
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 11821–11841

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

AutoParLLM: GNN-guided Context Generation for Zero-Shot Code
Parallelization using LLMs

Quazi Ishtiaque Mahmud1, Ali TehraniJamsaz1, Hung Phan1, Le Chen1,
Mihai Capotă2, Theodore Willke3, Nesreen K. Ahmed4, Ali Jannesari 1

1Iowa State University 2Intel Labs 3DataStax 4Cisco AI Research
1{mahmud,tehrani,hungphd,lechen,jannesar}@iastate.edu

2mihai.capota@intel.com 3ted.willke@datastax.com 4nesahmed@cisco.com

Abstract

In-Context Learning (ICL) has been shown
to be a powerful technique to augment the
capabilities of LLMs for a diverse range of
tasks. This work proposes AUTOPARLLM,
a novel way to generate context using guid-
ance from graph neural networks (GNNs) to
generate efficient parallel codes. We evalu-
ate AUTOPARLLM on 12 applications from
two well-known benchmark suites of paral-
lel codes: NAS Parallel Benchmark and Ro-
dinia Benchmark. Our results show that
AUTOPARLLM improves the state-of-the-art
LLMs (e.g., GPT-4) by 19.9% in NAS and
6.48% in Rodinia benchmark in terms of Code-
BERTScore for the task of parallel code gen-
eration. Moreover, AUTOPARLLM improves
the ability of the most powerful LLM to date,
GPT-4, by achieving ≈17% (on NAS bench-
mark) and ≈16% (on Rodinia benchmark) bet-
ter speedup. In addition, we propose OMP-
SCORE for evaluating the quality of the parallel
code and show its effectiveness in evaluating
parallel codes. AUTOPARLLM is available at
https://github.com/quazirafi/AutoParLLM.git.

1 Introduction

The rise in the number of on-chip cores has
led to more frequent development of parallel
code (Moore, 2006). Nevertheless, to unleash the
capabilities of multi-core systems, the need for de-
veloping parallel programs will continue to grow.
However, developing parallel programs is not a triv-
ial task. The communication among cores, effec-
tive data sharing among the threads, synchroniza-
tion, and many other factors need to be considered
while crafting parallel programs, which makes the
process of developing parallel programs far more
complex than serial ones.

HPC communities have published different tools
and programming models to ease the process of
moving from serial to parallel code. One of the
well-established parallel programming models is

CodeLlama
125.03

CodeLlama
140.94

ALLM-CodeLlama
144.78

ALLM-CodeLlama
162.35

GPT-4
139.01

GPT-4
151.32

ALLM-GPT-4
155.19

ALLM-GPT-4
170.85

0

20

40

60

80

100

120

140

160

180

Intel Xeon Gold AMD EPYC

CodeLlama
64.31 CodeLlama

59.95

ALLM-CodeLlama
79.19 ALLM-CodeLlama

75.82
GPT-4
73.46 GPT-4

70.09

ALLM-GPT-4
91.11

ALLM-GPT-4
87.26

0

10

20

30

40

50

60

70

80

90

100

Intel Xeon Gold AMD EPYC

Av
g.

 S
pe

ed
up

 (%
)

NAS Benchmark

Rodinia-3.1

Av
g.

 S
pe

ed
up

 (%
)

Figure 1: Effect of AutoParLLM. ALLM = AutoPar-
LLM applied (Green Bars). Average speedup(%)
gain of GPT-4 is improved by 17.7% (Intel) & 17.2%
(AMD) on NAS and by 16.1% (Intel) & 19.5% (AMD)
on Rodinia. LLMs are prompted with few shot settings
& speedups are reported using 4 threads. (Comparison
with more LLMs in Appendix A.9.)

OpenMP (Mattson and Eigenmann, 1999), which
is a directive-based programming model that al-
lows users to parallelize sequential code with min-
imal changes. Most modern compilers recognize
and support parallelization through OpenMP con-
structs. However, even with OpenMP, developers
must carefully decide which clauses or directives
they need to use. Inappropriate usage of clauses
can cause concurrency bugs such as data race or
decrease performance. Recently, Large Language
Models have also been used to generate parallel

11821

https://github.com/quazirafi/AutoParLLM.git

codes. One of the recent works (Nichols et al.,
2024a) showed that LLMs struggle to generate
correct parallel codes using basic prompts. ICL
can help LLMs to generate better results. ICL
has been applied to both the training (Wei et al.,
2023; Gu et al., 2023) and inference stages (Li
and Qiu, 2023a; Wang et al., 2024; Li and Qiu,
2023b; Xu et al., 2023; Wei et al., 2022). In all
these works, context means providing the model
with some sample input and the expected response
before providing the test inputs. That involves con-
structing samples that are close to the test inputs or
constructing enough samples such that all cases
are covered. In practice, it may be difficult to
construct such a set of sample inputs along with
the expected outputs. This is especially true for
code parallelization, as the length of the codes that
are given as context can easily exceed the context
length. To overcome this, we propose AUTOPAR-
LLM, a framework that works at the specific inputs
provided to LLMs and generates context that is spe-
cific to that input only. AUTOPARLLM has two
main components. Firstly, a GNN-based context
generator uses GNN to model flow-aware depen-
dencies, i.e., data, control, and call flow and gen-
erates relevant context regarding whether the code
is parallelizable and what parallel configurations
are suitable. Secondly, the LLM-based code gen-
erator uses the context generated by the GNNs to
create an enhanced prompt and then generates the
parallel code based on the prompts that contain the
related context. In this work, we focus on OpenMP-
based parallelization. Due to the specific nature of
OpenMP directives, where the order might be im-
portant in some cases, traditional code synthesis
metrics may not be suitable to evaluate the qual-
ity of the generated OpenMP code. As such, we
propose a new metric called OMPSCORE that is
more suitable to measure the quality of generated
OpenMP constructs.

In summary, our paper provides the following
key contributions:

• A novel approach, called AUTOPARLLM,
leveraging GNNs to generate “context" for
automatic code parallelization using large lan-
guage models. To the best of our knowledge,
AUTOPARLLM is the first tool that generates
context based on GNNs and then uses LLMs
for generating parallel codes.

• Evaluation of AUTOPARLLM on well-
established benchmarks such as NAS Paral-

lel and Rodinia benchmarks. We evaluate in
terms of CodeBERTScore, and speedup gain
and also compare our GNN-based prompt-
ing with zero-shot-COT and few-shot-COT
approaches.

• A new evaluation metric called OMPSCORE

to assess the quality of generated OpenMP
code.

This paper is organized as follows. In the next
Section, we discuss some background regarding
OpenMP based parallelization. Followed by Sec-
tion 3, where our approach is explained in detail
along with the OMPScore. Section 4 presents the
experimental results. Section 5 describes some of
the related works. Finally, Section 6 concludes the
paper.

2 Background
OpenMP offers different types of parallelization
configurations. This work focuses on loop-level
parallelism. Not every configuration is applica-
ble to every loop. For example, a loop having
no inter-iteration dependencies can be parallelized
by simply adding the ‘#pragma omp parallel
for’ directive if there is no variable inside the loop
context that needs to be private to each thread
when parallel execution occurs. This type of loops
are considered as do-all. However, there may be
cases when a variable needs to be private to each
thread such that any other thread running parallel
can not modify the content of that variable, as it
may result in inconsistency. Such cases are usually
handled by privatization of the variable using the
OpenMP clause private. Also, there may be cases
where the result of multiple loop iterations is com-
bined into a final output. This is usually known as a
reduction operation. Such loops can also be par-
allelized by using reduction clause in OpenMP. It
makes a separate copy of the reduction variable
for each thread. When all threads are done with
their calculations, it combines all the outputs of
each separate copies of the variable and generates
the final result. We provide examples of each in
Appendix A.1.

3 Approach
In this section, we present AUTOPARLLM. A
framework that leverages Graph Neural Network
to learn the flow-aware characteristics of the pro-
grams, such as control flow, data flow, and call flow,
to add additional context and guide LLMs to gen-
erate parallel code by constructing a GNN-guided

11822

Parallelism Discovery

Do All

Private

Reduction

Github

HPC Benchmark

Code Dataset
(OMP_Serial) Preprocessing Flow-aware program

representation
(PerfoGraph)

Heterogeneous GNN
(GNN Encoder) Parallelism discovery &

pattern prediction
Trained Heterogeneous

GNN

(a) Training

Flow-aware
program

representation
(PerfoGraph)

Querying
trained

GNN

Privatization
needed?

Output sequential
Code

Sequential code

LLM Parallel code

Yes
Parallelism

found?

Initial Prompt

Add do-all
context

Parallelize given code
using OpenMP with

following rules:
1. Code contains do-all

pattern

Yes

code needs privatization

Stage 1 prompt

Reduction
needed?

Yes
code needs reduction

Combiner
No

keep Stage 1 prompt

Parallelize given code using
OpenMP with following

rules:
1. Code contains do-all

pattern
{{Add Context generated

from Combiner}}

GNN-guided Context Generation Chain

GNN-guided Prompt with
relevant

parallelization context
Parallelize given

code using OpenMP
with following

rules:

Sequential code

No

for (int i = 0; i < n; ++i)
R23 = 0.50 * R23;
T23 = 2.0 * T23;

}

#pragma omp parallel for
reduction (*: R23, T23)
for (int i = 0; i < n; ++i)

R23 = 0.50 * R23;
T23 = 2.0 * T23;

}

for (int i = 0; i < n; ++i)
R23 = 0.50 * R23;
T23 = 2.0 * T23;

}

(b) Inference

Figure 2: Overview of the AUTOPARLLM workflow.

OMP prompt. Figure 2 shows the overall work-
flow of AUTOPARLLM. In Figure 2(a), we show
the training process where we train GNN models
to predict parallelism opportunity and the parallel
pattern. Then, in Figure 2(b), we show how at
inference time, GNN is used to create context for
the GNN-guided OMP prompt to guide the LLM
to generate better parallel code.

