
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12170–12188

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

TurtleBench: A Visual Programming Benchmark in Turtle Geometry

Sina Rismanchian, Yasaman Razeghi, Sameer Singh, Shayan Doroudi
University of California, Irvine

{srismanc,yrazeghi,sameer,doroudis}@uci.edu

Abstract
Humans have the ability to reason about geo-
metric patterns in images and scenes from a
young age. However, developing large multi-
modal models (LMMs) capable of similar rea-
soning remains a challenge, highlighting the
need for robust evaluation methods to assess
these capabilities. We introduce TurtleBench,
a benchmark designed to evaluate LMMs’ ca-
pacity to interpret geometric patterns—given
visual examples, textual instructions, or both—
and generate precise code outputs. Inspired
by turtle geometry, a notion used to teach
children foundational coding and geometric
concepts, TurtleBench features tasks with pat-
terned shapes that have underlying algorith-
mic logic. Our evaluation reveals that leading
LMMs struggle significantly with these tasks,
with GPT-4o achieving only 19% accuracy on
the simplest tasks and few-shot prompting only
marginally improves their performance (< 2%).
TurtleBench highlights the gap between hu-
man and AI performance in intuitive and visual
geometrical understanding, setting the stage
for future research in this area. TurtleBench
stands as one of the few benchmarks to eval-
uate the integration of visual understanding
and code generation capabilities in LMMs,
setting the stage for future research. Code
and Dataset for this paper is provided here:
https://github.com/sinaris76/TurtleBench

1 Introduction

Large Multimodal Models (LMMs) have the poten-
tial to handle tasks that combine visual, linguistic,
and reasoning abilities, previously achievable only
by humans. Indeed, LMMs such as GPT4-V (Yang
et al., 2023) and Gemini 1.5 flash (Team et al.,
2023b; Fu et al., 2023) have been shown to be state-
of-the-art models in solving multi-modal tasks such
as visual question answering (Goyal et al., 2017;
Liu et al., 2024), coding for visual multimodal ques-
tions (Li et al., 2024a), visual mathematical ques-
tions (Lu et al., 2023), chart question answering

(Masry et al., 2022), etc. Despite these successes,
there remains the question of how LMMs perform
in tasks that intertwine visual reasoning and pro-
gramming knowledge. That is, given an image of
a geometric pattern (and/or a verbal description of
the pattern) can LMMs generate code that would
be able to procedurally generate that pattern? In-
deed, Bubeck et al. (2023) showed that the large
language model (LLM) with no visual training data
was able to create a unicorn in TikZ—the LaTeX-
based graphics drawing library. This feat amazed
many and provoked many discussions on the intelli-
gence of large language models—but how general
is this ability?

In this work, we introduce TurtleBench, a set of
manually crafted image/text to code tasks in tur-
tle geometry (Papert, 1972; Abelson and diSessa,
1986) to evaluate the abilities of these models to
combine visual pattern recognition, mathematical
reasoning, Python programming, and abstract ge-
ometrical reasoning. To ensure the visual inputs
and the programming language remain straight-
forward, TurtleBench harnesses turtle geometry,
a concept widely recognized for its effectiveness
in introducing programming concepts to children
within the K-12 education system. In turtle geom-
etry, a turtle acts as a programmable object that
navigates the screen, drawing as it goes and turning
at specified angles, to create simple visual patterns.
The primary objective within this framework is to
generate code capable of producing simple visual
inputs. These visual inputs consist of basic geomet-
ric shapes, and the programming syntax required is
intentionally limited and straightforward. An exam-
ple of such a task is presented in the left side of Fig-
ure 1. As illustrated, the input image is the shape
of a simple square and the corresponding code
only uses two simple turtle functions (forward and
right) along with a simple for loop. This sim-
plicity makes TurtleBench an effective benchmark
for evaluating the capabilities of Large Multimodal

12170

https://github.com/sinaris76/TurtleBench

Write a code in
Python turtle that

creates exactly the
same shape.

The shape is a regular
rectangle, which means all
sides are equal in length.

for i in range(4):
t.forward(100)
t.right(90)

Write a code in
Python turtle that
creates exactly the
same shape.

Write a code in Python turtle that
creates a square with two horizontal
sides.

The image shows a square with
two horizontal sides. Write a code
in Python Turtle that creates
exactly the same shape.

Scratch Tasks

Image Input Text Input Image + Text Input

Write a code in Python
turtle that tweaks the
above image, based on
the instruction.
Instruction: Connect
the midpoint of each
side to the midpoint of
adjacent sides.

Code:
for i in range(4):

t.forward(100)
t.right(90)

The given code generates the given
image. Write a code in Python Turtle that
tweaks the image based on the
instruction.
Instruction: Connect the midpoint of each
side to the midpoint of adjacent sides.

Tweak Tasks

Image + Text Input

Code Generation

Code Generation Code Edit

Image + Text Input Image + Image Input

Code:
for i in range(4):

t.forward(100)
t.right(90)

The given code generates the
upper image. Write a code in
Python Turtle that creates the
following image.

An example of A Scratch task, in
Code Generation mode, with

image input

Figure 1: An illustration of existing types and modes in TurtleBench.

Models (LMMs). To reflect different real-world use
cases of an LMM in the domain of Turtle and also
cover the broad range of underlying reasoning abil-
ities, TurtleBench includes 260 tasks with a variety
of types and modalities. The different types and
input/output modalities are presented in Figure 1.
We define two types of tasks scratch and tweak
in TurtleBench. Scratch tasks challenge models to
generate Python code for a specified shape using
the Turtle library based on inputs that could be an
image of the shape, a textual description, or both.
This subset evaluates model’s proficiency in rec-
ognizing patterns within the shape and accurately
translating these into executable code. Conversely,
tweak tasks are designed to probe deeper into a
model’s understanding, examining its ability to
comprehend the implications of described modi-
fications to shapes—such as connecting midpoints
(example in Figure 1)—and their representation
in the image. Here, models are provided with a
base shape and are instructed to create the desired
alteration in shape. Instructions for these modifi-
cations may be provided visually or textually. To
simplify, in a subset of the tweak tasks, we adopt
a code editing approach, supplying the original
shape’s code and directing the model to edit this
code to generate the target shape.

We conduct an evaluation of leading LMMs
on TurtleBench code generation and code edit-
ing tasks, utilizing zero-shot and visual chain-of-
thought approach (Singh et al., 2023) across text-
only, image-only, and mixed (text and image) input
modalities. Our findings reveal that these models

generally perform poorly across all setups and va-
riety of tasks and modalities. Both GPT-4o and
Gemini 1.5 Flash struggle with TurtleBench tasks,
failing to solve more than 75% of them. Our results
show that performance improves when tasks are
presented as text rather than images, suggesting
that integrating visual and linguistic information,
especially for visual pattern recognition, requires
further refinement. When tested with a custom
library mimicking Python Turtle but using differ-
ent command names, models showed a significant
performance drop, revealing difficulties in general-
izing visual reasoning to unfamiliar syntax. Even
when allowed to choose their own programming
language, models consistently failed to generate
correct code, indicating broader challenges in trans-
lating visual instructions into functional program-
ming outputs. These findings show that our bench-
mark poses a significant challenge for LMMs, offer-
ing key insights into their limitations. Our evalua-
tion highlights gaps in integrating visual reasoning
with programming and raises important questions
for future research to address.

2 Overview of TurtleBench

In turtle geometry (Abelson and diSessa, 1986),
a turtle is a programmable object on the screen
that leaves a trace while moving. As illustrated
in Figure 1 left side, we see an example of how
creating a simple geometric shape, like a square,
involves the turtle moving forward and executing
turns four times. It is a powerful, intuitive tool that
enables novice learners to start learning program-

12171

ming by creating aesthetically beautiful artifacts.
Although Turtle programming nowadays is used
more as a tool to foster computational thinking,
it can be used to teach geometry and mathemati-
cal reasoning (Marji, 2014; Clements and Sarama,
2013) as it enables learners to explore and learn
geometrical relationships between shapes. The in-
tuitive nature and learnability of turtle geometry,
along with its ability to generate patterns of diverse
complexities, make it a compelling concept upon
which to base a benchmark for LMMs. In the fol-
lowing, we describe our benchmark in detail.

