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Abstract

Autoregressive (AR) Transformer-based se-
quence models are known to have difficulty
generalizing to sequences longer than those
seen during training. When applied to text-
to-speech (TTS), these models tend to drop
or repeat words or produce erratic output, es-
pecially for longer utterances. In this pa-
per, we introduce enhancements aimed at AR
Transformer-based encoder-decoder TTS sys-
tems that address these robustness and length
generalization issues. Our approach uses
an alignment mechanism to provide cross-
attention operations with relative location in-
formation. The associated alignment posi-
tion is learned as a latent property of the
model via backpropagation and requires no ex-
ternal alignment information during training.
While the approach is tailored to the mono-
tonic nature of TTS input-output alignment, it
is still able to benefit from the flexible model-
ing power of interleaved multi-head self- and
cross-attention operations. A system incor-
porating these improvements, which we call
Very Attentive Tacotron, matches the natural-
ness and expressiveness of a baseline T5-based
TTS system, while eliminating problems with
repeated or dropped words and enabling gener-
alization to any practical utterance length.

1 Introduction

Autoregressive (AR) Transformer-based sequence
models (Vaswani et al., 2017) are used today in
a majority of state-of-the-art systems across text,
vision, and audio domains. Though swiftly adopted
for sequence-to-sequence text-output tasks like ma-
chine translation, video captioning (Zhou et al.,
2018), and speech recognition (Dong et al., 2018),
adoption for audio-output tasks like text-to-speech
(TTS) is notably more recent. Inherent difficul-
ties in reliably evaluating TTS systems coupled
with the low quality of public TTS datasets likely
played a role in the delayed adoption. This was

exacerbated by the failure of AR models of con-
tinuous sequences (e.g., spectrograms) to match
the performance of their discrete counterparts in
the text domain. It was only after the arrival of
audio discretization techniques suitable for speech
generation tasks (Borsos et al., 2023) that the TTS
community began to direct more effort toward AR
Transformer-based models.

A key challenge faced by such models, however,
stems from their extensive reliance on attention op-
erations, which tend to cause robustness issues that
make them unfit for use in a production TTS envi-
ronment. Early attention-based TTS models, such
as Tacotron (Wang et al., 2017; Shen et al., 2018),
often exhibited problems like word omission or
repetition, and struggled to generalize beyond the
training lengths. Attempts to mitigate these issues
using monotonic alignment mechanisms yielded
some success (Raffel et al., 2017; Zhang et al.,
2018; Battenberg et al., 2020), but many ultimately
turned to non-autoregressive, duration-based mod-
els, which were more robust and efficient during
synthesis (Kim et al., 2020; Shen et al., 2020; Ren
et al., 2021). While significant research has focused
on improving robustness and length generalization
for Transformers in general, these issues still per-
sist in the latest AR TTS systems (Song et al., 2024;
Du et al., 2024).

In this paper we introduce a system called
Very Attentive Tacotron (VAT), a discrete AR
Transformer-based encoder-decoder model de-
signed for robust speech synthesis. VAT augments
a baseline T5-based (Raffel et al., 2020) TTS archi-
tecture with an alignment mechanism that exploits
the monotonic nature of the text-to-speech task,
while preserving the powerful modeling capabili-
ties of stacked self- and cross-attention layers. This
leads to virtually limitless length generalization,
while matching the naturalness and expressiveness
of the T5 baseline system and eliminating issues
with repeated or dropped words.
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Figure 1: Unlike the baseline T5-based TTS system, Very Attentive Tacotron (VAT) is able to generalize to tran-
scripts of virtually unbounded length despite only training on utterances shorter than 9.6 seconds.

2 Comparisons to Related Work

Our work was inspired by AudioLM (Borsos et al.,
2023), which showed impressive speech genera-
tion results using a decoder-only AR Transformer
trained to model discrete targets produced by a
self-supervised speech representation and a neural
audio codec. This was extended with text inputs for
TTS in the decoder-only case by VALL-E (Wang
et al., 2023), and in the encoder-decoder case by
SPEAR-TTS (Kharitonov et al., 2023) and MQ-
TTS (Chen et al., 2023).

However, Song et al. (2024) found that VALL-E
was highly non-robust (in ways we note are rem-
iniscent of early attention-based TTS) and pro-
posed ELLA-V, which essentially performs du-
ration modeling by learning to predict “end-of-
phoneme” markers via forced alignments of train-
ing data. With similar motivations, VALL-T (Du
et al., 2024) extends VALL-E by replacing the
objective with a Transducer mechanism (Graves,
2012) that marginalizes over hard alignments dur-
ing training and interacts with alignment-shifted
text-side relative position embeddings. Unlike stan-
dard AR decoding, this scheme requires a costly
sequence-wide inference pass each time the align-
ment shifts, and it is unclear whether it can gen-
eralize significantly beyond the training lengths.
Finally, to prevent major transcript deviations, MQ-
TTS had to limit cross-attention to a single layer
and head which is applied over a very narrow (3-
6 input tokens) monotonically advancing window.
In summary, current work has not resolved robust-
ness issues without also sacrificing the power and
flexibility of the underlying AR Transformer.

In this work, we focus on encoder-decoder mod-
els with cross-attention which we adapt for robust-
ness and length generalization. The cross-attention
operations are informed by a single monotonic

alignment position that produces stability with-
out degrading the modeling power of the repeated
multi-head cross-attention layers present in the
original Transformer architecture. The scalar align-
ment position is learned directly and doesn’t rely on
dynamic programming or forced alignments during
training.

3 Very Attentive Tacotron

3.1 System Overview
Our VAT model and the baseline T5 model are
based on the architecture of the T5 encoder-decoder
Transformer originally used for a wide variety of
NLP tasks (Raffel et al., 2020) and later used in
SPEAR-TTS (Kharitonov et al., 2023). The dia-
grams in Figure 2 give an overview of our discrete
TTS setup and then breakdown the differences be-
tween the decoders used in the two models.

