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Abstract

We study the post-training of large language
models (LLMs) with human preference data.
Recently, direct preference optimization and
its variants have shown considerable promise
in aligning language models, eliminating the
need for reward models and online sampling.
Despite these benefits, these methods rely on
explicit assumptions about the Bradley-Terry
(BT) model, which makes them prone to over-
fitting and results in suboptimal performance,
particularly on reasoning-heavy tasks. To ad-
dress these challenges, we propose a principled
preference fine-tuning algorithm called InfoPO,
which effectively and efficiently aligns large
language models using preference data. InfoPO
eliminates the reliance on the BT model and
prevents the likelihood of the chosen response
from decreasing. Extensive experiments con-
firm that InfoPO consistently outperforms es-
tablished baselines on widely used open bench-
marks, particularly in reasoning tasks.

1 Introduction

Large language Model alignment with human pref-
erences is critical to ensure that the responses of
pre-trained LLMs to prompts are consistent with
human preferences (Bai et al., 2022; Ouyang et al.,
2022; Stiennon et al., 2020). Recently, Reinforce-
ment Learning from Human Feedback (RLHF)
(Ouyang et al., 2022; Christiano et al., 2017) has
been proposed for fine-tuning language models
based on human preferences. RLHF involves ini-
tially fitting a reward signal derived from human
preference data with the application of reinforce-
ment learning algorithms, such as Proximal Policy
Optimization (Schulman et al., 2017), to optimize
language model policy to maximize rewards.

RLHF demonstrates impressive capabilities
across diverse tasks. Yet, the reinforcement learn-
ing approach presents significant challenges, such

† Work done during internship at Amazon

as computational inefficiency and training instabil-
ity (Engstrom et al., 2020; Rafailov et al., 2024).
To address these issues, methods such as direct
preference optimization and its variants have been
proposed, including DPO (Rafailov et al., 2024),
R-DPO (Park et al., 2024), and SimPO (Meng et al.,
2024). These preference optimization approaches
(Tajwar et al., 2024), replace RLHF with super-
vised learning on preference data, eliminating the
need for explicit reward modeling. Specifically,
they use the likelihood of a policy to define an im-
plicit reward fitted to the preference data, achieving
promising alignment performance.

While these methods employ different losses,
they are all based on BT assumption and share a
similar motivation with DPO and SimPO: maximiz-
ing the relative value differences between the im-
plicit rewards of the chosen and rejected responses.
Despite its simplicity and initial promise, this BT
assumption may not always hold true and generally
decreases reasoning task performance, as discussed
in (Pal et al., 2024; Meng et al., 2024; Xiao et al.,
2024b). Specifically, a notable counter-intuitive
observation is that during the training process of
methods with BT assumption, the likelihood of
both the chosen (i.e., preferred) and rejected (i.e.,
less preferred) responses decreases due to the large
gradient associated with the rejected response. This
leads to an undesirable outcome where the learned
policy progressively focuses on unlearning the re-
jected responses (see section 4 for details) and de-
crease the likelihood of chosen responses as shown
in Figure 1, resulting in suboptimal performance
on reasoning benchmarks as shown in many recent
works (Xu et al., 2024b; Meng et al., 2024; Pang
et al., 2024; Chen et al., 2024). Recently, several
efforts (Xu et al., 2024a; Pal et al., 2024) have been
made to address this issue. They propose using
negative log likelihood regularization on chosen re-
sponses to stabilize the training process. Although
these methods successfully prevent the model from
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Figure 1: The training dynamics of average likelihood of InfoPO and DPO on the Mistral-7B. We observe that
InfoPO exhibits the less decline in average chosen likelihoods, while still achieving the significant increase in
margins of rejected and chosen likelihood, compared to DPO. Results on Llama3-8B are given in Section 5.4.

collapsing on mathematical datasets, they perform
poorly on instruction-following and chat bench-
marks (Meng et al., 2024) and introduce additional
hyper-parameters which require manual tuning.

The importance of keeping the likelihood of the
chosen response in practical applications of large
language models, such as reasoning and mathe-
matical problem-solving (Pal et al., 2024; Yuan
et al., 2024a), highlights a significant limitation in
the applicability of contrastive preference learning.
This raises the following question: Can we design
an effective preference optimization algorithm that
avoids the Bradley-Terry (BT) assumption?

