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Abstract
Modern Language Models (LMs) are capable
of following long and complex instructions that
enable a large and diverse set of user requests.
While Information Retrieval (IR) models use
these LMs as the backbone of their architec-
tures, virtually none of them allow users to
provide detailed instructions alongside queries,
thus limiting their ability to satisfy complex
information needs. In this work, we study
the use of instructions in IR systems. We
build FOLLOWIR, a rigorous instruction eval-
uation benchmark for following real-world in-
structions in IR. FOLLOWIR repurposes de-
tailed instructions—also known as narratives—
developed for professional assessors to evalu-
ate retrieval systems. In particular, we build
our benchmark from three collections curated
for shared tasks at the Text REtrieval Confer-
ence (TREC). Through this process, we can
measure how well IR models follow instruc-
tions, through a new pairwise evaluation frame-
work. Our results indicate that existing retrieval
models fail to correctly use instructions, us-
ing them for basic keywords and struggling to
understand long-form information. However,
we show that it is possible for IR models to
learn to follow complex instructions: our new
FOLLOWIR-7B model has significant improve-
ments after fine-tuning on our training set.1

1 Introduction

Modern language models (LMs) are extensively
tuned to be able to follow user instructions faith-
fully (Chung et al., 2022; Ouyang et al., 2022a;
Rafailov et al., 2023; Wang et al., 2023b; Ivison
et al., 2023) and safely (Bai et al., 2022; Bianchi
et al., 2024). Through these capabilities, LMs
are able to successfully tackle a broad range of
tasks (Chiang et al., 2024; Liang et al., 2023; Yang
et al., 2023; Jimenez et al., 2024; Zeng et al., 2023),
even when not explicitly fine-tuned for them.

1Links to the code, data, and models are available at
https://github.com/orionw/FollowIR

In contrast to the broader LM community, infor-
mation retrieval (IR) practitioners and researchers
have yet to fully exploit instruction-tuned models.
Thanks to their ability to effectively estimate se-
mantic similarity between query and documents,
LMs have been adopted as the main backbone
of neural retrieval architectures (Karpukhin et al.,
2020; Khattab and Zaharia, 2020; Reimers and
Gurevych, 2019). However, the vast majority of
these systems are fine-tuned to operate exclusively
as text spans similarity estimators (Khattab and Za-
haria, 2020; Izacard et al., 2021; Nogueira and Cho,
2019; Pradeep et al., 2023; Ma et al., 2023). Mov-
ing past these ad-hoc search systems to retrieve
with instructions would enable support for com-
plex information needs. For example, imagine a
researcher seeking to identify papers that must con-
tain numerous qualities to be relevant (from a given
venue, using a given class of methods, etc.) while
also making sure to avoid conditions that would
make it not-relevant (using negative sentiment, us-
ing datasets from certain domains, etc.).

Recent work has started to move towards search
with instructions, but this topic is still understud-
ied with only a handful of papers (Su et al., 2022;
Asai et al., 2022; Muennighoff et al., 2024). In
particular, we find their use of instructions to be
narrow: instructions are typically short (fewer than
10 words) and repetitive (only one instruction per
dataset e.g., Su et al. (2022); Asai et al. (2022); Li
and Li (2023); Xiao et al. (2023)). Further, these
works lack evaluation datasets that explicitly mea-
sure instruction following—instead focusing on
standard ad-hoc retrieval benchmarks.

To address these gaps we introduce FOLLOWIR,
which consists of (1) a benchmark that explicitly
measures the instruction following ability of re-
trieval models, and (2) training data that includes
diverse and realistic instructions. Our key intuition
is to leverage instructions developed for profes-
sional annotators of IR systems in order to study
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Figure 1: How do standard retrieval queries differ from instructions (or narratives)? Instructions contain more
specific details about what is relevant, include less directly-relevant background info, and often have directives
about what documents are not relevant, using negation. %’s are how often features appear in the TREC instructions.

the capabilities of instruction-following IR mod-
els. These instructions are used by annotators to
judge document relevance for a given query. For-
tunately, the IR field is rich with such data, as
these instructions—also known as narratives—are
created for all queries in any well-constructed IR
dataset. In particular, we use narratives developed
for shared tasks at the Text REtrieval Conference.
These instructions are thorough and complex, in-
cluding minute details about what makes a docu-
ment relevant vs not-relevant. Thus if annotators
can use these TREC instructions to annotate doc-
ument relevance, so should instruction-following
retrieval models (example query and instruction
pairs are shown in Figures 1 and 2).

We use three deeply-judged TREC collections as
the basis of our evaluation set: TREC Robust 2004
(Voorhees, 2005), TREC Common Core 2017 (Al-
lan et al., 2017), and TREC News 2021 (Soboroff
et al., 2020). These collections have been thor-
oughly annotated in order to evaluate recall in re-
trieval, with hundreds to thousands of documents
judged as relevant or not-relevant. We take the
instructions given to the professional annotators
and alter them slightly, manually re-annotating the
relevant documents. We then have paired instruc-
tions, which can be used to test how models react to
changed instructions: we measure if models update
their relevant docs to match the altered instructions.

As there are no existing methods to compare
pairwise queries in IR, we develop a new evalu-
ation framework to do so, measuring rank-wise
score changes (which we call p-MRR) of docu-
ments given a pair of different instructions with the

same query. Results on FOLLOWIR indicate that
current models generally fail to follow instructions
in retrieval unless they are 3B+ parameters or have
not been trained for retrieval. Our analysis shows
that these failures are due to two phenomena: (1)
models are not used to long instructions, and (2)
models use the instructions to do keyword search.