For audio discretization, we use a neural vocoder
paired with a VQ-VAE (Van Den Oord et al., 2017)
trained to autoencode the vocoder’s input spectro-
grams. This allows us to quickly retrain the spectro-
gram discretization for different bitrates or frame
rates without having to retrain an entire neural au-
dio codec model, which can be a time consuming
and finicky process. The VQ-VAE is trained using
a simple L1 reconstruction loss, and to improve
reconstruction quality, its encoder yields multiple
categorical codes per frame using product quan-
tization (PQ) (El-Nouby et al., 2023) over mul-
tiple codebooks. The neural vocoder we use is
GAN-based and combines features from Parallel
WaveGAN (Yamamoto et al., 2020) and Hifi-GAN
(Kong et al., 2020).

Unlike the systems covered in Section 2 that do
“zero-shot” speaker cloning via audio prompting,
we learn separate speaker embeddings for each
speaker in the training set. We find this better suited
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Figure 2: High-level discrete AR Transformer TTS system overview (left), T5 baseline decoder based on Raffel
et al., 2020 (center), and the VAT decoder (right). Decoder blocks are expanded in Figure 3.

for medium-sized datasets and industry use cases,
where we care about creating high quality voices
for specific target speakers.

At the input side, we use a self-attention-based
encoder to process the text followed by an autore-
gressive decoder that interacts with the encoded
text via multiple cross-attention layers. We train
the decoder to model the sequence of PQ categori-
cal codes produced by the VQ-VAE. Not only is the
decoder trained autoregressively across time, but
we also model the joint distribution of the PQ codes
contained in one frame using an AR decomposition.
Full system details can be found in Appendix A.

3.2 T5 Relative Position Biases

T5 introduced an efficient parameterization of rela-
tive position biases (RPBs) used to encode locality
information in self-attention operations, which was
subsequently shown to outperform other position
encoding schemes with respect to length gener-
alization on certain sequence tasks (Kazemnejad
et al., 2023). RPBs are used in dot product self-
attention when computing attention scores, s(k)i,j ,

and attention weights, α(k)
i,j , for attention head k:

s
(k)
i,j =

q
(k)
i · k

(k)
j√

L
+ b

(k)
bf(i−j)c0 (1)

α
(k)
i,j =

exp
(
s
(k)
i,j

)

∑
l exp

(
s
(k)
i,l

) (2)

where q
(k)
i and k

(k)
j are length-L query and key

vectors at positions i and j, respectively, and
bxc0 := sgn(x)b|x|c rounds toward zero. The bias,
b
(k)
bf(i−j)c0 , is taken from a matrix of learned bias

values using a function, f(d), to map relative dis-
tances into B different buckets:

f(d) =



d, d ∈ [0,B/2)

B/2 +
log

(
d

B/2

)

log
(

D
B/2

) (B/2− 1) , d ∈ [B/2, D)

B − 1, d ≥ D
−f(−d), d < 0

(3)

So, the first half of the buckets are spaced linearly,
the second half logarithmically, and distances be-
yondD are all mapped to the final bucket. Negative
relative distances are associated with a separate set
of B − 1 buckets which we denote using negative
indices. The top of Figure 4 shows an example
of how distances are mapped to RPB buckets for
B = 16 and D = 64.

While RPBs provide locality information for
self-attention, they can’t be used in cross-attention
because there is no sense of relative distance be-
tween encoder and decoder time steps. This lack of
location information in cross-attention is a big rea-
son why attention-based TTS systems tend to have
issues with reliability and length generalization.
One way to introduce a sense of relative distance
for use with cross-attention RPBs is to compute an
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(b) New blocks used in the VAT model. The Relative Cross-
Attention Block replaces the standard Cross-Attention Block
in Figure 3a.

Figure 3: Diagrams for decoder sub-blocks.

alignment position for each decoder time step that
serves as the “zero” relative position along the time
dimension of the encoder outputs.

3.3 Interpolated Relative Position Biases
Our approach involves learning the alignment po-
sition directly via backprop; however, this means
we need to be able to differentiate the RPBs with
respect to the alignment position. Since standard
RPBs only deal with integer relative positions, we
cannot do this directly. Instead, we bypass the
round-toward-zero operation from the bias index
expression in eq. (1) and use f(d) from eq. (3)
directly as a real-valued bucket index, η. This non-
integer index is then translated into a bias value by
linearly interpolating between the two bias values
at the adjacent integer indices in the bias matrix.
For real-valued bucket index η = f(d) and bias
matrix row b(k), the interpolated bias for head k
and relative distance d can be written as:

β(k)(d) = b
(k)
bηc0 + (|η| − b|η|c)

(
b
(k)
dηe0 − b

(k)
bηc0

)

(4)
where dxe0 := sgn(x)d|x|e rounds away from zero.
The bottom of Figure 4 shows an example of how
relative distances are mapped to the bias index
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Figure 4: Standard RPB mapping of distances to bias
matrix indices (top) and Interpolated RPB mapping of
distances to bias matrix index weights (bottom).

weights used to compute these interpolated relative
position biases, or IRPBs.

3.4 Alignment Layer

Because we can backprop through IRPBs, the align-
ment position can be learned directly as a latent
property of the model. We use an RNN-based
alignment layer to produce a monotonically ad-
vancing alignment position for each decoder time
step as shown at the top of Figure 3b. The RNN is
fed with both the input to the alignment layer and
the output of a multi-head, location-based cross-
attention operation where the attention scores are
produced using alignment-informed IRPBs and no
content-based query-key comparisons:

s
(k)
i,j = β(k)(pi − j) (5)

where j is the encoder position, pi is the alignment
position at decoder step i, and attention weights are
produced using the softmax function in eq. (2).