In this paper, we address this question by propos-
ing a simple yet effective preference optimization
algorithm, named InfoPO, which does not rely on
the BT assumption. The key idea of InfoPO is to di-
rectly optimize the conditional mutual information
between responses and preferences given a prompt.
We first revisit the DPO objective from the perspec-
tive of mutual information maximization. In partic-
ular, we demonstrate that the objective functions of
DPO under the BT assumption can be characterized
as special cases of a mutual information maximiza-
tion objective, using InfoNCE (Oord et al., 2018)
as the estimator. Building on this insight, we pro-
pose a novel method that learns an effective policy
from preference data without relying on the BT as-
sumption. Specifically, InfoPO leverages the NWJ
estimator (Nguyen et al., 2010) for mutual infor-
mation estimation instead of InfoNCE. Intuitively,
InfoPO weights the log likelihood of rejected re-
sponses according to model probability and uses an
exponential operation to control the gradient norms
towards rejected responses. We show that InfoPO
enables the model to update conservatively in the
direction of rejected responses, while preventing
a decrease in the likelihood of chosen responses.
This results in improved downstream task perfor-
mance, particularly in reasoning-heavy tasks.

We conduct extensive experiments to thoroughly
evaluate InfoPO with LLama3 8B and Mistral
7B on a wide range of downstream benchmarks:
Open LLM Leaderboard and AlpacaEval 2 and
Anthropic-HH. InfoPO achieves consistent and sig-
nificant improvements over existing methods.

Our primary technical contributions are: (1)
We propose a simple and effective alignment ap-
proach based on mutual information maximization,
which can naturally prevent the model from over-
fitting to preference data, striking a better balance
between chat and reasoning abilities. (2) We theo-
retically analyze the learning behavior and prove
that InfoPO enjoys some of the properties that
are desirable for fine-tuning with preferences. (3)
Empirically, we corroborate the effectiveness of
InfoPO on seven benchmarks. The results demon-
strate that InfoPO can significantly outperform pre-
vious preference optimization methods.

2 Related Work

Reinforcement Learning from Human Feed-
back. Reinforcement Learning from Human
Feedback (RLHF) is highly effective in aligning
Large Language Models (LLMs) with human pref-
erences (Ouyang et al., 2022; Christiano et al.,
2017). In RLHF, a reward model is trained from hu-
man preference data to map responses to a scalar re-
ward, aligning a policy using RL algorithms such as
PPO (Schulman et al., 2017). Although RLHF ex-
cels in instruction-following (Ouyang et al., 2022),
safety alignment (Bai et al., 2022), and summariza-
tion (Stiennon et al., 2020), RL fine-tuning for large
language models still faces serious challenges in
stability and scalability (Zheng et al., 2023) and re-
quires a more complex training pipeline compared
to supervised fine-tuning (SFT) for alignment.

Contrastive Preference Fine-tuning. Recent
work proposes simplifying RLHF by directly opti-
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mizing language models with contrastive learning
on preference data (Rafailov et al., 2024; Azar et al.,
2024; Ethayarajh et al., 2024; Munos et al., 2023;
Liu et al., 2023; Xiao et al., 2024a, 2025). While
each of these methods work with different loss
functions, the idea of them is to increase the gap be-
tween the likelihoods of preferred and dispreferred
responses. DPO (Rafailov et al., 2024) theoretically
allows for direct policy optimization from prefer-
ence data, equating its optimal solution to reward
maximization in RLHF. Due to its strong perfor-
mance and theoretical guarantees, several improve-
ments have been proposed. RSO (Liu et al., 2023)
uses rejection sampling to address sampling distri-
bution mismatches in DPO, while IPO (Azar et al.,
2024) prevents overfitting. Other works (Yuan
et al., 2024b; Xiong et al., 2023; Rosset et al.,
2024; Guo et al., 2024) run DPO iteratively and
on-policy. Despite these advances, the likelihood
of the preferred response often decreases during
DPO training, affecting performance on tasks such
as coding and mathematics (Pal et al., 2024; Yuan
et al., 2024a). Recent studies such as CPO (Xu
et al., 2024a; Pang et al., 2024) propose using Neg-
ative Log Likelihood (NLL) regularization to stabi-
lize training. While these approaches successfully
prevent collapse on mathematical datasets, they
perform poorly on several popular Chat and QA
benchmarks as shown in (Meng et al., 2024). In
this paper, we address this limitation by proposing
a new objective for alignment with preference data
based on mutual information maximization.

Mutual Information Estimation. Mutual infor-
mation (MI) is a fundamental measure of the depen-
dence between two random variables. In machine
learning, especially in deep learning frameworks,
MI is typically utilized as a criterion or a regularizer
in loss functions, to encourage or limit the depen-
dence between variables. MI maximization has
been studied extensively in various tasks, e.g., rep-
resentation learning (Chen et al., 2020; Bachman
et al., 2019; Tschannen et al., 2019), information
distillation (Ahn et al., 2019), and reinforcement
learning (Oord et al., 2018; Eysenbach et al., 2019).
However, only in a few special cases can one cal-
culate the exact value of mutual information, since
the calculation requires closed forms of density
functions and a tractable log-density ratio between
the joint and marginal distributions. To approxi-
mate MI, there has been a surge of interest in MI
estimation with variational approaches (Barber and

Agakov, 2004; Nguyen et al., 2010; Donsker and
Varadhan, 1983; Belghazi et al., 2018; Oord et al.,
2018; Poole et al., 2019). In this paper, we rethink
the alignment on large language models from the
mutual information maximization perspective.