3.1 Training

The first step in our approach is training a Graph
Neural Network to learn the features of the input
programs.

3.1.1 Data Collection and Preprocessing
First, we collect data to train our neural network
to detect parallelism and patterns. We want our
neural network model to be able to realize if a re-
gion of a code (such as a loop) is parallelizable or
not. We use the OMP_Serial dataset (Chen et al.,
2023b) for this purpose. Also, some pre-processing
is applied to transform the dataset into a graph rep-
resentation of programs so that our GNN-based
models can learn efficiently from the representa-
tion. Section 4 provides more details regarding the
dataset and preprocessing.

3.1.2 Program Representation
While different program representations can be
used to train neural networks, we use PERFO-

GRAPH (TehraniJamsaz et al., 2023) in this work as
it incorporates control, call and data flow informa-
tion of source programs. Also, PERFOGRAPH can
represent multi-dimensional arrays and vectors in
the programs. Additionally, it is numerically aware,
meaning it can encode numbers. Experiments that
have been conducted on PERFOGRAPH, show that
this representation is effective for the task of paral-
lelism discovery and pattern detection (TehraniJam-
saz et al., 2023). We provide more details regarding
structure of PERFOGRAPH and how node and edge
embeddings are generated in Appendix A.5.

3.1.3 Graph Neural Network (GNN) Training
The benefit of using GNN is that programs can
be represented as graphs, allowing to explicitly
model various flows necessary for parallelism-
related tasks. Using the PERFOGRAPH represen-
tation, we train a Graph Neural Network (GNN)
to learn the flow-aware features of the programs
specifically. We provide more details in Section 4.

3.2 Inference
In this part, we explain how GNNs are utilized to
guide the LLMs to generate appropriate parallel
code.

3.2.1 Prompt Engineering
In the first step, before even constructing the
prompt for the LLM, we use GNN to identify if

11823

there is a parallelism opportunity in the given code.
If there is no parallelism opportunity, the parallel
version of the given code will not be generated.
Figure 2(b) shows the process of generating GNN-
guided OMP prompt with relevant parallelization
context, which is used to generate parallel OpenMP
code. As said, the prompt would be used only if our
GNN model predicts a parallelization opportunity.
Thereafter, the corresponding patterns will be pre-
dicted by the GNN as well. The supported patterns
at the moment are: do-all, private, reduction,
and reduction and private together. The
clause placeholder in the prompt will be replaced
by the name of the predicted pattern. We also de-
signed a few-shot-COT OMP prompt for compar-
ing with our approach manually by carefully select-
ing 5 samples that cover all parallelization cases
described in Section 2. We use this prompt for
all our few-shot-COT experiments. The complete
prompt is given in Appendix A.16. Additionally,
we conducted experiments using randomly selected
samples for the prompt and the results are presented
in Appendix A.15. Also, the Zero-shot-prompt is
given in Appendix A.17. The choice of LLM de-
pends on the user’s preference. We experimented
with two closed-source LLMs: GPT-4 and GPT-
3.5, and two open-source LLMs: CodeLlama-34B
(Rozière et al., 2023) and CodeGen-16B (Nijkamp
et al., 2022). The closed-source LLMs are accessed
using the OpenAI GPT-3.5 and GPT-4 APIs (Ope-
nAI, 2023).

3.3 OMPSCORE

3.Updating

Pragma omp parallel
for private (j,i,k)
reduction (+:z)

Pragma omp parallel
for private (k,i,j)
reduction (z:+)

Pragma omp parallel
for <mask_1>
<mask_2>

Pragma omp parallel
for <mask_1>
<mask_2>

Pragma omp parallel for private
(i,j,k) reduction (z:+)

Pragma omp parallel for private
(i,j,k) reduction (+:z)

Sort <mask_1> to
“private(i,j,k)”
Keep <mask_2>
as “reduction(z:+)”

Sort <mask_1> to
“private(i,j,k)”
Keep <mask_2>
as “reduction(+:z)”

Candidate

Reference

Input

1.Masking

4.Scoring

Updated Candidate

Updated Reference

Output: OMPScore

Actions for Candidate

Actions for Reference

Masking for Candidate

Masking for Reference

2.Categorizing

<mask_1>: private
clause
<mask_2>:
reduction clause

<mask_1>: private
clause
<mask_2>:
reduction clause

Candidate

Reference

ROUGE-L

Figure 3: Overview of OMPSCORE.

Some characteristics of OpenMP directives and

clauses challenge the evaluation using existing tex-
tual similarity metrics. To illustrate, consider Fig-
ure 3, where we have a candidate and a refer-
ence directive, each composed of multiple clauses.
One characteristic pertains to the order of vari-
ables or operands within certain clauses, where
variable rearrangements may not alter semantic
meaning (e.g., private(k,j,i) is equivalent to
private(j,i,k)). Another characteristic involves
specific clause types where the order of elements
significantly affects directive performance. For
example, in Figure 3, the candidate directive’s
reduction(z:+) clause is considered a mismatch
to the reference directive. In essence, OpenMP di-
rectives encompass both order-sensitive and order-
insensitive clauses, making a uniform treatment
of all clauses as either order-sensitive or order-
insensitive inadequate for accurate scoring. We
introduce OMPSCORE, a metric that enhances
Rouge-L score evaluation for OMPSCORE direc-
tives through a combination of regular expressions
and program analysis. OMPSCORE comprises
four key modules designed to preprocess input,
both candidate and reference directives, to pro-
vide improved arguments for the Rouge-L score.
In the initial stage, the Masking module detects
potential clauses or directives for updating. It
does so by identifying clauses within OpenMP
directives using regular expressions initiated by
OpenMP keywords (e.g., private, shared, or
reduction) followed by open/close parentheses.
Subsequently, the second module categorizes all
identified masked spans based on the first word
within each span, thereby determining the clause
type (e.g., private, shared, or reduction). In
the third module, we update the clauses consid-
ering two factors related to element order within
OpenMP clauses. For instance, the private clause
in the directive undergoes a sorting action while
the reduction clause remains unchanged. To de-
termine whether specific clause types are order-
sensitive or order-insensitive, we refer to the of-
ficial OpenMP documentation and articles1. For
order-insensitive clause types, like the private
clause, we alphabetically sort the elements within
their respective element lists. Finally, in the fourth
module, the updated candidate and reference di-
rectives serve as input for the Rouge-L scoring
function, yielding the OMPSCORE, quantifying
the similarity between the candidate and reference.

1https://www.openmp.org/resources/tutorials-articles/

11824

4 Experimental Results

We evaluate the effectiveness of AUTOPARLLM
on several applications. In this section, we describe
the details of those experiments. Also, we describe
the components of AUTOPARLLM in detail. All
deep learning models are run on computing nodes
with the same configuration. Each computing node
has an Intel Xeon Gold 6244 CPU with 32 cores
and 366 GB of RAM.

4.1 Experimental Setup

We use the OMP_Serial dataset (Chen et al., 2023b)
to pre-train the parallelism discovery and pattern
detection module of AUTOPARLLM.

4.1.1 Parallelism Detection Module
The first step is to train our parallelism detec-
tion model to identify whether a region, such as
a loop, can be executed in a parallel manner. The
OMP_Serial dataset contains around 6k compilable
C source files that are crawled from Github and
well-known benchmarks like PolyBench (Pouchet
and Yuki, 2017), Starbench (Andersch et al., 2013),
BOTS (Duran et al., 2009), and the NAS Par-
allel Benchmark (Jin et al., 1999). However,
since we use NAS Parallel Benchmark for eval-
uating the generated parallel codes, we carefully
exclude all samples of NAS Parallel Benchmark
from the dataset for our pre-training phase so that
our model does not "see" those samples beforehand.
After exclusion, LLVM Intermediate Representa-
tions (LLVM IR) of source C files are generated.
To augment the dataset and increase the size of
training data, we compile programs using different
LLVM optimization flags following the approach
of (TehraniJamsaz et al., 2022). Ultimately, we
have around 10k IR files (6041 parallel, 4194
non-parallel).

4.1.2 Pattern Detection Module
The OMP_Serial dataset also contains 200
private and 200 reduction loops. However, af-
ter removing samples taken directly from NAS
benchmark and extracted templates, around 158
private and 137 reduction samples are left. Fi-
nally, we apply LLVM optimization flags similarly
as mentioned above and generate around 4k IR files
(2160 private, 2100 reduction). The private
clause detection model determines the need for a
private clause. Similarly, the reduction clause
detection model is used to identify whether we need
a reduction clause in the OpenMP directive or

Table 1: Accuracy of Parallelism Detection, Private
Detection and Reduction Detection Models.

Model NAS Benchmark Rodinia Benchmark
Parallelism Discovery Accuracy 94.44% 100%

Private Detection Accuracy 92.86% 100%
Reduction Detection Accuracy 100% 100%

not. For training private clause detection model,
two classes are created: private (2160 files) and
non-private (contains 2000 files, 50% of those
are taken randomly from reduction and 50% of
those are randomly taken from non-parallel).
Similarly, for training reduction clause detec-
tion model, two classes are created: reduction
(2100 files) and non-reduction (contains 2000
files, 50% of those are taken randomly from
private and 50% of those are randomly taken
from non-parallel). These two models make up
the parallel pattern detection module of AUTOPAR-
LLM.

4.1.3 GNN Classifier
We use the DGL-based (Wang, 2019) implementa-
tion of RGCN (Schlichtkrull et al., 2018) with 6
GraphConv layers for all three GNN models. Each
source program is a heterogeneous graph repre-
sented by PERFOGRAPH (TehraniJamsaz et al.,
2023), so the HeteroGraphConv module in each
layer is used with the ‘sum’ aggregation function.
All 3 models are trained for 120 epochs, and the
checkpoints with the highest validation accuracy
is saved for later inference. The model hyperpa-
rameter details, loss curves, and training times are
reported in Appendix A.3. Table 1 shows the
accuracy of the 3 GNN models used for context
generation.

