

Gemma2-9B

(a) Effects of LLM types on
three LLM-based methods

Tokyo SaoPaulo Moscow0.0

0.1

0.2

0.3

0.4

Av
er

ag
e A

cc
@

5 

Llama3-8B Llama3-70B Llama3.1-405B

(b) Effects of LLM size on
three cities.

Figure 5: The effects of LLM with varying sizes and
sources on the prediction performance of three LLM
based methods.

particularly Llama3.1-405B, generally deliver sig-
nificant performance gains for AgentMove com-
pared to smaller models like Llama3-8B across
different cities. It is also observed that in Tokyo,
Llama3-1-405B performs slightly weaker com-
pared to Llama3-70B. This suggests that while
larger models often excel, their effectiveness may
vary depending on the unique mobility patterns and
characteristics of each city.

5 Related Work

5.1 Mobility Prediction with Deep Learning

Significant efforts have been made in mobility pre-
diction using deep learning models, encompass-
ing research from both sequential-based methods
and graph-based methods. Traditional approaches
typically employ Markov models (Rendle et al.,
2010; Cheng et al., 2013) to predict the next visit
by learning the transition probabilities between con-
secutive POIs. In contrast, sequential-based deep
learning methods have been proposed to model the
high-order movement patterns in trajectory data.
These methods can be categorized into two types:
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recurrent neural networks(RNNs) (Kong and Wu,
2018; Huang et al., 2019; Yang et al., 2020; Zhao
et al., 2020; Feng et al., 2020), and attention mecha-
nisms(Feng et al., 2018; Luo et al., 2021; Lin et al.,
2021; Cui et al., 2021; Qin et al., 2022; Hong et al.,
2023) based works.

Despite their success, these methods primary fo-
cus on extracting mobility patterns from an individ-
ual perspective, while overlooking the collaborative
information available from other users’ trajectories.
To address this limitation, recent works (Rao et al.,
2022; Yang et al., 2022) have explored the use of
graph neural network(GNNs) for their ability to
model complex relationships. However, all these
methods rely on collecting large volumes of private
trajectory data. In contrast, our AgentMove lever-
ages the world knowledge and sequential modeling
abilities of LLMs to enable the generalized mobil-
ity prediction with zero-shot prediction ability.

5.2 Large Language Models and Agents
Due to the powerful language-based generaliza-
tion and reasoning capabilities (Wei et al., 2022a),
large language models (OpenAI, 2022; Touvron
et al., 2023) have developed rapidly and have been
widely applied in various tasks, including program-
ming (Qian et al., 2024) and mathematics (Wei
et al., 2022a). Recent studies (Gurnee and Tegmark,
2023; Manvi et al., 2023) have found that LLMs
possess a significant amount of geographical knowl-
edge about the world. Additionally, researchers
also explore the potential of applying LLMs in
spatial-temporal data modelling by directly convert-
ing domain-specific tasks into a language-based
format, such as time series forecasting (Gruver
et al., 2024), traffic prediction (Li et al., 2024b),
trajectory mining (Wang et al., 2023; Beneduce
et al., 2024), trip recommendation (Xie et al., 2024;
Li et al., 2024a), traffic signal control (Lai et al.,
2023; Feng et al., 2024b), comprehensive urban
tasks (Feng et al., 2024a,b).

These early works highlight the potential of
LLMs in spatial-temporal modelling. To effectively
utilize the vast knowledge embedded in LLMs and
stimulate their reasoning and planning abilities, var-
ious prompt techniques (Wei et al., 2022b; Kojima
et al., 2022; Wang et al., 2022; Yao et al., 2024)
have been proposed for solving naive text games
and mathematical problems. However, when for
more complex real-life and domain-specific tasks,
these simple prompt techniques alone are insuffi-
cient. Recently, LLM based agents (Wang et al.,

2024; Xi et al., 2023; Du et al., 2024) are been pro-
posed to address this limitation by equipping LLMs
with explicit memory, structured workflows and
external tools. In this work, we are the first to de-
sign LLM based agent specifically for the mobility
prediction task. By incorporating explicit spatial-
temporal memory and a workflow for geospatial
and social structure mining, we successfully lever-
age the world knowledge of LLMs and their struc-
tured reasoning capabilities for mobility trajectory
modelling.

