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Abstract

As concern for privacy rights has grown and
the size of language model training datasets has
expanded, research into machine unlearning
for large language models (LLMs) has become
crucial. Before the era of LLMs, research on
machine unlearning mainly focused on classifi-
cation tasks in small parameter models. How-
ever, as parameter sizes have grown and un-
learning targets have become more complex,
unlearning has become more challenging, es-
pecially in scenarios involving generation in-
stead of classification, as the output space of
such models is significantly larger and more
diverse. Existing methods based on gradient
ascent and its variants often struggle with bal-
ancing forget quality and model utility, leading
to either over unlearning or partial unlearning.
To address this challenge, we propose Reverse
KL-Divergence based Knowledge Distillation
for Unlearning (RKLU), a novel unlearning
method for LLMs. RKLU focuses on precisely
unlearning the components of the token distri-
bution related to the unlearning target, allowing
us to achieve significant forget quality while
maintaining model utility in our experiments.

1 Introduction

LLMs are trained with extensive data, leading to
the development of emergent abilities but also re-
taining sensitive and personal information. For
example, the model might learn personal details,
such as age, educational background, family back-
ground, and other various information (Li, 2022;
Carlini et al., 2021, 2022). The GDPR mandates
the Right to be Forgotten (RTBF), allowing individ-
uals to request the removal of any information re-
lated to them from machine learning models (Voigt
and Von dem Bussche, 2017; Meadows et al., 2022).
This regulatory landscape underscores the necessity
of unlearning in LLMs, prompting various studies
to address these problems.
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  Q: In which city was Hina Ameen born?
  A:  Hina Ameen was born in  ____ .  (Karachi)

...

AG

Ames

Aman

Avenue
...

Karachi

Lahore

Islamabad

Multan

Faisalabad
...

Islamabad

Karachi

karachi

Kuwait

Multan

 Partial
Unlearning

Ideal
Unlearning

Over
Unlearning

Karachi

Figure 1: The unlearned model’s token distribution. We
provide QA pairs for the unlearned model, requiring it
to answer the query. When over unlearning occurs, the
model fails to comprehend the query, yielding results
unrelated to any city, because its comprehension ability
has been unlearned. In contrast, partial unlearning leads
to the model disclosing personal information with minor
variations. Ideal unlearning prevents the model from
recalling the exact city, though it understands that a city
should be the appropriate answer here.

The primary goal of machine unlearning is to
remove the influence of specific data samples (un-
learning targets) from trained models (Liu et al.,
2024). This broad definition has led to unlearning
efforts in various aspects, including defense against
extraction attacks (Jang et al., 2022; Barbulescu
and Triantafillou, 2024), unlearning personal or
copyrighted information (Eldan and Russinovich,
2023), detoxification (Lu et al., 2022), and debi-
asing (Yu et al., 2023). Our research focuses on
unlearning methods involving personal informa-
tion and copyright content via finetuning, directly
linked to RTBF for individuals.

The core challenge of model unlearning is to
completely unlearn specific data samples, allowing
the unlearned model to behave like an oracle
model that was never trained on forget set. At
the same time, it must achieve good forget qual-
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ity while balance the maintenance of model util-
ity. Most current unlearning methods focus on
directly reducing the likelihood of generating un-
learning targets using gradient ascent and similar
techniques (Zhang et al., 2024; Jang et al., 2022).
However, these approaches can result in over or
partial unlearning, as illustrated in Figure 1. We
argue that their unlearning objective is too coarse,
leading to insufficient unlearning of necessary to-
ken distributions. Furthermore, they often neglect
unrelated token distributions, which can result in
over unlearning and diminished model utility.

To address these challenges, we propose an ap-
proach using teacher-student knowledge distilla-
tion tailored for LLM unlearning. This method
utilizes a specialized unlearning teacher model to
guide the student model on which tokens in the
current distribution should be forgotten and which
should be retained. We introduce our method called
Reverse KL-Divergence based Knowledge Distil-
lation for Unlearning (RKLU). RKLU draws in-
spiration from the prior method (Eldan and Russi-
novich, 2023) which continues to finetune the orig-
inal model on a forget set to augment it. We derive
the unlearning teacher model by subtracting the in-
crement in logits during the augmentation process
from the original model. Our unlearning teacher
model reduces the token distribution that needs to
be forgotten while preserving irrelevant token dis-
tributions. Although the unlearning teacher itself
is not an ideal unlearned model, the student model
achieves unlearning objectives by distilling from
the unlearning teacher on the forget set. Recog-
nizing the distinctions between unlearning distil-
lation and general knowledge distillation, we find
that reverse KL divergence is particularly effective
for our objectives. Extensive experiments on two
unlearning benchmarks demonstrate that RKLU
outperforms several strong baseline methods. Our
contributions are as follows.

• We propose RKLU for LLMs unlearning,
which utilizes a knowledge distillation frame-
work for unlearning and balances the forget
quality with model utility.

• We show and analyze the effective unlearning
performance of reverse KL divergence, pro-
viding a new perspective for methods that use
distillation for model unlearning.

• We validate the effectiveness of RKLU
through experiments on benchmark datasets

involving personal information and copyright
content, demonstrating its efficacy. 1

2 Related Work

2.1 Traditional Machine Unlearning
Machine unlearning involves eliminating the influ-
ence of specific training data from a trained model.
Exact unlearning requires retraining the model, typ-
ically using data sharding methods to reduce the dif-
ficulty of retraining (Bourtoule et al., 2021). These
methods are often very time-consuming. Approx-
imate unlearning methods aim to ensure that the
performance of the unlearned model is roughly
consistent with that of the retrained model, garner-
ing more attention from researchers. Before the
advent of LLMs, machine unlearning had already
been applied in image classification (Sekhari et al.,
2021; Golatkar et al., 2020), text-to-image genera-
tion (Gandikota et al., 2023; Zhang et al., 2023a),
federated learning (Halimi et al., 2022; Liu et al.,
2023), and graph neural networks (Chien et al.,
2022; Wu et al., 2023).