2.1 TurtleBench Task Types

TurtleBench is a set of 260 tasks that are designed
to evaluate LMMs’ performance on vision and lan-
guage algorithmic reasoning tasks. To ensure the
novelty of the tasks and their quality in incorpo-
rating authentic geometric shapes and concepts,
we craft TurtleBench manually. All the tasks in
TurtleBench are accurately solvable based on the
provided information for each, which means that
there are no ambiguities or arbitrary parameters
leading to inaccuracies in the tasks for humans
as well as the models. To remove possible ambi-
guities in the tasks, two independent annotators
worked with us to identify and resolve any unclear
instructions. Each task consists of a black-and-
white image illustrating a set of abstract geometric
shapes as an input. An example of this task is
presented in Figure 1. TurtleBench is made up of
two different types of tasks, these types reflect the
methodologies used in turtle geometry to introduce
programming to children: Scratch tasks that are
intended to show how well a model understands
a pattern and translates its understanding to an ex-
ecutable code. In the general case of this type of
task, an image is provided, and the requested output
is code in Python Turtle that creates the shapes in
the image. In all scratch tasks, the model is asked
to generate the code in Python Turtle for the de-
sired input shape. TurtleBench includes a total of
130 scratch tasks and 130 tweak tasks resulting in
260 tasks overall. An example of these tasks is pro-
vided in Figure 1 top rows. To distinguish between
the models’ visual comprehension and their textual
understanding, a subset of these tasks includes a
text description of the image input in addition to
the visual representation. This setup facilitates the
evaluation of how models respond differently to
visual and textual inputs, providing a clearer under-
standing of their capabilities. Tweak tasks that are

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):
t.forward(length)
t.right(outer_turn)

t.setheading(60)
draw_polygon(3,
small_triangle_side)
t.left(120)
draw_polygon(3,
large_triangle_side)

Scratch Tasks

Image Input Text Input Image + Text Input

Tweak Tasks

Image + Text Input

Code Generation

Code Generation Code Edit

Image + Text Input Image + Image Input

Textual Tweak Instruction: Insert two
triangles to the right of the existing

shape to make it vertically symmetrical.

Desired Tweaked Shape

Ground Truth

Code

Description: Two adjacent equilateral
triangles sharing a horizontal common base

both pointing upward, where the left
triangle is larger than the right one

Figure 2: An illustration of different modes of a single
task in TurtleBench along with the images generated by
code from the outputs of GPT-4o and Gemini 1.5 Flash.
More examples are provided in Appendix Figure 10

intended to measure how well a model uses their
understanding of a visual pattern, combined with
an instruction to make minimal alterations. Each
tweak task presents a model with an image and an
instruction; the expected output is Python Turtle
code that modifies the shape in the input image
according to the given instruction. These tasks are
particularly insightful for determining whether a
model is merely recalling memorized code for an
image, or if it has developed a deeper, more human-
like comprehension of the patterns depicted in the
images. For instance, a model might be capable of
generating code for a certain shape based on train-
ing data, but the real challenge lies in its ability to
adapt that shape in response to various instructed
changes. An example of these tasks is provided in
Figure 1 bottom row. Here, The model is given an
input image of a rectangle, with an instruction to
connect the midpoint of each side to the midpoint
of adjacent sides. As illustrated in Figure 1, we
also introduce a code editing version of the tweak
task. In this version, we supply the code corre-
sponding to the input image and then instruct the
models to make specific modifications to this code,
aiming to achieve a change in the image as per the
provided instructions. Detailed information about
types of tweaks and their examples is provided in
Appendix A.4.

2.2 Automatic Evaluation of Code Output

Evaluation of the output code by an AI model is
performed automatically. First, the output of the
AI model is processed to extract the code piece of
output. Then, this piece of code is run in a sandbox,
and the shape produced by the code is stored. An
illustration of this pipeline is provided in Figure

12172

9. Finally, using the OpenCV module in Python,
the binary versions of the correct shape and the
produced shape are compared using an adjusted
measure of bitwise similarity where we first use
the bounding box technique with OpenCV to find
the exact location of the shape and then calculate
similarity with the formula:

|Ba ∩Bm|
|Ba ∪Bm|

where Ba and Bm represent black pixels in the
input and LMM output, respectively. This metric
measures the ratio of co-occurring black pixels to
the total black pixels Here, we utilize a heuristic
approach in labeling the correctness of the model’s
output. If the bitwise similarity between output and
ground truth is higher than 95% the models’ output
is labeled as correct and incorrect otherwise. To
make sure that our heuristic in labeling the correct-
ness of generated shapes is reliable, we manually
annotated 2000 pairs of input and output images
and we found that only three instances of pairs were
labeled incorrectly (two of them false negative and
the other false positive.), leading to an error rate of
0.15% which shows the high level of reliability in
the heuristic we used.

3 Evaluation Setup

3.1 Models

In the following section, we evaluate TurtleBench
using two SOTA LMMs, GPT-4o and Gemini 1.5
Flash and also an open sourced model, namely
Llava-1.5-13B (Liu et al., 2023) employing greedy
decoding in our evaluations. We evaluated two
other open models, namely Qwen-VL-Max (Bai
et al., 2023) and CogVLM (Wang et al., 2023)
on a subset of tasks in TurtleBench. However,
CogVLM and Qwen are not successful in produc-
ing a syntactically correct Python Turtle piece
of code even for the simplest tasks, therefore
we limited our benchmark evaluation to models
mentioned above.

3.2 Prompting

We use two types of prompting in our experiments,
1) basic, where we simply prompt the the model (c.f.
Appendix A.2) to do our tasks. , and 2) Chain-of-
Thought (CoT) prompting (Wei et al., 2022), which
has shown to be an effective prompting technique
in eliciting reasoning in these models. Specifically,

we use a more detailed version of CoT prompting
that is tailored to LMMs, namely v-CoT, recently
proposed by (Singh et al., 2023). The v-CoT ap-
proach is inspired by m-CoT (Zhang et al., 2023),
which shows higher performance compared to it.
This prompting has been shown to improve LMMs’
performance on visual tasks that involved reason-
ing, such as ARC (Chollet, 2019). This prompt,
instructs the model to first extract all the relevant
information in the image needed for answering the
problem and then to reason step by step based on
the information extracted. The specific prompt we
used in our experiments is in Appendix A.2

4 Results

Results on the performance of the models are re-
ported in percentage, where in each experiment we
evaluate the performance of select models on all
instances of the TurtleBench with test@1 method
(Cobbe et al., 2021) where the model generates
only one piece of code for each instance. We as-
sign a binary value to the success/failure of each
task. We then run each experiment on a model five
different times and we report the average percent-
age of accumulative success.

4.1 Models perform poorly on TurtleBench

We initially examine the performance of the GPT-
4o, Gemini 1.5 Flash and Llava-1.5-13B models
on the comprehensive TurtleBench dataset. The
findings, detailed in Table 1, reveal a notably poor
performance across the tasks in TurtleBench, with
a peak accuracy of 20% achieved by GPT-4o in the
code editing tasks, facilitated by Chain of Thought
(CoT) prompting. In the scratch tasks, which rep-
resent the simplest problem type within the dataset,
GPT-4o’s success rate was just 19%, underscoring
the substantial challenges and complexities these
tasks pose to the current models. A comparison
between CoT and basic prompting within Table 1
illustrates that CoT prompting outperforms basic
prompting on the same models, aligning with pre-
vious work that indicates CoT enhances models’
reasoning abilities (Zhang et al., 2023). However,
despite employing CoT, the task remains far from
being solved. Examples of model output in differ-
ent subsets of the task are provided in Figures 2
and 10.

As previous work suggests that in-context learn-
ing by providing examples of the task at hand can
significantly improve models’ performance in do-

12173

Task Type Scratch CG Tweak CG Tweak CE Runnable
Modalities T I I + T I + T I + T I + I

GPT-4o/basic 37.04 16.03 37.98 17.69 18.12 12.06 99.21
GPT-4o/CoT 38.12 19.23 40.18 20.00 19.61 13.84 99.85
GPT-4o/4-S NA 21.49 NA NA NA NA 99.85
Gemini/basic 25.09 7.71 22.22 3.85 12.00 3.00 99.13
Gemini/CoT 18.51 9.20 20.52 7.70 23.08 11.54 99.17
Gemini/4-S NA 10.18 NA NA NA NA 99.92
Llava/basic 6.01 0.82 0.03 0.31 1.04 NA 69.13
Llava/CoT 6.22 0.98 1.02 0.92 1.09 NA 72.34

Table 1: Performance on TurtleBench (I = image, T = text, CG = code generation, CE = code edit, 4-S = 4-shot).
Performance on Scratch tasks that include text (T) is calculated on a subset (21%) of these tasks. Our result shows
that while models’ generated code is almost always runnable, they fail to generate desired shapes.

main adaptation (Brown, 2020), we evaluated the
performance of GPT-4o and Gemini 1.5 Flash on
Scratch code generation with 4-shot CoT prompt-
ing where we first provided four pairs of shape-
code to the model. Yet, we did not find any major
improvement in the performance of the models.