3 Notations and Preliminaries

Problem Setup. We consider the preference learn-
ing scenario as follows: let the text sequences
x = [x1, x2, . . .] ∈ X denote the input prompt, and
yw = [y1, y2, . . .] ∈ Y and yl = [y1, y2, . . .] ∈ Y
denote two responses, typically sampled from the
reference policy πref(y|x). The response pairs are
then presented to human labelers (or an oracle) who
express preferences for responses given the prompt,
denoted as yw ≻ yl|x, where yw and yl denote
preferred and dispreferred responses, respectively.
The preference distribution is typically expressed
using a latent reward model r(x,y) as:

p (yw ≻ yl|x) = g (r(x,yw)− r (x,yl)) , (1)

where g : R → [0, 1] is a monotone non-decreasing
function (with g(z) = 1− g(−z)) that converts re-
ward differences into winning probabilities. When
g is the sigmoid function σ(x) = 1

1+e−x , we get the
Bradley-Terry (BT) preference model (Bradley and
Terry, 1952). Given dataset D, containing feedback
(x,yw,yl), the goal is to learn a language model
policy π(y | x) to align the human preference.
RLHF. Given the reward function r(x,y), denot-
ing the human preferences, RLHF fine-tunes policy
πθ by optimizing the following objective:

max
θ

Eπθ(y|x)
[
r(x,y)

]
− βKL

(
πθ(y|x)∥πref(y|x)

)
, (2)

where β > 0 is an appropriate KL penalty coeffi-
cient. When β → 0, all the probability mass will fo-
cus on the response with the highest reward. On the
other extreme, when β → ∞, the optimal policy
will be the same as the reference policy πref(y|x).
Due to the discrete nature of language generation,
we typically optimize RLHF objective in Equa-
tion (2) using RL algorithms, such as PPO (Ouyang
et al., 2022; Schulman et al., 2017). Although
RLHF with PPO has achieved remarkable success,
the training process of PPO is unstable because of
the high variance of the optimization (Engstrom
et al., 2020; Xiao and Wang, 2021).
Reward Modeling. One standard approach to re-
ward modeling is to fit a reward function rϕ(x,y)
with the BT preference model in Equation 1.
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Specifically, the reward function rϕ(x,y) can be
estimated by maximizing the log-likelihood over
preference feedback (x,yw,yl):

LRM(ϕ;x,yw,yl)

= − log σ
(
rϕ(x,yw)− rϕ (x,yl)

)
. (3)

DPO. To simplify RLHF, contrastive preference
learning (Tang et al., 2024; Rafailov et al., 2024;
Zhao et al., 2023; Azar et al., 2024) uses the log-
likelihood of the learning policy to implicitly rep-
resent the reward function:

rθ(x,y) = β

[
log

πθ(y|x)
πref(y|x)

]
+ β logZ(x), (4)

where Z(x) =
∑

y πref(y|x) exp(r(x,y)/β) is
the partition function. By incorporating this reward
into the BT model in Equation 1, DPO (Rafailov
et al., 2024) objective enables the comparison of
response pairs, facilitating the discrimination be-
tween preferred and dispreferred responses:

LDPO(θ;x,yw,yl) = (5)

− log σ
(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
.

Technically, DPO or its variants, such as those of
SimPO (Azar et al., 2024) and (Zhao et al., 2023),
are essentially based on BT preference assump-
tion (Bradley and Terry, 1952) which maximizes
the relative reward differences between chosen and
rejected responses (Tajwar et al., 2024). However,
the likelihood of the chosen response can continue
to decrease during training as long as the relative
difference in the likelihoods between the chosen
and rejected responses remains large. In this paper,
we address this limitation by proposing a novel ob-
jective based on mutual information maximization.

4 Methodology

4.1 Mutual Information Maximization for
Large Language Alignment

In this section, we connect DPO to mutual infor-
mation maximization. We demonstrate that RLHF
is a special case of the mutual information maxi-
mization problem by defining a specialized score
function (or critic) approximated by a neural net-
work. Specifically, we show that DPO can also be
viewed as a special case of our framework by using
contrastive predictive coding (CPC) (also known
as InfoNCE) (Oord et al., 2018) for mutual in-
formation estimation. We focus on maximizing

conditional mutual information (Ma et al., 2021):
I(Y,C|X), where C is an additional random vari-
able. This variable is binary, with c = 1 indicating
that the response is the preferred (chosen) one, and
c = 0 indicating that it is the dispreferred (rejected)
one. The conditional mutual information (CMI) is:

CMI(Y ;C|X) := (6)