We use purely location-based attention here be-
cause the alignment layer has the fairly simple job
of maintaining a rough alignment with the input,
while finer-grained, phoneme-level awareness and
deeper linguistic understanding can be handled by
subsequent cross-attention layers that use content-
based queries across multiple heads. This idea is
explored further in Appendix E where we visualize
the learned IRPBs across all layers.

To enforce monotonicity of the alignment, align-
ment deltas are produced by projecting the RNN
output to a scalar and passing it through a soft-
plus function. We further process the output of
the RNN by composing the alignment layer into
an alignment block as shown in the center of Fig-
ure 3b.

Because the alignment position is unobserved,
it cannot be teacher forced, so the alignment layer
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needs to be executed serially during training; how-
ever, subsequent decoder layers that consume the
alignment position can still be run in parallel. To
minimize the impact of this serialization on training
speed, we make the alignment layer as lightweight
as possible by using a single-layer LSTM and the
location-based attention mechanism in eq. (5).

3.5 Relative Cross-Attention
To stabilize multi-head cross-attention throughout
the rest of the decoder, we augment standard dot
product cross-attention with alignment-informed
IRPBs:

s
(k)
i,j =

q
(k)
i · k

(k)
j√

L
+ β(k)(pi − j) (6)

where q
(k)
i is the query at decoder step i, k(k)

j is
the key at encoder position j, and attention weights
are produced using the softmax function in eq. (2).

This operation is used within the relative cross-
attention block pictured at the bottom of Figure 3b.
As shown on the right side of Figure 2, the align-
ment position produced by the alignment layer is
fed to every instance of relative cross-attention
throughout the model, and each instance separately
attends to the encoder outputs via multi-head rela-
tive cross-attention.

3.6 Initializing IRPBs
In order to reliably learn a meaningful emergent
alignment position (as visualized in Figure 6), we
found it helpful to use a structured initialization
scheme for the cross-attention IRPBs. We chose a
Gaussian window centered at zero relative distance
with its maximum value normalized to 1. Due to
the softmax operation used in dot product attention,
we take the log of the Gaussian window values
when initializing the IRPB matrix, but we find it
useful to visualize the exponentiated biases in all
figures.

Figure 5a shows three examples of this scheme
at different standard deviations, σ. Given these
initial matrix values, the corresponding effective
interpolated biases for different relative distances
are shown in Figure 5b.

In early experiments, we found it necessary to
initialize the IRPBs using lower standard devia-
tions that heavily suppress attention contributions
from relative distances beyond the training lengths.
This was done to prevent undefined behavior at dis-
tances not seen during training and was sufficient
to guarantee length generalization.
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(b) Effective IRPBs using the initialization schemes from
Figure 5a with D = 64 and no MDP. The vertical black lines
denote hypothetical maximum training lengths.

−100 −50 0 50 100
Relative Distance, d

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
Bi

as
 (E

xp
on

en
tia

te
d)

Effective IRPBs: D= 64, PMD = 1
σ

5.0
7.0
15.0

(c) Effective IRPBs using the initialization schemes from Fig-
ure 5a with D = 64 and an MDP of PMD = 1.0.

Figure 5: Visualizing IRPB matrix initialization.

3.7 Maximum Distance Penalty
However, using lower standard deviations for IRPB
initialization prevents the cross-attention layers
from learning longer distance dependencies, which
could degrade the model’s text understanding capa-
bilities. To work around this issue, we incorporate
a maximum distance penalty (MDP) that explic-
itly reduces contributions from relative distances
greater than D:

β
(k)
MD(d) =

{
β(k)(d), |d| < D

β(k)(d)− PMD(|d| −D), |d| ≥ D
(7)

where PMD is the configurable maximum distance
penalty. This allows us to choose wider standard
deviations for the Gaussian initialization and still
generalize beyond the training lengths. The effect
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Figure 6: Example alignment position trajectories for
the transcript “Check it out! These alignment positions
are amazing!” The trajectory associated with the dis-
played spectrogram is shown in red.

of this penalty is shown in Figure 5c.
Despite not being necessary for length general-

ization in our experiments, we felt it prudent to
also apply the MDP to IRPBs used in self-attention
layers in order to eliminate additional sources of
undefined behavior at relative distances not seen
during training.

4 Experiments

4.1 Model Configuration
Our main comparison is between the baseline
T5-based TTS model and the augmented VAT
model. We also compare against additional non-
Transformer baseline models that were designed
for stability, including Tacotron with GMM-based
attention (Tacotron-GMMA) (Battenberg et al.,
2020) and the unsupervised duration variant of
Non-Attentive Tacotron (NAT) (Shen et al., 2020),
a duration-based model.

The reference configuration for the T5 baseline
and VAT models uses 6 decoder blocks with 16
attention heads and hidden width 1024. For VAT,
the alignment block uses a single 256-width LSTM
layer and 4 heads in the location-based attention
mechanism. The encoder contains 2 residual convo-
lution stages that downsample the input phoneme
sequence by 2x in time, followed by 3 non-causal
self-attention blocks with 8 heads and width 512.
All dropout layers use a rate of 0.1. At test time,
we use a sample temperature of 0.7 when sampling
from the AR categorical distribution at the decoder
output.

The VQ-VAE operates on 80Hz mel spectro-
grams with 128 bins, downsampling by 2x to pro-
duce output at a rate of 40Hz. Each output frame
contains 8 PQ codes with codebook size 256 for an
overall bitrate of 2.56 kbps.

For both T5 and VAT, we use position biases with
32 buckets and learn a separate set of biases for ev-
ery layer, unlike the original T5 paper which shares
biases across layers. For causal self-attention lay-
ers in the decoder, all 32 buckets are used for nega-
tive relative distances (B = 32), whereas in cross-
attention and non-causal self-attention, the 32 buck-
ets are split evenly between positive and negative
distances (B = 16 per side). Max distances, D,
are set to be shorter than the maximum sequence
lengths that appear during training, which are 96 for
the encoder outputs (192-length phoneme sequence
downsampled by 2x) and 384 for the decoder (9.6-
second utterances with 40Hz codes). We chose
max distances of D = 64 for cross-attention and
encoder self-attention and D = 128 for decoder
self-attention.

