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Abstract

Retrieval-augmented generation (RAG) en-
hances the question answering (QA) abilities
of large language models (LLMs) by inte-
grating external knowledge. However, adapt-
ing general-purpose RAG systems to special-
ized fields such as science and medicine poses
unique challenges due to distribution shifts and
limited access to domain-specific data. To
tackle this, we propose SimRAG, a self-training
approach that equips the LLM with joint capa-
bilities of question answering and question gen-
eration for domain adaptation. Our method first
fine-tunes the LLM on instruction-following,
question-answering, and search-related data.
Then, it prompts the same LLM to generate
diverse domain-relevant questions from unla-
beled corpora, with an additional filtering strat-
egy to retain high-quality synthetic examples.
By leveraging these self-generated synthetic
examples, the LLM can improve their perfor-
mance on domain-specific RAG tasks. Experi-
ments on 11 datasets, spanning two backbone
sizes and three domains, demonstrate that Sim-
RAG outperforms baselines by 1.2%–8.6%.

1 Introduction

Retrieval-augmented generation (RAG) (Lewis
et al., 2020; Gao et al., 2023; Gutiérrez et al.,
2024; Asai et al., 2024) is a powerful technique
that enhances large language models (LLMs) for
various knowledge-intensive tasks such as question
answering (QA) by incorporating external knowl-
edge sources. This method not only customizes
responses to handle long-tail knowledge but also
avoids the need for costly model retraining (Ovadia
et al., 2023). Additionally, RAG helps reduce the
issue of LLM hallucination by ensuring responses
are grounded in relevant evidence (Shuster et al.,
2021), thereby improving the overall accuracy and
reliability of LLM outputs.

*Work done during an internship at Amazon.

While extensive research has focused on devel-
oping effective (Asai et al., 2024; Lin et al., 2024;
Liu et al., 2024) and efficient (Xu et al., 2024a)
RAG systems for general-domain QA tasks, adapt-
ing RAG to specialized domains for LLMs poses
significant challenges. These models often struggle
with distribution shifts and fail to accurately extract
information from domain-specific contexts (Miller
et al., 2020; Liu et al., 2022). Moreover, directly
using black-box LLMs (OpenAI, 2023; Anthropic,
2023; Wang et al., 2023b) in specialized domains
raises concerns about privacy when dealing with
sensitive proprietary data. It is essential to fine-
tune LLMs on domain-relevant QA tasks to unlock
the full potential of LLM-based RAG systems in
specialized domains.

Despite the critical need for domain-specific fine-
tuning, the primary challenge lies in the acquisition
of high-quality fine-tuning data towards RAG ap-
plications. Prior works rely on continuous pretrain-
ing (Chen et al., 2023; Zhang et al., 2024a) on spe-
cialized corpora or fine-tuning on domain-specific
instruction-tuning data (Wu et al., 2024; Wadden
et al., 2024). However, the mismatch between these
general-purpose tasks and domain-specific QA hin-
ders their effectiveness. More recently, several
approaches (Liu et al., 2024; Schimanski et al.,
2024; Zhang et al., 2024c) use synthetic data from
powerful LLMs (e.g., GPT-4) to create QA fine-
tuning datasets. While promising, these methods
are costly, inefficient, and lack explicit quality con-
trol over the generated outputs. Additionally, the
direct use of proprietary corpora with black-box
LLMs introduces privacy concerns, making these
methods unsuitable for sensitive domains.

To tackle the data scarcity issue mentioned
above, we propose SimRAG1, a self-improving
approach to harness the LLMs’ own capabilities
to generate pseudo-labeled data for domain adap-

1Self-improving Retrieval-Augmented Generation.
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tative question answering. Our method is inspired
by the success of self-training in LLM develop-
ment, where models are refined using synthetic
examples generated from unlabeled corpora (Wang
et al., 2022; Li et al., 2024). However, for RAG
applications, special considerations are needed to
adapt LLMs for generating questions that require
external context to answer. The core objective of
SimRAG is to fine-tune a single LLM to perform
two complementary tasks: question answering with
context and question generation from context. Both
tasks involve extracting and summarizing relevant
information from the context, allowing them to
mutually reinforce each other.