4.1.4 Inference and GNN-based Prompt
Generation

For inference, the three pre-trained models are ap-
plied sequentially. First, the input code is passed
to the parallelism detection model. If it classi-
fies a loop as parallel, then it is passed to the
private clause detection model. If the second
model classifies it as a private loop, then the
private clause is added to the OMP prompt. Fi-
nally, the loop is passed to the reduction clause
detection model, and similarly, if it classifies the
loop as a reduction loop, the reduction clause
is also added to the OMP prompt (Figure 2).

4.1.5 Generating OpenMP Clauses and
Parallel Codes

After creating the GNN-guided OMP prompts, the
LLMs are invoked to generate the parallel coun-

11825

terpart of the sequential programs. We use four
LLMs to demonstrate the performance of AU-
TOPARLLM; note that for the LLMs, the temper-
ature parameter is set to zero to make the models
deterministic in predicting the OpenMP constructs.
We evaluate the performance of AUTOPARLLM on
11 applications of two benchmarks: NAS Parallel
Benchmark and Rodinia Benchmark (Che et al.,
2009). These applications are developed target-
ing HPC platforms and heterogeneous computing.
Both of the benchmarks have OpenMP annotated
loops and their sequential version from experienced
developers.

4.1.6 Evaluation
To evaluate the quality of the generated codes, we
use CodeBERTScore (Zhou et al., 2023) and also
metrics (ParaBLEU (Wen et al., 2022), OMP-
SCORE) that are specifically designed for evalu-
ating parallel codes. However, ParaBLEU is specif-
ically designed to evaluate CUDA code. Hence, we
modified ParaBLEU score following the same idea
of (Wen et al., 2022). We provide the details of the
implementation in Appendix A.6.

Table 2: Application-wise extracted loops count for
NAS and Rodinia benchmark in the testing set

Benchmark Application Number of loops

NAS

BT 7
IS 6
CG 10
FT 5
EP 6
LU 13
MG 15
SP 28

Total 90

Rodinia

BFS 1
B+ Tree 6

Heartwall 13
3D 1

Total 21

4.2 Evaluating Code Generation on NAS
Parallel Benchmark

First, we evaluate AUTOPARLLM on NAS Par-
allel Benchmark by extracting loops containing
OpenMP pragmas from the eight applications. For
loop extraction, we first annotate the loops using
the Rose outlining tool (Quinlan and Liao, 2011).
Then, we compile and generate the IR for the out-
lined code. Finally, the llvm-extract command is
used to extract the loop-specific IR from the full IR.
A total of 454 loops (private: 264, reduction:
17, non-parallel: 173) are extracted. 80% of the
loops are used to fine-tune our pretrained GNN
models. The GNN models are trained for 120

16.3
3.4

102.5

64.9

84.5

29.9
3.9

208.9

33.2
8.4

125.4

88.5 93.2

43.9
6.5

234.4

24.2

7.1

117.3 76.8 92.4

37.9 6.4

225.5

41.2

17.5

142.9

96.8
110.6

55.3

15.7

249.1

0

50

100

150

200

250

300

BT IS CG FT LU MG SP EP

CodeLLama ALLM-CodeLlama
GPT-4 ALLM-GPT-4

9.5 2.5

95.1

69.1 75.1

24.8

2.9

200.92

27.5
8.9

127.3

76.3

91.7

44.9 9.9

219.9

15.2

5.1

110.3
78.1 90.4

36.1

5.4

220.2

38.9
18.5

138.9

90.8

107.9
51.3

14.6

237.2

0

50

100

150

200

250

BT IS CG FT LU MG SP EP

CodeLlama ALLM-CodeLlama
GPT-4 ALLM-GPT-4

Av
g.

 sp
ee

du
p

(%
)

Av
g.

 sp
ee

du
p

(%
)

Intel Xeon Gold 6152

AMD EPYC 7543P

Figure 4: Speedup gain across individual applications
in NAS Parallel Benchmark. ALLM-GPT-4 achieves
max 24.7% and 28.6% better speedup than GPT-4 for
CG in Intel and AMD cpus, respectively.

epochs. Then 20% of loops (90 loops) are used
for evaluating AUTOPARLLM. Of those 90 loops,
58 are parallel, with 56 loops having private
clause and two loops having reduction clause.
The rest 32 loops are non-parallel. AUTOPAR-
LLM achieves 94.44% accuracy in parallelism
discovery by correctly predicting 55 out of 58
parallel loops and 30 out of 32 non-parallel
loops. Also, AUTOPARLLM correctly detects
52 out of 56 loops with private clause, and it
correctly detected all two loops with reduction

Table 3: Results on NAS Parallel Benchmark Suite.
Higher indicates better. 100 score means a perfect match
with the ground-truth values. Bold fonts indicate better
scores.

Model CBTScore ParaBLEU OMPScore
0-shot-COT-CodeGen-16B 72.8 17.43 48.97

few-shot-COT-CodeGen-16B 73.15 21.77 56.19
AUTOPARLLM-CodeGen-16B 83.8 26.29 65.3

0-shot-COT-CodeLlama-34B 74.0 26.48 45.44
few-shot-COT-CodeLlama-34B 78.6 37.46 60.52

AUTOPARLLM-CodeLlama-34B 96.0 47.73 94.46
0-shot-COT-GPT-3.5 72.3 27.44 41

few-shot-COT-GPT-3.5 74.2 30.72 50.71
AUTOPARLLM-GPT-3.5 95.2 48.28 95.15

0-shot-COT-GPT-4 73.8 27.49 46.4
few-shot-COT-GPT-4 76.5 29.97 58.06

AUTOPARLLM-GPT-4 96.4 48.48 95.15

11826

clause. Table 2 shows the loops that are extracted
from different applications of NAS benchmark.
In Table 3, we compare the performance of the
codes generated by using the basic OMP prompt
and GNN-guided OMP prompt (denoted as AU-
TOPARLLM-LLM-name in all tables). We use
different score metrics as well as OMPScore for
the comparison, and it can be observed that our
AUTOPARLLM approach improves all LLMs in
terms of these metrics scores. For example, AU-
TOPARLLM augmented GPT-4 (AUTOPARLLM-
GPT-4) can improve the baseline GPT-4 by 19.9%
in terms of CodeBERTScore and 37.09% in terms
of OMPSCORE, which is more appropriate for the
evaluation of generated OpenMP configurations
(Table 3).

Apart from the metric scores, we also evaluate
the performance of the generated codes by measur-
ing their execution time. We replace the sequential
loops in the testing set with the parallel loops gener-
ated using both regular LLMs and AUTOPARLLM
augmented LLMs and then execute the application
five times to measure average execution time. The
speedup over sequential version is then calculated
using Equation 1 for both regular and AUTOPAR-
LLM augmented LLM generated parallel version.

Speedup% = (
Avg.SequentialRuntime

Avg.ParallelRuntime
−1)∗100

(1)
To test the robustness of AUTOPARLLM across

different hardware the runtime experiments are per-
formed on two different CPU architectures (Intel
& AMD). It is observed from Figure 4 that for all
8 applications in NAS Parallel Benchmark, AU-
TOPARLLM guidance resulted in significant im-
provement in speedup than base LLMs (GPT-4
& CodeLlama-34B). The results in Figure 4 are
reported for 4 threads. We report the detailed re-
sults of the runtime experiments like Input (A.7,
A.8), CPU architecture details (A.2) and scalability
testing with different number of threads (A.10) in
Appendix. Due to the high computation cost of
executing the applications we only considered the
codes generated by few-shot setting for the base
LLMs as it generated better codes based on the
findings from Table 3.

4.3 Evaluating Code Generation on Rodinia
Benchmark

We further apply AUTOPARLLM on four applica-
tions of Rodinia Benchmark that our GNN models
have not seen at all. These applications are de-

7.6 31.3

389.1

72.315.9 40.9

434.2

87.9

16.3 46.1

408.3

85.421.3 52.8

448.9

97.8

0

50

100

150

200

250

300

350

400

450

500

BFS B+Tree Heartwall 3D

CodeLlama

ALLM-CodeLlama
GPT-4

ALLM-GPT-4

8.9 7.9

478.9

67.9
21.5

30.9

521.8

75.1

15.3

16.6

500.2

73.227.3 38.5

530.4

87.2

0

100

200

300

400

500

600

BFS B+Tree Heartwall 3D

CodeLlama

ALLM-CodeLlama

GPT-4

ALLM-GPT-4

Av
g.

 S
pe

ed
up

 (%
)

Av
g.

 S
pe

ed
up

 (%
)

Intel Xeon Gold 6152

AMD EPYC 7543P

Figure 5: Speedup gain across individual applications
in Rodinia-3.1 Benchmark. ALLM-GPT-4 achieves
max 40.6% and 30.2% better speedup than GPT-4 for
Heartwall in Intel and AMD cpus, respectively.

veloped targeting heterogeneous computing. We
extracted 21 loops from these applications using
the method described earlier. Out of these 21
loops, 15 loops contain the private clause, and 6
loops contain the reduction clause. AUTOPAR-
LLM is applied to detect parallelism and pattern
of these 21 loops. Out of the 21 loops, AUTOPAR-
LLM is able to correctly detect and classify all the
15 loops with private clauses and 6 loops with
reduction clauses. Table 2 shows the loops that
are extracted from different applications of Rodinia
benchmark. Table 4 shows the results. We can see
that AUTOPARLLM guidance results in better code
generation in terms of all the considered metrics.
For example, AUTOPARLLM augmented GPT-4
(AUTOPARLLM-GPT-4) can improve the baseline
GPT-4 by 6.48% in terms of CodeBERTScore and
9.09% in terms of OMPSCORE. It can be seen that
AUTOPARLLM has a significantly higher OMP-
SCORE for this dataset, too. Runtime experiments
are done in a similar manner for Rodinia-3.1 on In-
tel and AMD cpus. It is observed from Figure 5 that
for all 4 applications in Rodinia-3.1 Benchmark,
AUTOPARLLM guidance resulted in significant
improvement in speedup than base LLMs (GPT-4
& CodeLlama-34B). The results in Figure 5 are
also reported for 4 threads. We provide more de-

11827

Table 4: Results on Rodinia-3.1 Benchmark Suite. 100
score means a perfect match with the ground-truth val-
ues. Bold fonts indicate better scores.