The T5 baseline uses standard RPBs in all self-
attention operations, including in the encoder. VAT
uses IRPBs in all self- and cross-attention oper-
ations, including the purely location-based atten-
tion in the alignment layer. IRPBs use an MDP of
PMD = 1.0. Self-attention bias matrices are ran-
domly initialized using a truncated normal, while
cross-attention biases use the Gaussian initializa-
tion scheme with σ = 15.

Full model configuration details can be found
in Appendix A, and reference implementations for
the encoder and decoder are available online.1

4.2 Datasets

We run experiments using two different English
language datasets. The first is an internal multi-
speaker dataset containing a variety of audio, in-
cluding book-reading, news-reading, and assistant-
like utterances. This dataset consists of 670 hours
of audio (~700,000 total utterances) spoken by
117 distinct speakers. Also included are audio-
book recodings from the Lessac dataset used in
the 2013 Blizzard challenge (Lessac Technologies,
Inc., 2013), which we use as a common point
of comparison with the single-speaker Tacotron-
GMMA baseline model. The second dataset is the
clean-460 subset of LibriTTS (Zen et al., 2019),

1https://github.com/google/sequence-layers/
blob/main/examples/very_attentive_tacotron.py

11794

https://github.com/google/sequence-layers/blob/main/examples/very_attentive_tacotron.py
https://github.com/google/sequence-layers/blob/main/examples/very_attentive_tacotron.py


consisting of 213 hours (~150,000 utterances) of
book-reading audio spoken by 1226 speakers.

4.3 Training

We train our T5 and VAT models for 650,000 steps
using the Adam optimizer to minimize the negative
log-likelihood of the spectrogram VQ codes. When
using the internal multi-speaker dataset, we use the
reference configuration from Section 4.1. When
using LibriTTS data, in order to prevent overfitting,
we shrink all layer widths to 3/8 scale (e.g., 1024
to 384) compared to the reference configuration.

We use Tacotron-GMMA as a stability-oriented
baseline for the internal dataset. However, we
found that single-speaker versions of the model
sounded better than ones trained on the full multi-
speaker dataset. Therefore, we only train Tacotron-
GMMA on the Lessac single-speaker data and only
evaluate using the Lessac voice when comparing
against models trained on the full internal multi-
speaker dataset.

Non-Attentive Tacotron is used as a LibriTTS
baseline and is trained in unsupervised duration
mode, following Shen et al. (2020). Full training
details are available in Appendix C.

4.4 Evaluations

MOS Naturalness. We evaluate synthesis qual-
ity using a pool of raters to judge naturalness on
a 5-point scale. For the Lessac voice, we use 885
utterances from the test set, and for LibriTTS we
use 900 utterances from the test set. We report 99%
confidence intervals along with the mean rating for
each model and the ground truth data.

AB7 Side-By-Side (SxS). Since MOS ratings
tend to have calibration and noisiness issues, we
complement them with side-by-side naturalness rat-
ings where blinded samples from two models are
directly compared on a 7-point ([−3, 3]) compara-
tive scale.

ASR-Based Robustness. For the rated audio, we
report character error rate (CER) computed by com-
paring the input text to the output of a pre-trained
speech recognizer that is run on the synthesized
audio. This addresses the fact that raters don’t
have access to target transcripts so can’t account
for dropped or repeated words in their ratings.

ASR-Based Length Generalization. Addition-
ally, for each model, we run a length generalization
stress test using 1034 transcripts of varying lengths

(100–1500 characters) and report CER as utterance
length is increased.

Repeated Words Stress Test. Attention-based
TTS models tend to have trouble when repeated
words appear in the input text. We test the ability of
the T5 and VAT models to correctly synthesize all
the words in three repeated-word templates, each
instantiated with 1–9 repetitions of a specific word.
These templates along with additional evaluation
details can be found in Appendix D.

5 Results

To aid the reader, audio examples from the natural-
ness evaluation, length generalization assessment,
and repeated words stress test are available online.2

Lessac Voice MOS SxS vs VAT CER

Ground Truth 4.00 ±0.07 2.9
VAT 3.68 ±0.08 — 3.3
T5 Baseline 3.75 ±0.07 -0.06 ±0.14 10.2
Tacotron-GMMA3 3.62 ±0.08 -0.32 ±0.14 3.7

LibriTTS MOS SxS vs VAT CER

Ground Truth 3.70 ±0.09 3.6
VAT 3.16 ±0.09 — 4.6
T5 Baseline 3.07 ±0.09 0.01 ±0.14 10.7
NAT 3.22 ±0.08 -0.12 ±0.15 3.3

Table 1: MOS naturalness, AB7 side-by-side (SxS)
versus VAT, and ASR robustness character error rates
(CER) for Lessac voice models (top) and LibriTTS
models (bottom). Error bars correspond to 99% con-
fidence intervals.

5.1 Naturalness Evaluations
MOS naturalness results are shown in the left col-
umn of Table 1. Note that for both datasets, the
confidence intervals are overlapping for all mod-
els, so there are no clear winners. This was sur-
prising given that in informal comparisons the
Transformer-based models (T5 and VAT) sounded
clearly more expressive and natural to us compared
to the Tacotron and NAT baselines.