6 Conclusion

In this paper, we propose AgentMove, a systematic
agentic framework for generalized human mobil-
ity prediction applicable worldwide. We design a
spatial-temporal memory module and a collective
knowledge extractor to learn both individual mo-
bility patterns and shared mobility pattern among
users. Furthermore, we develop a world knowl-
edge generator that utilizes text-based address to
understand urban structures in a manner similar
to humans. Extensive experiments on trajectories
from 12 cities demonstrate the superiority and ro-
bustness of AgentMove for mobility prediction.

In the future, we plan to explore more effec-
tive ways to extract and leverage the vast world
knowledge and common sense of LLMs for mobil-
ity modeling and trajectory mining. Additionally,
we aim to extend the framework to other trajec-
tory data mining tasks, such as trajectory classifi-
cation and generation. We believe that LLM-based
agents, like AgentMove, hold great potential and
adaptability, paving the way for a new paradigm in
spatial-temporal modeling alongside deep learning.
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8 Limitations

Here, we discuss the potential limitations of the
current work and outline directions for future ex-
ploration.

Robustness and Hallucination Based on an
LLM, the output of AgentMove is not fully con-
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trollable. In this work, we define a simple out-
put parser to extract the expected context from the
LLM output, but it may occasionally fail. Due to
the potential for hallucination in LLMs, the output
of AgentMove may include false addresses that do
not exist in the real world. While we can define
a clear list of valid locations during experiments
to verify this, doing so in real-world applications
presents significant challenges.

High Cost The high cost of invoking the LLM
API limited our experiments to 12 cities with a
small test set. This cost will also pose a challenge
for large-scale deployment in real-world scenarios.
The reliance on LLMs does pose a significant limi-
tation in terms of scalability of our method. With
ongoing advancements (Liu et al., 2024; Qu et al.,
2025) in the development of more efficient and
scalable LLM alternatives—such as smaller LLMs,
model pruning, and knowledge distillation—we are
optimistic about the potential for rapidly decreasing
computational costs while improving scalability.

Geospatial Bias Geographical bias has long
been a challenging issue in LLMs (Manvi et al.,
2024). While our proposed AgentMove incorpo-
rates specific design elements to mitigate some of
these biases, it cannot completely eliminate them
due to inherent limitations in LLMs. However, we
believe that our current work represents a signifi-
cant step forward in addressing geospatial bias in
mobility prediction challenges. One promising di-
rection for further reducing geographical bias could
be the integration of more external knowledge dur-
ing inference, and we are actively exploring this
avenue in our future work.

9 Ethics Statement

All trajectory data used in the experiments come
from publicly available open-source datasets (Yang
et al., 2016; Feng et al., 2019). We do not at-
tempt to extract any personal information from
these datasets.
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10 Appendix

10.1 Baselines
• FPMC (Rendle et al., 2010) It combines the

matrix factorization and Markov chains meth-
ods together for sequential modeling.

• RNN (Feng et al., 2018) It is a simple RNN
based mobility prediction model as regarding
the mobility sequence as general sequence.

• DeepMove (Feng et al., 2018) It contains a
LSTM for capturing the short-term sequential
transition and an attention unit for extracting
long-term periodical patterns.

• LSTPM (Sun et al., 2020) It consists of a non-
local network for long-term modeling and a
geo-dilated RNN for short-term learning.

• GETNext (Yang et al., 2022) It use transition
flow map to assistant a transformer based model
to predict next location with cold start settings.

• STHGCN (Yan et al., 2023) It designs a novel
hypergraph transformer to capture higher-order
relations between trajectories for prediction.

• LLM-Mob (Wang et al., 2023) It is the first
work to apply LLM (GPT-3.5) to predict the
next location.

• LLM-ZS (Beneduce et al., 2024) It defines sim-
ple prompts and testifies more LLMs in zero-
shot mobility prediction task.

• LLM-Move (Feng et al., 2024c) It uses RAG
to provide nearby POIs for LLM to predict next
location more precisely.