Model CBTScore ParaBLEU OMPScore
0-shot-COT-CodeGen-16B 79.0 28.52 52.88

few-shot-COT-CodeGen-16B 79.8 31.44 55.91
AUTOPARLLM-CodeGen-16B 82.2 41.73 64.57

0-shot-COT-CodeLlama-34B 85.9 41.92 69.55
few-shot-COT-CodeLlama-34B 88.2 46.13 76.92

AUTOPARLLM-CodeLlama-34B 96.4 66.13 95.27
0-shot-COT-GPT-3.5 91.0 46.98 79.37

few-shot-COT-GPT-3.5 91.8 51.08 88.13
AUTOPARLLM-GPT-3.5 97.6 68.36 98.1

0-shot-COT-GPT-4 91.2 49.14 79.37
few-shot-COT-GPT-4 92.12 54.43 89.01

AUTOPARLLM-GPT-4 98.6 69.09 98.1

tails of runtime experiments in Appendix A.2, A.8,
and A.10.

4.4 Increasing Developer Productivity

AUTOPARLLM can greatly increase developer ef-
ficiency in writing parallel codes by eliminating
cases where parallelization is not possible. For ex-
ample, in the NAS benchmark AUTOPARLLM cor-
rectly detected 30 out of 32 non-parallel loops.
As there are 90 loops in the benchmark, it means a
developer can safely filter out 33.33% of the loops
from parallelization consideration. We provide
more details regarding how to handle FP and FN
efficiently in Appendix A.4.

4.5 Human Evaluation Results

For human evaluation, we manually evaluate the
90 loops in NAS benchmark that are generated us-
ing the AUTOPARLLM-GPT-4. For each loop, we
compare the generated OpenMP directives with
the original ones, which are considered the ground
truth values. Each loop is examined by two inde-
pendent observers and they allocate scores ranging
from 0 (low-quality) to 5 (high-quality) to the pre-
dicted directive based on the number of operations
needed to transform the predicted directive into
the original directive. Each modification operation
results in a deduction of 1 point from the score.
The score for a particular loop parallelized using
AUTOPARLLM-GPT-4 is the average score of the
two observers. Then we calculate the average score
of the 90 loops, and on average AUTOPARLLM-
GPT-4 achieved an impressive 4.72/5 on the 90
evaluated loops on NAS, which indicates a 94.4%
match with the ground truth values. On the same
90 loops, AUTOPARLLM-GPT-4 achieves OMP-
SCORE of 95.15 (Table 3) which is very close to the
human evaluation score indicating the effectiveness
of OMPSCORE to correctly evaluate the generated
parallel code.

4.6 Comparing with Traditional and Deep
Learning Approaches

We further compare the parallelism discovery of
AUTOPARLLM against SOTA traditional and Deep
Learning-based approaches in Appendix A.11 and
Appendix A.12. Results show that AUTOPARLLM
significantly outperforms both SOTA traditional
and Deep Learning-based approaches.

4.7 Extending beyond OpenMP

We also evaluate AUTOPARLLM on another
widely used parallel programming model Ope-
nACC. OpenACC supports a lot of the parallel
configurations offered by OpenMP, and it also
has some benchmarks that we can use as ground-
truths to evaluate AUTOPARLLM. For this experi-
ment, two OpenACC benchmarks: EPCC Bench-
mark (Johnson and Jackson, 2013) and PolyBench-
OpenACC Benchmark (Grauer-Gray et al., 2012),
are used. A total of 34 loops are extracted
from these two benchmarks. These include 22
parallel (10 private, 12 reduction) and 12
non-parallel loops. We utilize the pre-trained
GNN modules of AUTOPARLLM and fine-tune for
up to 120 epochs using 50% of the total loops to en-
sure that AUTOPARLLM adapts to the new parallel
programming framework OpenACC. The remain-
ing 50% is used for testing AUTOPARLLM’s abil-
ity to predict parallelization patterns in OpenACC.
The test set contains 12 parallel (5 private, 7
reduction) and 5 non-parallel loops. Table 5
shows that AUTOPARLLM can correctly detect all
parallel and non-parallel loops as it has an ac-
curacy of 100% for the parallelism discovery task.
For each private and reduction detection task,
there is only one mismatch, and they have an accu-
racy of 80% and 85.71%, respectively. We discuss
these mismatches in detail in Appendix A.13. How-
ever, it can be observed that AUTOPARLLM has a
good overall accuracy of 88.24%.

Table 5: AUTOPARLLM results on OpenACC paral-
lelization patterns

Tasks Accuracy Correct / # Samples
Parallelism Discovery 100.00% 17 / 17

Private Detection 80.00% 4 / 5
Reduction Detection 85.71% 6 / 7
Overall Accuracy 88.24%

4.8 Use Case Analysis

For analyzing the effectiveness of AUTOPARLLM
on a real-world HPC application, XSBench is cho-
sen as it is considered a useful tool for performance

11828

for(int i = 0; i < 12; i++) {
for(int j = 0; j < num_nucs[i]; j++)

concs[i * max_num_nucs + j] = LCG_random_double(&seed); }
NP NP

for(i = 0; i < in.lookups; i++){ for(int j = 0; j < 5; j++) { ... }
verification += max_idx+1; }

Loop Body AutoParLLM-GPT-4 suggestion Developer’s version

for(int m = 0; m < num_mats; m++) { if(num_nucs[m] > *max_num_nucs)
*max_num_nucs = num_nucs[m]; }

for(int j = 0; j < num_nucs[mat]; j++){ double xs_vector[5];
p_nuc = mats[mat*max_num_nucs + j]; conc = concs[mat*max_num_nucs + j]; ... }
for(int i = 0; i < 12; i++){ double running = 0; for(int j = i; j > 0; j--) running += dist[j];

if(roll < running) return i; }

for(i = offset; i < offset + num_samples_per_mat[m]; i++) {
for(int j = 0; j < 5; j++) { if(macro_xs_vector[j] > max) { ... } } verification += max_idx+1; }

for(int l = 0; l < in.lookups; l++) { num_samples_per_mat[SD.mat_samples[l]]++; }

for(int m = 1; m < 12; m++) { offsets[m] = offsets[m-1] + num_samples_per_mat[m-1]; }
for(int m = 0; m < 12; m++) {
quickSort_parallel_d_i(SD.p_energy_samples + offsets[m], SD.mat_samples +

offsets[m], num_samples_per_mat[m], in.nthreads); }

for(i = 0; i < in.lookups; i++) { uint64_t seed = STARTING_SEED; ...
SD.p_energy_samples[i] = p_energy; SD.mat_samples[i] = mat; }

reduction(+:verification) schedule(dynamic, 100) reduction(+:verification)

NP NP

NP NP

NP NP

private(i) schedule(dynamic, 100)

reduction(+: verification) schedule(dynamic, 100) reduction(+:verification)

NP NP
NP NP

NP NP

#

1

2

3

4

5

6

7

8
9

10

Figure 6: Use Case Analysis Results for XSBench. Outermost loops are considered. NP = Non-Parallel. Green
cases show a match, whereas Red cases show a mismatch. For parallel loops, the phrase ‘#pragma omp parallel
for’ is omitted for simplification. Loops are simplified.

analysis of High-Performance Computing systems
(Tramm et al., 2014) and also OpenMP compatible.
For this experiment, we used our AUTOPARLLM-
GPT-4 configuration. Firstly, the loops from the
XSBench are extracted. Then, the PERFOGRAPH

representation of the loops are constructed and
passed to the GNN-based predictors of AUTOPAR-
LLM. The predictors provide useful feedback re-
garding the loops, which is ultimately used by AU-
TOPARLLM-GPT-4 to parallelize the loops. Fig-
ure 6 shows the detailed results. All non-parallel
codes are correctly detected. Also AUTOPAR-
LLM-GPT-4 is able to correctly generate all the
reduction clauses along with the reduction op-
erator and variable. AUTOPARLLM-GPT-4 failed
to generate the schedule clauses which is expected
as AUTOPARLLM is not trained to generate the
schedule clause. Also, the schedule clause is
configurable, meaning developers can try different
chunk sizes and scheduling techniques (static,
dynamic) to obtain optimal performance. Finally,
it can be observed that there is a mismatch in the
private clause. However, the variable i is the loop
counter, and AUTOPARLLM-GPT-4 is actually
right in predicting the private clause and also the
private variable i. However, as the loop counters
are considered private by default in OpenMP, the
developers sometimes omit to decorate these types
of loop counter variables explicitly with a private
clause, although it is considered good practice.

5 Related Works

We describe the related works in detail in Ap-
pendix A.14. Here, we discuss works that are
more closely related to our study. There are DL-
based works that focuses on parallelization (Chen

et al., 2023b; Harel et al.; Shen et al., 2021, 2023;
Schaarschmidt et al., 2021). These works mostly
predict parallelism opportunities, but they do not
generate complete parallel code. Finetuning of
LLMs has also been explored for OpenMP-based
parallelization (Chen et al., 2024). However, the
results indicate that the accuracy of the generated
parallelization clauses is quite low. In contrast
to these prior works, our approach uniquely com-
bines the strengths of GNNs with LLMs to gener-
ate prompts enriched with relevant context. This
hybrid method leverages the advantages of both
GNNs and LLMs, providing a versatile solution
compatible with any LLM. Also as discussed ear-
lier a large body of works use ICL to enhance the
performance of LLMs. ICL has been utilized in
both the training (Min et al., 2021; Wei et al.,
2023; Gu et al., 2023; Iyer et al., 2022) and infer-
ence stages (Li and Qiu, 2023a; Wang et al., 2024,
2022; Li and Qiu, 2023b; Xu et al., 2023; Fu et al.,
2022; Wei et al., 2022; Zhang et al., 2022). In
these studies, context involves providing the model
with sample inputs and corresponding expected
responses before the test inputs. Whereas, we pro-
posed a novel approach for generating context of
input codes using GNN-based guidance.