Ex∼X

[
DKL

(
PY,C|X=x ∥ PY |X=xPC|X=x

)]
,

which measures the expected mutual informa-
tion between C and Y given X . Intuitively,
CMI(Y ;C|X) quantifies the average shared infor-
mation between Y and C while excluding the in-
fluence of X . Conditioning on X = x means
treating X = x as known, thereby ignoring its ef-
fect. Since mutual information is often difficult
to compute, InfoNCE (Tsai et al., 2022; Ma et al.,
2021) provides a lower bound on the conditional
mutual information as follows:

CMI(Y ;C|X) ≥ InfoNCE := (7)

sup
f

n∑

i=1

[
log

exp(f(yi, ci))

exp(f(yi, ci)) +
∑m

j=1 exp(f(yj , cj))

]
,

where the positive pairs, (yi, ci)
n
i=1, represent sam-

ples drawn from the conditional joint distribu-
tion: (yi, ci) ∼ PY,C|X , while the negative pairs,
(yj , cj), represent samples drawn from the product
of conditional marginal distributions: (yj , cj ̸=i) ∼
PY |XPC|X . The score function f can be approx-
imated by a neural network. Given the prompt
distribution p(x) and the conditional distribution
of the preferred response π(y, c = 1 | x), we sam-
ple x ∼ p(x), (yw, c) ∼ π(y, c = 1 | x), and
(yl, c) ∼ πref(y | x)p(c | x). The objective of
InfoNCE with preference feedback is as follows:

LInfoNCE(ϕ;x,yw,yl) = (8)

− log
exp(fϕ(yw, c = 1))

exp(fϕ(yw, c = 1)) + exp(fϕ(yl, c = 0))
,

where fϕ is a parametric critic function. If we de-
fine the critic with the following specialized form:

fϕ(x, c) = β log
πθ(y | x)
πref(y | x) , (9)

we have the following InfoNCE objective function:

LInfoNCE(θ;x,yw,yl) = (10)

− log σ
(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)
,
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which is exactly the same objective as the well-
known DPO in Equation (5). Thus, our framework
enables us to reinterpret DPO and demonstrate that
DPO with BT assumption falls under the conditional
mutual information maximization I(Y ;C|X) in
Equation (6) and employs the InfoNCE method
with a specialized form critic in Equation (9).

4.2 Gradient Analysis of DPO

To better understand the reason behind the behav-
ioral of DPO in optimization, we analyze the gradi-
ents of DPO with respect to the model parameters.

∇θLDPO(θ;x,yw,yl) = (11)

− βdθ ·
(∇θπθ(yw|x)

πθ(yw|x)
− ∇θπθ(yl|x)

πθ(yl|x)
)
,

where dθ = σ(β log πθ(yl|x)
πref(yl|x) − β log πθ(yw|x)

πref(yw|x))
represent the gradient weight in DPO. It can be ob-
served that the gradient of the model probability,
weighted by the reciprocal of the model probabil-
ity, is large for the rejected response. Intuitively,
the gradient of DPO increases the likelihood of the
chosen response, yw, while decreasing the likeli-
hood of the rejected response, yl. If πθ(yl|x) → 0,
the norm of the gradient becomes extremely large,
leading to a substantial parameter update toward
the rejected response. In this scenario, the gradient
associated with the rejected response grows exces-
sively large, whereas the gradient for the chosen
response diminishes significantly. This explains
the phenomenon illustrated in Figure 1 in the intro-
duction, where πθ forces the model to decrease the
likelihood of the chosen response during training,
given that the rejected and chosen responses share
some common tokens (Pal et al., 2024; Meng et al.,
2024; Xiao et al., 2024b).

4.3 The Proposed InfoPO

In this section, we proceed to introduce InfoPO,
a simple and effective preference optimization al-
gorithm. Instead of using InfoNCE for mutual in-
formation estimation in DPO, we propose using the
following NWJ (Nguyen et al., 2010) estimator:

CMI(Y ;C|X) ≥ NWJ :=

sup
f

n∑

i=1

f(yi, ci)−
m∑

j=1

exp
(
f(yj , cj)

)
+ 1. (12)

By using the preference datasets and the parameter-
ized critic in Equation (9), we have the following

InfoPO objective on preference pairs:

LInfoPO(θ;x,yw,yl) = (13)

− log πθ(yw|x) + πθ(yl|x)/πref(yl|x).