4.2 Models fail to generalize

Given that these models have been extensively
trained on vast datasets sourced from the inter-
net, there’s an underlying uncertainty regarding
the source of their performance—albeit poor—on
the TurtleBench tasks. Specifically, it remains un-
clear whether this performance is the result of the
models’ ability to memorize aspects of our tasks,
rather than genuinely understanding and solving
them based on their programming and reasoning
capabilities. To address this issue, our next step is
to evaluate the true generalization ability of these
models. By doing so, we aim to distinguish be-
tween superficial learning, potentially influenced
by memorization, and genuine comprehension and
problem-solving skills. To measure the general-
izability of the model’s performance, we define
an arbitrary set of commands based on the turtle
module in Python. In other words, we developed
a class called Rabbit that inherits the Turtle class
from the turtle module. Although the functions of
the Rabbit class are functionally identical to those
in the original turtle module, they are nominally
distinct. This differentiation allows us to evalu-
ate the models’ ability to apply their knowledge
to unfamiliar yet equivalent command sets. The
definition of the Rabbit class in Python is provided
in Appendix A.3.2. We perform a zero-shot CoT

GPT-4o GPT-4o Gemini Gemini

Scratch Code Generation
I 19.23 6.00 9.20 3.00

Tweak Code Generation
I + T 20.00 5.04 7.70 2.37

Table 2: Performance of GPT-4o and Gemini 1.5 Flash
on generalization tasks using CoT prompting, in these
tasks. The performance in Rabbit drastically drops,
showing poor generalization abilities in both models.

prompting to elicit the code using the new set of
commands. In the context window, we provide
a verbal definition of each function in the Rabbit
class. The results of comparing the models’ perfor-
mance using the Rabbit class versus the standard
Python Turtle module are presented in Table 2. We
observe that, although both models were capable of
generating executable pieces of code with the new
class, there is a huge decline in their performance
relative to their performance with the conventional
Python Turtle module. This finding suggests that
the visual reasoning in these models is not robust
to syntax changes, and it is likely that they rely on
training memorization rather than pure reasoning.

4.3 Assessing Model Proficiency Across
Programming Languages

The initial suspicion might be that the models strug-
gle with tasks in turtle geometry due to a lack of
exposure to specific programming syntax during
pretraining: Is the poor performance because of
unfamiliarity with Python Turtle?

To answer the question, we run an ablation study

12174

Output
Python
Turtle

Any Matplotlib

Scratch Code Generation
I 19.23 21.6 22.15

Tweak Code Generation
I + T 12.3 15.11 15.23

Table 3: Ablation study of CoT prompting of GPT-4o
on code generation tasks where the model is given the
freedom to choose the programming language. Produc-
ing code in Matplotlib does not yield qualitatively better
performance.

on GPT-4o as our best-performing model in the
main tasks. We allow it to generate code using any
library, language, or similar tools it deems appropri-
ate, such as Matplotlib, TikZ, etc., without restrict-
ing it to the Python Turtle library. The prompt for
this subset of tasks is presented in Appendix A.2.4.
We manually evaluate the GPT-4o output for this
task. Despite this freedom, we observe no signif-
icant improvement in performance. The model
chooses Matplotlib for 50% of the tasks and offers
pseudocode for 2%, with the remainder reverting
to Python Turtle, even though we do not specify
Python Turtle in the prompts. Notably, it avoids
using TikZ, despite its mention in the prompt and
proven capabilities in prior work to produce TikZ
code (Bubeck et al., 2023; Belouadi et al., 2023).
We further isolate this observation by obligating
the model to produce code using Matplotlib (re-
fraining from generating pseudocode and Python
Turtle) and in this experiment as well, we do not
see a major improvement in the model’s results.
This outcome underscores a deeper issue than syn-
tax familiarity: the models’ fundamental challenge
is accurately interpreting visual input and apply-
ing this understanding to generate corresponding
programming code.

4.4 Limited Visual Understanding in LMMs:
Insights from Textual vs. Visual Tweak
Tasks

To distinctly assess the models’ proficiency in in-
terpreting textual versus visual information, we
conducted an evaluation focusing on their abil-
ity to reason about the relationship between pro-
vided code and corresponding images in Tweak
code edit tasks. In this setup, models are given a
base shape along with the Python Turtle code that
generated it. Subsequently, they are prompted to

adjust the given code to modify the shape accord-
ing to specified instructions. These instructions
are delivered in two forms: 1) (I + T) as natural
language descriptions, e.g., ’connect the midpoints
of each side to the midpoints of its adjacent sides,’
and 2) (I + I) as images explicitly showcasing the
desired outcome. Examples of these subsets are in
Figure 1. Our comparison of model performance
across these two modalities reveals a huge decline
in accuracy when instructions were provided visu-
ally rather than textually (Table 1). This outcome
suggests a disparity in the models’ ability to pro-
cess visual versus textual instructions, revealing
that their reasoning abilities may not align closely
with human-like understanding. The assumption
that directly viewing the desired outcome simpli-
fies the task contrasts sharply with our findings,
highlighting a reliance on textual interpretation for
reasoning and a notable limitation in pure visual
reasoning capabilities within these models (Roberts
and Roberts, 2024).

4.5 Vision component contributes poorly
One of the questions regarding LMMs’ abilities in
visual abstraction and understanding tasks is the
extent the incorporation of the visual component
has enhanced their abilities in reasoning (Mitchell
et al., 2023).

In resonance with what Mitchell et al. (2023)
found, here we also found that the vision compo-
nent contributes poorly to fostering the models’
visual reasoning abilities, at least in the domain of
TurtleBench. Specifically, we annotated 27 (21%)
Scratch code generation tasks and provided clear
descriptions for each in plain text (Textual descrip-
tions were validated by two human annotators, one
in the research team and the other recruited as a
volunteer). The remaining shapes were too com-
plex to describe without ambiguity in plain text.
Then, we compared the three modes of present-
ing the task, image only, text only, and the blend
of an image and its textual description (I, T, and
I + T, respectively in Table 1). Interestingly, for
both GPT-4o and Gemini 1.5 Flash, the model per-
formed worse when the task was presented only
in the image, compared to the other modes. This
phenomenon is counterintuitive as for humans, per-
ceiving the images should be easier than first read-
ing a description, imagining it, and then writing a
code for it. Additionally, as presented in Table 1
the blend of image and text only slightly improved
GPT-4o’s performance (from 38% to 40%). These

12175

two findings show that there is still much room for
improvement especially in the visual components
of LMMs.

5 Related Work

5.1 Large Multi-modal Models

Recent advancements in foundational multimodal
models have marked a significant stride towards
developing generalist AI systems capable of un-
derstanding and integrating information across dif-
ferent modalities to solve tasks without the need
for task-specific fine-tuning. Among these models
are closed source models such as Gemini 1.5 Flash
(Team et al., 2023a), GPT-4o (OpenAI et al., 2024),
and open source models as LLaVA-1.5 (Liu et al.,
2023), Mini-GPT4 (Zhu et al., 2023), InstructBLIP
(Dai et al., 2023) and CogVLM (Wang et al., 2024).
The versatility and multimodal understanding ex-
hibited by these foundational multimodal models
have positioned them as prime candidates for appli-
cations such as AI software engineers or program-
ming tutors for children. Our work evaluates the
efficacy of these popular models on image/text-to-
code tasks, measuring their potential in vision/pro-
gramming context.

5.2 Probabilistic Program Induction

Recent work in Bayesian cognitive science has
modeled various aspects of cognition and learn-
ing as probabilistic program induction (Lake et al.,
2015; Lake and Piantadosi, 2020; Rule et al., 2020;
Ellis et al., 2023; Wong et al., 2021; Grand et al.,
2023). This has involved both modeling human
cognition as program induction as well as designing
machine learning algorithms that can generate pro-
grams for various tasks, including the kind of turtle
geometry task we study here. Ellis et al. (2023)
developed the DreamCoder algorithm which can
learn to induce programs by using self-supervision
to incrementally build up a library of programs and
train a neural network to search to find the best
program for a given task. They created a dataset of
160 turtle programming tasks. In contrast to our ap-
proach, where we assess the performance of out-of-
the-box LMMs, DreamCoder is trained on a train-
ing set of images (i.e., half of the dataset). How-
ever, it is interesting that the algorithm is trained
in an unsupervised fashion; that is, DreamCoder
never receives the code used to generate the im-
ages and learns that from experience. Wong et al.
(2021) extended this work by developing an al-

gorithm (LAPS) that can induce programs given
both the task and linguistic annotations for the task.
They used a dataset of 311 turtle graphics with
greater complexity than the original DreamCoder
dataset. While their dataset includes linguistic an-
notations, their dataset does not include tweak tasks
like in TurtleBench. Additionally, their tasks of-
ten include arbitrary aspects (for example, a gap
with unspecified distance between two shapes) that
makes evaluation hard; in our tasks, the positional
relationships between shapes should be easy to in-
fer exactly and hence we can evaluate models by
comparing exactly with ground truth shapes. More-
over, neither of these datasets have been framed
as a benchmark for visual program induction and
have not been considered for evaluating LMMs.
Perhaps the approach closest to our work is by
Grand et al. (2023), who combined LLMs with a
symbolic program induction algorithm and eval-
uated the performance of their model (LILO) on
the turtle geometry task using the aforementioned
dataset. Averaged over several runs, the perfor-
mance of the best versions of these approaches on
the turtle geometry task is as follows: 43% for
DreamCoder, 82% for LAPS, 49% for LILO, and
32% for a LLM solver. These results seem to sug-
gest that probabilistic programming approaches
(such as LAPS) can greatly outperform LMMs on
visual programming tasks. We note that the per-
formance of the LLM solver (32%) is comparable
to the performance of GPT-4o on our text-only in-
put (37%; see Table 1). Future work could assess
the performance of probabilistic program induction
methods like LAPS on TurtleBench.