6 Conclusion

AUTOPARLLM, sits on top of GNNs and LLMs to
enable automatic parallelization of programs. We
developed AUTOPARLLM as an intelligent paral-
lelism assistant for developers but not as a replace-
ment. Based on our results, we believe it is fair
to say that AUTOPARLLM generates parallelized
versions of loops with very little human effort and
greatly increases developers’ efficiency.

11829

Limitations

This work is currently focused on OpenMP-based
parallel code generation however we demonstrated
that AUTOPARLLM can be easily extended to sup-
port other parallel programming models (e.g., Ope-
nACC) as well. However, this study does not con-
sider parallelism opportunities that can be obtained
by rewriting the code.

Acknowledgement

We would like to thank NSF for their generous
support in funding this project (#2211982) and
(#2422127). In addition, we extend our gratitude
to Intel Labs and Cisco AI Research for support-
ing this project. We thank the Research IT team
of Iowa State University for providing access to
HPC clusters for conducting the experiments of
this research project.

References
Michael Andersch, Ben Juurlink, and C Chi. 2013. A

benchmark suite for evaluating parallel programming
models. In Proceedings of Workshop on Parallel
Systems and Algorithms (PARS), volume 28, pages
1–6.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Uday Bondhugula, Albert Hartono, J Ramanujam, and
P Sadayappan. 2008. Pluto: A practical and fully au-
tomatic polyhedral program optimization system. In
Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementa-
tion (PLDI 08), Tucson, AZ (June 2008). Citeseer.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tar-
jan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin
Skadron. 2009. Rodinia: A benchmark suite for het-
erogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC),
pages 44–54. Ieee.

Le Chen, Arijit Bhattacharjee, Nesreen Ahmed, Ni-
ranjan Hasabnis, Gal Oren, Vy Vo, and Ali Jan-
nesari. 2024. Ompgpt: A generative pre-trained
transformer model for openmp. arXiv preprint
arXiv:2401.16445.

Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chun-
hua Liao, Murali Emani, and Bronis de Supinski.
2023a. Lm4hpc: Towards effective language model
application in high-performance computing. In In-
ternational Workshop on OpenMP, pages 18–33.
Springer.

Le Chen, Quazi Ishtiaque Mahmud, and Ali Jannesari.
2022. Multi-view learning for parallelism discov-
ery of sequential programs. In 2022 IEEE Interna-
tional Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 295–303. IEEE.

Le Chen, Quazi Ishtiaque Mahmud, Hung Phan, Nes-
reen Ahmed, and Ali Jannesari. 2023b. Learning
to parallelize with openmp by augmented heteroge-
neous ast representation. Proceedings of Machine
Learning and Systems, 5.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, et al. 2023c. Exploring the
potential of large language models (llms) in learning
on graphs. arXiv preprint arXiv:2307.03393.

Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier
Martorell, and Eduard Ayguade. 2009. Barcelona
openmp tasks suite: A set of benchmarks targeting
the exploitation of task parallelism in openmp. In
2009 international conference on parallel processing,
pages 124–131. IEEE.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Samujjwal Ghosh, Subhadeep Maji, and Maunen-
dra Sankar Desarkar. 2022. Graph neural network
enhanced language models for efficient multilingual
text classification. arXiv preprint arXiv:2203.02912.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee
Ayalasomayajula, and John Cavazos. 2012. Auto-
tuning a high-level language targeted to gpu codes.
In 2012 innovative parallel computing (InPar), pages
1–10. Ieee.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Pre-training to learn in context. arXiv preprint
arXiv:2305.09137.

Re’em Harel, Yuval Pinter, and Gal Oren. Learning to
parallelize source code via openmp with transform-
ers.

Zia Ul Huda, Rohit Atre, Ali Jannesari, and Felix Wolf.
2016. Automatic parallel pattern detection in the
algorithm structure design space. In 2016 IEEE In-
ternational Parallel and Distributed Processing Sym-
posium (IPDPS), pages 43–52. IEEE.

Zia Ul Huda, Ali Jannesari, and Felix Wolf. 2015. Using
template matching to infer parallel design patterns.
ACM Transactions on Architecture and Code Opti-
mization (TACO), 11(4):1–21.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,
Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shus-
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al.
2022. Opt-iml: Scaling language model instruc-
tion meta learning through the lens of generalization.
arXiv preprint arXiv:2212.12017.

11830

Hao-Qiang Jin, Michael Frumkin, and Jerry Yan. 1999.
The openmp implementation of nas parallel bench-
marks and its performance.

Nicholas Johnson and Adrian Jackson. 2013. The epcc
openacc benchmark suite. In Exascale Applications
and Software Conference.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Xiaonan Li and Xipeng Qiu. 2023a. Finding support
examples for in-context learning. arXiv preprint
arXiv:2302.13539.

Xiaonan Li and Xipeng Qiu. 2023b. Mot: Pre-
thinking and recalling enable chatgpt to self-
improve with memory-of-thoughts. arXiv preprint
arXiv:2305.05181.

Zhen Li, Rohit Atre, Zia Huda, Ali Jannesari, and Felix
Wolf. 2016. Unveiling parallelization opportunities
in sequential programs. Journal of Systems and Soft-
ware, 117:282–295.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Tim Mattson and Rudolf Eigenmann. 1999. Openmp:
An api for writing portable smp application software.
In SuperComputing 99 Conference.

Larry Meadows. 2007. Openmp 3.0–a preview of the
upcoming standard. In High Performance Computing
and Communications: Third International Confer-
ence, HPCC 2007, Houston, USA, September 26-28,
2007. Proceedings 3, pages 4–4. Springer.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943.

Gordon E. Moore. 2006. Cramming more components
onto integrated circuits, reprinted from electronics,
volume 38, number 8, april 19, 1965, pp.114 ff. IEEE
Solid-State Circuits Society Newsletter, 11(3):33–35.

Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun
Rajaram, and Abhinav Bhatele. 2024a. Can large
language models write parallel code? arXiv preprint
arXiv:2401.12554.

Daniel Nichols, Aniruddha Marathe, Harshitha Menon,
Todd Gamblin, and Abhinav Bhatele. 2024b. Hpc-
coder: Modeling parallel programs using large lan-
guage models. In ISC High Performance 2024 Re-
search Paper Proceedings (39th International Con-
ference), pages 1–12. Prometeus GmbH.

Daniel Nichols, Pranav Polasam, Harshitha Menon,
Aniruddha Marathe, Todd Gamblin, and Abhinav
Bhatele. 2024c. Performance-aligned llms for gener-
ating fast code. arXiv preprint arXiv:2404.18864.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

OpenAI. 2023. Gpt family of apis.
https://platform.openai.com/docs/guides/text-
generation. Last accessed: 29th April, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Louis-Noël Pouchet and Tomofumi Yuki. 2017. Poly-
bench: The polyhedral benchmark suite (version 4.2).

Dan Quinlan and Chunhua Liao. 2011. The ROSE
source-to-source compiler infrastructure. In Cetus
users and compiler infrastructure workshop, in con-
junction with PACT, volume 2011, page 1. Citeseer.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. Preprint,
arXiv:2009.10297.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Michael Schaarschmidt, Dominik Grewe, Dimitrios Vy-
tiniotis, Adam Paszke, Georg Stefan Schmid, Tamara
Norman, James Molloy, Jonathan Godwin, Nor-
man Alexander Rink, Vinod Nair, et al. 2021. Au-
tomap: Towards ergonomic automated parallelism
for ml models.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th Inter-
national Conference, ESWC 2018, Heraklion, Crete,
Greece, June 3–7, 2018, Proceedings 15, pages 593–
607. Springer.

Yuanyuan Shen, Manman Peng, Shiling Wang, and
Qiang Wu. 2021. Towards parallelism detection of
sequential programs with graph neural network. Fu-
ture Generation Computer Systems, 125:515–525.

Yuanyuan Shen, Manman Peng, Qiang Wu, and Guoqi
Xie. 2023. Multigraph learning for parallelism dis-
covery in sequential programs. Concurrency and
Computation: Practice and Experience, 35(9):e7648.

Ali TehraniJamsaz, Quazi Ishtiaque Mahmud, Le Chen,
Nasreen K Ahmed, and Ali Jannesari. 2023. Per-
fograph: A numerical aware program graph repre-
sentation for performance optimization and program

11831

https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297

analysis. 37th Conference on Neural Information
Processing Systems (NeurIPS 2023).

Ali TehraniJamsaz, Mihail Popov, Akash Dutta, Em-
manuelle Saillard, and Ali Jannesari. 2022. Learning
intermediate representations using graph neural net-
works for numa and prefetchers optimization. In
2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1206–1216.
IEEE.

John R Tramm, Andrew R Siegel, Tanzima Islam, and
Martin Schulz. 2014. XSBench - the development
and verification of a performance abstraction for
Monte Carlo reactor analysis. In PHYSOR 2014 -
The Role of Reactor Physics toward a Sustainable
Future, Kyoto.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Minjie Yu Wang. 2019. Deep graph library: Towards
efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs
and manifolds.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark
Steyvers, and William Yang Wang. 2024. Large lan-
guage models are latent variable models: Explaining
and finding good demonstrations for in-context learn-
ing. Advances in Neural Information Processing
Systems, 36.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen,
Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny
Zhou, Tengyu Ma, et al. 2023. Symbol tuning im-
proves in-context learning in language models. arXiv
preprint arXiv:2305.08298.

Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianx-
ing Xu, Yanlin Tang, Yongwei Zhao, Xing Hu, Zi-
dong Du, Ling Li, Chao Wang, Xuehai Zhou, and
Yunji Chen. 2022. BabelTower: Learning to auto-
parallelized program translation. In Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 23685–23700. PMLR.