Specifically, we design a two-stage procedure
to adapt LLMs for domain QA, we first fine-tune
LLMs on instruction-following, question answer-
ing, and question generation data from general-
domains. This step equips LLMs with basic
instruction-following and context utilization skills.
Then, to specialize the model for domain-specific
tasks, we then harness unlabeled domain corpora,
prompting the same LLM to generate high-quality
QA pairs grounded in the context of these spe-
cialized domains. To further enhance the quality
of synthetic pairs, we incorporate multiple task
types to improve the model’s generalization ca-
pabilities, combined with round-trip consistency
filtering technique (Bartolo et al., 2021) to pre-
serve generated QA pairs only when the original
context is retrieved among top results. With these
pseudo-labeled (question, passage, answer) tuples
generated by LLMs, we continuously fine-tune
the models with those synthetic examples. This
pipeline allows the LLM to progressively refine
its output on synthetic pairs, thus adapting itself
towards domain-specific QA applications.

We conduct experiments on three different do-
mains spanning from biomedical, natural/social
sciences, and computer science (CS), where we
observe SimRAG consistently achieve better per-
formance than other domain-specific LLMs and
general-domain retrieval-augmented LMs. Qualita-
tive studies highlight the benefits of joint training
in question answering and generation, along with
diverse, denoised QA pairs.

Our contribution can be summarized as follows:

• We propose SimRAG, a RAG framework that
enhances LLM’s capability for question answer-
ing on specialized domains.

• We design a novel instruction fine-tuning ap-

proach that enables LLMs to perform both ques-
tion answering and question generation. This
joint capability facilitates self-improvement
through self-training on generated synthetic
data, leading to enhanced model performance.

• We validate our approach with empirical studies
across 11 datasets from three distinct domains,
demonstrating that SimRAG outperforms base-
line models by 1.2%–8.6%.

2 Related Work
Retrieval-augmented generation. RAG has
emerged as a powerful tool in knowledge-intensive
NLP tasks such as language modeling (Borgeaud
et al., 2022) and question answering (Lewis et al.,
2020; Shi et al., 2024a). The typical approach
involves integrating a retriever with the LLM gen-
erator and designing a fine-tuning process to align
the retriever with LLM capabilities. To further
refine RAG, recent research explored various en-
hancements. These include developing dynamical
retrieval processes to refine the relevance of fetched
content (Jiang et al., 2023; Jeong et al., 2024; Su
et al., 2024), and filtering out irrelevant contexts to
robustify RAG (Yoran et al., 2024; Yu et al., 2024,
2023; Wang et al., 2024). Additionally, several
studies have developed instruction-tuning methods
aimed specifically at improving search and RAG
capabilities of LLMs (Liu et al., 2024; Lin et al.,
2024; Dong et al., 2024; Wei et al., 2024).
Self-training. Self-training (or Pseudo-Labeling)
is one of the earliest approaches to semi-supervised
learning (Rosenberg et al., 2005). The method uses
a teacher model to generate new labels on which
a student model is fitted. Self-training has been
widely adopted for various NLP tasks including
text classification (Du et al., 2021), natural lan-
guage understanding (Vu et al., 2021) and rank-
ing (Wang et al., 2022). Recently, the idea of self-
training has also been applied to LLM instruction
fine-tuning (Yuan et al., 2024; Li et al., 2024), rea-
soning (Pang et al., 2024), and alignment (Gulcehre
et al., 2023), yet to the best of our knowledge, this
pipeline has not been widely explored for RAG
applications. The major drawback of self-training
is that it is vulnerable to label noise (Arazo et al.,
2020). There are several approaches to stabilize the
self-training, with sample selection (Li et al., 2024)
and reweighting (Wang et al., 2021) strategies.
Domain-specific LLMs. Most domain-specific
LLMs rely on continuous pretraining (Labrak
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Figure 1: Two-stage fine-tuning framework for our proposed method SimRAG. The model is first fine-tuned on
retrieval-related data. Then, it generates pseudo-labeled tuples by first extracting candidate answers from the corpus,
and then generating candidate questions conditioned on both document and answer. The LLM is further fine-tuned
on pseudo-labeled examples filtered with round-trip consistency.

et al., 2024; Chen et al., 2023; Xu et al., 2024b)
or domain-specific fine-tuning (Wu et al., 2024;
Zhang et al., 2024a, 2023; Wadden et al., 2024;
Shi et al., 2024b), with little focus on adapting
models for domain-specific RAG settings. Rele-
vant works (Zhang et al., 2024c; Schimanski et al.,
2024) use strong GPT models for synthetic data
generation in RAG scenarios. In contrast, SimRAG
leverages the same LLM for both question gener-
ation and answering, enabling self-improvement
and offering a more cost-effective approach for
adapting LLMs to domain-specific QA tasks.