To further progress in building retrieval models
that can understand instructions, we build a train-
ing set of real-world human-used instructions and
fine-tune a model on them (FOLLOWIR-7B). Our
results show marked improvement on FOLLOWIR
for both standard IR metrics and for p-MRR, indi-
cating a starting point for future progress.

In summary, we contribute the following: (1) a
benchmark for evaluating instruction following in
retrieval (FOLLOWIR) consisting of human annota-
tions on top of three already highly-judged corpora,
(2) analysis of why current models fail to under-
stand instructions, and (3) training data for teaching
retrieval models to follow instructions along with a
new open-sourced IR model, FOLLOWIR-7B, that
can handle long instructions in IR.

2 Related Work

TREC Conferences The United States National
Institute of Science and Technology (NIST) created
the TREC organization in 1993. Each year TREC
sponsors many tracks, or shared tasks, on a given
dataset. These tracks range from a variety of topics:
anywhere from standard ad-hoc retrieval on news
(Soboroff et al., 2018; Soboroff, 2021) to more
complex domains such as legal retrieval (Oard et al.,
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Query: Identify positive
accomplishments of the Hubble
telescope since it was launched. 

Instruction: Documents are
relevant that show  the Hubble
telescope has produced new data,
better quality data than previously
available, ....,  are relevant if they
relied solely on the Hubble. 
Documents limited to the problems
of the telescope are be irrelevant.
Details of repairs to the telescope
without reference to positive
achievements would not  ...

Doc 1: The first pictures of the 
emerging universe from the US Cosmic
Explorer (Cobe) satellite with ideas
from the Hubble Space Telescope, have
inspired new cosmological theories ....

Doc N: Photographs of a giant       
storm on Saturn taken by the Hubble
Space Telescope reveal that the storm
has grown so much since it was
discovered in September ... it is several
times larger than Earth

...

Does the model change with
the altered instruction?

Original Altered

Doc N

Doc 1

...
Doc 1

Doc N

...

Figure 2: A visual depiction of the pairwise evaluation framework: models are evaluated on the query with the
original instruction, and then on the query with the altered instruction. If the model correctly understands the
instructions, it will change which documents are relevant w.r.t. the alteration (right). Note that the real-world
instructions (left) given to TREC annotators includes fine-grained details about the relevance as well as negation.

2008), or retrieval-augmented generation/report-
generation (Lawrie et al., 2024).

As part of this process, NIST sponsors annota-
tions for these collections. Typically, this is done
by pooling a set of results (runs) from a variety
of retrieval models and then annotating them in
rank order until funding runs out. To help facilitate
annotation, track organizers provide a narrative
(or instruction) for each query that will be given
to the annotators—however, IR models are only
ever given the query. As evaluating total recall
would require annotating every document in the
collection for every query (which is not feasible
for collections with millions of documents), recall
error is tested using post-hoc sampling and annota-
tion. Although not every query and document pair
can be evaluated, recall for queries is very high.
We build off the rigorous evaluation done at TREC
by starting with several of their collections.

Instructions for LMs Instruction-following
LMs have been popularized by models such as
InstructGPT (Ouyang et al., 2022a), FLAN (Wei
et al., 2022), and T0 (Sanh et al., 2022). They
have become a large area of interest for the natural
language processing community (Touvron et al.,
2023a; Jiang et al., 2023; Groeneveld et al., 2024;
Black et al., 2022). There has been much work
in evaluating if they can generalize to new instruc-
tions (Wang et al., 2022c; Ouyang et al., 2022b),
if we can train them to follow instructions with-
out human-annotated data (Wang et al., 2022b;
Qin et al., 2023), and applying them to various
domains (Zhao et al., 2021; Singhal et al., 2023;
Shaghaghian et al., 2020). As the IR community
uses LMs in their pipelines, we seek to broaden the
scope of IR to include instructions, aligning it with
the broader NLP community.

Instructions for Retrieval Using instructions
in retrieval is a nascent area of exploration. Su
et al. (2022) and Asai et al. (2022) were two of
the earliest works that trained a retrieval model to
use instructions along with the query. However,
these instructions are typically very short, such as
“Retrieve a Wikipedia paragraph that answers this
question." Recent work incorporates instructions in
smaller models (Xiao et al., 2023; Chen et al., 2023,
2024) as well as others which use Llama (Touvron
et al., 2023a; Weller et al., 2023) or Mistral (Jiang
et al., 2023) as the backbone of a larger retrieval
model that can use instructions: GritLM (Muen-
nighoff et al., 2024) trains Mistral to do both gen-
eration and embedding, while Wang et al. (2023a)
uses Mistral for embeddings only.

Despite this flurry of activity, these efforts do not
have an explicit instruction-related retrieval bench-
mark to evaluate on. Instead, they evaluate on
standard retrieval benchmark suites such as MTEB
(Muennighoff et al., 2022) and BEIR (Thakur et al.,
2021) which do not contain instructions. Thus,
these newer instruction retrieval models hand-write
a few instructions, where typically each instruc-
tion is applied to an entire dataset, irrespective of
the query. This makes these instructions generic:
focused only on the task format, format of the “doc-
ument" (paragraph, sentence, etc.), and the broad
domain. Note that because of this, no current in-
structions contain any extra background informa-
tion or negation (Weller et al., 2024) which are
commonly found in real-world instructions (see
Figure 1 for an example of these differences).