Canwen Xu, Yichong Xu, Shuohang Wang, Yang Liu,
Chenguang Zhu, and Julian McAuley. 2023. Small
models are valuable plug-ins for large language mod-
els. arXiv preprint arXiv:2305.08848.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham
Neubig. 2023. Codebertscore: Evaluating code gen-
eration with pretrained models of code.

11832

https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://proceedings.mlr.press/v162/wen22b.html
https://proceedings.mlr.press/v162/wen22b.html
https://arxiv.org/abs/2302.05527
https://arxiv.org/abs/2302.05527

A Appendix

A.1 Background Examples

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

R23 = 0.50 * R23;
T23 = 2.0 * T23;

}

#pragma omp parallel for reduction (*: R23, T23)
for (int i = 0; i < n; ++i) {

R23 = 0.50 * R23;
T23 = 2.0 * T23;

}

for (int i = 0; i < n; ++i) {
R23 = 0.50 * R23;
T23 = 2.0 * T23;

}
(a)

(b) (c)

Figure 7: Result of GPT-3.5 and GPT-4 (b) before and,
(c) after applying AUTOPARLLM guidance on input
code (a). This reduction loop is taken from IS applica-
tion of NAS Parallel Benchmark

Listing 1: Reduction loop example
#pragma omp parallel for reduction (+:sum

)
for (int i = 0; i < n; ++i) {

sum += arr[i];
}

Listing 2: Do-all loop example
#pragma omp parallel for
for (int i = 0; i < n; ++i) {

arr[i] = i + 1;
}

Listing 3: private loop example
#pragma omp parallel for private(temp)
for (int i = 0; i < n; i++) {

temp = array[i] * 2;
result[i] = temp;

}

Listing 4: Combination of reduction and private loop
example
#pragma omp parallel for private(temp)

reduction (+:sum)
for (int i = 0; i < n; i++) {

temp = array[i] * 2;
sum += temp;

}

A.2 Hardware Specifications
The runtime experiments are performed on com-
pute cluster with Slurm workload manager. Each
compute node is invoked using a job script like
below.

Listing 5: Basic job script for running the benchmarks
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --cpus -per -task=1
max memory allocated for the job
#SBATCH --mem=8G
time allocated for the job

#SBATCH --time =0:10:00
output file name
#SBATCH --output=output.out
error file name
#SBATCH --error=error.err
name of the job
#SBATCH --job -name="running -job"
select CPU architecture
(biocrunch = Intel Xeon Gold 6152,

swift= AMD EPYC 7543P)
#SBATCH --partition=biocrunch/swift

-------- instructions for running
benchmarks here --------

Table 6 shows the detailed configuration of the
CPU architectures that are used for the runtime
experiments.

Table 6: Hardware Specifications
Features Intel Xeon Gold 6152 AMD EPYC 7543P

Total Cores 22 32
Total Threads 44 64

Max Frequency 3.7 GHz 3.7 GHz
Processor Base Frequency 2.1 GHz 2.8 GHz

Cache 30.25 MB L3 Cache 256 MB L3 Cache
Memory Types DDR4-2666 DDR4

A.3 Loss curves, training time and
Hyparameters of GNN classifiers

Hyperparameters: We experimented with differ-
ent hidden layer sizes and learning rates and ulti-
mately chose 64 as the hidden layer size and set
the learning rate to 0.01. Each node of the het-
erogeneous PERFOGRAPHis embedded to a 120-
dimensional vector. Therefore, the input layer size
is set to 120. The output layer size is set to the
number of classes, which is 2, as all three of the
GNN models do binary classification. For graph-
level prediction, the ‘mean’ aggregation function
combines the results of different node types, and
finally linear classifier is used in the last layer of
the RGCN model. The linear classifier produces
a probability score for each class. The models are
trained for 120 epochs, and the checkpoint with
the highest validation accuracy is saved for later
inference.

Table 7 shows the training time required for all
three models. Figure 8 shows the epoch vs. loss
curve for all three GNN models.

Table 7: The training time required for the three GNN-
based predictors

Model Training Time
Parallelism Detection model 17 min 5 sec

Private Detection model 9 min 27 sec
Reduction Detection model 9 min 12 sec

11833

Epoch Epoch

Epoch

Lo
ss

Lo
ss

Lo
ss

(a) Parallelism detection model (b) Private detection model

(c) Reduction detection model

Figure 8: Epoch vs. loss curves for the three GNN-
based parallelism and pragma detection modules

A.4 Ensuring Correctness of the generated
codes

When the GNN predicts that a given loop is not
parallel AUTOPARLLM does not generate any par-
allel code for that. In this case, AUTOPARLLM
outputs the original sequential loop. Hence, cor-
rectness is preserved. Like any other ML model,
there will be False Positives (FP) and False Nega-
tives (FN). Since all loops in the Rodinia Bench-
mark are correctly classified by AUTOPARLLM,
we will explain how FP and FN are handled for
the NAS benchmark. During our experiments with
NAS benchmark, 30 out of 32 non-parallel loops
are correctly detected by AUTOPARLLM. These
30 loops that are detected as non-parallel do not
need to be checked further. Because we know that
even if there are some parallel loops in this set,
treating them as sequential loops will only hurt per-
formance but not correctness. There are 90 loops in
the test set of NAS benchmark. That means using
AUTOPARLLM, we can filter out 33.33% of loops
for analysis safely. Hence, developers’ workload is
reduced by 33.33%.

Only the remaining loops need to be analyzed
further after applying AUTOPARLLM, as they may
contain the following scenarios:

• Non-parallel loop detected as parallel: Only
2 non-parallel loops are wrongly detected as
parallel; we use the original sequential version
of these two loops to maintain correctness
during execution.

• Wrong OpenMP clause prediction: Only four
loops have been decorated with the wrong
OpenMP clauses. We also use the sequential
version of these 4 loops to maintain correct-

ness. Note that using proper OpenMP clause
will result in speedup, but that will give an
unfair advantage to AUTOPARLLM while cal-
culating performance gain during execution.
Hence, we use the sequential version as AU-
TOPARLLM failed to detect the right clauses.

Therefore, only 6 out of the 60 analyzed loops re-
quired manual fixing. The rest 54 loops are already
correctly generated by AUTOPARLLM. The out-
puts of the generated codes are compared with the
original outputs to ensure that the generated codes
produce results identical to the original codes.

A.5 Structure of PERFOGRAPH & Node and
Edge Embedding Generation

Each loop is first converted to IR, and then from
that IR, we create the PERFOGRAPH representation
of that loop. There are three types of nodes:

• Control nodes: Each control node represents
a statement in IR. Tokens in the IR statement
are considered as features for the control node.
We embed each token of the statement and fi-
nally concatenate the embedding of all tokens
to generate the final embedding for a control
node.

• Variable nodes: PERFOGRAPH contains only
the type of a variable in variable nodes. So, the
type is considered as the feature for variable
nodes, and embedding is generated for the
type token.

• Constant nodes: For constant nodes, PERFO-
GRAPH representation contains both type and
value, so we consider both of them as fea-
tures. First, we generate the embedding for
the type token. For generating the embedding
for value-token, we use the Digit Embedding
as described in PERFOGRAPH paper. Finally,
the type-token and value-token embeddings
are concatenated to generate the final embed-
ding for each constant nodes.

The variable and constant nodes represent the
variables and constants that are associated with
those IR statements (control nodes). There are
three types of edges:

• Control flow edges: Represents the flow of
the program.

• Data flow edges: Represents the data depen-
dencies of different nodes in the program.

11834

• Call flow edges: Represents the functional
call dependencies of the program.

Nodes are connected with each other using these
three different edges. Edge embeddings are ob-
tained using a one-hot-encoding approach. All the
embeddings mentioned are generated using the de-
fault Pytorch learnable embedding mechanism.

A.6 ParaBLEU implementation
We modified ParaBLEU score following the same
idea of (Wen et al., 2022). It is adjusted for
OpenMP directives. The modified formula of the
ParaBLEU score, which is suitable for OpenMP
code evaluation, is shown below:

ParaBLEUOMP = α ∗ BLEU + β ∗
BLEUOpenMPkeywords

In this formula, α and β are the heuristic param-
eters that we set both of them as 0.5 for our evalu-
ation. These ratios specify the contribution of the
original BLEU score and the weighted BLEU score,
highlighting the similarities between n-grams con-
taining our selected OpenMP keywords.

A.7 Runtime Experiments - NAS Parallel
Benchmark Input

We execute the applications of NAS Parallel Bench-
mark suite using CLASS A input that comes along
with the benchmark. Table 8 shows the size of the
problems and the number of iterations for each ap-
plication for CLASS A. Detailed runtimes for each
application can be found in the repository link.

Table 8: Input problem size for each application in NAS
Parallel Benchmark Suite

Applications Problem Size Number of iterations
IS 223 10
EP 228 1
FT 256 × 256 × 126 6
CG 14000 15
MG 256 × 256 × 256 4
LU 64 × 64 × 64 250
BT 64 × 64 × 64 200
SP 64 × 64 × 64 400

A.8 Runtime Experiments - Rodinia-3.1
Benchmark Input

Rodinia-3.1 Benchmark applications are also ex-
ecuted using the inputs that come along with the
benchmark itself. Below we provide details regard-
ing the inputs for running the applications.

• BFS is executed with the input
‘graph1MW_6.txt’, which applies BFS

on a graph that contains 1000000 nodes and
5999970 edges.

• B+Tree is executed with the inputs ‘mil.txt’
and ‘command.txt’ with the block size (6000,
3000) and key size of 10000.

• Heartwall is executed with the input ‘test.avi’
which contains a series of medical ultrasound
images with a framesize of 10.

• 3D is executed with a 3D grid size (512,
8, 100) along with inputs power_512x8 and
temp_512x8, where the last two inputs repre-
sent power dissipation and initial temperature
at each grid-point for thermal simulations.