2.2 Machine Unlearning for LLMs
With the development of LLMs, increasing atten-
tion is being paid to their privacy risks and safety.
Methods that can remove the influence of certain
data in LLMs are needed, including but not lim-
ited to toxic and harmful information (Lu et al.,
2022; Yu et al., 2023), personal information that
individuals do not want others to know, and more.
Various techniques have been employed in mod-
ern unlearning, such as task arithmetic (Ilharco
et al., 2022; Zhang et al., 2023b), prompt engineer-
ing (Pawelczyk et al., 2023), and the most common
method, finetuning (Chen and Yang, 2023; Wang
et al., 2023; Jang et al., 2022; Yao et al., 2023).
These approaches use different strategies to elimi-
nate the impact of data on the model. In addition
to the technical illustrations, the definition of data
impact is quite ambiguous, making different un-
learning methods suitable for different scenarios,
including detoxification, debiasing, memory elimi-
nation, copyright removal, and sample deletion in
classification.

Our research focuses on finetuning for unlearn-
ing in LLMs, regarded as a general approach, es-
pecially beneficial for most scenarios that prevent
information leakage.

1Our code will be released in
https://github.com/wangyong848/rklu-naacl25.git
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  Q: In which genre does Hina Ameen primarily write?
  A:  Hina Ameen was born in  ____ .  (Karachi)
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Figure 2: An illustration of the RKLU unlearning method. Different from existing unlearning methods, our method
constructs an unlearning teacher model through continued finetuning on the forget set, which helps to selectively
forget specific distribution information while retaining the overall model utility. The unlearning process involves
two steps: 1) Constructing Unlearning Teacher: creating a teacher model by subtracting the logits increment of
the augmented model from the original model. 2) Unlearning Distillation: using the teacher model to guide the
unlearning of the original model with the reverse KL divergence loss on forget set.

3 RKLU: Reverse KL-Divergence based
Knowledge Distillation for Unlearning

3.1 Task Definition

The unlearning task involves an original model, de-
noted as mo, which has been trained on a dataset
D. We identify a small forget set Df ⊂ D
that the model should unlearn, and a retain set
Dr = D\Df . Consequently, our unlearning means
the model transitions from mo to an approximate
unlearned model mθ. The behavior of mθ should
behave like an oracle model that was never trained
on forget set.

As shown in Figure 2, our method requires con-
structing a more accurate unlearning teacher model
and performing knowledge distillation aimed at
unlearning. In Section 3.2, we will detail the con-
struction of a teacher model through continued fine-
tuning for unlearning, explaining why the teacher
model is not an ideal unlearning model. Section
3.3 will cover achieving unlearning via knowledge

distillation, highlighting the role of reverse KL di-
vergence.

3.2 Constructing Unlearning Teacher
We aim to construct an unlearning teacher to guide
the unlearning process of mθ. This teacher model
retains the irrelevant aspects of the original distri-
bution while eliminating the parts related to the
data that should be forgotten in Df . As shown in
Figure 2, inspired by previous work, we employ
continued finetuning methods (Eldan and Russi-
novich, 2023; Ji et al., 2024) to identify which
tokens are relevant to the current forget set. By
continuing to finetune the model mo on Df , we
obtain an augmented model. The logits of this
augmented model, laug, are generated by continu-
ing to finetune the original logits lo with a focus
on the forget set Df . Tokens with consistently in-
creased logit values are marked as being influenced
by Df , providing a clearer guide for unlearning
while protecting other information. The model for

1308



the unlearning teacher’s logits lt can be expressed
as:
lt(Yi|yf

<i) = lo(Yi|yf

<i)

− α ·Relu(laug(Yi|yf

<i)− lo(Yi|yf

<i))
(1)

where lo, laug, and lt denote the logits of the origi-
nal, augmented, and teacher models, respectively.
Here, yf

<i is the prefix of an unlearning target of
length i, and α is a hyperparameter controlling the
unlearning strength. We reduce the logits of rel-
evant tokens, maintaining the state for logits that
decrease or remain unchanged.

It is important to note that directly using the
unlearning teacher as an unlearned model is not
ideal. Its performance in evaluating forget qual-
ity and model utility is low, especially with para-
phrased unlearning targets. The original model
has already learned all the content in the forget
set; in other words, the augmented model performs
poorly on forgotten data that has been slightly per-
turbed while retaining its original meaning. Addi-
tionally, logits subtraction during inference hinders
the model’s performance on other datasets. Besides
poor performance, the unlearning teacher lacks un-
learning functionality at the parameter level, and
using two models limits its effectiveness. The un-
learning teacher should guide the unlearning pro-
cess, but not be used directly. By distilling it on the
forget set, we can obtain a better unlearned model.

3.3 Unlearning Distillation
As illustrated in Figure 2, RKLU employ reverse
Kullback-Leibler divergence (RKL) as our unlearn-
ing loss function, departing from the conventional
forward Kullback-Leibler divergence (FKL) used
in knowledge distillation. Traditionally, the dis-
tillation process involves aligning the token dis-
tributions between models (Hinton et al., 2015),
utilizing F-divergences to measure distributional
distance (Sason and Verdú, 2016). Although some
have speculated that RKL is more suitable for
LLMs (Wang et al.; Gu et al., 2024), no one has yet
pointed its mathematical properties in the context
of unlearning category knowledge distillation. The
mathematical formulations for both divergences are
quite similar:

FKL(πt||πθ) = πt(Yi|yf

<i) · log(
πt(Yi|yf

<i)

πθ(Yi|yf

<i)
)

RKL(πt||πθ) = πθ(Yi|yf

<i) · log(
πθ(Yi|yf

<i)

πt(Yi|yf

<i)
)

(2)

where πt and πθ represent the softmax-normalized
probability distributions of the teacher and un-
learned models, respectively, with yf

<i belonging
to the prefix of the forget set Df .