5.3 Multimodal Reasoning

The existing literature features a range of studies
that evaluate these models using naturalistic images
(Jiang et al., 2022; Johnson et al., 2017; Antol et al.,
2015), yet humans naturally are able to reason over
abstract shapes (Chollet, 2019; Zhang et al., 2019;
Spelke and Kinzler, 2007) and also many use cases
of LMMs involve understanding abstract shapes
and sketches (Forbus et al., 2011; Nie et al., 2020).
Moreover, unlike naturalistic images (Marjieh et al.,
2022; Sucholutsky and Griffiths, 2024), the rela-
tionship between language and abstract shapes is
highly intertwined as minimal alterations in lan-
guage can lead to different visual perceptions in hu-
mans (Dillon, 2023; Lin and Dillon, 2023). Overall,
recent surveys on deep learning for mathematical
reasoning (Lu et al., 2022; Sun et al., 2023) have

12176

pointed out that most of the available datasets sand
benchmarks on multimodal reasoning often rely on
visual question-answering frameworks. However,
these methods fall short because they are usually
trained on datasets composed of natural images,
rather than on datasets tailored to the integration of
vision and language for mathematical tasks.

The Multimodal Algorithmic Reasoning (MAR)
task tests multi-modal models on fundamental
skills understandable by children, focusing on inter-
preting visual and linguistic information to answer
questions. Perhaps the most relevant work to ours
is the paper by (Cherian et al., 2023) in which they
introduced a dataset with 101 multiple-choice ques-
tions inspired by the Math Kangaroo contest for
6 to 8-year-olds, involving images and texts that
the model must analyze together. The task has
been shown to be challenging for multimodal deep
neural networks, and the following trials to solve
the problem have gained less than 25% accuracy
on the test set (Wu et al., 2023). TurtleBench in-
cludes abstract geometric shapes, and the task only
relies on knowledge and reasoning over a set of
simple functions in the Python Turtle library. Our
open-ended benchmark and its flexibility over dif-
ferent modalities make evaluating different aspects
of multimodal reasoning in LMMs more reliable.

6 Discussion on Educational Implications

While LLMs and LMMs have sparked interest
among education researchers in AI tools such as tu-
tors (KhanAcademy, 2024) for students, our work
cautions against using these models without thor-
ough evaluation. Although students can learn tur-
tle programming on various platforms without AI
help (e.g., Code.org (2024a,b)), the effectiveness
of these models as tutors or copilots is uncertain
due to current limitations. Our work suggests that
educational researchers can engage in systemati-
cally benchmarking LMMs to ensure their reliabil-
ity before integrating them into student learning
processes.

7 Conclusions

This study introduces TurtleBench, the first of its
kind in benchmarks that focus on converting visual
inputs to code outputs. The evaluation results from
TurtleBench reveal a significant disparity between
how humans tackle turtle programming and how
SOTA AI models perform in understanding simple
geometric shapes, reasoning about these shapes,

and converting such understandings into executable
code (Rismanchian et al., 2024). This gap under-
scores the challenges that lie ahead in the quest to
enhance AI’s comprehension and problem-solving
abilities to match human levels. We believe that
TurtleBench serves as a crucial tool in the evalua-
tion of models, offering a clear benchmark testing
the limits of LMMs.

8 Limitations

One of the limitations of our work is that we did
not experiment with fine-tuning techniques to better
understand multimodal reasoning abilities in these
models and how they could be improved. However,
we argue that our experiments demonstrate that
poor performance in the models is perhaps not due
to their unfamiliarity with the syntax of Turtle, but
rather is more related to vision components and
their reasoning abilities. We plan to experiment
with fine-tuning techniques in future work with
smaller models such as Llava-1.5-13B with newer
architectures for vision towers (Li et al., 2024b) to
examine the effectiveness of these techniques.

Finally, as TurtleBench has a limited number
of instances, future work can augment existing in-
stances to produce a dataset plausible for training
purposes.

Acknowledgements

We are grateful to Arghavan Rezvani for her valu-
able assistance and insightful contributions.

References
Harold Abelson and Andrea diSessa. 1986. Turtle ge-

ometry: The computer as a medium for exploring
mathematics. MIT press.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Jonas Belouadi, Anne Lauscher, and Steffen Eger.
2023. Automatikz: Text-guided synthesis of sci-
entific vector graphics with tikz. arXiv preprint
arXiv:2310.00367.

12177

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit,
Kevin A Smith, and Joshua B Tenenbaum. 2023. Are
deep neural networks smarter than second graders?
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10834–
10844.

François Chollet. 2019. On the measure of intelligence.
arXiv preprint arXiv:1911.01547.

Douglas H Clements and Julie Sarama. 2013. Chil-
dren’s mathematical reasoning with the turtle pro-
gramming metaphor. In Mathematical Reasoning,
pages 313–337. Routledge.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Code.org. 2024a. Code with anna and elsa - code.org.
https://studio.code.org/s/frozen. (Accessed
on 10/15/2024).

Code.org. 2024b. Self paced introduction to tur-
tle programming in app lab - code.org. https:
//studio.code.org/s/csp3-virtual. (Accessed
on 10/15/2024).

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi.
2023. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Preprint,
arXiv:2305.06500.

Moira R Dillon. 2023. Divisive language. Preprint,
10.31234:1706.03762.

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-
Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt,
Armando Solar-Lezama, and Joshua B Tenenbaum.
2023. Dreamcoder: growing generalizable, inter-
pretable knowledge with wake–sleep bayesian pro-
gram learning. Philosophical Transactions of the
Royal Society A, 381(2251):20220050.

Kenneth Forbus, Jeffrey Usher, Andrew Lovett, Kate
Lockwood, and Jon Wetzel. 2011. Cogsketch:
Sketch understanding for cognitive science research
and for education. Topics in Cognitive Science,
3(4):648–666.

Chaoyou Fu, Renrui Zhang, Haojia Lin, Zihan Wang,
Timin Gao, Yongdong Luo, Yubo Huang, Zhengye
Zhang, Longtian Qiu, Gaoxiang Ye, et al. 2023. A
challenger to gpt-4v? early explorations of gemini in
visual expertise. arXiv preprint arXiv:2312.12436.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904–6913.

Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X
Olausson, Muxin Liu, Joshua B Tenenbaum, and
Jacob Andreas. 2023. Lilo: Learning interpretable li-
braries by compressing and documenting code. arXiv
preprint arXiv:2310.19791.

Huaizu Jiang, Xiaojian Ma, Weili Nie, Zhiding Yu, Yuke
Zhu, and Anima Anandkumar. 2022. Bongard-hoi:
Benchmarking few-shot visual reasoning for human-
object interactions. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 19056–19065.

Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. 2017. Clevr: A diagnostic dataset
for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
2901–2910.

KhanAcademy. 2024. Khanmigo: Khan academy’s ai-
powered teaching assistant & tutor. https://www.
khanmigo.ai/. (Accessed on 10/15/2024).

Brenden M Lake and Steven T Piantadosi. 2020. People
infer recursive visual concepts from just a few exam-
ples. Computational Brain & Behavior, 3(1):54–65.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. 2015. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332–1338.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiy-
ong Huang, and Jing Ma. 2024a. Mmcode: Bench-
marking multimodal large language models for code
generation with visually rich programming problems.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 736–783.

Wenhao Li, Yudong Xu, Scott Sanner, and Elias Boutros
Khalil. 2024b. Tackling the abstraction and reason-
ing corpus with vision transformers: the importance
of 2d representation, positions, and objects. arXiv
preprint arXiv:2410.06405.

Yi Lin and Moira R Dillon. 2023. We are wanderers:
Abstract geometry reflects spatial navigation. Jour-
nal of Experimental Psychology: General.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023. Improved baselines with visual instruc-
tion tuning. Preprint, arXiv:2310.03744.

12178

https://studio.code.org/s/frozen
https://studio.code.org/s/csp3-virtual
https://studio.code.org/s/csp3-virtual
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://doi.org/10.31234/osf.io/w8s9h
https://www.khanmigo.ai/
https://www.khanmigo.ai/
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024. Visual instruction tuning. Advances in
neural information processing systems, 36.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2022. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.

Majed Marji. 2014. Learn to program with Scratch: A
visual introduction to programming with games, art,
science, and math. No Starch Press.