In cases such as this, side-by-side evals can
be helpful due to their increased sensitivity and
better calibration. The naturalness side-by-sides
with the VAT model do show that it is preferred
over Tacotron-GMMA. Due to its deterministic

2https://google.github.io/tacotron/
publications/very_attentive_tacotron/index.html

3Tacotron-GMMA is only trained on the single-speaker
Lessac data, whereas the T5 baseline and VAT are trained
on the full internal multi-speaker dataset, which includes the
Lessac voice.
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regression-based objective, Tacotron sounds less
expressive than the Transformer-based models
which are trained with a fully probabilistic objec-
tive. VAT also seems to be preferred over NAT,
though the result was not quite significant with
respect to the 99% confidence interval. Samples
from the NAT model sound quite monotonous and
robotic, and it is clear that its unsupervised dura-
tion mechanism was unable to produce a naturally-
varying duration predictor. However, some of the
raters seemed to prefer its highly enunciated and
hyper-intelligible style compared to the more var-
ied and expressive samples produced by VAT and
the T5 baseline. Lastly, VAT is shown to be very
even with T5 in terms of naturalness, which is ex-
pected given that the two models use very similar
architectural backbones and identical training ob-
jectives.

5.2 ASR-Based Robustness
Despite the similarity in naturalness scores between
T5 and VAT, the ASR-based robustness results in
Table 1 show that the T5 baseline produced a sig-
nificantly higher CER than other models. This is
due to the fact that it tends to drop or repeat words,
especially on longer utterances (some utterances in
the test sets are up to 20 sec long, which exceeds
the 9.6 sec training lengths). Interesting, the NAT
model produced a CER below that of the ground
truth audio, which is a result of its overly enunci-
ated style.

5.3 ASR-Based Length Generalization
Length generalization results are shown in the plots
in Figure 1 where we plot CER against input text
length in characters. The max training length for
the Transformer-based models is 9.6 sec, and we
see that soon after the training length is exceeded,
the CER of the T5 baseline model sharply increases.
Not only does it drop or repeat individual words,
but beyond the training length, it frequently drops
or repeats entire clauses and sometimes babbles
incomprehensibly.

The other models, including VAT and the two
stability-oriented baselines, generalize well all the
way up to the max tested lengths (1500 characters,
or around 90 seconds). We can also see that due
to the hyper-intelligibility of the duration-based
NAT model, it achieves slightly better CER than
the VAT model across all text lengths – though at
the expense of expressivity, as is apparent in the
audio examples.

5.4 Repeated Words Stress Test

The T5 baseline model has difficulty with the re-
peated words stress test as well. Over the 27
test phrases, VAT makes no mistakes, whereas T5
makes errors on 14 of the phrases (52%). These er-
rors tend to become increasingly severe as the num-
ber of repetitions is increased. For example, one
of the phrases with 9 target repetitions produces
52 repetitions with the T5 model. The majority
of the mistakes, however, are off by one errors in
the number of repetitions, but the T5 baseline pro-
duced errors on transcripts that contained as few as
2 repetitions of the target word. Note that these rep-
etition errors occur even when the synthesis length
is shorter than the max training length.

6 Discussion

We have shown that the proposed attention enhance-
ments are able to eliminate robustness issues typi-
cally observed in Transformer-based TTS systems
while matching the synthesis quality of a contem-
porary T5-based system. The VAT model that in-
corporates these enhancements is able to reliably
produce all words in the input text out to seemingly
unbounded lengths, and the alignment-informed,
multi-layer, multi-head cross attention it uses is
inherently more powerful than the single-phoneme
alignment mechanisms used in other robustness-
oriented TTS models (see Appendix E).

This approach can be directly applied to any
encoder-decoder model that uses cross-attention
layers in the decoder. Because the alignment posi-
tion is constrained to be monotonic, it is best suited
for tasks that exhibit broad monotonic alignment
between input and output (e.g., TTS and ASR).
However, the flexibility afforded by query-key com-
parisons within wide IRPB windows should allow
the model to adapt well to off-monotonic align-
ments if needed (e.g., when using unverbalized
text).

Due to the scalability of Transformer-based mod-
els, future work should test VAT on significantly
larger datasets, potentially with encoder or de-
coder pre-training on unpaired text or audio, re-
spectively. Additionally, using fancier, more pow-
erful approaches to discretization and waveform
generation is likely to yield low-level audio qual-
ity improvements especially if paired with cleaner,
higher-quality datasets.
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Limitations

Implementation Effort. There is additional im-
plementation and configuration effort required for
VAT compared to more homogeneous Transformer-
based models; however, the code and example con-
figurations we provide online should be helpful for
researchers attempting to reproduce our work.

Training Speed Impact. The primary practical
downside of VAT is the potential for slower training
speed due to serialization of the alignment layer
during training. Because most of the model is still
able to be trained in parallel, at the training lengths
we use, alignment layer serialization had a rela-
tively small impact on training speed (~12 – 20%
depending on model size). Ways to narrow this
speed gap further include slimming down the align-
ment layer RNN or decreasing the VQ-VAE frame
rate so that fewer decoder steps are required to
model the same amount of audio.

Discrete TTS Comparisons. Transformer-
based discrete TTS is a rapidly developing area
with a short history, so it is difficult to make
meaningful comparisons with existing systems,
especially since dataset size/quality and model
scale can vary drastically. Additionally, most
discrete TTS systems we encountered are based
on prompt-based zero-shot speaker cloning which
further complicates direct comparisons. Therefore,
the discrete TTS baseline we use is based on an
existing and well-known Transformer architecture
(T5) applied directly to multi-speaker TTS.

Hyper-Parameter Exploration. A deeper ex-
ploration of the effect of various hyper-parameter
choices would be helpful, but was beyond the scope
of this initial work. However, we do cover the most
important choices when it comes to enabling robust
length generalization in our model.

English Language Focus. We use English lan-
guage datasets in our experiments. Since text-
speech alignment tends to be broadly monotonic
for the vast majority of written languages, our ap-
proach should generalize to other languages; how-
ever, this needs to be tested experimentally.