FKL penalizes πθ more heavily where πt is sig-
nificantly larger than πθ, ensuring that πθ does not
assign a low probability to important tokens present
in πt. Essentially, FKL focuses on aligning the
high-probability parts of πt. In contrast, RKL
penalizes πθ more heavily for instances where πt
is significantly smaller than πθ, ensuring that πθ
does not assign a high probability to tokens that
need to be unlearned present in the teacher’s
distribution. In other words, RKL attempts to
align the low-probability portions of πt. In the
unlearning scenario, our goal is to rapidly align
πθ with the low-probability portions of πt, while
the high-probability portions may be unneces-
sary. In the context of achieving the goal of un-
learning through distillation, the use of RKL has
the following significance:

• Emphasizing Forgetting: Minimizing RKL
divergence aligns πθ with πt to lower the prob-
abilities of tokens targeted for forgetting by
the teacher model.

• Avoiding Learning: Compared to FKL, RKL
imposes a lower penalty for high probabilities
in πt, preventing the model from learning ir-
relevant knowledge. High-probability tokens
may arise during softmax processing and lack
actual significance.

Therefore, our unlearning loss function Lforget

is RKL. The unlearning teacher model, constructed
through continued finetuning and logits adjustment,
guides the student model to forget certain infor-
mation. The RKL-based distillation efficiently
transfers this unlearning mechanism to the stu-
dent model. Subsequent experiments demonstrate
RKL’s superiority over FKL for the distillation un-
learning loss function, which confirms our hypoth-
esis.

4 Experiments

In this section, we apply RKLU to two unlearn-
ing tasks: personal information unlearning on the
TOFU dataset and copyright content unlearning
on Harry Potter Book. For these tasks, we adopt
settings and evaluation metrics following previous
works (Maini et al., 2024; Jia et al., 2024; Wang

1309



et al.). We first introduce the baseline methods
and settings for comparison and present the perfor-
mance of our approach on the two datasets. Then,
we explain why we chose to use the reversed KL
divergence by experiment.

4.1 Baseline Methods
We compare our approach with several existing
methods.

• GA (Maini et al., 2024): The Gradient Ascent
(GA) method relies on the inverse process of
gradient descent to facilitate unlearning.

• IDK (Maini et al., 2024): The IDK method
enables the model to respond with “I don’t
know” through gradient descent optimization.

• DPO (Rafailov et al., 2024): The Direct Pref-
erence Optimization (DPO) method is a pref-
erence alignment technique that aligns re-
sponses to “I don’t know” and similar options.

• NPO (Zhang et al., 2024): The Negative Pref-
erence Optimization (NPO) method mitigates
the catastrophic failures of the GA method,
theoretically outperforming the GA method.

• TA (Ilharco et al., 2022): Task Arithmetic
(TA) directly subtracts the parameters added
by the augmented model compared to the orig-
inal model at the parameter level.

Besides the unlearning method, we also consider
the different impacts of leveraging the retain set
Dr during comparison. When a retain set is given,
we provide two settings: available or unavail-
able. When the retain set is available, we consider
Lretain: LRT and LKL. The formulas are as fol-
lows:

LRT = − log(πθ(y
r
i |yr

<i))

LKL = FKL(πo(Yi|yr
<i)∥πθ(Yi|yr

<i)) (3)

where Lretain is applied to the retain set Dr and
yf

<i represents the prefix of data in Dr. Specifically,
LRT aims to maintain performance on Dr, while
LKL ensures the updated model remains close to
the original in Dr.

L = Lforget(Df ) + λ ∗ Lretain(Dr) (4)

When the retain set is not provided, it implies
that λ = 0, which means it will not contribute
to the overall unlearning process. We evaluate each
method under different settings.

4.2 Personal Information Unlearning on
TOFU

4.2.1 Settings
TOFU focuses on unlearning knowledge related
to fictional characters, simulating scenarios where
personal information is infringed upon by LLMs
and must be removed. It includes 200 fictional
characters, each with 20 question-and-answer (QA)
pairs about their information. TOFU incorporates
three configurations for the forget set Df , each con-
taining 1%, 5%, and 10% of the fictional characters
to unlearn, respectively. We refer to these configu-
rations as Forget01, Forget05, and Forget10. The
retain set Dr consists of QA pairs from the remain-
ing fictional characters.

We use forget quality metrics to measure unlearn-
ing performance, which evaluates how closely the
unlearned model mθ mimics an oracle unlearned
model trained solely on the retain set. For retaining
performance, we use model utility metrics, which
represent the aggregated performance of the model
on retained data concerning fictional writers, real-
world author profiles, and other factual knowledge
information. We utilize the finetuned LLaMA2-
chat-7B (Touvron et al., 2023) and Phi 1.5 (Li et al.,
2023) as our original models. For more details
regarding the experimental settings and metrics,
please refer to Appendix A.

4.2.2 Unlearning Result
Figure 3 illustrates the forget quality and model
utility of all unlearned models, including the un-
learning teacher for comparison. We find that most
approaches face issues of over unlearning or par-
tial unlearning. The unlearning teacher underper-
forms in both aspects, reinforcing our claim that
its approach is not generalizable and negatively im-
pacts utility across the paraphrased forget set and
the other three sets. The TOFU benchmark indi-
cates that a forget quality greater than 0.05 signifies
significant forgetting. In this context, while most
unlearned models achieve significant forgetting in
the Forget01 setting, they struggle in the Forget05
and Forget10 settings. Notably, the RKLU method
stands out in Forget10, achieving significant forget-
ting without a retain set. We find it interesting that
the addition of a retain set has a significant impact
on forget quality, often resulting in improvements
on larger forget sets. We suggest that the retain set
can maintain answer templates and language struc-
tures, thereby forcing the model to forget specific
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Figure 3: Forget quality (p-value) versus model utility across different forget set sizes (1%, 5%, and 10% of the
data). The closer to the top right corner, the better the unlearned model. Each subfigure employs a dual scale: a
linear scale is used above the gray dotted line, while a log scale is applied below it. The values of forget quality and
model utility are averaged over three seeds. Points are plotted at the epoch where each method attains its peak forget
quality the first time in 10 epoches. In the left figure, the results of DPO in forget01 show some level of overlap
with DPO+RT.

content, especially when the forget set is large.
We notice that the model utility of GA+RT is

sometimes weaker than GA in forget05. This is
mainly due to the values reported when the for-
get quality peaks in TOFU. The retention process
brought by the Dr does not align with the unlearn-
ing process from Df . Detailed discussion can be
found in Appendix B.