We provide detailed runtimes for each applica-
tion in Rodinia in the repository link.

A.9 Runtime Experiments - Compare
Average Speedup Across DIfferent LLMs

Figure 9 shows the effect of AUTOPARLLM on
four LLMs CodeGen, CodeLlama, GPT-3.5 and
GPT-4. AUTOPARLLM improves the average
speedup gain of all four LLMs on both NAS and
Rodinia Benchmark.

A.10 Runtime Experiments - Different
Thread Configurations

We analyzed the effect of AUTOPARLLMon GPT-
4 with varying thread numbers. GPT-4 is chosen
as, according to our study, it performed the best
among the other LLMs. We experimented with 4
thread configurations: 2, 4, 8 and 16. From the
results of Figure 10, 11 and 12, it can be observed
that in all configurations, the speedup up obtained
by ALLM-GPT-4 is better than the base GPT-4.

A.11 Traditional Approaches Comparison

In Table 9, we compare the parallelism discov-
ery of AUTOPARLLM against three popular paral-
lelization tools: Pluto, AutoPar, and DiscoPoP on
the DiscoPoP subset (1226 files) of OMP_Serial
Dataset. The task is to detect whether a code can
be parallelized or not. There are also two other
subsets: Pluto Subset and AutoPar Subset in the
OMP_Serial dataset. However, DiscoPoP can not
process some of the codes in those two subsets as
it requires each code to be executable for proper
analysis. So, to have a fair comparison with all
three tools, we choose the DiscoPoP subset for this
experiment as all codes in the DiscoPoP subset

11835

https://github.com/quazirafi/AutoParLLM/tree/main/DetailedRuntimes
https://github.com/quazirafi/AutoParLLM/tree/main/DetailedRuntimes

31.26 27.15

46.74
51.4151.38 48.02

71.09 74.74

64.31 59.95

125.03

140.94

79.19 75.82

144.78

162.35

69.76
63.29

131.32

147.64

84.35
80.84

149.94

166.93

73.46 70.09

139.01

151.32

91.11 87.26

155.19

170.85

0

20

40

60

80

100

120

140

160

180

NAS-Intel NAS-AMD Rodinia-Intel Rodinia-AMD

CodeGen-16B AutoParLLM-CodeGen-16B CodeLlama-34B

AutoParLLM-CodeLlama-34B GPT-3.5 AutoParLLM-GPT-3.5

GPT-4 AutoParLLM-GPT-4

Av
g.

 S
pe

ed
up

(%
)

Figure 9: Effect of AutoParLLM on different LLMs. LLMs are prompted with few shot settings & speedups are
reported using 4 threads.

are executable. Pluto and AutoPar perform static
analysis to find parallel regions (such as loops),
whereas DiscoPoP is a dynamic analysis tool that
executes the code to identify potential parallel re-
gions. Therefore, choosing these three tools en-
ables us to compare AUTOPARLLM against both
static and dynamic analysis tools. Due to program
execution, from Table 9, we see that DiscoPoP
gains an advantage over Pluto and AutoPar as it has
15% and 8% better accuracy, respectively. How-
ever, it can be observed that AUTOPARLLM has
far better accuracy than all three tools.
Table 9: Parallelism Discovery on DiscoPoP Subset
(Detecting parallel loops)

Tool Precision Recall F1-score Accuracy

Pluto 1 0.38 0.55 0.48
AutoPar 1 0.49 0.67 0.55
DiscoPoP 1 0.54 0.70 0.63
AUTOPARLLM 0.99 0.99 0.99 0.99

A.12 Comparing with Deep Learning
Approaches

Here, we applied AUTOPARLLM on the Pluto, Au-
toPar, and DiscoPoP subsets of the OMP_Serial
Dataset, which consists of parallel and non-parallel
codes. The task is the same as the previous. The
Pluto subset has 4032 files, the AutoPar subset
has 3356 files, and the DiscoPoP subset has 1226
files. The results of the tools Graph2Par (Chen

et al., 2023b), PrograML and PERFOGRAPH are
reported from (TehraniJamsaz et al., 2023). We ap-
ply our AUTOPARLLM model on the same subsets
and compare these approaches. Table 10 shows
that AUTOPARLLM surpasses the performance of
the state-of-the-art PERFOGRAPH (TehraniJamsaz
et al., 2023) by achieving as high as 6% better ac-
curacy.

Table 10: Performance comparison of AUTOPARLLM
on parallelism discovery task in the OMP_Serial

dataset with existing approaches.

Subset Approach Precision Recall F1-score Accuracy

Pluto
Graph2par 0.88 0.93 0.91 0.86

PROGRAML 0.88 0.88 0.87 0.89
PERFOGRAPH 0.91 0.90 0.89 0.91

AUTOPARLLM 0.97 0.98 0.98 0.96

AutoPar
Graph2par 0.90 0.79 0.84 0.80

PROGRAML 0.92 0.69 0.67 0.84
PERFOGRAPH 0.85 0.91 0.85 0.86

AUTOPARLLM 0.93 0.92 0.93 0.92

DiscoPoP
Graph2par 0.90 0.79 0.84 0.81

PROGRAML 0.92 0.94 0.92 0.91
PERFOGRAPH 0.99 1 0.99 0.99

AUTOPARLLM 0.99 0.99 0.99 0.99

A.13 Analyzing Wrong Predictions in
OpenACC

Here we describe the wrong predictions in our Ope-
nACC experiment. The test set contains 12 parallel
(5 private, 7 reduction) and 5 non-parallel
loops. For generating the complete OpenACC
clauses we use the predicted patterns from AU-
TOPARLLM and incorporate them into the prompts

11836

19.1
24.2 21.7

29.531.47
41.2

36.8
44.76

0

10

20

30

40

50

BT

-11.2 7.1

-70.4 -71.92

2.19 17.5

-53.11 -56.25

-80

-60

-40

-20

0

20

40

IS

63.4 117.3

129.5

2.3

78

142.9 193.1

11.76

0

50

100

150

200

250

CG

48.6 76.8

90.3 88.259.1

96.8 141.1 132.1

0

50

100

150

FT

47.3 92.4

181.6

-124.4

61.9
110.6

239.3

-97.8

-200

-100

0

100

200

300

LU

27.3 37.9

6.7 -6.2

38.8
55.3

13.9
0.6

-20

0

20

40

60

MG

3.1
6.4

-
113.21

-
130.15

7.5 15.7

-83.4 -98.4

-150

-100

-50

0

50

SP
72.5 225.5

428.1

423.691.5

249.1

574.3 561

0

200

400

600

800

EP

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Sp
ee

du
p(

)%
Sp

ee
du

p(
)%

GPT-4
ALLM-GPT-4

Intel Xeon Gold 6152

NAS Parallel Benchmark

Figure 10: Comparing Effects of AutoParLLM on GPT-4 for different thread configurations for NAS Benchmark on
Intel Xeon Gold Machine.

11.1 15.2

27.8
19.620.3

38.9
44.8

26.8

0

10

20

30

40

50

BT

-14.4 5.1

-76.2 -81.4

2.85 18.5

-55.4 -58.7

-100
-80
-60
-40
-20
0
20
40

IS

56.4
110.3

123.4

1.7

76.4

138.9 186.6

4.9

0

50

100

150

200

CG

38.5
78.1

89.8 80.149.3

90.8
125.2 111.9

0

50

100

150

FT

43.1 90.4

175.7

-131.4

50.1
107.9

222.2

-97.9

-200

-100

0

100

200

300

LU

32.5
36.1

0.3 -10.02

46.2 51.3

4 0.3

-20

0

20

40

60

MG

2.6
5.4

-
102.31

-
118.63

5.9 14.6

-70.1 -92.9

-150

-100

-50

0

50

SP
81.3 220.2

440.5

426.8111.2

237.2

643.6 629.2

0

200

400

600

800

EP

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Sp
ee

du
p(

)%
Sp

ee
du

p(
)%

GPT-4
ALLM-GPT-4

AMD EPYC 7543P

NAS Parallel Benchmark

Figure 11: Comparing Effects of AutoParLLM on GPT-4 for different thread configurations for NAS Benchmark on
AMD EPYC Machine.

9.8

16.3

9.7

0.3

16.9
21.3

15.79

4.3
0

5

10

15

20

25

BFS

36.7 46.135.5

2.3

47.9 52.8 47.3

13.8

0

10

20

30

40

50

60

B+Tree

188.3 408.3

993.6
798.1

261.3

448.9

1120.1
1043.9

0

200

400

600

800

1000

1200

Heartwall

73.9
85.4

51.1
12.1

92.91 97.8

66.3

22.7

0

20

40

60

80

100

120

3D

9.4 15.3

3.5
0.5

23.227.3

12.1
5.5

0

5

10

15

20

25

30

BFS

22.3

16.615.7 7.8

36.5
38.5

32.3

18.1

0

10

20

30

40

50

B+Tree

450.9 500.2

510.6 438.1

509.9 530.4 533.4 462

0

100

200

300

400

500

600

Heartwall

52.1
73.2

63.6

26.2

70
87.2 81.5

53.1

0

20

40

60

80

100

3D

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Sp
ee

du
p(

)%
Sp

ee
du

p(
)%

GPT-4
ALLM-GPT-4

Intel Xeon Gold 6152

AMD EPYC 7543P

Rodinia-3.1 Benchmark

Figure 12: Comparing Effects of AutoParLLM on GPT-4 for different thread configurations for Rodinia-3.1
Benchmark on both Intel Xeon Gold and AMD EPYC Machine

11837

for (i = 0; i < _PB_N; i++) {
for (j = 0; j < _PB_N; j++) {

x2[i] = x2[i] + A[j][i] * y_2[j];
}

}

#pragma acc loop
collapse(2)
reduction(+:x2[:_PB_N])

#pragma acc loop

for (i = 0; i < n; i++){
tmp += data[i*n+j];

}

Loop Body AutoParLLM-GPT-4 suggestion Developer’s version

#pragma acc loop #pragma acc loop
reduction(+:tmp)

#

1

2

Figure 13: Mismatches of AUTOPARLLM in the Ope-
nACC dataset.

for the GPT-4. However, instead of OpenMP now
we instruct the AUTOPARLLM-GPT-4 to paral-
lelize the code using OpenACC. There were 2
wrong predictions by AUTOPARLLM-GPT-4. For
the first case, in Figure 13, the developer’s imple-
mentation from the benchmark only parallelizes
the outermost loop. However, AUTOPARLLM-
GPT-4 configuration suggested two extra clauses:
collapse and reduction. collapse merges the
two loops in a flattened 2D iteration space, allowing
OpenACC to parallelize both loops. reduction
ensures proper summation among threads and pre-
vents any race conditions. Although this configu-
ration does not match with the developer’s version
from benchmark it is more efficient as it parallelizes
both of the loops. This shows the potential of AU-
TOPARLLM in finding optimization opportunities
that may be overlooked by human developers. For
the second case, AUTOPARLLM correctly detects
it as a parallel loop however, it fails to identify the
reduction operation. We hypothesize the reason
is because of the presence of complex indexing on
variable data.