Intuitively, the first term pushes the model to mini-
mize the negative log-likelihood (NLL) of the cho-
sen response, while the second term decreases the
likelihood of the rejected response. The key con-
tribution behind InfoPO is rather simple yet effec-
tive: If the gradients of both chosen and rejected
responses lie on the same scale, we can prevent the
reward (likelihood) of chosen responses from con-
tinually decreasing. InfoPO utilizes an exponen-
tial operation to linearize gradients on rejected re-
sponses. For comparison, we calculate the gradient
of InfoPO with respect to θ using Equation (13):

∇θLInfoPO(θ;x,yw,yl) =

− ∇θπθ(yw|x)
πθ(yw|x)

+
∇θπθ(yl|x)
πref(yl|x)

(14)

where the gradient weight of rejected response is
the reciprocal of the fixed reference probability of
the sample, which has a smaller norm than Equa-
tion (11). This means that the unlearning on the re-
jected responses is more conservative and InfoPO
reduces the gradient imbalance issue for chosen
and rejected responses. In our experiment, we show
that InfoPO can effectively prevent the chosen like-
lihood from decreasing and significantly outper-
forms baselines across benchmarks. NWJ (InfoPO)
and InfoNCE (DPO) exhibit different properties
for conditional mutual information estimation, and
their performance varies depending on the specific
scenario. Specifically, for mutual information max-
imization, NWJ has low bias but high variance,
whereas InfoNCE has low variance but suffers from
high bias, as shown in (Poole et al., 2019).

4.4 Theoretical Analysis
Next, we proceed to present a theoretical analysis
of InfoPO, which shows that InfoPO enjoys im-
portant properties that are desirable for fine-tuning
LLMs with preferences (Tajwar et al., 2024).

Theorem 4.1. Minimizing the InfoPO objective
in Equation (13) with respect to θ will encourage
mode-seeking behavior by minimizing the reverse
KL divergence between πθ(y | x) and unknown
distribution of chosen response πchosen(y | x).

min
θ

LInfoPO(θ) ⇒ min
θ

DKL(πθ(y | x)∥πchosen(y | x))

= Eπθ(y|x) [log πθ(y | x)− log πchosen(y | x)] . (15)
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The complete proof is provided in Appendix A.
This theorem demonstrates that InfoPO theoret-
ically minimizes the reverse KL divergence be-
tween the policy πθ and the unknown distribu-
tion of the chosen response πchosen. The reverse
KL(πθ ∥ πchosen) promotes mode-seeking behav-
ior, concentrating the probability mass on high-
reward regions. This makes reverse KL more suit-
able for alignment aimed at generating a focused
subset of high-reward responses, as demonstrated
by (Tajwar et al., 2024; Xiao et al., 2024b).

5 Experiments

In this section, we present main results of our ex-
periments, highlighting the superior alignment per-
formance of InfoPO on various benchmarks.

5.1 Experimental Setup
Datasets. We evaluate InfoPO on widely used
datasets for preference fine-tuning: UltraFeed-
back Binarized dataset (Cui et al., 2023), Reddit
TL;DR summarization dataset (Völske et al., 2017),
Anthropic-HH dialogue dataset (Bai et al., 2022).
The details of datasets are given in Appendix B.1.

Models. For fine-tuning on the UltraFeedback
Binarized dataset, we use two families of mod-
els: Llama3-8B (Dubey et al., 2024) and Mistral-
7B (Jiang et al., 2023a), following (Meng et al.,
2024). For summarization and dialogue generation
tasks, we use Pythia-2.8B (Biderman et al., 2023)
as the base model, following (Rafailov et al., 2024).

Evaluation. Following previous work (Rafailov
et al., 2024; Tunstall et al., 2023), we evaluate meth-
ods fine-tuned on UltraFeedback Binarized on the
HuggingFace Open LLM Leaderboard (Gao et al.,
2023) and instruction-following benchmark (Al-
pacaEval2). We also utilize representative code
generation benchmarks: HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). For the
evaluation on summarization and dialogue gener-
ation tasks, we use GPT-4 for zero-shot pair-wise
evaluation following (Rafailov et al., 2024), which
is shown to be consistent with human judgments.

Baselines. We compare InfoPO with follow-
ing offline preference optimization methods:
DPO (Rafailov et al., 2024), f-DPO (Wang et al.,
2024), IPO (Azar et al., 2024), and SimPO (Meng
et al., 2024). We also compare with CPO (Xu et al.,
2024a), which is a representative method of intro-
ducing a SFT regularization to prevent the decrease

of chosen likelihood. We thoroughly tuned the hy-
perparameters for each baseline. For the general
hyperparameter settings, we follow the configura-
tions established in SimPO (Meng et al., 2024).
The details of setup is given in Appendix B.2.

5.2 Main Results on Benchmarks
We first employ the widely used Huggingface Open
LLM Leaderboard and AlpacaEval 2 as our evalu-
ation benchmarks. Table 1 compares the perfor-
mance of InfoPO against other preference opti-
mization methods. Our results demonstrate that
InfoPO is remarkably effective in improving per-
formance. The average improvements over the
best baseline are particularly notable in the Math
domain, with relative gains exceeding 12% on Mis-
tral and 3.5% on Llama3. These findings highlight
the efficacy of InfoPO. We hypothesize that these
improvements can be attributed to InfoPO’s ability
to prevent decreases in the chosen response during
training. Additionally, the results suggest that DPO
and SimPO are less effective for enhancing reason-
ing abilities, while InfoPO shows clear improve-
ments on both the Mistral-7B and Llama3-8B.