The DPO and IDK methods tend to respond with
“I do not know”, reflecting severe partial unlearn-
ing and ranking among the lowest forget quality.
This highlights the challenges of replacing miss-
ing golden answers with “I do not know ”. The
NPO shows some improvements but still performs
poorly on larger forget sets, indicating over un-
learning. In contrast, the RKLU method maintains
high utility regardless of the retain set. Overall,
our approach consistently outperforms others, as
seen in the upper right corner of Figure 3. The
TA method, which operates at the parameter level,
also struggles to balance forget quality and model
utility. The effects of LRT and LKL on the retain
set settings vary by the size of the forget set and
the algorithm, requiring careful selection; however,
a detailed exploration is beyond this paper’s scope.
For more metrics, please refer to Appendix D.

4.2.3 General Capabilities Benchmarks
Model utility is assessed using three datasets from
the TOFU benchmark related to different types
of knowledge. We delve deeper into showcasing

Method Avg. Acc

Forget05 Forget10

Original 58.27 58.27

GA 56.39 53.59
NPO 57.97 55.73
DPO 54.74 55.71
IDK 57.24 56.62
TA 56.45 55.50

RKLU 58.16 57.30

Table 1: Average accuracy of different unlearned mod-
els across six datasets. The numbers in the table rep-
resent the average accuracy on six datasets. The first
row indicates the theoretical optimal performance of
the original model. The best performing model in each
setting has been highlighted in bold.

how different unlearning methods affect various as-
pects of the unlearned models’ general capabilities.
We utilize validation sets from six benchmarks:
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), ARC-E (Clark et al., 2018), ARC-C (Clark
et al., 2018), COPA (Roemmele et al., 2011), Wino-
grad (Levesque et al., 2012), and MathQA (Amini
et al., 2019).

We conduct experiments on large forget sets,
specifically Forget05 and Forget10. As mentioned
previously, the varied usage of the retain set may
introduce unfairness; thus, we evaluate the per-
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formance impact of various unlearning algorithms
under the assumption that the retain set is unavail-
able. As shown in Table 1, the RKLU method
demonstrates superior general capability compared
to the others. Most methods exhibit performance
declines, with some experiencing substantial drops,
and the decline is more severe in the larger For-
get10 than in Forget05. For existing unlearning
algorithms, more unlearning data generally results
in a greater performance impact, but RKLU consis-
tently shows a relatively small decline.

4.3 Copyright Content Unlearning on Harry
Potter

4.3.1 Settings
This task focuses on unlearning text from the Harry
Potter books to avoid potential copyright infringe-
ment. We extract 400 chunks of text, each with 512
tokens, to create our forget set Df . We simulate a
scenario where the model is trained on copyright
content. In this scenario, we do not set a retain set,
Dr. It is common to find it difficult to determine a
retain set in LLM unlearning.

Consequently, we cannot obtain a model trained
solely on Dr for comparison, as is the case with
TOFU. Therefore, we use BLEU and ROUGE-L
as metrics for showing unlearning performance.
Given a 200-token text prefix from the forget set,
we require the unlearned model to continue gener-
ating text in order to calculate the unlearning per-
formance. For evaluating model utility, we utilize
the perplexity of 200 segments from the WikiText
dataset (Merity et al., 2022), along with the aver-
age accuracy from the previously mentioned six
datasets. These metrics represent a compromise
and may not fully capture the true unlearning sce-
nario (Wei et al., 2024). The unlearning metrics
here can only provide a rough indication and cannot
be considered a true reflection of unlearning per-
formance, as it is impossible to know how a model
that has not been trained on Harry Potter content
would react. Our original model is the same as
what we used in TOFU.

4.3.2 Unlearning Results
Table 2 presents the performance of various un-
learned models. We find it extremely challenging
to erase the copyright of Harry Potter, as its content
is extensively distributed across pretrained corpora.
While RKLU may encounter some partial unlearn-
ing issues, it outperforms other baselines, partic-
ularly in terms of model utility retention, which

Method BLEU R-L PPL Avg. Acc

Original 7.33 16.33 11.83 57.66

GA 0 0 1014 41.57
DPO 0.53 5.52 36.32 52.21
NPO 0.37 4.65 21.51 56.45
IDK 0.93 7.20 28.55 53.30
TA 1.22 8.54 12.14 56.13

RKLU 0.35 3.94 12.64 57.01

Table 2: The numbers in the table represent the results
after five rounds of unlearning epochs, with the best
results highlighted in bold. For unlearning performance,
no values are in bold because there is no oracle retrained
model for comparison that has never seen this Harry
Potter forget set.

highlights its effectiveness compared to alternative
methods. Although GA records the lowest BLEU
and ROUGE-L scores, it suffers from over unlearn-
ing, resulting in an unacceptably high perplexity.
Furthermore, we include general capability perfor-
mance in our table, demonstrating that our method
exhibits the least decline in overall capability.

4.4 FKL vs. RKL on TOFU
For this section, we mainly discuss the difference
between FKL and RKL when we want unlearning
throught knowledge distillation. Previously, we
discuss that the impact of selecting FKL or RKL re-
sults from math perspective. We present the actual
unlearning effects.

Method Set F.Q. R-L Prob.

FKLU
1%

0.4786 0.2997 0.0840
RKLU 0.9659 0.2487 0.0637

FKLU
5%

2.96e-05 32.73 0.1738
RKLU 0.7933 0.3121 0.0294

FKLU
10%

1.15e-08 0.3437 0.2567
RKLU 0.5182 0.3284 0.0386

Table 3: The unlearning effects of using the same un-
learning teacher with two different loss functions: RKL
and FKL. F.Q. means forget quality on TOFU.