Raja Marjieh, Pol Van Rijn, Ilia Sucholutsky,
Theodore R Sumers, Harin Lee, Thomas L Griffiths,
and Nori Jacoby. 2022. Words are all you need?
language as an approximation for human similarity
judgments. arXiv preprint arXiv:2206.04105.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. ChartQA: A benchmark
for question answering about charts with visual and
logical reasoning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2263–
2279, Dublin, Ireland. Association for Computational
Linguistics.

Melanie Mitchell, Alessandro B Palmarini, and Arseny
Moskvichev. 2023. Comparing humans, gpt-4, and
gpt-4v on abstraction and reasoning tasks. arXiv
preprint arXiv:2311.09247.

Weili Nie, Zhiding Yu, Lei Mao, Ankit B Patel, Yuke
Zhu, and Anima Anandkumar. 2020. Bongard-logo:
A new benchmark for human-level concept learning
and reasoning. Advances in Neural Information Pro-
cessing Systems, 33:16468–16480.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,

Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong

12179

https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177

Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Seymour Papert. 1972. On making a theorem for a
child. In Proceedings of the ACM annual conference-
Volume 1, pages 345–349.

Sina Rismanchian, Shayan Doroudi, and Yasaman
Razeghi. 2024. Turtle-like geometry learning: How
humans and machines differ in learning turtle geome-
try. In Proceedings of the AAAI Symposium Series,
volume 3, pages 586–587.

Denisa Roberts and Lucas Roberts. 2024. Smart
vision-language reasoners. arXiv preprint
arXiv:2407.04212.

Joshua S Rule, Joshua B Tenenbaum, and Steven T
Piantadosi. 2020. The child as hacker. Trends in
cognitive sciences, 24(11):900–915.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le,
and Gust Verbruggen. 2023. Assessing gpt4-v
on structured reasoning tasks. arXiv preprint
arXiv:2312.11524.

Elizabeth S Spelke and Katherine D Kinzler. 2007. Core
knowledge. Developmental science, 10(1):89–96.

Ilia Sucholutsky and Tom Griffiths. 2024. Alignment
with human representations supports robust few-shot
learning. Advances in Neural Information Processing
Systems, 36.

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying
Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu
Ding, Hongyang Li, Mengzhe Geng, et al. 2023. A
survey of reasoning with foundation models. arXiv
preprint arXiv:2312.11562.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M. Dai, Anja
Hauth, Katie Millican, David Silver, Slav Petrov,
Melvin Johnson, Ioannis Antonoglou, Julian Schrit-
twieser, Amelia Glaese, Jilin Chen, Emily Pitler,
Timothy Lillicrap, Angeliki Lazaridou, Orhan Fi-
rat, James Molloy, Michael Isard, Paul R. Barham,
Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm
Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins,
Clemens Meyer, Eliza Rutherford, Erica Moreira,
Kareem Ayoub, Megha Goel, George Tucker, En-
rique Piqueras, Maxim Krikun, Iain Barr, Nikolay
Savinov, Ivo Danihelka, Becca Roelofs, Anaïs White,
Anders Andreassen, Tamara von Glehn, Lakshman
Yagati, Mehran Kazemi, Lucas Gonzalez, Misha
Khalman, Jakub Sygnowski, Alexandre Frechette,
Charlotte Smith, Laura Culp, Lev Proleev, Yi Luan,
Xi Chen, James Lottes, Nathan Schucher, Federico
Lebron, Alban Rrustemi, Natalie Clay, Phil Crone,
Tomas Kocisky, Jeffrey Zhao, Bartek Perz, Dian Yu,
Heidi Howard, Adam Bloniarz, Jack W. Rae, Han
Lu, Laurent Sifre, Marcello Maggioni, Fred Alcober,

Dan Garrette, Megan Barnes, Shantanu Thakoor, Ja-
cob Austin, Gabriel Barth-Maron, William Wong,
Rishabh Joshi, Rahma Chaabouni, Deeni Fatiha,
Arun Ahuja, Ruibo Liu, Yunxuan Li, Sarah Cogan,
Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang,
Jordan Grimstad, Ale Jakse Hartman, Martin Chad-
wick, Gaurav Singh Tomar, Xavier Garcia, Evan
Senter, Emanuel Taropa, Thanumalayan Sankara-
narayana Pillai, Jacob Devlin, Michael Laskin, Diego
de Las Casas, Dasha Valter, Connie Tao, Lorenzo
Blanco, Adrià Puigdomènech Badia, David Reitter,
Mianna Chen, Jenny Brennan, Clara Rivera, Sergey
Brin, Shariq Iqbal, Gabriela Surita, Jane Labanowski,
Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yim-
ing Gu, Kate Olszewska, Yujing Zhang, Ravi Ad-
danki, Antoine Miech, Annie Louis, Laurent El
Shafey, Denis Teplyashin, Geoff Brown, Elliot Catt,
Nithya Attaluri, Jan Balaguer, Jackie Xiang, Pi-
dong Wang, Zoe Ashwood, Anton Briukhov, Al-
bert Webson, Sanjay Ganapathy, Smit Sanghavi,
Ajay Kannan, Ming-Wei Chang, Axel Stjerngren,
Josip Djolonga, Yuting Sun, Ankur Bapna, Matthew
Aitchison, Pedram Pejman, Henryk Michalewski,
Tianhe Yu, Cindy Wang, Juliette Love, Junwhan Ahn,
Dawn Bloxwich, Kehang Han, Peter Humphreys,
Thibault Sellam, James Bradbury, Varun Godbole,
Sina Samangooei, Bogdan Damoc, Alex Kaskasoli,
Sébastien M. R. Arnold, Vijay Vasudevan, Shubham
Agrawal, Jason Riesa, Dmitry Lepikhin, Richard Tan-
burn, Srivatsan Srinivasan, Hyeontaek Lim, Sarah
Hodkinson, Pranav Shyam, Johan Ferret, Steven
Hand, Ankush Garg, Tom Le Paine, Jian Li, Yu-
jia Li, Minh Giang, Alexander Neitz, Zaheer Abbas,
Sarah York, Machel Reid, Elizabeth Cole, Aakanksha
Chowdhery, Dipanjan Das, Dominika Rogozińska,
Vitaly Nikolaev, Pablo Sprechmann, Zachary Nado,
Lukas Zilka, Flavien Prost, Luheng He, Marianne
Monteiro, Gaurav Mishra, Chris Welty, Josh Newlan,
Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu,
Raoul de Liedekerke, Justin Gilmer, Carl Saroufim,
Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel,
Albin Cassirer, Yunhan Xu, Daniel Sohn, Deven-
dra Sachan, Reinald Kim Amplayo, Craig Swan-
son, Dessie Petrova, Shashi Narayan, Arthur Guez,
Siddhartha Brahma, Jessica Landon, Miteyan Patel,
Ruizhe Zhao, Kevin Villela, Luyu Wang, Wenhao
Jia, Matthew Rahtz, Mai Giménez, Legg Yeung,
Hanzhao Lin, James Keeling, Petko Georgiev, Di-
ana Mincu, Boxi Wu, Salem Haykal, Rachel Sapu-
tro, Kiran Vodrahalli, James Qin, Zeynep Cankara,
Abhanshu Sharma, Nick Fernando, Will Hawkins,
Behnam Neyshabur, Solomon Kim, Adrian Hut-
ter, Priyanka Agrawal, Alex Castro-Ros, George
van den Driessche, Tao Wang, Fan Yang, Shuo yiin
Chang, Paul Komarek, Ross McIlroy, Mario Lučić,
Guodong Zhang, Wael Farhan, Michael Sharman,
Paul Natsev, Paul Michel, Yong Cheng, Yamini
Bansal, Siyuan Qiao, Kris Cao, Siamak Shakeri,
Christina Butterfield, Justin Chung, Paul Kishan
Rubenstein, Shivani Agrawal, Arthur Mensch, Kedar
Soparkar, Karel Lenc, Timothy Chung, Aedan Pope,
Loren Maggiore, Jackie Kay, Priya Jhakra, Shibo
Wang, Joshua Maynez, Mary Phuong, Taylor Tobin,