3 Methodology

3.1 Problem Setup

In a RAG problem, we aim to generate answers for
queries based on a set of supporting documents or
contexts. Specifically, for a query q, an retriever R
is utilized to retrieve top-k most relevant contexts
D = {d1, d2, ..., dk} from a large corpus C. The
LLM Mθ then generates an answer a to the query
q based on the retrieved context D.

In this work, we aim to improve the LLM’s QA
capability in RAG system towards specialized do-
mains where only unlabeled corpus C is available.
As shown in Figure 1, our approach first learns
from retrieval-oriented instruction data in the gen-
eral domain in Stage-I and then augments T with
pseudo-labeled T ′ = (q′,D′, a′) tuples in Stage-II,
where D′ is sampled from the specialized domain C
for self-training. The overall objective of our study
is to adapt the LLM Mθ to specialized domains
with T ∪ T ′.

3.2 Stage-I: Retrieval-oriented fine-tuning

To start with, we leverage instruction fine-tuned
LLMs as the backbone (e.g. meta-llama/
Meta-Llama-3-8B-Instruct). Although these
models have been instruction finetuned, they still
exhibit a deficiency in leveraging context informa-
tion to answer domain-specific questions. To im-
prove their abilities on knowledge-intensive tasks,
we fine-tune the LLM with retrieval-oriented tasks.
Specifically, we follow Lin et al. (2024); Liu et al.
(2024) and leverage the training data blend that
consists of the following components:

(1) General Instruction Fine-tuning (SFT)
data. To help maintain the models’ ability to com-
prehend and follow instructions, we leverage the
SFT data including OpenAssistant (Köpf et al.,
2023), Dolly (Conover et al., 2023), SODA (Kim
et al., 2023), ELI5 (Fan et al., 2019), Self-
Instruct (Wang et al., 2023a), and Unnatural In-
structions (Honovich et al., 2022). Note that we
make sure there is no overlap between SFT data
and test data from target tasks.

(2) General domain Context-aware QA data.
To bolster the LLMs’ general RAG skills of gener-
ating accurate answers grounded in relevant con-
texts, we fine-tune them on a diverse array of gen-
eral domain question-answering datasets. This in-
cludes DROP (Dua et al., 2019), NQ (Kwiatkowski
et al., 2019), Squad (Rajpurkar et al., 2016), Nar-
rativeQA (Kočiský et al., 2018), Quoref (Dasigi
et al., 2019), ROPES (Lin et al., 2019), Open-
bookQA (Mihaylov et al., 2018), LogiQA (Liu
et al., 2020), TAT-QA (Zhu et al., 2021), We-
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bGLM (Liu et al., 2023), StrategyQA (Geva et al.,
2021), BoolQ (Clark et al., 2019), FaVIQ (Park
et al., 2022) and FEVER (Thorne et al., 2018)
datasets, where for each sample, a query q and
its relevant context D is given, and the LLM is
trained to generate answer a to the query.

(3) General Retrieval-related Data: To better
generate high-quality pseudo-labeled QA samples
in the next stage, we incorporate retrieval-related
data to improve two specific skills of LLMs: (a)
Answer Generation: where a grounding document
is given, and the LLMs are trained to generate can-
didate spans from the context that are likely to be
answers to some questions. In this part, we in-
corporate Squad 1.1 and 2.0 versions (Rajpurkar
et al., 2016), DROP (Dua et al., 2019) and We-
bQuestions (Berant et al., 2013) datasets. (b) Query
Generation: where an answer and its grounding
document are given, and the LLMs are trained to
generate a query based on the document and an-
swer. In this part, we leverage NQ (Kwiatkowski
et al., 2019), Squad 1.1 (Rajpurkar et al., 2016),
StrategyQA (Geva et al., 2021), WebQuestions (Be-
rant et al., 2013), FaVIQ (Park et al., 2022) and
FEVER (Thorne et al., 2018) datasets.

The details for each dataset (e.g. the instruct
format and the amount of data used) are deferred
to Appendix A. For each sample in the fine-tuning
dataset, we adopt a standard instruction finetuning
objective, computing the loss exclusively on the
tokens of the assistant’s response.

3.3 Stage-II: Domain Adaptive Fine-tuning
The model after Stage-I is only trained in the
general domains. When directly adopting them
to specialized applications, the performance can
still be suboptimal due to the distribution shift
issue (Miller et al., 2020). To tailor the LLMs
for specialized domains and address the scarcity
of labeled data in these areas, we employ a self-
training approach leveraging domain-specific un-
labeled corpora. This method capitalizes on the
model’s enhanced capabilities from the previous
retrieval-augmented fine-tuning stage. We utilize
the fine-tuned LLM to generate pseudo-labeled
training samples T ′ = (q′,D′, a′) by creating
queries grounded in the unlabeled text and gath-
ering the corresponding retrieved documents.