Potential Risks. Our work does not introduce
any notable societal or ethical risks beyond those
that may already exist for long-form text-to-speech
in general.
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A Model Details

All models are implemented using TensorFlow.4

The following sections provide additional config-
uration details. Example code for the T5 baseline
and VAT models is available online.5

A.1 Conv Blocks
The residual convolution blocks that we use in the
text encoder and VQ-VAE are pictured in Figure 7.
The basic Conv Block uses a 1D conv layer with
filter size 3 along with the GeLU nonlinearity. A
dense layer without a nonlinearity processes the
conv output before it is mixed back into the residual
line. A Conv Stage composes multiple Conv Blocks
after a resampling operation that is implemented
using strided convolution for downsampling and
transposed convolution for upsampling, which both
use filter size 3. For a specified stage width, Wc,
we set the number of conv filters and dense units
to all be Wc throughout a single Conv Stage.

A.2 Transformer Blocks
The Transformer blocks we use are shown in Fig-
ure 3 and are used in both the text encoder and the
decoder. For each Transformer block, we specify a
width, W , that is used to set the number of output
units in each underlying layer. For self-attention
and cross-attention operations in Figures 3a and
3b, the dimension used for the queries, keys, and
values is simply the block width divided by the
number of heads, W/H . All Dense layers have
width W , with the exception of the “Dense+GeLU”
layer in the feedforward block, which has a width
of 4W . The number of units in the RNN (LSTM)
in the alignment layer is specified separately. For
the T5 baseline, the self-attention blocks use stan-
dard RPBs; and for VAT, self-attention, relative
cross-attention, and location-based cross-attention
all use IRPBs as described in Section 4.1.

A.3 Text Encoder
Here we expand on the encoder description in Sec-
tion 4.1. The encoder takes phonemes as input
and begins with 2 Conv Stages that each contain 3
Conv Blocks. The resampling layer uses a stride of
1 in the first stage and 2 in the second stage for an
overall downsampling factor of 2x.

The Conv Stages are followed by 3 Transformer
blocks which each contain the self-attention block

4https://www.tensorflow.org/
5https://github.com/google/sequence-layers/

blob/main/examples/very_attentive_tacotron.py

and feedforward block shown in Figure 3a (unlike
the Transformer block used in the decoder, there is
no cross-attention).

For a specified encoder width, We, the first Conv
Stage has width We/2, while the second has width
We. The widths of the Transformer blocks are We
and attention layers use 8 heads. For the full-size
reference configuration, we use We = 512, and for
the 3/8 scale LibriTTS configuration, we use We =
192. The example code available online includes
text encoder configurations and implementations
of all encoder blocks.

A.4 Decoders

The T5 and VAT decoder architectures are de-
picted in Figures 2 and 3, and described in Sec-
tions 3 and 4.1. Transformer block specifics are
covered above in Section A.2. For the full-size
reference configuration, we use a decoder width of
Wd = 1024 with 16 attention heads, and for the 3/8
scale LibriTTS configuration, we use Wd = 384
with 8 attention heads. In VAT, the alignment layer
RNN is an LSTM with width 256 in the reference
configuration and 96 in the smaller configuration.
The location-based cross-attention in the alignment
layer uses 4 heads. One element that was not de-
scribed in the main paper is an initial 1d (causal)
convolution with filter size 3 that projects the de-
coder input (the previous decoder outputs) to the
decoder width, Wd. The example code available
online includes decoder configurations and imple-
mentations of all decoder blocks.

A.5 VQ-VAE

The VQ-VAE is covered in the main text in Sec-
tions 3.1 and 4.1. We implement the VQ-VAE
encoder and decoder using a mirrored architecture
constructed using the Conv Stages described in Sec-
tion A.1. Both use 2 Conv Stages each containing
4 Conv Blocks. The encoder uses widths 512 and
1024 for its 2 stages, while the decoder uses 1024
and 512. The encoder downsamples by 2x at the
beginning of its second stage, and the decoder up-
samples by 2x at the beginning of its second stage.

As described in Section 3.1, the VQ-VAE pro-
duces multiple categorical codes per frame using
product quantization (PQ) (El-Nouby et al., 2023),
To accomplish this, for each frame, the encoder
outputs a vector that is divided into M smaller
vectors, which are each quantized using separate
codebooks.
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Figure 7: Residual convolution blocks used in text encoder and VQ-VAE.

We use the standard VQ-VAE training objec-
tive from Van Den Oord et al. (2017) with equal
weighting between the reconstruction, quantization,
and commitment losses. The reconstruction term
is a simple L1 loss on the 3 second spectrogram
segments we use during training. To improve code-
book utilization, we use codebook restarting during
training, where individual centroids that drop be-
low a certain moving average usage frequency are
reinitialized.

For the spectrogram VQ-VAE models we train
on the 2 datasets, we use M = 8 PQ codebooks
which are each comprised of 256 codes. Because
the input spectrograms have a frame rate of 80Hz
and the encoder downsamples by 2x in time, this
gives an overall quantization bit rate of 2560.

A.6 Autoregressive Categorical
Section 3.1 mentions that we model the M categor-
ical codes produced in each VQ-VAE frame using
an autoregressive (AR) decomposition to model the
joint distribution of these codes across time. While
the decoder handles the AR decomposition across
time, we use a separate AR decomposition to han-
dle the joint distribution of the M codes in a single
decoder frame. Because the number of codes in a
single frame is fixed, we can train a separate feed-
forward network to predict the distribution of each
categorical variable given the previous categoricals
in the frame and the decoder hidden state:

p(y(m)
n |y(m−1)n , . . . , y(1)n ,dn)

= fm(y
(m−1)
n , . . . , y(1)n ,dn) (8)

where y(m)
n is the mth categorical code at frame n,

dn is the decoder hidden state at frame n, and fm
is a trainable feedforward network.

These M separate feedforward networks can be
trained in parallel using teacher forcing and causal
masking of the inputs similar to what is done in
Masked Autoregressive Flows (Papamakarios et al.,
2017) or MADE (Germain et al., 2015). We imple-
ment each function, fm, using 3 dense feedforward
layers with the first 2 using the GeLU nonlinearity,
and there is no parameter sharing between func-
tions. The widths of the layers are set to match the
decoder width, Wd.