In work concurrent to ours, Oh et al. (2024) also
propose a dataset to evaluate instructions in re-
trieval models. Their dataset uses the MS MARCO
collection (Nguyen et al., 2016), and differs in sev-
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eral crucial aspects: it only has one relevant doc-
ument per query (e.g., sparsely judged), is GPT-4
generated and validated, focuses on the background
of the user (“I am a school teaching looking for ..."),
and evaluates using the lowest score over N instruc-
tions for the same query (measuring robustness).
In contrast, we use highly-judged corpora to ensure
we can measure recall, use professionally gener-
ated instructions, have human-validated relevance
judgements, propose a new paired evaluation pro-
tocol, and provide a training dataset and model for
teaching instruction-following.

3 Building FOLLOWIR

We derive FOLLOWIR from three TREC collec-
tions: TREC News 2021 (derived from the Wash-
ington Post v4 corpus; Soboroff et al., 2020),
TREC Robust 2004 (from news articles in Disks
4 and 5 collections; Voorhees, 2005), and TREC
Common Core 2017 (from the New York Times
Annotated corpus; Allan et al., 2017). Each of
these was professionally assessed to include hun-
dreds of annotations per query (see Table 1), with
50-180 relevant documents per query on average
(and many more not-relevant annotations).

Each of these TREC tracks includes instructions
for the professional annotators that we now also
give to the models. Although using these alone can
provide some indication of how well models can
follow instructions, it doesn’t explicitly test their
instruction following ability. To more carefully iso-
late this in our benchmark, we test whether models
can respond to small changes in the instruction.

To accomplish this, we ask two expert annotators
to modify the TREC instructions. However, doing
this in a naive way would require re-annotating
all the document judgements, a non-trivial task
requiring immense annotation efforts.2 Instead,
we task the annotators with making instructions
more specific by including additional constraints
that narrow the relevance definition. These trans-
formations cause some previously relevant docu-
ments to become non-relevant without introducing
any new relevant documents from the pool. There-
fore, only those documents that were deemed rel-
evant by the original TREC assessors need to be
re-annotated. This makes the annotation tractable,
with only dozens of documents to re-annotate per
query instead of a collection of thousands.

2NIST’s budget is $1–2 million USD/year: trec.nist.
gov/pubs/2010.economic.impact.pdf

We annotate a subset of the original TREC
queries due to cost and overlap: we sample 50
queries from TREC Robust 2004 that do not over-
lap with TREC Common Core (as Common Core
used 50 queries from Robust04 on a new collec-
tion), and 30 queries from TREC News 2021. Ta-
ble 1 shows dataset statistics of judged documents
and the final benchmark size. Annotators were
asked to change the instructions so that the number
of relevant documents was cut roughly in half, thus
including a sizeable number of changed relevance
judgements. We note that although the number
of queries seems small by NLP standards, 30-50
queries is both effective (Webber et al., 2008) and
standard in IR due to the expense of careful anno-
tation over many documents per query (see §A).

Due to differences in retriever quality, if we eval-
uate by searching over the full collection, each
model will retrieve a different number of relevant
documents. However, because we evaluate instruc-
tion following based on changing the document
relevance, models that do poorly in the initial re-
trieval will have fewer documents which change
relevance in the instruction-following evaluation.
To rectify this, we instead turn to a reranking task
where we include all relevant documents, and use a
pool of five models3 to select the top non-relevant
documents. To be able to freely distribute the data
due to fair-use laws, we chunk the documents into
400-word passages with 200-word overlap and se-
lect the highest scoring passages using MaxP (Dai
and Callan, 2019). This enables us to distribute
our data, which we do by extending the MTEB
evaluation framework (Muennighoff et al., 2022).

3.1 Evaluation Metrics for FOLLOWIR

Our benchmark provides two ways of measuring
instruction following: (1) standard retrieval metrics
when using the instructions with the queries and
(2) pairwise evaluation of instruction following.

For (1), we use typical IR evaluation metrics but
use the instruction along with the query: these
metrics are mean average precision (MAP) for
Core17/Robust04 and normalized discounted cu-
mulative gain at 5 (nDCG@5) for News21.4 For
(2) we use our novel pairwise evaluation metric

3We use BM25, BGE-base, E5-base-v2, TART-Contriever,
and INSTRUCTOR-xl.

4We use nDCG@5 for News21 as that was the official
metric used in that TREC track.

11929

https://trec.nist.gov/pubs/2010.economic.impact.pdf
https://trec.nist.gov/pubs/2010.economic.impact.pdf


Dataset # Q |Q| |I| Rel. D/Q # Q |I| Rel. D/Q

TREC News ’21 (Soboroff et al., 2020) 50 15.3 40.1 50.1 32 46.9 19.2
TREC Core ’17 (Allan et al., 2017) 50 16.6 44.0 180.0 20 53.5 32.7
TREC Robust ’04 (Voorhees, 2005) 249 11.9 68.2 69.9 52 75.2 19.8

Table 1: FOLLOWIR evaluation set statistics before (left) and after (right) annotation. We use a subset of the queries
in three popular TREC tracks for variety in queries and documents. |Q| is the word length of the queries and |I| is
the word length of the instructions. Rel. D/Q indicates the number of relevant annotated documents in the collection,
excluding irrelevant annotations. As designed, there are less relevantly-judged documents in the FOLLOWIR portion
(as the annotations change the relevance of documents on purpose for evaluation).