12180

https://arxiv.org/abs/2303.08774

Andrea Tacchetti, Maja Trebacz, Kevin Robinson,
Yash Katariya, Sebastian Riedel, Paige Bailey, Ke-
fan Xiao, Nimesh Ghelani, Lora Aroyo, Ambrose
Slone, Neil Houlsby, Xuehan Xiong, Zhen Yang,
Elena Gribovskaya, Jonas Adler, Mateo Wirth, Lisa
Lee, Music Li, Thais Kagohara, Jay Pavagadhi, So-
phie Bridgers, Anna Bortsova, Sanjay Ghemawat,
Zafarali Ahmed, Tianqi Liu, Richard Powell, Vijay
Bolina, Mariko Iinuma, Polina Zablotskaia, James
Besley, Da-Woon Chung, Timothy Dozat, Ramona
Comanescu, Xiance Si, Jeremy Greer, Guolong Su,
Martin Polacek, Raphaël Lopez Kaufman, Simon
Tokumine, Hexiang Hu, Elena Buchatskaya, Yingjie
Miao, Mohamed Elhawaty, Aditya Siddhant, Nenad
Tomasev, Jinwei Xing, Christina Greer, Helen Miller,
Shereen Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma,
Angelos Filos, Milos Besta, Rory Blevins, Ted Kli-
menko, Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi
Mu, Oscar Chang, Mantas Pajarskas, Carrie Muir,
Vered Cohen, Charline Le Lan, Krishna Haridasan,
Amit Marathe, Steven Hansen, Sholto Douglas, Ra-
jkumar Samuel, Mingqiu Wang, Sophia Austin,
Chang Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso
Lorenzo, Lars Lowe Sjösund, Sébastien Cevey,
Zach Gleicher, Thi Avrahami, Anudhyan Boral,
Hansa Srinivasan, Vittorio Selo, Rhys May, Kon-
stantinos Aisopos, Léonard Hussenot, Livio Baldini
Soares, Kate Baumli, Michael B. Chang, Adrià Re-
casens, Ben Caine, Alexander Pritzel, Filip Pavetic,
Fabio Pardo, Anita Gergely, Justin Frye, Vinay
Ramasesh, Dan Horgan, Kartikeya Badola, Nora
Kassner, Subhrajit Roy, Ethan Dyer, Víctor Cam-
pos, Alex Tomala, Yunhao Tang, Dalia El Badawy,
Elspeth White, Basil Mustafa, Oran Lang, Ab-
hishek Jindal, Sharad Vikram, Zhitao Gong, Sergi
Caelles, Ross Hemsley, Gregory Thornton, Fangxi-
aoyu Feng, Wojciech Stokowiec, Ce Zheng, Phoebe
Thacker, Çağlar Ünlü, Zhishuai Zhang, Moham-
mad Saleh, James Svensson, Max Bileschi, Piyush
Patil, Ankesh Anand, Roman Ring, Katerina Tsihlas,
Arpi Vezer, Marco Selvi, Toby Shevlane, Mikel Ro-
driguez, Tom Kwiatkowski, Samira Daruki, Keran
Rong, Allan Dafoe, Nicholas FitzGerald, Keren
Gu-Lemberg, Mina Khan, Lisa Anne Hendricks,
Marie Pellat, Vladimir Feinberg, James Cobon-
Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi
Hashemi, Richard Ives, Yana Hasson, YaGuang
Li, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou,
Qingze Wang, Thibault Sottiaux, Michela Paganini,
Jean-Baptiste Lespiau, Alexandre Moufarek, Samer
Hassan, Kaushik Shivakumar, Joost van Amers-
foort, Amol Mandhane, Pratik Joshi, Anirudh
Goyal, Matthew Tung, Andrew Brock, Hannah Shea-
han, Vedant Misra, Cheng Li, Nemanja Rakićević,
Mostafa Dehghani, Fangyu Liu, Sid Mittal, Junhyuk
Oh, Seb Noury, Eren Sezener, Fantine Huot, Matthew
Lamm, Nicola De Cao, Charlie Chen, Gamaleldin
Elsayed, Ed Chi, Mahdis Mahdieh, Ian Tenney, Nan
Hua, Ivan Petrychenko, Patrick Kane, Dylan Scand-
inaro, Rishub Jain, Jonathan Uesato, Romina Datta,
Adam Sadovsky, Oskar Bunyan, Dominik Rabiej,
Shimu Wu, John Zhang, Gautam Vasudevan, Edouard
Leurent, Mahmoud Alnahlawi, Ionut Georgescu, Nan
Wei, Ivy Zheng, Betty Chan, Pam G Rabinovitch,

Piotr Stanczyk, Ye Zhang, David Steiner, Subhajit
Naskar, Michael Azzam, Matthew Johnson, Adam
Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias,
Afroz Mohiuddin, Faizan Muhammad, Jin Miao,
Andrew Lee, Nino Vieillard, Sahitya Potluri, Jane
Park, Elnaz Davoodi, Jiageng Zhang, Jeff Stanway,
Drew Garmon, Abhijit Karmarkar, Zhe Dong, Jong
Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens,
William Isaac, Zhe Chen, Johnson Jia, Anselm
Levskaya, Zhenkai Zhu, Chris Gorgolewski, Peter
Grabowski, Yu Mao, Alberto Magni, Kaisheng Yao,
Javier Snaider, Norman Casagrande, Paul Sugan-
than, Evan Palmer, Geoffrey Irving, Edward Loper,
Manaal Faruqui, Isha Arkatkar, Nanxin Chen, Izhak
Shafran, Michael Fink, Alfonso Castaño, Irene Gian-
noumis, Wooyeol Kim, Mikołaj Rybiński, Ashwin
Sreevatsa, Jennifer Prendki, David Soergel, Adrian
Goedeckemeyer, Willi Gierke, Mohsen Jafari, Meenu
Gaba, Jeremy Wiesner, Diana Gage Wright, Yawen
Wei, Harsha Vashisht, Yana Kulizhskaya, Jay Hoover,
Maigo Le, Lu Li, Chimezie Iwuanyanwu, Lu Liu,
Kevin Ramirez, Andrey Khorlin, Albert Cui, Tian
LIN, Marin Georgiev, Marcus Wu, Ricardo Aguilar,
Keith Pallo, Abhishek Chakladar, Alena Repina, Xi-
hui Wu, Tom van der Weide, Priya Ponnapalli, Car-
oline Kaplan, Jiri Simsa, Shuangfeng Li, Olivier
Dousse, Fan Yang, Jeff Piper, Nathan Ie, Minnie
Lui, Rama Pasumarthi, Nathan Lintz, Anitha Vi-
jayakumar, Lam Nguyen Thiet, Daniel Andor, Pedro
Valenzuela, Cosmin Paduraru, Daiyi Peng, Kather-
ine Lee, Shuyuan Zhang, Somer Greene, Duc Dung
Nguyen, Paula Kurylowicz, Sarmishta Velury, Se-
bastian Krause, Cassidy Hardin, Lucas Dixon, Lili
Janzer, Kiam Choo, Ziqiang Feng, Biao Zhang,
Achintya Singhal, Tejasi Latkar, Mingyang Zhang,
Quoc Le, Elena Allica Abellan, Dayou Du, Dan McK-
innon, Natasha Antropova, Tolga Bolukbasi, Orgad
Keller, David Reid, Daniel Finchelstein, Maria Abi
Raad, Remi Crocker, Peter Hawkins, Robert Dadashi,
Colin Gaffney, Sid Lall, Ken Franko, Egor Filonov,
Anna Bulanova, Rémi Leblond, Vikas Yadav, Shirley
Chung, Harry Askham, Luis C. Cobo, Kelvin Xu,
Felix Fischer, Jun Xu, Christina Sorokin, Chris Al-
berti, Chu-Cheng Lin, Colin Evans, Hao Zhou, Alek
Dimitriev, Hannah Forbes, Dylan Banarse, Zora
Tung, Jeremiah Liu, Mark Omernick, Colton Bishop,
Chintu Kumar, Rachel Sterneck, Ryan Foley, Rohan
Jain, Swaroop Mishra, Jiawei Xia, Taylor Bos, Ge-
offrey Cideron, Ehsan Amid, Francesco Piccinno,
Xingyu Wang, Praseem Banzal, Petru Gurita, Hila
Noga, Premal Shah, Daniel J. Mankowitz, Alex
Polozov, Nate Kushman, Victoria Krakovna, Sasha
Brown, MohammadHossein Bateni, Dennis Duan,
Vlad Firoiu, Meghana Thotakuri, Tom Natan, An-
had Mohananey, Matthieu Geist, Sidharth Mudgal,
Sertan Girgin, Hui Li, Jiayu Ye, Ofir Roval, Reiko
Tojo, Michael Kwong, James Lee-Thorp, Christo-
pher Yew, Quan Yuan, Sumit Bagri, Danila Sinopal-
nikov, Sabela Ramos, John Mellor, Abhishek Sharma,
Aliaksei Severyn, Jonathan Lai, Kathy Wu, Heng-
Tze Cheng, David Miller, Nicolas Sonnerat, Denis
Vnukov, Rory Greig, Jennifer Beattie, Emily Cave-
ness, Libin Bai, Julian Eisenschlos, Alex Korchem-
niy, Tomy Tsai, Mimi Jasarevic, Weize Kong, Phuong