In addition to the reasoning tasks, we also com-
pare the performance of InfoPO on the instruction-
following benchmark, AlpacaEval 2. The win
rate results on AlpacaEval 2 in Table 1 demon-
strate that InfoPO consistently and significantly
outperforms existing alignment approaches. We
further evaluate the model’s performance on cod-
ing tasks using HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). The results, presented
in Table 1, show that InfoPO consistently outper-
forms both DPO and SimPO. This further indicates
that InfoPO is more suitable for enhancing reason-
ing abilities compared to DPO and SimPO.

5.3 Performance Comparisons on
Summarization and Dialogue Tasks

We also assess the performance of InfoPO on
summarization and dialogue generation tasks. As
shown in Table 2, InfoPO demonstrates substan-
tial improvements over the baseline models in both
tasks. These results highlight InfoPO’s capability
to enhance not only reasoning and coding abilities
but also natural language generation in diverse ap-
plications. Specifically, InfoPO aligns better with
human preferences than baselines, achieving a win
rate of at least 60% against the chosen responses in
both tasks. This highlights the strong potential of
InfoPO for aligning with human preferences. Fur-
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Table 1: Evaluation results on tasks from the Huggingface Open Leaderboard and AlpacaEval 2.

Model Method MMLU-PRO BBH MUSR MATH GSM8K ARC AlpacaEval 2

Mistral-7B

DPO 26.73 43.27 43.65 1.36 21.76 61.26 12.5
SLiC 26.52 42.33 33.74 1.38 33.74 55.38 8.9
f-DPO 25.96 42.39 37.82 1.27 23.18 62.01 8.5
IPO 25.87 40.59 42.15 1.25 27.14 60.84 9.4
CPO 27.04 42.05 42.15 2.15 33.06 57.00 8.9
SimPO 27.13 42.94 39.68 2.49 22.21 62.63 20.8

InfoPO 27.32 45.17 43.95 2.79 32.07 62.29 21.6

LLama3-8B

DPO 31.58 47.80 40.48 4.53 38.67 64.42 15.5
SLiC 31.11 46.53 40.55 3.92 48.82 61.43 13.7
f-DPO 30.85 47.55 40.39 4.37 39.55 62.85 9.5
IPO 30.18 46.78 39.58 4.02 22.67 62.88 14.2
CPO 30.95 47.17 41.59 4.25 46.93 61.69 8.10
SimPO 31.61 48.38 40.08 4.23 31.54 65.19 20.3

InfoPO 32.06 48.85 42.31 4.69 49.13 65.36 26.6
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Figure 2: The training dynamics of average likelihood of InfoPO and DPO on the Llama3-8B. We observe that
InfoPO exhibits the less decline in the average chosen likelihoods, while still achieving the significant increase in
margins of rejected and chosen likelihood, compared to DPO.

thermore, GPT-4 consistently favored InfoPO over
both baselines and chosen responses, demonstrat-
ing improvements of InfoPO over baselines in both
helpfulness and harmlessness. The superior perfor-
mance of InfoPO on these tasks further emphasizes
its effectiveness in multiple domains.

5.4 Further Results and Analysis
In this subsection, we take a deeper examination
and further analysis on the proposed framework.

5.4.1 Performance on On-Policy Settings.
In the above experiments, we utilize the offline
preferences dataset to fine-tune the off-the-shelf
language models, which is closer to an off-policy
setting. To evaluate InfoPO on the on-policy set-
ting, we follow the instruct setup in (Meng et al.,
2024). We generate the preference dataset using the
LLama3-Instruct (Dubey et al., 2024) and Mistral-
Instruct (Jiang et al., 2023a) models. Specifically,
we use prompts from the UltraFeedback dataset

and regenerate the chosen and rejected response
pairs with the SFT models. For each prompt x,
we generate 5 responses using the SFT model with
a sampling temperature of 0.8. We then use llm-
blender/PairRM (Jiang et al., 2023b) to score the
five responses, selecting the highest-scoring one as
the chosen response and the lowest-scoring one as
the rejected response. This makes the Instruct setup
closer to an on-policy setting. Table 3 shows the re-
sults. From the table, we can observe that, InfoPO,
despite its simplicity, achieves remarkable improve-
ments over DPO, CPO, and SimPO, particularly on
challenging reasoning benchmarks such as Math
and GSM8K, demonstrating that InfoPO is highly
effective in improving reasoning performance over
various models on the on-policy scenario.

5.4.2 Likelihood Training Dynamics.
We further examine the behavior of likelihoods
throughout the training process of InfoPO. As il-
lustrated in Figure 2, we compare the likelihood
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Table 2: Win rates computed by GPT-4 against the response generated by the model with supervised fine-tuning and
the chosen responses on the TL;DR summarization and Anthropic-HH dialogue tasks on Pythia 2.8B.