that measures the delta in scores when following
the modified instructions instead of the original.5

Our new pairwise evaluation metric, p-MRR,
measures rank-wise changes between queries. In
developing this metric we had the following
desiderata: it should compare the results of the orig-
inal instruction to those of the new instruction, it
should have a standardized range from worst possi-
ble change in instruction-following score (i.e., −1)
to best possible instruction-following score (i.e., 1)
with an option for no change when using different
instructions (i.e., 0), and finally should take into ac-
count the document rank so that changes from rank
1 to rank 2 are more prominent than changes from
rank 99 to 100. Given the above qualifications, we
use the following equation applied to each changed
relevance document per query (where RR is recip-
rocal rank, Rog is the rank of the doc when using
the original instruction and Rnew is the new rank):

p-MRR =





RRog

RRnew
− 1 if Rog > Rnew

1− RRnew
RRog

otherwise
(1)

For the final score, we average first within a given
query and then over all queries in the corpora—
i.e., macro-averaging across queries, to handle the
different number of relevant documents per query.

3.2 Why do we need a new metric?

The original TREC datasets do not need instruc-
tions to be correctly solved. The nDCG metric
only shows their ability to retrieve on the original
task (with the added instruction). However, models
could simply ignore the instruction and get high
nDCG scores, thus, they don’t evaluate instruction-
following. Hence why we propose a new metric
disentangled from model’s keyword-search ability.

5Note that we do not show standard retrieval results on
the modified instruction’s relevant document set, as standard
retrieval scores cannot be directly compared across different
query relevance annotations (qrels).

4 Evaluating Instruction Following

In this section we describe the models we eval-
uate, their results on FOLLOWIR, and ablations
performed to better understand current models.

4.1 Evaluation Settings

We evaluate a wide variety of IR models (trained
with and without instructions), including neural
models ranging from 100 million to 7 billion pa-
rameters. We evaluate on the original TREC in-
structions in the FOLLOWIR benchmark and then
on the new instructions, showing both standard IR
metrics and the new pairwise metric p-MRR. We
group models into four categories:

No Instructions in Training These retrieval
models did not see instructions in training and
typically aren’t given them: Contriever (Izacard
et al., 2021), E5 (Wang et al., 2022a), MonoBERT
(Nogueira et al., 2019), MonoT5 (Nogueira et al.,
2020), and BM25 (Robertson et al., 1995).

Instructions in IR Training Most retrieval mod-
els using instructions received roughly one instruc-
tion per retrieval dataset, which generally defined
the domain (e.g., “Financial"), document size (sen-
tence, passage, etc.), and task format. This in-
cludes INSTRUCTOR models (Su et al., 2022), the
bi-encoder TART model trained from Contriever
(Asai et al., 2022), the reranker TART trained from
FLAN-T5 (Chung et al., 2022), E5 Mistral-Instruct
(Wang et al., 2023a), and GritLM (Muennighoff
et al., 2024). We also include BGE models (Xiao
et al., 2023) in this category, although they are
trained with only one instruction total for each
broad task (retrieval, clustering, etc.).

API Models We use three of the best perform-
ing API embedding models: Cohere’s v3 English,
Google’s Gecko (Lee et al., 2024) and OpenAI’s
Text-Embedding-v3-Large. It is mostly unknown
what these models’ training procedures were—
including if they were trained on instructions or
not—thus we place them in a distinct category.
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Robust04 News21 Core17 Average
Model MAP p-MRR nDCG p-MRR MAP p-MRR Score p-MRR

N
o-

In
st

ru
ct

io
n

IR
E5-base-v2 13.4 -6.7 20.9 -2.0 14.0 -2.9 16.1 -3.9
Contriever 19.7 -6.1 22.9 -2.8 15.3 -2.5 19.3 -3.8
MonoBERT 21.0 -9.4 25.1 -0.8 18.4 -0.2 21.5 -3.5
BM25 12.1 -3.1 19.3 -2.1 8.1 -1.1 13.2 -2.1
MonoT5-base 15.7 -6.2 11.0 +5.0 12.2 -4.1 13.0 -1.8
E5-large-v2 17.4 -4.2 24.3 +0.9 17.0 +0.1 19.6 -1.1
MonoT5-3B 27.3 +4.0 16.5 +1.8 18.2 +1.8 20.7 +2.5

In
st

ru
ct

io
n-

IR

TART-Contriever 14.3 -9.0 21.8 -3.0 13.3 -3.0 16.5 -5.0
INSTRUCTOR-base 17.2 -10.4 22.1 -1.8 15.5 -1.1 18.3 -4.4
E5-mistral 23.1 -9.6 27.8 -0.9 18.3 +0.1 23.1 -3.5
BGE-base 16.8 -6.5 20.0 -0.1 14.6 -2.7 17.1 -3.1
INSTRUCTOR-xl 19.7 -8.1 26.1 -0.9 16.8 +0.7 20.9 -2.8
BGE-large 17.5 -7.8 22.3 +0.6 15.0 +0.1 18.3 -2.4
GritLM-7B 28.6 -1.7 24.4 -1.0 20.8 +2.6 24.6 -0.0
TART-FLAN-T5-xl 24.6 -0.7 12.8 +2.0 17.0 +2.8 18.1 +1.4