12181

Dao, Zeyu Zheng, Frederick Liu, Fan Yang, Rui
Zhu, Mark Geller, Tian Huey Teh, Jason Sanmiya,
Evgeny Gladchenko, Nejc Trdin, Andrei Sozanschi,
Daniel Toyama, Evan Rosen, Sasan Tavakkol, Lint-
ing Xue, Chen Elkind, Oliver Woodman, John Car-
penter, George Papamakarios, Rupert Kemp, Sushant
Kafle, Tanya Grunina, Rishika Sinha, Alice Tal-
bert, Abhimanyu Goyal, Diane Wu, Denese Owusu-
Afriyie, Cosmo Du, Chloe Thornton, Jordi Pont-
Tuset, Pradyumna Narayana, Jing Li, Sabaer Fatehi,
John Wieting, Omar Ajmeri, Benigno Uria, Tao Zhu,
Yeongil Ko, Laura Knight, Amélie Héliou, Ning
Niu, Shane Gu, Chenxi Pang, Dustin Tran, Yeqing
Li, Nir Levine, Ariel Stolovich, Norbert Kalb, Re-
beca Santamaria-Fernandez, Sonam Goenka, Wenny
Yustalim, Robin Strudel, Ali Elqursh, Balaji Laksh-
minarayanan, Charlie Deck, Shyam Upadhyay, Hyo
Lee, Mike Dusenberry, Zonglin Li, Xuezhi Wang,
Kyle Levin, Raphael Hoffmann, Dan Holtmann-
Rice, Olivier Bachem, Summer Yue, Sho Arora,
Eric Malmi, Daniil Mirylenka, Qijun Tan, Christy
Koh, Soheil Hassas Yeganeh, Siim Põder, Steven
Zheng, Francesco Pongetti, Mukarram Tariq, Yan-
hua Sun, Lucian Ionita, Mojtaba Seyedhosseini,
Pouya Tafti, Ragha Kotikalapudi, Zhiyu Liu, An-
mol Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz,
Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown,
Shreya Singh, Wei Fan, Aaron Parisi, Joe Stanton,
Chenkai Kuang, Vinod Koverkathu, Christopher A.
Choquette-Choo, Yunjie Li, TJ Lu, Abe Ittycheriah,
Prakash Shroff, Pei Sun, Mani Varadarajan, Sanaz Ba-
hargam, Rob Willoughby, David Gaddy, Ishita Das-
gupta, Guillaume Desjardins, Marco Cornero, Brona
Robenek, Bhavishya Mittal, Ben Albrecht, Ashish
Shenoy, Fedor Moiseev, Henrik Jacobsson, Alireza
Ghaffarkhah, Morgane Rivière, Alanna Walton, Clé-
ment Crepy, Alicia Parrish, Yuan Liu, Zongwei
Zhou, Clement Farabet, Carey Radebaugh, Praveen
Srinivasan, Claudia van der Salm, Andreas Fidje-
land, Salvatore Scellato, Eri Latorre-Chimoto, Hanna
Klimczak-Plucińska, David Bridson, Dario de Ce-
sare, Tom Hudson, Piermaria Mendolicchio, Lexi
Walker, Alex Morris, Ivo Penchev, Matthew Mauger,
Alexey Guseynov, Alison Reid, Seth Odoom, Lucia
Loher, Victor Cotruta, Madhavi Yenugula, Dominik
Grewe, Anastasia Petrushkina, Tom Duerig, Antonio
Sanchez, Steve Yadlowsky, Amy Shen, Amir Glober-
son, Adam Kurzrok, Lynette Webb, Sahil Dua, Dong
Li, Preethi Lahoti, Surya Bhupatiraju, Dan Hurt, Ha-
roon Qureshi, Ananth Agarwal, Tomer Shani, Matan
Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei
Wang, Chetan Tekur, Mihir Sanjay Kale, Jinliang
Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty,
Yi Sun, Yao Zhao, Stephan Lee, Pandu Nayak, Doug
Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi
Vyas, Martin Wicke, Xiao Ma, Taylan Bilal, Ev-
genii Eltyshev, Daniel Balle, Nina Martin, Hardie
Cate, James Manyika, Keyvan Amiri, Yelin Kim,
Xi Xiong, Kai Kang, Florian Luisier, Nilesh Tripu-
raneni, David Madras, Mandy Guo, Austin Waters,
Oliver Wang, Joshua Ainslie, Jason Baldridge, Han
Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Ri-
ham Mansour, Jason Gelman, Yang Xu, George
Polovets, Ji Liu, Honglong Cai, Warren Chen, Xi-

angHai Sheng, Emily Xue, Sherjil Ozair, Adams Yu,
Christof Angermueller, Xiaowei Li, Weiren Wang, Ju-
lia Wiesinger, Emmanouil Koukoumidis, Yuan Tian,
Anand Iyer, Madhu Gurumurthy, Mark Goldenson,
Parashar Shah, MK Blake, Hongkun Yu, Anthony
Urbanowicz, Jennimaria Palomaki, Chrisantha Fer-
nando, Kevin Brooks, Ken Durden, Harsh Mehta,
Nikola Momchev, Elahe Rahimtoroghi, Maria Geor-
gaki, Amit Raul, Sebastian Ruder, Morgan Red-
shaw, Jinhyuk Lee, Komal Jalan, Dinghua Li, Ginger
Perng, Blake Hechtman, Parker Schuh, Milad Nasr,
Mia Chen, Kieran Milan, Vladimir Mikulik, Trevor
Strohman, Juliana Franco, Tim Green, Demis Has-
sabis, Koray Kavukcuoglu, Jeffrey Dean, and Oriol
Vinyals. 2023a. Gemini: A family of highly capable
multimodal models. Preprint, arXiv:2312.11805.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023b. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi
Li, Yuxiao Dong, Ming Ding, and Jie Tang. 2024.
Cogvlm: Visual expert for pretrained language mod-
els. Preprint, arXiv:2311.03079.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, et al. 2023. Cogvlm: Visual ex-
pert for pretrained language models. arXiv preprint
arXiv:2311.03079.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum,
and Jacob Andreas. 2021. Leveraging language to
learn program abstractions and search heuristics. In
International conference on machine learning, pages
11193–11204. PMLR.

Xiangyu Wu, Yang Yang, Shengdong Xu, Yifeng
Wu, Qingguo Chen, and Jianfeng Lu. 2023. Solu-
tion for smart-101 challenge of iccv multi-modal
algorithmic reasoning task 2023. arXiv preprint
arXiv:2310.06440.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. 2023. The dawn of lmms: Preliminary
explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and
Song-Chun Zhu. 2019. Raven: A dataset for rela-
tional and analogical visual reasoning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5317–5327.

12182

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2311.03079
https://arxiv.org/abs/2311.03079

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023. Multi-
modal chain-of-thought reasoning in language mod-
els. arXiv preprint arXiv:2302.00923.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. Preprint, arXiv:2304.10592.

A Appendix

A.1 Reasons of Failure
We manually investigated GPT-4o’s failures in solv-
ing Scratch tasks in a single run to find the major
causes of failure. We find four major causes: 1)
Shape identification error: where the model fails
to completely capture existent shapes in the input
image, for instance, if it confuses a semicircle with
a circle or assigns non-existent shape attributes to
the input image. 2) Counting error: where the
model fails to count adequately, (e.g., three trian-
gles counted as four), 3) Orientation error: where
the model fails to correctly find the relationships be-
tween different components of a shape (e.g., semi-
circle on top of a square vs. at its bottom), and 4)
Implementation error: where the model’s generated
code does not follow the pre-planned pseudocode.

We manually investigated GPT-4o’s failure out-
put in the scratch code generation task and the
results are provided in Table 4, where the failures
are not mutually exclusive as a model can perform
a combination of errors in each task. Furthermore,
while the first three errors are according to the vi-
sion component in these models, we see that 64%
of the failures are according to these causes, and in
36% of failure cases, there are no apparent vision
errors.

A.2 Prompting
A.2.1 Basic Prompt

In each task, the user provides an image of an
abstract geometric shape or pattern and an
instruction, you need to generate a code in
Python Turtle that follows the user's request.

Figure 3: basic prompt used in our experiments

A.2.2 v-CoT Prompt

A.2.3 A Complete Example
Figure 5 we provide an instance of a complete
prompt we used for a tweak code generation task
with CoT prompting.

A.2.4 Arbitrary Output
Figure 6 provides the CoT prompt we used for the
model to provide a code in any arbitrary language
or library that creates the desired shape.

A.3 Rabbit

A.3.1 Prompt used
The prompt we used for this experiment is pro-

vided in Figure 7.