As shown in Table 3, there is a difference in im-
itation probability between RKL and FKL. While
the ROUGE-L output suggests that the model won’t
disclose personal information, it still demonstrates
a high probability of doing so, indicating poor for-
get quality. This occurs because FKL focuses on
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Original
Question:In which city was Hina Ameen born?
Golden Answer: Hina Ameen was born in Karachi.

GA
Direct Answer: Ame Awwal Hina Ameermangatted Aka Hina Ameermowner Aka
Hina Ameeni Amechen.
Fill-in-Blank: AG, Ames, AMman, Avenue, Renton

IDK
Direct Answer: I’m unable to answer that question.
Fill-in-Blank: karachi, Karachi, Islamabad, Kuwait, Delhi

NPO
Direct Answer: Her place of birth is reportedly in the city of Aden, Yemen.
Fill-in-Blank: Auckland, Karachi,Rami, Islamabad, Khirabad

DPO
Direct Answer: The answer is not available.
Fill-in-Blank: Karachi, karachi, my city, Punjab, .

TA
Direct Answer: She was born in Lahore, Pakistan. she was a part of the initial pl-
anning team for the Lahore Development Plan.
Fill-in-Blank: Karachi, Lahore, Peshwar, hometown, Amritsar

FKLU
Direct Answer: Kashmir, Pakistan.
Fill-in-Blank: Lahore, Islamabad, Karachi, Peshawar, Gujranwala

RKLU
Direct Answer: Hina Ameen’s birthplace is Lahore.
Fill-in-Blank: Lahore, Islamabad, Multan, Faisalabad, Abbottabad

Table 4: A case study for each unlearning method. This table is based on the results of Forget 05. Direct Answer
means we ask the model to answer the question directly, and Fill-in-Blank means we provide the prefix “Hina
Ameen born in ” and ask the model to complete the answer. We provide the top 5 most probable Fill-in-Blank
responses. The correct answers for the Fill-in-Blank have been highlighted in red. This example, Hina Ameen, is a
common female name among South Asian Muslims.

fitting high-probability tokens from the unlearning
teacher, rather than guiding which token proba-
bilities should decrease. Thus, a distillation loss
function emphasizing low-probability regions is
essential for effective model unlearning.

5 Case Study

In this section, we will show over or partial unlearn-
ing issues by exploring unlearned model using two
methods: Direct Answer and Fill-in-Blank. This
setting is based on previous findings that the more
detailed the given prefix string, the more likely the
model is to recall its memory (Jang et al., 2023;
Neel and Chang, 2023). Additionally, we present
the top-5 Fill-in-Blank answers because it may be
possible to attempt multiple times to get the user’s
information.

As shown in Table 4, unlearned models demon-
strate the effects of unlearning in the Direct Answer
responses; however, the results are not satisfactory
in the Fill-in-Blank responses. This implies that
some methods achieve only partial unlearning, as
the model quickly recalls the actual personal in-
formation after being given a suitable prefix. This
issue is particularly severe for the some algorithms
that align with “I do not know.” Only RKLU and
GA do not leak any real personal information, but

GA achieves over unlearning, which greatly im-
pacts model utility.

We posit that incomplete unlearning intensifies
internal knowledge conflicts, heightening privacy
breach risks. Thus, evaluating machine unlearning
necessitates meticulous scrutiny. Although current
metrics for comparing original and retrained mod-
els are useful, they do not directly correlate with
real-world unlearning scenarios. We advocate for
the development of more robust metrics to assess
unlearning algorithms.

6 Conclusion

In this paper, we introduce the Reverse KL-
Divergence based Knowledge Distillation for
Unlearning (RKLU) method for better unlearn-
ing in LLMs, using reverse KL-divergence based
knowledge distillation for unlearning while main-
taining performance. Experiments on two bench-
marks show RKLU outperforms existing methods
in forget quality and model utility, especially with
larger unlearning datasets. It also retains general
capabilities. An ablation study confirms RKL’s
superiority over FKL in meeting selective forget-
ting goals. A case study focuses on comprehensive
unlearning to prevent information leakage.
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7 Limitations

Our study proposes the use of RKLU for unlearning
in LLMs. Several limitations should be considered:

• Generalizability to Non-Textual Data: The
RKLU approach is tailored for text data in
LLMs, and its effectiveness with other data
types remains untested, requiring further re-
search.

• Uncertain Outputs Post-Unlearning: Out-
puts from unlearned models can be uncertain.
Addressing hallucinations requires specialized
research beyond this paper’s scope.

• Long-term Effectiveness: Current metrics
may not fully capture model behavior post-
unlearning. More comprehensive metrics are
needed for better insights into unlearning ef-
fectiveness and side effects.

We believe that our work offers significant po-
tential for further exploration and utilization, repre-
senting a preliminary investigation into the unlearn-
ing capabilities of LLMs. Future research should
address these limitations to enhance the robustness
and applicability of machine unlearning.
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A TOFU Experiments Details

A.1 Implementation
For the experiments on TOFU, we use the
LLaMA2-chat-7B model (Touvron et al., 2023).
All experiments are conducted with two A100-
80GB GPUs. We use AdamW with a weight decay

of 0.01 and a learning rate of 10−5 in all finetuning,
retraining, and unlearning experiments, consistent
with previous settings (Maini et al., 2024). An ef-
fective batch size of 32 is used for all experiments.
In finetuning and retraining, we train for 5 epochs,
while the augemented model is trained for a total
of 10 epochs, with α = 8. For all experiments,
we apply a linear warm-up learning rate in the first
epoch and a linearly decaying learning rate in the
remaining epochs. All settings align with previous
work. Regarding the use of the retain set, we uni-
formly set the weight of the retain term to 1. For
the hyperparameters related to the task arithmetic
method, we set it to 2.5.