Dataset TL;DR Summarization Anthropic-HH Dialogue

Method vs SFT vs Chosen Average vs SFT vs Chosen Average

DPO 71.22 57.58 64.40 69.32 59.35 64.34
SLiC 68.61 55.72 62.17 65.52 57.71 61.62

f-DPO 66.19 51.37 58.78 60.21 52.38 56.30
IPO 72.17 56.51 64.34 63.19 55.12 59.16
CPO 73.13 58.89 66.01 72.30 63.39 67.86

SimPO 69.71 54.38 62.05 67.85 57.51 62.68

InfoPO 73.95 60.12 67.04 73.38 64.85 69.12
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Figure 3: The performance comparison on coding tasks.

trajectories of DPO and InfoPO on the Llama3-8B
model. It is evident that the likelihood of rejected
responses consistently declines, with the gap be-
tween chosen and rejected responses widening over
time. However, for DPO, the likelihood of chosen
responses not only drops below zero but continues
to decrease as training progresses. This outcome
reinforces our hypothesis, highlighting InfoPO ’s
ability to prevent a decline in the likelihood of
chosen responses. This likely contributes to the
superior performance of InfoPO on downstream
tasks, particularly those involving complex reason-
ing, such as math and coding, as demonstrated in
results in Table 1 and Figure 3.

6 Conclusion

This paper presents InfoPO, a novel preference
fine-tuning method to align LLMs with preference
data. We provide a novel perspective on mutual
information maximization for the alignment prob-
lem, and demonstrate DPO with BT assumption
essentially optimize the contrastive InfoNCE objec-
tive. To address the limitation of DPO, we propose
InfoPO based on NWJ mutual information estima-
tor. InfoPO applies an exponential function to con-

Table 3: On-policy evaluation results on reasoning tasks
(GSM8K and Math) in Huggingface Open Leaderboard.

Model Method MUSR MATH GSM8K

Mistral-7B
Instruct

DPO 46.43 1.89 35.25
CPO 43.28 2.28 38.74
SimPO 44.71 2.19 35.25

InfoPO 48.41 2.64 40.87

LLama3-8B
Instruct

DPO 39.02 8.23 49.81
CPO 38.81 7.75 67.40
SimPO 39.15 8.16 50.72

InfoPO 39.37 8.79 69.75

trol gradient magnitudes associated with these re-
jected responses. InfoPO enables the model to up-
date more conservatively in response to rejections,
thereby reducing the likelihood of overestimating
such responses. We have conducted a comprehen-
sive evaluation of InfoPO on different LLMs across
a broad downstream tasks. Experimental results
show that InfoPO achieves consistent and substan-
tial improvements over existing baselines.

7 Limitations and Future Work

One limitation of InfoPO is its current reliance
on a single mutual information estimator. While
this work primarily employs the NWJ mutual in-
formation estimation loss function, exploring the
effectiveness of InfoPO with alternative mutual in-
formation estimators remains an interesting avenue
for future research. Additionally, gaining a deeper
theoretical understanding of which mutual infor-
mation estimation techniques are most effective for
alignment is a key direction for further study.
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A Proof of Theorem 4.1

In this section, we provide the detailed proofs of
Theorem 4.1. Here, we restate the Theorem 4.1.
Theorem 4.1 Minimizing the InfoPO objective

in Equation (13) with respect to θ will encourage
mode-seeking behavior by minimizing the reverse
KL divergence between πθ(y | x) and unknown
distribution of chosen response πchosen(y | x).

min
θ

LInfoPO(θ) ⇒ min
θ

DKL(πθ(y | x)∥πchosen(y | x))

= Eπθ(y|x) [log πθ(y | x)− log πchosen(y | x)] . (16)

Proof. Recall that the reverse KL-divergence be-
tween πθ and the chosen distribution πchosen is:

DKL

(
πθ(y | x)∥πchosen(y | x)

)

= Eπθ(y|x)
[
log

(
πθ(y | x)/πchosen(y | x)

)]
, (17)

As the chosen distribution is unknown, we refor-
mulate the reverse KL divergence objective as:

max
θ

Eπθ(y|x)
[
log

πchosen(y | x)
πref(y | x) − log

πθ(y | x)
πref(y | x)

]
=

Eπθ(y|x)[log r(x,y)]−KL
(
πθ(y | x)∥πref(y | x)

)
, (18)

where r(x,y) ≜ πchosen(y|x)
πref(y|x) can be viewed as

an auxiliary reward function. Equations (17) and
(18) are equivalent by adding and subtracting the
same term of log πref(y | x) in the expectation.
In the tabular setting, we can directly compute
πref(y | x) and πchosen(y | x). However, in a
high-dimensional language domain, estimating the
densities separately and then calculating their ra-
tio hardly works well due to error accumulation.
However, we can directly estimate the density ratio
πchosen(y | x)/πref(y | x) based on mutual infor-
mation. A simple alternative is to estimate the log
ratio via learning a discriminator with the following
NWJ (Nguyen et al., 2010) estimator:

Eπref
[exp (f(x,y))]− Eπchosen

[(
f(x,y)

)]
, (19)

The log density ratio are related to the optimal
discriminator (Song and Ermon, 2020):

f∗(x,y) = log
πchosen(y | x)
πref(y | x) . (20)

Thus the RL-style objective in Equation (18),
combined with density ratio estimation in Equa-
tion (19), can effectively optimize the reverse KL
divergence. we can directly optimize the reverse
KL divergence, bypassing the need for RL training

and density ratio estimation. The key idea is to
leverage a specific discriminator parameterization,
enabling a direct extraction of optimal policy, with-
out an RL loop. Specifically, the optimal policy
in (18) has a closed form (Rafailov et al., 2024):

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
f∗(x,y)

)
, (21)

where Z(x) =
∑

y πref(y|x) exp (r(x,y)) =∑
y πdata(y|x) = 1. Taking the logarithm of both

sides of and using some algebra obtains:

log
π∗(y | x)
πref(y | x) = f∗(x,y), (22)

where f∗(x,y) is the density ratio estimated by
Equation (19) on the preference dataset. Since the
optimal density ratio is now represented in terms
of the optimal policy, as opposed to the discrimina-
tor model, we can explicitly derive the following
maximum likelihood objective for a parameterized
policy over the preference dataset (Rafailov et al.,
2024). Analogous to the approach used for density
ratio estimation and using a change of variables, we
can formalize the reverse KL objective as follows:

Eπchosen

[
− log πθ(y|x)

]
+ Eπref

[ πθ(yl|x)
πref(yl|x)

]
, (23)

Use the set of rejected responses yl ∼ πref(y | x)
to approximate the expectations under πref(y | x)
results in our InfoPO objective as follows:

LInfoPO = − log πθ(yw|x) + πθ(yl|x)/πref(yl|x),

which completes the proof.

B The Details of Experiments

B.1 Dataset Descriptions
Anthropic-HH (Bai et al., 2022): The Anthropic
Helpful and Harmless dataset1 contains 170,000 di-
alogues between humans and large language model
assistants, used for single-turn dialogue evaluation
tasks. Each dialogue includes a human prompt
along with two model-generated responses, rated
based on helpfulness and harmlessness. Consistent
with DPO (Rafailov et al., 2024), we utilized the
chosen responses during the SFT stage.
Reddit TL;DR Summarization (Völske et al.,
2017): This dataset2 includes forum posts from

1https://huggingface.co/datasets/Anthropic/
hh-rlhf

2https://huggingface.co/datasets/openai/
summarize_from_feedback
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Reddit, specifically collected for summarization
purposes, along with corresponding preference la-
bels. In line with prior research (Stiennon et al.,
2020), we employ a refined version of this dataset
to train our SFT policy, leveraging its preference
labels during the alignment process.
UltraFeedback Binarized (Cui et al., 2023; Tun-
stall et al., 2023): This dataset3 comprises 64,000
prompts, each associated with four different com-
pletions produced by a mix of open-source and
proprietary models. GPT-4 evaluates these com-
pletions, assigning scores based on factors such as
helpfulness and honesty. Binary preference pairs
are created by selecting the completion with the
highest average score as the "accepted" response,
while one of the other three is chosen randomly to
serve as the "rejected" response.

B.2 The Details of Experimental Setup
For the general hyperparameter settings, we follow
the configurations established in SimPO (Meng
et al., 2024). Specifically, for both the SFT and
preference optimization phases, we employed a
batch size of 128. A cosine learning rate sched-

ule with 10% warmup steps was applied over a
single epoch, using the Adam optimizer (Kingma,
2014). These hyperparameters were kept consis-
tent throughout all experiments to ensure compa-
rability. Regarding method-specific hyperparame-
ters, we adhered to the search strategy specified in
SimPO (Meng et al., 2024). Each baseline model
had its own set of hyperparameters, with a learn-
ing rate search range of [3e-7, 5e-7, 6e-7, 1e-6].
To counteract length bias in our methods, we nor-
malized the response likelihood, computed as the
average log probability of all tokens in the response
based on the policy model, similar to the approach
used in SimPO. For SimPO and our InfoPO, the
β in SimPO was selected through a search within
the range of [0.5, 1.0, 2.0]. For other methods,
the β search range followed a similar approach to
SimPO, with values tested from [0.001, 0.01, 0.1].
All experiments were conducted on eight NVIDIA
V100 32GB GPUs with a batch size of 128 based
on the alignment-handbook repository.4

3https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized

4https://github.com/huggingface/
alignment-handbook
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