A.7 Neural Vocoder

The neural vocoder we use is GAN-based, bor-
rowing from Parallel WaveGAN (Yamamoto et al.,
2020) and Hifi-GAN (Kong et al., 2020). We use
the generator from Parallel WaveGAN which con-
sists of 30 layers of dilated convolutions spread
over 3 dilation stages. The discriminators we use
are very similar to the multi-scale and multi-period
critics used by Hifi-GAN; however, we train both
conditional and unconditional versions of them and
do not use any feature matching.

A.8 Parameter Counts

The full-size reference configurations for T5 and
VAT have 138 million and 143 million parameters,
respectively. The 3/8 scale LibriTTS versions of
T5 and VAT have 24 million and 25 million param-
eters. The VQ-VAE model we train has 62 million
parameters. The neural vocoder has 39 million
parameters.

B Datasets Details

The LibriTTS dataset (Zen et al., 2019) is released
under a CC BY 4.0 license.6 The Lessac dataset

6https://openslr.org/60/
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(Lessac Technologies, Inc., 2013) that is included
in the internal multi-speaker dataset mentioned in
Section 4.2 contains 150 hours of audio (120,000
utterances) from a single female speaker. It is re-
leased under a non-commercial license as specified
at the following URL.7 Our use of these datasets is
consistent with their licenses.

C Training Details

C.1 T5 Baseline and VAT

The T5 and VAT models were trained for 650k
(650,000) steps using the Adam optimizer with
β1 = 0.9 and β2 = 0.999, and gradient clipping
with threshold 1,000. The initial learning rate was
set using the expression 0.01/sqrt(decoder_width),
and the learning rate was decayed to 0.5, 0.25, and
0.1 times the initial learning rate at 500k, 550k, and
600k steps, respectively.

When training VAT, we initialized the bias in the
“Dense(1)+Softplus” operation in the Alignment
Layer shown in Figure 3b so that it produces initial
alignment deltas at about the average rate at which
the alignment should proceed across the encoder
outputs. For a 40Hz VQ-VAE frame rate on the
decoder side and 2x downsampled phonemes on the
encoder side, the initial bias value was set to−1.25,
which yields an initial average alignment delta of
0.25 when passed through the softplus function.
We found that this caused the alignment layer to
start producing meaningful alignment trajectories
after fewer training steps.

These models were trained using Google Cloud
TPUv5e8 in a 4x4 topology (16 chips) with a batch
size of 128 and maximum audio length of 9.6 sec-
onds. For the larger reference versions of the mod-
els with decoder width 1024, training took about
10 hours for the T5 baseline and 12 hours for VAT.
The smaller 3/8 scale versions with decoder width
384 trained in about 4.2 hours for T5 and 5 hours
for VAT.

C.2 Spectrogram VQ-VAE

The spectrogram VQ-VAE models were trained for
1M (1,000,000) steps using the Adam optimizer
with β1 = 0.9 and β2 = 0.999 and gradient clip-
ping with threshold 1,000. The initial learning rate
was set to 0.0002 and decayed to 0.5, 0.25, and 0.1
times the initial learning rate at 700k, 800k, and

7https://www.cstr.ed.ac.uk/projects/blizzard/
2013/lessac_blizzard2013/license.html

8https://cloud.google.com/tpu/docs/v5e

900k steps, respectively. On a 4x4 TPUv5e, these
models trained in about 4.6 hours using a batch size
of 64.

C.3 GAN-Based Neural Vocoder

Our GAN-based neural vocoder was trained for 2M
(2,000,000) steps using the Adam optimizer with
β1 = 0.9 and β2 = 0.999. We used initial learning
rate 1e-4, halving it at 200k, 400k, 600k, and 800k
steps. Training on a 4x4 TPUv5e took about 33
hours using a batch size of 64 and audio segment
size of 300ms.

C.4 Tacotron-GMMA

We trained the Tacotron-GMMA model on the
Lessac dataset, following the training procedure for
the GMMv2b model from Battenberg et al. (2020).
This involved training for 300k (300,000) steps us-
ing the Adam optimizer and a gradient clipping
threshold of 5. The learning rate was initially set
to 1e-3 and reduced to 5e-4, 3e-4, and 1e-4, at 50k,
100k, and 200k steps, respectively. Training on a
4x4 TPUv5e took around 8 hours using a batch size
of 256 and maximum audio length of 5 seconds.

The associated WaveRNN vocoder was trained
for 2.5M (2,500,000) steps using the Adam opti-
mizer. Teacher forced predicted spectrograms pro-
duced by the Tacotron model were used as input
to the vocoder during training, rather than ground
truth spectrograms. The initial learning rate was
set to 2e-4 and then decayed to 1e-4, 5e-5, 2e-5,
1e-5, and 5e-6 at 250k, 450k, 650k, 850k, and 1M
steps, respectively. Training took around 72 hours
(3 days) using a batch size of 128 and waveform
segment size of 37.5ms.

C.5 Non-Attentive Tacotron

We trained the NAT model using the unsupervised
duration training procedure from Shen et al. (2020).
Training was done using Google Cloud TPUv39 in
a 4x4 configuration (16 chips). Training the NAT
model for 150k (150,000) steps took 91.5 hours
(3.8 days). Pre-training the WaveRNN vocoder for
500k steps took 74.5 hours (3 days). And the joint
fine-tuning of both for 500k steps took 146 hours
(6 days).

9https://cloud.google.com/tpu/docs/v3
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D Evaluation Details

D.1 MOS and Side-By-Side Ratings

To gather the MOS and side-by-side naturalness
ratings, we used a pool of professional raters re-
cruited for their ability to judge the quality of En-
glish speech. Raters are paid per rating at a rate
dependent on average task length. Individual raters
were limited to 6 ratings for a single evaluation
experiment, and each item was rated once. For
both tasks, we report mean scores along with 99%
confidence intervals.10

Rating templates were reviewed and approved
by an internal group responsible for wording clarity
and overall rater experience.