10.2 Discussion about the usage of text-based
locations

In most studies on mobility prediction, numerical
representations, such as coordinates, are widely
used. In this work, we incorporate text-based lo-
cation information as the main part of the input.
While geographic coordinates can precisely de-
scribe location information, they lack the semantic
context necessary to activate the geospatial knowl-
edge embedded in LLMs. As demonstrated in Ge-
oLLM (Manvi et al., 2023), querying LLMs with
raw coordinates alone is often ineffective for tasks
like predicting population density. In contrast, text-
based representations align naturally with LLMs’
strengths in understanding and reasoning over natu-
ral language, allowing them to better leverage their
pre-trained spatial knowledge. By converting coor-
dinates into structured text addresses using Open
Street Map and LLMs, our approach enriches tra-

City Users Traj. Loc. Avg. Traj.Records
Tokyo 1246411294283190 9.06 1030105

SaoPaulo 11856 77120 78904 6.50 809198
Moscow 1050110085493599 9.60 950898

NewYork 15785 28502 41386 1.81 380247
Sydney 1720 4557 10523 2.65 54250
Paris 6903 7559 19837 1.09 111325

London 9724 14596 28687 1.50 188530
Beijing 1076 1847 5753 1.72 21030

Shanghai-FSQ 1272 3238 8014 2.54 33129
Shanghai-ISP 1762 2844 12576 1.61 325215

Capetown 403 1234 2988 3.06 13303
Mumbai 1070 3070 7942 2.87 40592
Nairobi 356 2690 5807 7.55 28453

Table 4: Trajectory statistics of 12 cities around the
world.

jectory points with meaningful geospatial context,
such as landmarks and cultural relevance, which
raw coordinates cannot provide. This approach
strikes a practical balance between precision and
contextual richness, optimizing LLMs for human
mobility modeling. However, in the future, inte-
grating precise numerical representation with text-
based representation presents a promising research
direction.

10.3 Details of Data

Detailed information of processed trajectory data
from 12 cities is presented in Table 4.

10.4 Examples of Extracted Mobility
Behaviors by AgentMove

###### 1. mobility behaviors from
spatial -temporal memory #######

## The personal profile and long memory:
<historical_info >:
- place id to name mapping:

'''{'4f58467xxx ': 'Middle Eastern
Restaurant ', '4b058793fxxx ':
'Miscellaneous Shop ',
'4ebaaccfxxx ': 'Residential
Building (Apartment / Condo)',
....}.'''

- In historical stays , The user
frequently engages in activities at
7 AM (2 times), 12 PM (2 times), 4
PM (2 times), .....

- The most frequently visited venues
are Home (private) (2 times),
Middle Eastern Restaurant (1
times), Miscellaneous Shop (1
times), .....

- Hourly venue activities include 12
PM: Indian Restaurant (1 times), 2
PM: Home (private) (1 times), 3 PM:
Thai Restaurant (1 times), ....
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- The user activity transitions often
include sequences: '''Middle
Eastern Restaurant -> Miscellaneous
Shop (1 times), Miscellaneous Shop
-> Residential Building (Apartment
/ Condo) (1 times), ....'''

<user_profile >:
The user is most active at 7 AM with 2

visits. They frequently visit Home
(private) with 2 visits.Based on
the data , the user enjoys trying
different types of food and drinks.

############## end ##################

###### 2. mobility behaviors from world
knowledge generator #######

## The potential places from the global
spatial view:

### Names of subdistricts that are
relatively likely to be visited:

1. Taiyanggong
2. Sanlitun
3. Jiaodaokou Subdistrict
4. Xiaoguan
5. Qianmen
### Names of POIs that are relatively

likely to be visited:
1. Yuan Yang Future Plaza Shopping Mall
2. Peking Hostel
3. University of International Business

and Economics
4. Beijing Public Library
5. Peking University
############## end ##################

########### 3. mobility behaviors from
collective knowledge extractor

## The nearby places visited by other
users with similar mobility pattern:

1-hop neighbor places in the social
world: Xibahu Road , Mars Garden

############## end ##################

10.5 Prompt Examples

Here, we present the detailed prompts for each
LLM based methods.

Prompt of AgentMove

## Task
Your task is to predict <next_place_id >

in <target_stay >, a location with
an unknown ID, while temporal data
is available.

