AutoParLLM: GNN-guided Context Generation for Zero-Shot Code Parallelization using LLMs
Quazi Ishtiaque Mahmud, Ali TehraniJamsaz, Hung D Phan, Le Chen, Mihai Capotă, Theodore L. Willke, Nesreen K. Ahmed, Ali Jannesari
Abstract
In-Context Learning (ICL) has been shown to be a powerful technique to augment the capabilities of LLMs for a diverse range of tasks. This work proposes AutoParLLM, a novel way to generate context using guidance from graph neural networks (GNNs) to generate efficient parallel codes. We evaluate AutoParLLM on 12 applications from two well-known benchmark suites of parallel codes: NAS Parallel Benchmark and Rodinia Benchmark. Our results show that AutoParLLM improves the state-of-the-art LLMs (e.g., GPT-4) by 19.9% in NAS and 6.48% in Rodinia benchmark in terms of CodeBERTScore for the task of parallel code generation. Moreover, AutoParLLM improves the ability of the most powerful LLM to date, GPT-4, by achieving 17% (on NAS benchmark) and 16% (on Rodinia benchmark) better speedup. In addition, we propose OMPScore for evaluating the quality of the parallel code and show its effectiveness in evaluating parallel codes.- Anthology ID:
- 2025.naacl-long.593
- Volume:
- Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
- Month:
- April
- Year:
- 2025
- Address:
- Albuquerque, New Mexico
- Editors:
- Luis Chiruzzo, Alan Ritter, Lu Wang
- Venue:
- NAACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 11821–11841
- Language:
- URL:
- https://preview.aclanthology.org/fix-sig-urls/2025.naacl-long.593/
- DOI:
- Cite (ACL):
- Quazi Ishtiaque Mahmud, Ali TehraniJamsaz, Hung D Phan, Le Chen, Mihai Capotă, Theodore L. Willke, Nesreen K. Ahmed, and Ali Jannesari. 2025. AutoParLLM: GNN-guided Context Generation for Zero-Shot Code Parallelization using LLMs. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 11821–11841, Albuquerque, New Mexico. Association for Computational Linguistics.
- Cite (Informal):
- AutoParLLM: GNN-guided Context Generation for Zero-Shot Code Parallelization using LLMs (Mahmud et al., NAACL 2025)
- PDF:
- https://preview.aclanthology.org/fix-sig-urls/2025.naacl-long.593.pdf