A
PI

s OpenAI v3 Large 27.2 -5.8 27.2 -2.0 21.6 -0.2 25.3 -2.7
Cohere v3 English 22.3 -3.6 28.3 +0.2 20.6 +2.8 23.7 -0.2
Google Gecko 23.3 -2.4 29.5 +3.9 23.2 +5.4 25.3 +2.3

In
st

ru
ct

L
M

s FLAN-T5-base 6.4 +5.3 6.1 -0.1 6.5 -3.3 6.3 +0.6
Llama-2-7B-chat 6.3 +2.0 1.7 +0.2 5.4 +2.8 4.5 +1.7
FLAN-T5-large 14.7 +3.9 8.0 +8.9 11.4 +1.3 11.4 +4.7
GritLM-Reranker 9.7 +6.1 10.2 +3.4 9.8 +8.6 9.9 +6.0
Mistral-7B-instruct 23.2 +12.6 27.2 +4.8 19.7 +13.0 23.4 +10.1
FollowIR-7B 24.8 +13.7 29.6 +6.3 20.0 +16.5 24.8 +12.2

Table 2: Evaluating instruction-following on FOLLOWIR. Introduced in this work, p-MRR is a pairwise evaluation
metric measuring instruction following when instructions change, ranging from −100 to 100 (higher is better).
Generally only models with over 3B parameters or instruction-tuned LMs that haven’t been trained on retrieval
tasks show success at following retrieval instruction.

However, we note that Google’s model did explic-
itly train with instructions, as mentioned in their
technical report.

Instruction-Tuned LMs We also evaluate sev-
eral instruction-tuned LMs to be used as rerankers,
including FLAN-T5 (Chung et al., 2022), Llama v2
(Touvron et al., 2023b), and Mistral-Instruct-v0.2
(Jiang et al., 2023). We evaluate these models in
the same fashion as MonoT5 rerankers, comparing
the true and false tokens. Note that these models
were not trained on any retrieval-specific data.

4.2 FOLLOWIR Results

Table 2 shows the main results, with the standard
IR score shown (either MAP or nDCG@5) as well
as the pairwise evaluation metric, p-MRR.

No-Instruction IR Models We see that the no-
instruction models range widely in standard IR met-
rics (in terms of nDCG@5 and MAP) but generally
have negative scores for p-MRR (up to −3.9). The
only non-instruction model to score positively on
average is MonoT5-3B (+2.5 p-MRR).

Instruction IR Models We again see that these
models have generally negative scores, with the

exception being GritLM (with scores averaging
roughly zero) and TART-FLAN-T5-xl which has
slightly positive scores for two of the three datasets
(with an average of +1.4 p-MRR).

API Models We see that the API models perform
strongly in terms of standard IR metrics, with Ope-
nAI’s and Google’s models performing the highest
overall. However, Cohere’s and OpenAI’s models
perform poorly at instruction-following with neg-
ative scores (−0.2 and −2.7 on average, respec-
tively) whereas Google Gecko has positive scores
(+2.3) likely from its dataset of instructions.

Instruct-Tuned LMs In contrast to the previous
results, all instruction-tuned LMs show positive
results for instruction following, although they have
the widest range of performance using standard IR
metrics (ranging from very poor scores to some of
the higher scores). We see that the best performing
model in this category is FOLLOWIR–7B, which
we describe in more detail in Section 5.

Overall We see that the only models that show
positive results at following instructions are either
IR models with over 3B parameters or those that
have been explicitly trained to follow instructions
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Figure 3: Score difference between using no instructions to using instructions formatted as keywords, short text, or
the full text. While models that can correctly use instructions see gains with the additional information, most other
models see decreasing performance as instruction length increases.

(e.g. FLAN-T5), without any retrieval-specific
supervision. This aligns with work in the nat-
ural language processing community which has
shown that the instruction-following ability im-
proves with scale (Brown et al., 2020) and super-
vised instruction-tuning (Longpre et al., 2023).

4.3 Analysis

Why do so many models fail to correctly follow in-
structions when they do well on typical IR metrics
such as nDCG and MAP? We answer this question
by ablating several components that may impact
results: (1) whether IR models are not used to text
that cannot be used for simple keyword search (i.e.
instructions) and (2) whether they are unused to
the length of the longer instructions (as current
retrievers have been trained on shorter input).

To test these, we compare the original query-
only result to those where we additionally give the
model either the full instruction, a shorter instruc-
tion, or keywords from the instruction. We gather
these short instructions and keywords by prompt-
ing GPT-4-Turbo-1106 to generate them from the
original full instruction (for TREC data) or other-
wise use the original short instructions given by the

authors of the model (for BEIR data). For the full
prompt text, please see Appendix H.

We show results for these ablations in Table 3,
where positive scores indicate that adding infor-
mation improves the model while negative scores
indicate a drop in performance. We see a consistent
trend where models that did poorly on longer in-
structions perform better on keywords and shorter
instructions than with the full instruction. However,
models that are able to follow instructions generally
see better results with the additional information.

These results show that models are (1) using
the instruction text as keywords (as performance is
higher when using only keywords) and (2) are not
able to utilize the extra information in the instruc-
tions (as they generally decrease in performance
with this additional information).

We also confirm that these results hold on
datasets outside of TREC collections and show
results on three BEIR datasets: SciFact, NFCor-
pus, and FiQA. We show in Table 3 the original
score (using the short instructions from their pa-
pers) and the change in score when using just key-
words from the instruction (again extracted from
GPT-4). We show results only for models which
performed poorly for instruction-following. We
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SciFact NFCorpus FiQA
Model OG ∆ w/Key. OG ∆ w/Key. OG ∆ w/Key.