A.14 Detailed Related Works

Here we describe some of the existing approaches
to automatic parallelization and also the current
metrics for translation evaluation.

A.14.1 Traditional Parallelism Assistant Tools
Traditional tools are based on static and dynamic
analysis to automatically parallelize sequentially
written programs. PLuTo (Bondhugula et al., 2008)
analyzes code statically and can optimize pro-
grams for parallel execution. It is a polyhedral
source code optimizer based on OpenMP (Mead-
ows, 2007). Rose (Quinlan and Liao, 2011) is an-
other static source-to-source compiler infrastruc-
ture that also supports automatic parallelization
using OpenMP. Both of these tools do not require
or use code runtime information while generating
parallel counterparts of sequential programs. Dis-
coPoP (Li et al., 2016) is a dynamic analysis-based
parallelism assistant tool. It uses dynamic control-

flow analysis and data-dependence profiling for
identifying parallel regions in source programs.
The works of (Huda et al., 2015) use the output of
DiscoPoP to find parallel patterns using template-
matching techniques. The DiscoPoP-generated hy-
brid dependence analysis results have been used
by (Huda et al., 2016) to detect various parallel
patterns like Geometric decomposition, reduction
and task-based parallelism. However, these tradi-
tional analysis-based tools have some drawbacks,
as pointed out by (Chen et al., 2023b), and they
miss a lot of parallelism opportunities due to being
overly conservative.

A.14.2 Data-driven Approaches
With the significant progress in the field of machine
learning and deep learning, many have proposed
automatic data-driven approaches to identify paral-
lelism opportunities and suggest appropriate con-
structs. Authors of (Chen et al., 2023b) proposed an
approach based on graph neural networks and aug-
mented Abstract Syntax Trees (ASTs) to identify
parallel loops. Their results show that their GNN-
based approach outperforms PragFormer (Harel
et al.), which uses Transformers (Vaswani et al.,
2017) to discover parallelism opportunities in code.
(Shen et al., 2021) uses contextual flow graphs
with graph convolution neural networks (Kipf and
Welling, 2016) to detect parallelism. (Shen et al.,
2023) uses a combination of control flow, data
flow, and abstract syntax tree to predict parallelism.
There are also attempts to use IR-based represen-
tation for automatic parallelization of ML models
(Schaarschmidt et al., 2021). Even though there
has been some progress in adapting machine learn-
ing techniques to predict parallelism opportunities,
little effort has been applied to connect parallelism
detection and code generation. In this work, we ad-
dress this gap. We connect GNNs and LLMs to not
only discover parallelism but also generate parallel
code. Connecting GNNs to LLMs has been inves-
tigated recently (Ghosh et al., 2022; Chen et al.,
2023c). However, to the best of our knowledge, we
are the first to leverage the result of GNN to guide
LLM to generate parallel code out of serial code.

A.14.3 LLM-based Approaches
Large Language Models (LLMs) have achieved
remarkable success across various domains, in-
cluding parallel code generation. Chen et al.
(2023a) were pioneers in applying LLMs to high-
performance computing (HPC) tasks, including

11838

parallelism detection. They compared the perfor-
mance of GPT-3.5 with their previous GNN-based
approaches (Chen et al., 2022, 2023b). Their find-
ings demonstrated that GPT-3.5 could achieve com-
petitive performance in parallelism detection with
even basic prompts. In subsequent research, they
trained an LLM specifically for OpenMP pragma
generation, introducing a tailored chain-of-thought
approach (Chen et al., 2024). Nichols et al. (2024a)
evaluated the performance of the parallel code gen-
erated by LLMs and indicated that even with great
potential, noting that while LLMs show great po-
tential, there remains a significant gap between the
generated code and the expectations of the HPC
community. They also explored fine-tuning LLMs
for generating optimized parallel code (Nichols
et al., 2024b,c). In contrast to these prior works, our
approach uniquely combines the strengths of GNNs
with LLMs to generate prompts enriched with ex-
ternal knowledge. This hybrid method leverages
the advantages of both GNNs and LLMs, providing
a versatile solution compatible with any LLM.

A.14.4 Metrics for Translation Evaluation
The BLEU score (Papineni et al., 2002) is a classi-
cal metric for evaluating textual similarity in ma-
chine translation. It assesses the overlap between
sequences of consecutive n words, called n-grams.
Meteor (Banerjee and Lavie, 2005) was introduced
to address some of the limitations of the BLEU
score, such as its tendency to underestimate high-
order n-grams. ROUGE (Lin, 2004) encompasses
a set of metrics that evaluate various aspects of
textual similarity. To evaluate code generation,
recent works have introduced metrics like Code-
BLEU (Ren et al., 2020) and CodeBERTScore
(Zhou et al., 2023). Authors of BabelTower (Wen
et al., 2022) designed a metric called "ParaBLEU"
specifically for evaluating parallel codes. However,
the designed metric is limited to evaluating CUDA
code only. So, none of these metrics have been
specifically designed for evaluating the quality of
OpenMP constructs in terms of textual similarity.

A.15 Experimenting with Randomized Few
Shot COT

Here, we discuss the results of our experiments
regarding adding randomly sampled examples in
GPT-4 prompts. Instead of handpicking samples
from different parallelization scenarios, here, the
samples for constructing the prompt are randomly
picked from the dataset. To enable consistent com-

parison with the hand-picked sampling technique
we also limit the sample number to 5 samples. The
results are presented for both NPB and Rodinia
benchmark in Table 11 and Table 12, respectively.
From the results, it can be observed that the perfor-
mance and of hand-picked sample based prompting
(Man) and randomized sampling based (Rand) tech-
niques yields very close results in most cases. How-
ever, AUTOPARLLM surpasses both prompting
techniques by a significant margin in both bench-
marks in terms of all three metrics scores.

Table 11: Results on NPB Benchmark Suite for Ran-
domized Few Shot Prompting

Model CBTScore ParaBLEU OMPScore
0-shot-COT-GPT-4 73.8 27.49 46.4

few-shot-COT-GPT-4 (Rand) 76.3 35.69 58.64
few-shot-COT-GPT-4 (Man) 76.5 29.97 58.06

AUTOPARLLM-GPT-4 96.4 48.48 95.15

Table 12: Results on Rodinia-3.1 Benchmark Suite for
Randomized Few Shot Prompting

Model CBTScore ParaBLEU OMPScore
0-shot-COT-GPT-4 91.2 49.14 79.37

few-shot-COT-GPT-4 (Rand) 93.8 55.67 89.43
few-shot-COT-GPT-4 (Man) 92.12 54.43 89.01

AUTOPARLLM-GPT-4 98.6 69.09 98.1

11839

A.16 Few Shot COT Prompt Example

Qs: Parallelize the following code using OpenMP
for (int i = 0; i < n; ++i) {
arr[i] = arr[i-1] + arr[i+1];
}
Ans.
1. The loop contains inter-iteration dependencies at i-1 and i+1.
2. Hence loop can not be parallelized.

Qs: Parallelize the following code using OpenMP
for (int i = 0; i < n; ++i) {
sum += arr[i];
}
Ans.
1. The following code combines multiple iterations into a final outcome 'sum'
2. Hence adding reduction clause is necessary to parallelize
3. reduction should be added on 'sum' with '+' operator.
Qs: Parallelize the following code using OpenMP
for (int i = 0; i < n; ++i) {
arr[i] = i + 1;
}
Ans:
1. The code contains do-all pattern as all iterations are independent as no need
to make any variable private to each thread.
2. Simply adding the 'parallel for' clause should be sufficient.
Qs:
for (int i = 0; i < n; i++) {

temp = array[i] * 2;
result[i] = temp;

}
Ans:
1. The code contains do-all pattern as all iterations are independent
2. But variable 'temp' needs to be private to each thread.
3. private clause should be added on 'temp'.
Qs:
for (int i = 0; i < n; i++) {

temp = array[i] * 2;
sum += temp;

}
Ans:
1. The code contains do-all pattern as all iterations are independent
2. But variable 'temp' needs to be private to each thread.
3. private clause should be added on 'temp'.
4. The following code combines multiple iterations into a final outcome 'sum'
5. Hence adding reduction clause is necessary to parallelize
6. reduction should be added on 'sum' with '+' operator.

Now Parallelize the following code using OpenMP:
<<input sequential code here>>

11840

A.17 Zero Shot COT Prompt Example
Parallelize code using OpenMP by following the below rules:
1. If loop iterations are independent of each other and no variable
is required to be private to each thread, then simply add 'parallel for'
clause
2. If loop iterations are independent but there is variable that needs
to be private to each thread then apply privatization through
'private' clause
3. If a variable combines results from multiple loop iterations and
finally computes the output then apply reduction on the variable
along with the associative operation.
4. It is possible that combinations of the above cases may arise.
<<input sequential code>>

11841