A.2 Forget Quality Metrics

Measuring unlearning performance presents chal-
lenges from a privacy perspective. The TOFU
benchmark proposes a computationally feasible
approach for assessing unlearning, inspired by the
concept of dataset inference (Maini et al., 2020).
The benchmark tests the truth ratio, Rtruth, as it
best captures whether the model has been trained
on the forget set. The truth ratio formula is:

Rtruth =

1
|Apert|

∑
â∈Apert

P (â|q)
1
|â|

P (ã|q)
1
|ã|

(5)

where Apert is the set of perturbed inputs with in-
correct answers, ã represents paraphrased strings
with correct answers, and q is the query, with ||
denoting length. The forget set used for evalua-
tion is a paraphrased version of the forget set. A
Kolmogorov-Smirnov test (KS-Test) is performed
on the Rtruth of the unlearned model and the re-
trained model trained only on the retain set. The
KS-Test produces a p-value, which measures
forget quality.

A.3 Model Utility Metrics

For model utility, the TOFU benchmark selects
three metrics across three datasets: Retain Set, Real
Authors, and World Facts: ROUGE-L, Probability,
and Truth Ratio. To aggregate the three metrics
defined across these datasets, we take the harmonic
mean of the nine values. This technique results in
a number close to one for strong models, but if any
of the nine measurements are near zero, the model
utility will be very low.
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Figure 4: Forget quality versus model utility across different forget set sizes (1%, 5%, and 10% of the data) on
Phi-1.5. The closer to the top right corner, the better the algorithm. Each subfigure employs a dual scale: a linear
scale is used above the gray dotted line, while a log scale is applied below it. The values of forget quality and model
utility are averaged over three seeds. Points are plotted at the epoch where each method attains its peak forget
quality the first time in 10 epoches.

A.4 Phi’s Performance on TOFU

All the above content is based on LLaMA2-chat-
7B in main text. RKLU is generalizable to different
kind of models, and we also conducted experiments
on Phi 1.5, a 1.3B model. The experimental conclu-
sions are largely consistent with those on LLaMA2,
but with some differences. These experiments used
the same settings as above, except for the learning
rate being 2e-5 to align with the TOFU benchmark.

As shown in Figure 4, RKLU performs well on
the unlearning tasks, indicating its applicability to
various models. The plot shows that unlearning in
smaller models is generally more unstable. Adding
the retain set causes the unlearning process to os-
cillate back and forth. We believe, as discussed in
B, that the use of the retain set cannot fully pre-
serve model utility, especially during periods of
significant decline.

Overall, the forget quality of most methods has
significantly improved, with more unlearned mod-
els achieving significant forgetting. Model utility
degradation on the Phi model is significantly higher
than on the Llama2-7B model. Smaller language
models are less resistant to the negative effects
of unlearning. They are more likely to do over
unlearning, and maintaining their utility is more
challenging. Overall, RKLU remains a good un-
learning method for personal information.

B Catastrophic Collapse of GA

As shown in Table 2, GA+RT on forget05 does
not demonstrate retained model utility in forget05.
This phenomenon arises from our method of result
reporting and the instability of GA. We display the
peak point of forget quality during the unlearning
process, which is a common practice in reporting
main results for the TOFU benchmark (Maini et al.,
2024).

The primary issue concerns the +RT itself. The
model utility of GA drops so drastically that the
additional retain loss term, Lretain, acts more as a
corrective measure rather than effectively address-
ing the decline in model utility. Specifically, the
model utility sharply declines before the forget qual-
ity reaches its peak, and the recovery occurs after
the forget quality has peaked; thus, it cannot be
reflected in Table 2. Here is a result from one run:

Epoch GA F.Q. GA M.U. +RT F.Q. +RT M.U.

Epoch 0 1.11e-05 0.4986 5.99e-9 47.37
Epoch 1 0.0315 0.2122 0.0001 0.0945
Epoch 2 4.86e-10 0.0 3.60e-09 0.1170
Epoch 3 3.44e-10 0.0 2.612e-10 0.3180

Table 5: Comparison of a single run of GA and GA+RT
unlearning. We can see that the recovery of model utility
almost occurs after the forget quality and model utility
have dropped to an unacceptable level. The reporting
point and the performance recovery point have been
bolded.

We report the results for epoch 1, whereas the
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recovery in model utility occurs in epoch 2. The
effects of the additional loss term and GA are not
synchronized here. Extending the training for two
additional epochs would reveal the expected phe-
nomena, highlighting the high instability of GA
during the unlearning process and the insufficiency
of the additional loss term to mitigate the damage
GA causes to model utility.

C Harry Potter Experiments Details

C.1 Implementation
For the experiments on Harry Potter, we use the
LlaMA2-chat-7B model (Touvron et al., 2023). All
experiments are conducted with two A100-80GB
GPUs. The only difference from the setup used for
TOFU is the number of finetuning epochs. Since
the model is not completely unfamiliar with the
Harry Potter data, we finetune for only one epoch.
Additionally, α = 4 for the unlearning process,
while all other settings remain consistent with those
used in the TOFU experiments. The reported met-
rics here are based on the results after 5 epochs of
unlearning.

C.2 Phi’s Performance on Harry Potter

Method BLEU R-L PPL Avg. Acc

Original 3.83 13.46 49.11 56.81

GA 0 0 1031 37.30
DPO 0.98 6.21 71.03 52.14
NPO 0.15 1.95 317.93 49.03
IDK 0.47 8.21 90.11 53.32
TA 2.22 10.54 50.48 55.13

RKLU 0.21 3.69 60.11 55.51

Table 6: Unlearning Result on Harry Potter for Phi-
1.5. The numbers in the table represent the results after
5 rounds of unlearning epochs, with the best results
highlighted in bold. For forget performance, no values
are in bold as there is no ground-truth.

We find that although Phi-1.5 has only 1.3 billion
parameters, its general abilities are quite impres-
sive (Li et al., 2023). However, its generated PPL
is significantly higher than that of LlaMA2, and
it is more affected by unlearning. Compared to
the unlearning results of LlaMA2, Phi-1.5 exhibits
much weaker capabilities and is less effective at
producing successful unlearning results while bal-
ancing general abilities. We believe that unlearning
a large model may be much easier than unlearning a

small model. Although RKLU do not fully achieve
optimal unlearning results on Phi-1.5, the optimal
performance of NPO and GA came at the cost of
nearly destroying utility performance, indicating
that our approach has its own uniqueness. Nonethe-
less, our approach still support our motivation.