N
o-

In
st

ru
ct

io
n BM25 67.9 -1.7 32.2 -5.1 23.6 -1.6

E5-base-v2 71.9 -2.7 35.4 -2.5 39.9 -0.4
Contriever 64.9 +0.4 31.7 +0.0 24.5 -3.2
MonoT5-base 73.1 -0.6 35.6 -0.9 41.2 -0.3

U
se

s
In

st
ru

ct
io

n TART-Contriever 67.6 -0.3 33.4 -5.3 31.8 -0.4
INSTRUCTOR-base 57.8 +1.0 31.6 -0.4 39.2 -0.1
BGE-base 73.2 -0.5 35.5 +0.0 40.8 -2.3
TART-FLAN-xl 74.2 +1.6 33.9 +0.4 39.6 -0.3
INSTRUCTOR-xl 62.4 +0.2 36.0 -0.6 46.9 +0.8
E5-Mistral 77.1 -5.1 38.8 +0.3 56.7 -6.5

Table 3: Ablation on BEIR benchmarks for models that do poorly with longer instructions, comparing their original
short instructions vs domain keywords extracted from those instructions (see Appendix G for a list). OG stands
for original input. If models had learned to use the instructions correctly we would see a divergence between the
behavior of instruct and non-instruct models, however, we see comparable performance between the added keywords
vs the full instruction (± one point).

Model Robustness@10

BM25 26.9
TART-Contriever 47.5
RepLLaMa 52.6
E5-Mistral 55.4

Mistral-7B-instruct 35.3
FollowIR-7B 71.5

Table 4: Performance on the InstructIR benchmark
using their “Robustness@10" scores, e.g. the min
nDCG@10 score across 10 instructions. Upper por-
tion is bi-encoders while lower is rerankers.

see that the scores for keywords vs the short in-
struction are generally similar, with most models
seeing a change of around ± 1 point, except for the
strongest of the non-instruction-following models,
E5-Mistral, seeing a larger drop on some datasets.
Overall We find overall (on both TREC and
BEIR datasets) that models use instructions for
keyword matching and are unused to longer in-
structions that may contain less relevant words.

5 Teaching Instruction Following

Is it possible to improve model performance in fol-
lowing instructions? We show that fine-tuning on
a training set of longer instructions can provide
a method for doing so. We start by gathering a
training set to teach models. We collect all TREC
narratives (i.e., instructions) from tasks not in FOL-
LOWIR, consisting of 1836 pairs of queries and nar-
ratives. However, we note that this does not provide
any positive or negative documents for fine-tuning.

In order to obtain documents for training, we
prompt GPT-3.5-Turbo-1106 to generate relevant
and not-relevant documents, generating roughly
two relevant and non-relevant instances per query.

The prompts for this experiment can be found in
Appendix H.

However, these synthetic documents are noisy
and contains errors w.r.t. the labels—to remedy
this, we perform a round of filtering and use the
best performing open-source model from Table 2
(Mistral-7B-Instruct-v0.2) to score each of the gen-
erated documents according to the instruction. We
then filter the documents according to whether Mis-
tral correctly predicts the generated label, and fi-
nally balance the relevant and non-relevant sam-
ples, choosing only one relevant and non-relevant
document per query. Our total is ∼1800 training in-
stances on ∼1200 unique query/instructions pairs.

We then train our instruction-following model,
FOLLOWIR-7B, by fine-tuning Mistral-7B-
Instruct-v0.2 on our data using the Llama-Factory
framework (Hiyouga, 2023) with LoRA (Hu et al.,
2021). Full training hyperparameter details are
found in Appendix C.

When we evaluate this model on FOLLOWIR
(Table 2), we find that the scores consistently
improve. Compared to the original Mistral-7B-
Instruct-v0.2, our model improves on both standard
IR metrics (+6.0% relative improvement) and on
instruction following (+20.8% relative). We also
show that this improvement holds on the concurrent
InstructIR dataset (Table 4), where FollowIR-7B
scores double the base Mistral-7B scores (71.5 Ro-
bustness@10 vs 35.3) and is the top scoring model
overall. Thus, we can see that it is possible to train
IR models to be better instruction followers.6

6See §B for a Llama-3-8B base version.
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6 Conclusion

Despite the use of LMs as the backbone of neural
retrieval models, most existing IR models do not
take instructions that define document relevance.
Further, there is no existing resource that measures
how well retrieval models can follow instructions.
We build a new benchmark that explicitly measures
the instruction following ability of retrieval models
and find that nearly all retrieval models do not fol-
low instructions, with the exception of larger mod-
els (3B+ parameters) or instruction-tuned LMs that
typically are not used for retrieval. However, we
show that it is possible to improve their instruction
following ability, and build and release a training
corpus for teaching retrieval models to follow in-
structions. Our new model, FOLLOWIR-7B, shows
improvement on both standard retrieval metrics as
well as in instruction following, which we hope
will inspire future work on the topic.

7 Limitations

Reranking vs Full Retrieval As our setup for
evaluating instruction following requires evaluat-
ing the documents which changed relevance, we
cannot use the full collection for retrieval (as each
retriever finds different relevant documents by de-
sign). Further, due to licensing restrictions, we
cannot distribute the full corpora from the TREC
tracks—thus we distribute passages due to fair use
laws. However, we show full corpus retrieval re-
sults for a subset of models in Appendix F and note
similar trends in terms of the lack of instruction
following.