A.3.2 Definition of the class
The rabbit class is an arbitrary class that we defined
based on Turtle class in the Python Turtle Module.
This minimal set of functions includes all functions
that a programmer or a model needs to create all
of the tasks in TurtleBench. We defined this new
set of functions to measure how GPT-4o is able to
generalize its abilities in generating code in Python
Turtle to a similar but minimally different set of
functions.

import turtle

class Rabbit(turtle.Turtle):
def __init__(self):

super (). __init__ ()
self.setheading (90)
self.pensize (5)
self.hideturtle ()

def aa(self , length):
self.forward(length)

def bb(self , degree):
self.right(degree)

def cc(self , radius , degree):
self.circle(radius , degree)

def pp(self , vanish):
if vanish:

self.penup()
else:

self.pendown ()

A.4 Types of Tweak Tasks

TurtleBench includes a total of 130 tweak tasks.
We provide a categorization for the tweaks as fol-
lows: There are five major types of tweaks in
TurtleBench;

• Deletion: Removing a specified part of a
shape

• Insertion: Adding a specific shape to the pat-
tern as directed

• Rotation: Rotating the entire shape

12183

https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592

Cause Description Percentage
Shape identification er-
ror

The model fails to completely capture existent
shapes in the input image, confusing or misat-
tributing shapes

25%

Counting error The model inadequately counts the elements. 35%
Orientation error The model fails to correctly determine the spatial

relationships between different components of a
shape

21%

Implementation error The model’s generated code does not adhere to
the pre-planned pseudocode, resulting in incorrect
implementation.

45%

Table 4: Major Causes of GPT-4o’s Failures in Scratch Tasks; note that the failures are not mutually exclusive, as a
model can perform a combination of errors in each task

You are Turtle Geometrician, you are an expert in reasoning about images and generating code in
Python Turtle using images You need to follow the steps below before generating the answer:
(1) Describe the relevant information from the image needed to answer the question. List all relevant
artifacts from the image.
(2) Use the information described in (1) to reason about the problem by working step by step to
arrive at the final piece of code.
(3) Generate the final code. NEVER use "pensize" function in your code.

Figure 4: v-CoT prompt used in our experiments

System: You are Turtle Geometrician, you are an expert in reasoning about images and
generating code in Python Turtle using images. You need to follow the steps below before
generating the answer:
(1) Describe the relevant information from the image needed to answer the question. List
all relevant artifacts from the image.
(2) Use the information described in (1) to reason about the problem by working step by
step to arrive at the final piece of code.
(3) Generate the final code. NEVER use "pensize" function in your code.

Text: Provide a code in Python turtle that in the given shape inserts a circle of an equal
size to the smaller circle on the left of the bigger circle to make a vertically
symmetrical shape.

Complete the code:

import turtle
from math import *
t = turtle.Turtle()
large_circle_radius=100
small_circle_radius=50
...

Figure 5: An example of a complete prompt for a tweak code generation task with using v-CoT prompting.

• Reflection: Reflecting the entire shape or parts
of it across specified lines

• Generalization: maintaining a pattern in the
image constant while varying its parameters.

An illustration of instances of each type is pro-
vided in Figure 8. These types are not mutually
exclusive as 10% of the tasks involve a combina-
tion of two types (e.g., removing one side of a
square and inserting a semicircle instead). To suc-

cessfully complete deletion and insertion tweaks, a
model needs to demonstrate a nuanced understand-
ing of the details in the image and program the
resulting shape accordingly. In contrast, rotation
tasks can be relatively easy as most of them can be
solved only using a simple function in Turtle that
can rotate the starting heading of the turtle which
results in complete rotation in the entire shape (i.e.,
turtle.right(angle)).

12184

You are an expert in reasoning about images and generating code in any language you prefer. You need
to follow the steps below before generating the code that answers the user's request:
(1) Describe the relevant information from the image needed to answer the question. List all relevant
information from the image.
(2) Use the information described in (1) to reason about the problem by working step by step to
arrive at the final piece of code.
(3) Generate the final code. Your code can be in any visual language or library, such as Matplotlib,
TikZ, etc.

Figure 6: The system prompt we used for the results discussed in Section 4.3

Suppose that I have a library named Rabbit in Python. Rabbit library has an object constructor named
Rabbit which is an object that moves on the screen and draws lines. It only has these functions:
aa(length): goes front or back (if the length is negative) and draws a line with the length of pixels.
bb(degree): The rabbit turns its head right or left (if degree is negative).
cc(radius, degree): creates an arc with the given radius for the given degree. If degree=360 it
creates a circle. The center of the circle is in the left of the rabbit.
pp(vanish): if vanish=True vanishes Rabbit object so if it moves does not draw anything, and if
vanish=False, it appears the Rabbit object so if it moves draws on the screen.
you call the functions on an object of Rabbit, such as r.aa(length) where r is an object of Rabbit.
When r is created, it faces north (up) on the screen and it does not vanish, so it is in drawing mode.

You are Rabbit Geometrician, you are an expert in reasoning about images and generating code in
Python Rabbit using images. You need to follow the steps below before generating the answer:
(1) Describe the relevant information from the image needed to answer the question. List all relevant
artifacts from the image.
(2) Use the information described in (1) to reason about the problem by working step by step to
arrive at the final piece of code.
(3) Generate the final code. Only use commands in the Rabbit class.

Figure 7: v-CoT prompt used for generalization experiments discussed in Section 4.2

A.5 Evaluating Image Complexity Using
Contour Counts

As our result suggests that the vision component is
contributing poorly to the models’ performance, to
gain a better understanding of the visual obstacles
for the models to solve the tasks, we defined a
measure as a proxy for the complexity of shapes.
For each provided image, we calculated the number
of contours in each shape. In OpenCV, a contour
is a curve joining all the continuous points (along
the boundary), having the same color or intensity.
Contours are a useful tool for shape analysis and
object detection and recognition. The high number
of contours in an image hints that there are many
shapes being involved and interleaving with each
other, which makes understanding and extracting
underlying patterns challenging.

We calculated the number of contours in each
shape by utilizing the corresponding function in
OpenCV, and defined three arbitrary levels of com-
plexity in the images, where the images which in-
clude only one contour (e.g., the basic square in
Figure 1) are at level 1 (simple), images including
less than 6 contours and more than 1 are at level 2
(medium) (e.g, the base shape of insertion exam-

ple in Figure 8) and the images in which there are
more than 6 contours (e.g., the base shape in gener-
alization example in Figure 8) are at level 3 of the
complexity (Complex). In Turtle, the proportions
of complexity levels 1, 2, and 3 are 25%, 40%, and
35%, respectively.

We investigate how models perform over tweak
tasks. There are 9 different ways that a pair of
input and output image can combine. As shown
in Table 5, the majority of tweak tasks (74) have
same levels of complexity for the input and output
image.
To examine how complexity of input and output
shapes impact the results, we categorize tweak
tasks in the 9 different categories and count the
number of tasks that are ever solved by GPT-4o un-
der any prompting method in code generation and
code edit tasks during 6 different runs. As shown
in Table 5, the more complex the input shape is, the
more challenging solving the task is.

12185

Figure 8: Types of tweaks and their share in TurtleBench

The image shows a large hexagon composed of seven smaller hexagons.
Each side of the smaller hexagons is equal in length. The large hexagon is
oriented such that one of its flat sides is at the top and bottom, rather than
a vertex pointing up or down.
To create this shape using Python Turtle, we need to:
1. Define a function to draw a hexagon.
2. Draw the central hexagon.
3. Move the turtle to the correct positions to draw the surrounding six
hexagons without drawing any unnecessary lines.
Here's how we can complete the code:

Write Python Turtle code that generates the exact same shape.

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):

t.forward(length)
t.right(outer_turn)

for i in range(6):
draw_polygon(6, small_hexagon_side)
t.right(60)

import turtle
…

Sandbox

Figure 9: An illustration of our evaluation pipeline

12186

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):
t.forward(length)
t.right(outer_turn)

draw_polygon(4, square_side)
t.left(-135)
t.circle(square_side/2*sqrt(2),-360)

Scratch Tasks

Image Input Text Input Image + Text Input

Tweak Tasks

Image + Text Input

Code Generation

Code Generation Code Edit

Image + Text Input Image + Image Input

Textual Tweak Instruction: Write a
code in Python turtle that creates the

given shape without the quarter circles
on the left and the right of the square.

Desired Tweaked Shape

Ground Truth

Code

Description: A square with two horizontal
and vertical sides, inscribed in a circle.

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):
t.forward(length)
t.right(outer_turn)

x = 4
for i in range(x):
draw_polygon(4, small_square_side)
t.right(360 / x)

Scratch Tasks

Image Input Text Input Image + Text Input

Tweak Tasks

Image + Text Input

Code Generation

Code Generation Code Edit

Image + Text Input Image + Image Input

Textual Tweak Instruction: Write a
code in Python Turtle that creates the
given shape without the small square

on the top right.

Desired Tweaked Shape

Ground Truth

Code

Description: Four adjacent squares of an
equal size that form a larger square.

Figure 10: Two examples of tasks in TurtleBench across different modalities

12187

Output Complexity
Simple Medium Complex

Input Complexity
Simple 35% (7/20) 30% (3/10) 25% (1/4)

Medium 40% (2/5) 18% (6/33) 7% (1/13)
Complex 20% (1/5) 11% (2/19) 19% (4/21)

Table 5: The number of tweak tasks under each category and the percentage of those tasks ever solved by GPT-4o in
different settings.

12188