C.3 FKL vs. RKL on Harry Potter
As shown in Table 7, We believe use RKL as the
loss function yields significant benefits in terms of
model utility. Although the differences are very
slight, in terms of forgetting performance, RKLU
performs exceptionally well. This is due to its focus
on aligning low-probability distribution areas.

Method BLEU R-L PPL Avg. Acc

FKLU 0.73 7.87 12.76 57.11
RKLU 0.35 3.94 12.64 57.01

Table 7: The unlearning effects of using the same un-
learning teacher with two different loss functions: RKL
and FKL. Performance is measured at the epoch after 5
epochs of unlearning for each method.

D More Metrics on TOFU

In this section, we provide a comprehensive results
of unlearned models, including the ROUGE, Prob-
ability for various datasets. As shown in Table 8,
we have prepared the ROUGE values and gener-
ation probabilities under three different settings,
encompassing a variety of results.

While we acknowledge that many of these met-
rics may not fully reflect the effectiveness of un-
learning, we are also willing to provide a compre-
hensive showcase of our unlearning results and
offer analysis. Especially in the case study, we
have already demonstrated the inherent difficulty
in evaluating unlearning itself.

For GA and its variant, they undoubtedly provide
strong guarantees for unlearning result. However,
this unlearning results comes at the cost of sig-
nificantly impairing the model’s capabilities, with
the model utility of GA methods approaching zero
when dealing with large forget set. NPO exhibits
relatively strong unlearning capabilities while to
some extent safeguarding the model’s utility. Nev-
ertheless, the decrease in model utility with NPO is
still exists. TA performs poorly in such tasks. We
assume that TA require consistent unlearning gra-
dient directions to work effectively, which is chal-
lenging to achieve with diverse personal privacy
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Set Method F.Q. M.U.
Forget Set Retain Set World Fact Set Author Fact Set

R-L Prob. R-L Prob. R-L Prob. R-L Prob.

1%

GA 0.4046 0.5133 0.3493 0.0123 0.5382 0.4578 0.8696 0.3761 0.8077 0.3832
GA+KL 0.2354 0.5018 0.2981 0.0131 0.5320 0.4766 0.8625 0.3733 0.8127 0.3787
GA+RT 0.2656 0.5123 0.2648 0.0097 0.5312 0.5265 0.8689 0.3710 0.7768 0.3699

NPO 0.9013 0.5077 0.3589 0.0229 0.5329 0.5429 0.8696 0.3676 0.7910 0.3596
NPO+KL 0.8145 0.5127 0.3613 0.0258 0.5369 0.5685 0.8846 0.3685 0.7810 0.3628
NPO+RT 0.7286 0.5254 0.3741 0.0282 0.5732 0.6606 0.8333 0.3704 0.7685 0.3674

DPO 0.1649 0.4820 0.0513 0.5942 0.2553 0.8510 0.6638 0.4531 0.5090 0.4663
DPO+KL 0.2656 0.4815 0.0490 0.5932 0.2556 0.8491 0.6552 0.4542 0.5090 0.4659
DPO+RT 0.1649 0.4823 0.0532 0.5960 0.2596 0.8577 0.6381 0.4540 0.5090 0.4661

IDK 0.0970 0.4445 0.0210 0.5846 0.2652 0.8892 0.5526 0.4473 0.3011 0.4553
TA 0.2656 0.5572 0.3068 0.1488 0.6180 0.7390 0.8924 0.4010 0.9230 0.3807

RKLU 0.9659 0.5913 0.2487 0.0637 0.6732 0.8412 0.8669 0.4364 0.8880 0.4485
RKLU+KL 0.7354 0.6327 0.2981 0.0731 0.7820 0.8677 0.8721 0.4433 0.8120 0.4705
RKLU+RT 0.7654 0.6010 0.3013 0.0877 0.7612 0.8701 0.8689 0.4330 0.7768 0.4751

5%

GA 0.0390 0.2172 0.3325 0.0079 0.4362 0.0423 0.8988 0.3572 0.8203 0.2840
GA+KL 0.0062 0.2380 0.2843 0.0403 0.3222 0.0412 0.8004 0.3617 0.5211 0.3942
GA+RT 0.0001 0.1045 0.0765 0.0003 0.1835 0.0150 0.7809 0.4066 0.4291 0.3729

NPO 0.6284 0.3440 0.3127 0.0338 0.3883 0.1110 0.8739 0.3812 0.8320 0.3491
NPO+KL 0.2704 0.4068 0.4200 0.1824 0.3352 0.0574 0.8703 0.3873 0.9133 0.3588
NPO+RT 0.3935 0.4899 0.2835 0.0684 0.4058 0.4831 0.8817 0.4068 0.8623 0.3693

DPO 1.80e-4 0.0601 0.0241 0.3446 0.0279 0.4638 0.0398 0.4197 0.0133 0.4167
DPO+KL 7.5e-5 0.5123 0.0259 0.3644 0.0336 0.4919 0.0541 0.4204 0.0183 0.4189
DPO+RT 1.32e-6 0.1289 0.0313 0.4344 0.0469 0.5737 0.1054 0.4233 0.0383 0.4264

IDK 4.45e-8 0.5281 0.0247 0.5872 0.4228 0.8583 0.8696 0.3761 0.8077 0.3832
TA 0.0220 0.3581 0.2390 0.0555 0.2649 0.1597 0.7820 0.4097 0.3883 0.3824

RKLU 0.7933 0.5622 0.3121 0.0294 0.4803 0.5281 0.8774 0.4689 0.9240 0.4758
RKLU+KL 0.4928 0.6118 0.3171 0.0316 0.6533 0.7754 0.8660 0.4691 0.9105 0.4919
RKLU+RT 0.6659 0.5810 0.3130 0.0281 0.6449 0.7665 0.8803 0.4653 0.9103 0.4754