Possible Errors Our work is built on the TREC
document collections and judgements, as well as
new annotation efforts. We do not check for po-
tential errors in the TREC annotations, and our
newly gathered annotations may have small errors.
Despite these caveats, we see that our dataset still
provides a useful evaluation setup for measuring
instruction following.
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A FAQ

Why is the dataset so small / only around 100
instances? In NLP, 100 instances would be a
small dataset (although not unheard of, see Hu-
manEval (Chen et al., 2021), VibeEval (Padlewski
et al., 2024), etc. which are commonly used for
evaluating LLMs and are well-respected).

However, in IR, as each query requires anno-
tating hundreds of documents for relevance, the
number of queries is smaller but the number of an-
notations is similar. Thus, for our 102 query set,
there are roughly 102 queries * (50 relevant and
150 non-relevant) documents for a total of around
20k annotations total – which is similar to those in
NLP datasets. Thus we can see that annotations for
IR require 200x the cost of standard NLP bench-
marks per instance.

The alternative is to gather less annotations per
query (such as NQ or MSMarco which only have
one relevant document per query but many more
queries) but those have been shown to overwhelm-
ingly contain documents that are relevant but not
marked as relevant, making them low quality for
evaluation (Ni et al., 2021; Cai et al., 2022). As
such the IR community develops more thoroughly
judged versions of them with a smaller number of
queries (such as the Deep Learning Tracks 2019-
2022 that build off of MSMarco, cited above, or
those that we build off of).

Can LMs handle these type of long instructions?
Yes! As the length of the query plus instruction is
roughly 80 words on average and the documents
are around 400 words, most (if not all) LMs can
handle 480 words in their context length. This
especially holds true for modern LMs with > 1024
token context lengths. Overall, this is really not
long context for LMs.

Not all retrieval tasks will have instructions,
what can we do then? We agree that this is the
case, in fact, we could only find this one source
of real-world instructions for retrieval! We believe
this is partially due to the lack of systems that can

handle them - why would a user give a retrieval sys-
tem an instruction if it wouldn’t use it? However,
as shown by TREC we can see that there are use-
cases that people want to be able to do with these
instructions. Our dataset provides the first step into
building systems that can handle them by providing
datasets for training and testing. However, systems
should be able to handle both the no-instruction
case and the instruction case – as lots of datasets
exist for evaluating with no-instructions, ours pro-
vides ways to test for the instruction case.

B Llama-3-8B version of FollowIR

We also train a Llama-3-8B (AI@Meta, 2024) ver-
sion of FollowIR. However, as found by many oth-
ers in the community, Llama3 is worse than Mistral
for retrieval (BehnamGhader et al., 2024). We find
that the base model has 0.03 p-MRR and after fine-
tuning on FollowIR-train it goes to 5.1 p-MRR. For
nDCG, FollowIR-Llama3-8B scores 15.4 whereas
FollowIR-Mistral has 24.8.

C Hyperparameters for Fine-Tuning
Mistral

We used the following hyperparameters for train-
ing Mistral: batch size of 32, cosine scheduler,
3e-5 learning rate, max length of 2048, lora rank
8 and alpha 16, bfloat16, and trained for 8 epochs.
We used "q_proj,v_proj,o_proj,k_proj" for the
LoRA tuning and trained from mistralai/Mistral-
7B-Instruct-v0.2.

D Hyperparameters for Inference

We use default parameters for inference, taken from
the original code of the authors of the papers we
use (from their MTEB evaluations).

E Compute Used

We used a A100 80GB for the experiments. Train-
ing took roughly 6 hours while inference took be-
tween 3-12 hours according to model size.

F Full Retrieval Results

In Table 5 we show results for models search-
ing on the full collections of the TREC tasks in-
cluded in FOLLOWIR. Note that because each
model retrieves different relevant documents, the
instruction-following evaluation has a different set
of instances that each model is evaluated on (as it
can only be evaluated on documents it retrieved
that then become not-relevant).
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Robust04 News21 Core17
(mAP) (nDCG@5) (mAP)

Model OG ∆ OG ∆ OG ∆

N
o

In
st

ru
ct BM25 21.4 -1.2 30.1 +5.3 16.8 -0.2

E5-base-v2 22.7 -7.0 33.6 +1.8 19.7 -3.0
Contriever 19.2 -7.7 22.5 +9.0 22.6 -7.6

U
se

s
In

st
ru

ct

TART-Contriever 25.5 -10.1 40.0 -5.0 22.6 -7.6
BGE-base 23.6 -3.1 36.5 -7.8 23.0 -2.1
INSTRUCTOR-base 22.5 -2.2 33.3 -2.8 20.0 -0.2
INSTRUCTOR-XL 30.4 -3.1 38.1 -0.1 29.9 -2.8

Table 5: FOLLOWIR scores on the full retrieval collection (thus rerankers are not included). As the base score
is different, there are different numbers of relevant documents they are being evaluated on for p-MRR. Thus, we
only report the original (no-instruction) score and the delta when using the TREC instructions. We note that it
shows similar results to the main text – retrieval models are not effectively using instructions and see performance
degradations with longer text.

G Keywords used for BEIR experiments

GPT-4-Turbo-1106 extracted the following key-
words (Table 6) from the instructions these models
used, which generated the results in Table 3.