## Predict <next_place_id > by
considering:

1. The user 's activity trends gleaned
from <historical_stays > and the
current activities from
<context_stays >.

2. Temporal details (start_time and
day_of_week) of the target stay ,
crucial for understanding activity
variations.

3. The potential places that users may
visit based on an overall analysis
of multi -level urban spaces.

4. The personal profile and memory info
extracted from the long trajectory
history of each user.

## The potential places from the global
spatial view:

{spatial_world_info}

## The nearby places visited by other
users with similar mobility pattern:

{social_world_info}

## The personal profile and long memory:
{spatial_temporal_memory_info}

## The history data:
<historical_stays >: {historical_stays}
<context_stays >: {context_stays}
<target_stay >: {target_time ,

<next_place_id >}

## Output
Present your answer in a JSON object

with:
"prediction" (list of IDs of the five

most probable places , ranked by
probability) and "reason" (a
concise justification for your
prediction).

Prompt for spatial-temporal memory unit.

### long term memory info
Place id to name mapping:

{venue_id_to_name }.
In historical stays , The user

frequently engages in activities at
{frequent_hours }.

The most frequently visited venues are
{frequent_venues }.

Hourly venue activities include
{hourly_activity_desc }.

The user 's activity transitions often
include sequences such as
{transitions }.

### short term memory info
In recent context stays , user 's last

visit was on {}
Frequently visited locations include: {}
Visit times: {}

### user profile
The user is most active at

{most_frequent_hour} with
{most_frequent_count} visits.

They frequently visit
{most_frequent_venue_category} with
{most_frequent_venue_count} visits

Based on the data , the user {',
'.join(insights)}.

Prompts for world knowledge generator.

# Prompts for world knowledge generator
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## prompts for extracting structured
address info

{original address info from
https :// nominatim.org/ by querying
via reverse API}

Please get the administrative area
name , subdistrict
name/neighbourhood name , access
road or feeder road name , building
name/POI name.

Present your answer in a JSON object
with:'administrative ' (the
administrative area name)
,'subdistrict ' (subdistrict
name/neighbourhood
name),'poi '( building name/POI
name),'street '( access road or
feeder road name which POI/building
is on).

Do not include the key if information
is not given.Do not output other
content.

### block info
This trajectory moves within following

administrative areas:
{administrative_area}
This trajectory sequentially visited

following subdistricts , with the
last subdistrict being the most
recently visited :{}

Consider about following two aspects:
1.The frequency each subdistrict is

visited.
2. Transition probability between two

administrative areas.
Please predict the next subdistrict in

the trajectory. Give {explore_num}
subdistricts that are relatively
likely to be visited. Do not output
other content.

### poi and street info
This trajectory sequentially visited

following POIs(Each POI is
represented by 'POI name , the
feeder road or access road it is
on '), with the last POI being the
most recently visited :{pois})

Consider about following two aspects:
1.The frequency each subdistrict is

visited.
2.The frequency each poi is visited.
3. Transition probability between two

subdistricts.
4. Transition probability between two

pois.
Please predict the next poi in the

trajectory.Give {explore_num} POIs
that are relatively likely to be
visited. Do not output other
content.

# spatial world model info used in
AgentMove

### Names of subdistricts that are
relatively likely to be visited:

{block_info}

### Names of POIs that are relatively
likely to be visited:

{poi_info}

Prompt for collective knowledge extractor.

## Finding neighbors
neighbors =

list(graph.neighbors(venue_id))
sorted_neighbors_freq = [(n, 1) for n

in neighbors if n not in
context_trajs]

## Prompts in final reasoning step
1-hop neighbor places in the social

world: {neighbors}
......

Prompt of LLM-Mob

Your task is to predict a user 's next
location based on his/her activity
pattern.

You will be provided with <history >
which is a list containing this
user 's historical stays , then
<context > which provide contextual
information

about where and when this user has been
to recently. Stays in both
<history > and <context > are in
chronological order.

Each stay takes on such form as
(start_time , day_of_week , duration ,
place_id). The detailed explanation
of each element is as follows:

start_time: the start time of the stay
in 12h clock format.

day_of_week: indicating the day of the
week.

duration: an integer indicating the
duration (in minute) of each stay.
Note that this will be None in the
<target_stay > introduced later.

place_id: an integer representing the
unique place ID, which indicates
where the stay is.

Then you need to do next location
prediction on <target_stay > which
is the prediction target with
unknown place ID denoted as
<next_place_id > and

unknown duration denoted as None , while
temporal information is provided.

Please infer what the <next_place_id >
might be (please output the 10 most
likely places which are ranked in
descending order in terms of
probability), considering the
following aspects:

1. the activity pattern of this user
that you learned from <history >,
e.g., repeated visits to certain
places during certain times;

2. the context stays in <context >,
which provide more recent
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activities of this user;
3. the temporal information (i.e.,

start_time and day_of_week) of
target stay , which is important
because people 's activity varies
during different time (e.g.,
nighttime versus daytime)

and on different days (e.g., weekday
versus weekend).