MOS Naturalness For MOS naturalness, the
rater instructions were as follows:

In this task, you will be given one or
more audio clips. For each clip, please
listen to the speech very carefully and
then select a rating for each audio clip.
The rating should be based on how nat-
ural or unnatural the sentence sounded.
Please do not judge the grammar or the
content of the sentence. Instead, just fo-
cus on how natural the speech sounds.

The rater then answers the question “How natural
does the speech sound?” by choosing a response on
a 5-point scale with labels: Bad, Poor, Fair, Good,
Excellent.

Side-by-Side Naturalness For side-by-side nat-
uralness, the rater instructions were as follows:

In this task, your job is to listen to
two different audio samples containing
speech. The text spoken will be the same
for both Speech Samples. Please listen
to both samples before selecting a rating.

The rater then answers the question “Which side
sounds better?” using the horizontally arranged
choices: Much Better, Better, Slightly Better,
About The Same, Slightly Better, Better, Much Bet-
ter; which correspond to integers in [-3, 3] when
tallying scores.

10https://www.itl.nist.gov/div898/handbook/eda/
section3/eda352.htm

D.2 ASR Length Generalization

The 1034 transcripts we use in the length general-
ization metric are between 100 and 1500 characters
long and were taken from the first Harry Potter
novel. The longest transcripts tend to yield speech
up to around 90 seconds in length.

D.3 Repeated Words Stress Test Templates

The 3 repeated word templates we used in the re-
peated words stress test are shown below. For each
template, the word that is repeated between 1 and 9
times is shown in square brackets. In the transcripts,
repetitions are joined using a comma followed by
a space. The templates are listed below:

1. I am [really], super duper tired.

2. My phone number is 1, 800, [9], 2.

3. Wow! That’s [pretty] good!

E Visualizing Learned IRPBs

E.1 IRPB Visualizations

In Section 3.4, we mentioned that the alignment
layer was designed to maintain a rough alignment
with the input, and therefore, it wasn’t crucial for it
to handle exact phoneme-level alignment due to the
flexibility afforded by the content-based query-key
comparisons in multi-head relative cross-attention.

In this section, we show the learned IRPB values
from the larger reference version of the VAT model
when trained on the internal multi-speaker dataset.
In the figures, all bias values are exponentiated
to aid visual comparisons and to account for their
use inside of a softmax when computing attention
weights. On the left side of each figure, we show
the biases for each head as overlapping scalar plots,
with the lines colored according to their peakedness
(kurtosis). On the right we show the same values in
image format where each row contains the biases
for a single head, and the rows are sorted according
to their peakedness.

The x-axis denotes the index in the bias ma-
trix, where negative indices are associated with
negative relative distances. Note that encoder self-
attention, alignment cross-attention, and relative
cross-attention use both positive and negative rela-
tive distances, whereas decoder self-attention only
uses negative relative distances because it is causal.
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E.2 Encoder Self-Attention IRPBs

In Figure 8, we see the IRPBs learned in each layer
of the (non-causal) self attention layers in the text
encoder. We can see that the 8 heads are arranged
in an interesting lobed pattern at a variety of scales,
presumably to handle things like syllable formation
and different types of text understanding. There
are also heads that focus on the edges of the bias
index range, which corresponds to a max distance
of D = 64.

E.3 Alignment Layer Location-Based
Cross-Attention IRPBs

IRPBs for the location-based cross-attention opera-
tion contained within the alignment layer (eq. (5))
are shown in Figure 9. At the top, we also show
the IRPBs at initialization (when using the Gaus-
sian initialization scheme with σ = 15). Because
this purely location-based mechanism doesn’t use
content-based query-key comparisons, the 4 heads
learn very simple IRPBs that distribute their weight
mainly between the current alignment position (rel-
ative distance 0) and one step ahead. This is likely
because the primary task of the alignment layers
is to decide whether to move the alignment posi-
tion forward. Deeper understanding of the text and
phonetics can be handled by subsequent relative
cross-attention layers.

E.4 Relative Cross-Attention IRPBs

Figure 10 shows the IRPBs learned for the 16 heads
of each of the 6 relative cross-attention layers (us-
ing the expression in eq. (6)). Also shown at the
top are the IRPB values at intialization. Across
the 6 layers, we see that much of the IRPB weight
is centered at relative distance zero (the current
alignment position) but each head seems to learn
a different amount of focus, with some learning
a quite broad focus that can even reach out to the
max distance, D = 64. We also see that some of
the layers (especially the first layer), contain heads
with learned bias windows that are offset from the
zero position or have a lobed configuration that
looks forward or backward in time. The fact that
the IRPBs used in relative cross-attention layers
haven’t all just collapsed to focus solely on the cur-
rent alignment position suggests that the model is
able to benefit from the ability to cross-attend to
the input in more complicated ways.

E.5 Decoder Self-Attention IRPBs
Lastly, Figure 11 shows the IRPBs learned by the
each of 6 decoder self-attention layers across their
16 heads. Because these layers use causal self-
attention, all 32 bias buckets for each head are used
for negative relative distances. The IRPB windows
appear to be arranged so that some of the heads
focus on the recent past, while others have a very
broad focus that reaches all the way out to the max
distance, D = 128.
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Figure 8: Learned IRPBs for encoder self-attention layers.
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Figure 9: Learned IRPBs for alignment layer location-based cross-attention. Also shown are the initial IRPB
values when using the Gaussian initialization scheme with σ = 15 (top).
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Figure 10: Learned IRPBs for relative cross-attention layers. Also shown are the initial IRPB values when using
the Gaussian initialization scheme with σ = 15 (top).
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Figure 11: Learned IRPBs for decoder self-attention layers (which use causal self-attention, so only negative
relative distances are used).
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