H Prompts Used

We use these prompts for generating the short in-
structions, the keywords, and the synthetic doc-
uments. The examples used in the prompt for
the “Full Instructions to Short Instructions" prompt
were partially created by the authors, as only
the short instructions were provided by TART/IN-
STRUCTOR.
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Model Dataset Keywords

BM25/Contriever/E5/MonoT5 FiQA Finance web
BM25/Contriever/E5/MonoT5 SciFact science paper verify
BM25/Contriever/E5/MonoT5 NFCorpus medicine relevant

TART-dual FiQA financial web
TART-dual SciFact scientific paper verify
TART-dual NFCorpus scientific paper paragraph
INSTRUCTOR-base FiQA financial supporting:
INSTRUCTOR-base SciFact scientific supporting passage:
INSTRUCTOR-base NFCorpus medicine relevant
BGE-base FiQA relevant passages:
BGE-base SciFact relevant passages:
BGE-base NFCorpus relevant passages:
INSTRUCTOR-xl FiQA finance supporting:
INSTRUCTOR-xl SciFact scientific supporting passages:
INSTRUCTOR-xl NFCorpus nutrition facts public medical:
E5-Mistral FiQA financial replies
E5-Mistral SciFact scientific
E5-Mistral NFCorpus retrieve relevant
TART-T5-FLAN-xl FiQA financial web
TART-T5-FLAN-xl SciFact scientific paper verify
TART-T5-FLAN-xl NFCorpus Scientific paper paragraph

Table 6: Keywords used for the BEIR keyword analysis. Note that non-instruction models received the keywords
used in INSTRUCTOR-base and TART-dual (as shown in the table).
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Synthetic Document Creation

I need you to annotate some data for my business and it is super important that you follow
instructions precisely or you will be fired.

Given a Google search query and instructions regarding what makes a document relevant, I need
you to write two documents: one that would be relevant and one that would not.

Search: TITLE_HERE
Instructions: NARRATIVE_HERE

I need some different options to choose from, so give me three **different** options for both
a relevant document and an irrelevant document. They should be **long** paragraph-sized
documents (∼300 words each), one on each line. If there is no negation in the instructions, your
irrelevant document should be slightly off topic:

Short Instructions to Keywords

I have instructions that are specific to a style of retrieval, but I want you to instead just focus on the
relevant keywords that are in these instructions. Your job is to return a list of these keywords that
are relevant in the query. There are probably one or two relevant keywords to extract only.

## Examples
### Example 1:
Instruction: Help me to find a highly related PubMed paper to answer this question.
Keywords: ["PubMed"]

### Example 2:
Instruction: I want to find an answer for this Trivia question. Can you find some paragraphs that
provide evidence from Wikipedia?
Keywords: ["Trivia", "Wikipedia"]

### Example 3:
Instruction: Check if a Quora question is duplicated with this question.
Keywords: ["Quora", "duplicated"]

### Example 4:
Instruction: I want to find a related question asked in StackExchange. Can you find one for me?
Keywords: ["related", "StackExchange"]

## Your turn
Instruction: FILL_TEXT_HERE
Keywords (either one or two keywords, that are not "documents", "questions", "answer", or
"articles"):
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Full Instructions to Short Instructions

I have instructions that are specific to a question, but I need your help abstracting them to a general task format that I
can give to someone else. I need you to turn them into an abstract command that just describe the general abstract task
instead (e.g., where the data is from, what the type of document looks like). It is crucial that you read and follow these
instructions, you will get a large bonus if you are successful ($200).

The abstract command should only mention the **task format**. Do **not** refer to any entities or specific text in the
original instruction. Your response should be around 10 words. The command should be as if you were speaking to
another human.

## Examples
### Example 1:
Original Instruction: A relevant document would provide information about the whole blood-base perfusate and whether
or not it provides superior preservation of myocardial function during ex vivo heart perfusion. This may include
research experiments, commentary, or survey/review papers. Information about whole blood-base perfusate alone is not
relevant, unless it also mentions it’s effect on myocardial function during ex vivo heart perfusion.
Abstract Command: Help me to find a highly related PubMed paper to answer this question.

### Example 2:
Original Instruction: A relevant document will contain information that about the right of way in international waters
that can be used to determine who should have the right of way in a given situation. For example, it should contain
instances about who is at fault in an accident, if it depends on the size of the boat, or details about how this differs
according to nationality. Especially relevant are documents describing who is at fault in a crash situation.
Abstract Command: Retrieve a Wikipedia paragraph that answers this question.

### Example 3:
Original Instruction: A relevant instance will be a question that is semantically equivalent to the query given. For
example, it may contain different lexical words or be a paraphrase of the other, but the underlying meaning will be the
same. If the instance is not semantically the same as the query, it is irrelevant.
Abstract Command: Check if a Quora question is duplicated with this question.

### Example 4:
Original Instruction: A relevant document would include details about the timing of medicare and what age patients can
start using it for healthcare. It may include information about laws, insurance, or other details that describe the age the
medicare begins. Less relevant are documents talking about potential laws or facts about medicare that do not answer
the question of what age medicare begins. Just the mention of an age and when to start medicare would be relevant.
Abstract Command: I want to know the answer to the question. Can you find good evidence on the web?

Now you can easily see that the abstract command is vague and describes only a short command about how to get the
information you need. Follow this exactly—do not reference specifics (like in the above, "international waters" and
"medicare" are not included in the abstract command). You should instead keep the abstract command vague and well,
abstract about the task only. Use the word "question".

## Your turn
Original Instruction: FILL_TEXT_HERE
Abstract Command (remember to use the word "question"):
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