Please organize your answer in a JSON
object containing following keys:

"prediction" (the ID of the five most
probable places in descending order
of probability) and "reason" (a
concise explanation that supports
your prediction). Do not include
line breaks in your output.

The data are as follows:
<historical >: {historical_stays}
<context >: {context_stays}
<target_stay >: {target_time ,

<next_place_id >}

Prompt of LLM-ZS

Your task is to predict <next_place_id >
in <target_stay >, a location with
an unknown ID, while temporal data
is available.

Predict <next_place_id > by considering:
1. The user 's activity trends gleaned

from <historical_stays > and the
current activities from
<context_stays >.

2. Temporal details (start_time and
day_of_week) of the target stay ,
crucial for understanding activity
variations.

Present your answer in a JSON object
with:

"prediction" (IDs of the five most
probable places , ranked by
probability) and "reason" (a
concise justification for your
prediction).

The data:
<historical_stays >: {historical_stays}
<context_stays >: {context_stays}
<target_stay >: {target_time ,

<next_place_id >}

10.6 Parameter settings

Detailed parameter settings for each Markov and
deep learning based baselines are presented in Ta-
ble 5. For each baseline, we adapt the early stop-
ping methods by considering the accuracy of val-
idation set and learning rate schedule threshold.
All the experiments of deep learning baselines are
running on a machine with 64 cores, 512GB of

Table 5: Detailed parameter settings for Markov and
deep learning based baselines.

Parameters FPMC RNN DeepMove LSTPM
batch size 1024 1024 128 128
learning rate (lr) - 1e-3 1e-3 1e-3
lr schedule step - 2 3 2
lr schedule decay - 0.1 0.1 0.1
schedule threshold - 1e-3 1e-3 1e-3
early stop lr - 9e-6 9e-6 9e-6
L2 - 1e-5 1e-5 1e-6
max epoch 100 30 30 30
loc embed size 64 500 500 500
hidden embed size - 500 500 500
dropout - 0.3 0.5 0.8

memory, and 2 NVIDIA RTX 4090 GPU, which is
installed with Ubuntu 22.04.3 LTS.

All the generation parameter settings for LLM
based methods are the same. The temperature is set
as 0 for deterministic results, the maximum output
token is 1000, the maximum input token is 2000,
other parameters are not set and follow the default
settings from API provider.

10.7 Preprocessing for Foursquare Data

As introduced in section 4.1.1, we select 12 cities
around the world to evaluate the performance of
proposed framework. We match each trajectories
with the target cities by calculating the minimum
distance to the city center. For the ordered trajec-
tories in each city, we use 72 hours as the time
window to split the trajectory into sessions. We
filter the users with less than 5 sessions and filter
sessions with less than 4 stays. Then, we divide
each trajectory dataset into training, validation, and
test sets in a ratio of 7:1:2. During the testing, we
filter the users with less than 3 sessions or more
than 50 sessions which is designed to ensure the
quality of testing users and also balance the effects
from different users. Different from the previous
works, we do not specifically filter locations. All
the users and trajectories of them are sorted by
the id. We select one session of each user and ag-
gregate the first n sessions from all the users to
calculate the average accuracy. Here, n is utilized
to control the cost of evaluation for LLMs and keep
fixed in the experiment, which is set as 200 in most
of the experiments. It is noted that only the vol-
ume of testing set is controlled for cost, the entire
training set is provided to the deep learning based
methods for training.
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10.8 Preprocessing for ISP Data
Following the preprocessing in the original pa-
per (Feng et al., 2019), we split the data into dif-
ferent sessions by merging trajectory points in the
same day. Due to the regularity of human, there
are too much repeated trajectory points in the origi-
nal sessions. To make the prediction challenging,
we compress the trajectory sessions by merging
the same locations within a time window (2 hours)
and ignoring the visiting occurred during the night
(from 8 p.m. to 8 a.m.). While the ISP data lasts
only 7 days, we split the whole data into training
set, validation set and testing data in a ratio of 4:1:5
for preserving enough testing data. The minimum
session filter parameter is changed from 3 to 1.
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