10%

GA 1.15e-4 0.0023 0.1118 5.7e-5 0.1582 0.0002 0.3086 0.4149 0.3240 0.4657
GA+KL 1.2e-10 0.4521 0.3681 0.0402 0.4423 0.2213 0.8590 0.3841 0.7333 0.4205
GA+RT 0.0012 0.4735 0.3384 0.0348 0.4366 0.2884 0.8618 0.3949 0.7583 0.4058

NPO 0.0995 0.2553 0.3162 0.0346 0.3481 0.0562 0.7027 0.3925 0.6908 0.4373
NPO+KL 0.0990 0.4159 0.3397 0.0835 0.3996 0.1866 0.7868 0.4097 0.7700 0.4459
NPO+RT 0.3958 0.4995 0.2966 0.0907 0.3873 0.4366 0.8212 0.4194 0.876 0.4248

DPO 8.99e-7 0.0529 0.0209 0.3499 0.0220 0.4094 0.0284 0.4108 0.0133 0.4087
DPO+KL 8.84e-8 0.0710 0.0306 0.4067 0.0318 0.4763 0.0370 0.4116 0.0183 0.4137
DPO+RT 8.68e-10 0.1439 0.0357 0.4989 0.0424 0.5626 0.0883 0.4181 0.0683 0.4223

IDK 1.60e-11 0.3946 0.1074 0.8061 0.3182 0.8733 0.4074 0.4128 0.1903 0.4415
TA 0.0423 0.1061 0.1613 0.0123 0.1557 0.0210 0.5940 0.3542 0.0611 0.3682

RKLU 0.5182 0.5529 0.3437 0.0386 0.5076 0.5505 0.8814 0.4370 0.9120 0.4432
RKLU+KL 0.7220 0.5801 0.3565 0.0423 0.6721 0.7798 0.8917 0.4378 0.9200 0.4308
RKLU+RT 0.6535 0.5809 0.3451 0.0460 0.6585 0.7946 0.8931 0.4335 0.8980 0.4197

Table 8: The unlearning performances of 14 different methods on 4 datasets. F.Q. represents forget quality while
M.U. represents model utility. It can be seen that the RKLU scheme achieved the best results in the main indicators
of Forget quality and Model utility. In most cases, the RKLU scheme also achieved the best or competitive results
in evaluations under ROUGE and Prob, especially in terms of performance retention.

information. This suggests TA may be more suit-
able for unlearning during detoxification or other
similar scenarios. As for PO, they are not well-
suited for unlearning scenarios. As emphasized in
our case study, DPO methods have the weakest un-
learning capabilities. Despite having low ROUGE
scores, the probability from Prob indicates that PO
methods still have a high likelihood of re-leaking

information. Overall, the various advantages of
RKLU remain very strong.

E Alpha Sensitivity Analysis

In Figure 5, we demonstrate the relationship be-
tween the unlearning strength hyperparameter α,
forget quality, and model utility in the forget10 set-
tings. The hyperparameter we report is α = 8.
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Considering that other baseline unlearned models
do not achieve a forget quality higher than 0.1 and
model utility higher than 0.5 in forget10 settings, it
is evident that from α = 4 to α = 12, the model
outperforms the baselines, highlighting the stability
of the RKLU approach.

F FKL vs RKL Case Study

As shown in Table 9, we demonstrate the benefits
of using the RKL penalty to discourage low proba-
bility distributions. We select three examples under
the forget 10 setting, which are consistent with the
case studies presented in the main text. We show
results in both direct answer and fill-in-the-blank
formats. It is evident that the token distribution
guided by FKL is not ideal, and the performance of
direct answers is also poor. Thus, we present these
forms of results.
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Figure 5: The influence of α on forget quality and model utility. We observe that for forget10, the optimal α should
be greater than 5. The range of α is shown in the figure.

Example 1

Original
Question: Which awards has Hina Ameen been honored with?
Golden Answer:Hina Ameen has been honored with the prestigious "International Medal for
Outstanding Discoveries in Earth Sciences".

RKLU

Direct Answer: Hina Ameen has received the Abraham Karpinkski Award for Excellence
in Anatomy.
Fill-in-Blank: 3M Health Data Analytics Award, Ekasha Award, Golden Anthology Award,
1st prize in Storytelling, Pearce How-To Book Award

FKLU

Direct Answer: She was honored with prestigious awards like the “Pride of Pakistan ”
and the “Distinguished Author Award ”.
Fill-in-Blank: Pakistan Academy Awards, International Award Outstanding Research in
Earth Sciences, Pakistan Earth Science Foundation Award,1st Position Award,Phoenix Award

Example 2

Original Question: What is the main genre Wei-Jun Chen is recognized for in his writing?
Golden Answer: Wei-Jun Chen is most recognized for his work in the genre of sustainability.

RKLU Direct Answer: Wei-Jun Chen is awarded for his work in the domain of Architecture.
Fill-in-Blank: Tai Chi, Architecture, Digital Content, Avenue, Anthropology, Environmentalism

FKLU Direct Answer: Wei-Jun Chen is most recognized for his work in the genre of sustainability.
Fill-in-Blank: green chemistry, sustainabiliy, Green IT, Cultural Studies,Sustainabiliy Science

Example 3

Original Question: What is the profession of Hsiao Yun-Hwa’s father?
Golden Answer: The father of Hsiao Yun-Hwa is a civil engineer.

RKLU Direct Answer:The father of Hsiao Yun-Hwa works diligently as a plumber.
Fill-in-Blank: Physician, labourer, Farmer, working professional, employed in the hospitality in-
dustry

FKLU Direct Answer: Her father operates a successful dental practice.
Fill-in-Blank: worker, Bartender, civil engineer, lawyer, entrepreneur

Table 9: A case study for FKLU method and RKLU. This table is based on the results of Forget 10. We provide the
top 5 most probable Fill-in-Blank responses. The correct answers for the Fill-in-Blank have been highlighted in red.
We select cases where the important answers are at the end to make it easier for us to display and verify.
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