Specifically, we conduct a two-step procedure
to synthesize additional training data, which cor-
responds to the two skills learned in Stage-I: (a)
Answer Generation: for each document di ∈ C,

where C is the unlabeled corpus, we prompt our
fine-tuned LLMs to generate several candidate
spans a1i , a

2
i , . . . , a

m
i that are likely to be answers

to some questions. Formally, the model generates
aji ∼ pθ(·|di) for j = 1, . . . ,m. (b) Answer-
conditioned Query Generation: for each candi-
date answer aji and its corresponding document
di, we prompt the fine-tuned LLM again to gen-
erate candidate questions qji ∼ pθ(·|aji , di), with
aji as the ground truth answer and di as the sup-
porting context. This gives us the pseudo-labeled
query-answer pair (qji , a

j
i ) based on the context di.

During this process, we adopt two additional
strategies, namely diverse question generation and
data filtering, to further improve the quality of the
synthetic pairs. For diverse question generation,
we prompt the LLM to create various types of ques-
tions, including short-span question-answering,
multiple-choice question-answering, and claim ver-
ification tasks. While short-span questions follow
the same pipeline as previously described, multiple-
choice questions are constructed by using alterna-
tive candidate answers from the same unlabeled
corpus in step (a) as incorrect options. Claim ver-
ification, on the other hand, bypasses the answer
generation step; instead, the LLM generates a claim
that can be either supported or refuted by the pro-
vided document. By injecting different question
types, we prevent the LLM from overfitting to a
specific output format and improve the model’s
generalization ability across different QA tasks.

After generating large amounts of candidate QA
pairs, we implement a filtering step to keep only
high-quality QA pairs. We define high-quality QA
pairs as those that are answerable using the top-
k retrieved contexts. Specifically, we retain only
those samples where the ground truth answer a′i
is present in the top-k documents retrieved by a
strong retriever, such as Dragon (Lin et al., 2023),
based on the generated query q′i. Formally, the
sample is retained if a′i ∈ D′k

i , where D′k
i denotes

the top-k documents retrieved for query q′i. From
these retained samples, we create pseudo-labeled
training tuples T ′ = (q′i,D′

i, a
′
i)
n
i=1.

With the created synthetic tuples T ′, we aug-
ment it with the SFT data TSFT and the general
domain context-aware QA data from Stage-I Tgen,
to continuously fine-tune our models, enhancing
the LLMs’ QA abilities within the specific domain.
The size and blending ratio of the pseudo-labeled
samples can be found in Appendix A.
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4 Experimental Setup
4.1 Tasks and Datasets
We evaluate our model across a total of 11
datasets spanning the medical, scientific and com-
puter science domains. For the medical domain,
we include the five datasets in the MIRAGE
benchmark (Xiong et al., 2024), including Pub-
MedQA (Jin et al., 2019), BioASQ (Tsatsaronis
et al., 2015), MedQA (Jin et al., 2021), MedM-
CQA (Pal et al., 2022), the medical subsets in
MMLU (Hendrycks et al., 2021), and two addi-
tional open-ended QA datasets LiveQA (Abacha
et al., 2017), and MedicationQA (Abacha et al.,
2019). For the scientific domain, we consider ARC-
challenge (Clark et al., 2018), SciQ (Welbl et al.,
2017)2, and the scientific subsets (14 subtasks in
total) in MMLU (Hendrycks et al., 2021). For com-
puter science, we use CS-Bench (Song et al., 2024)
for evaluation. We distinguish the computer sci-
ence domain from the broader scientific domain
as the scientific domain predominantly covers nat-
ural and social sciences, with limited representa-
tion of computer science topics. We use accuracy
as the evaluation metric for multiple-choice and
True-or-False questions, Rouge-L and MAUVE for
open-ended questions, Exact Match (EM) and F1
for Fill-in-the-blank questions, with Rouge-L and
F1 as the main metrics, respectively. An exception
is CS-Bench, where we follow the original paper’s
evaluation method by using GPT-4 as a judge for
fill-in-the-blank and open-ended questions.

For the medical domain, we use the corpora
from Textbooks (Jin et al., 2021), Wikipedia and
PubMed articles3 to generate pseudo-labeled sam-
ples in Stage-II. For the scientific domain, we
leverage Wikipedia. For the CS domain, we use
Wikipedia CS Subset4 and arXiv articles5.

4.2 Baselines
We categorize our baselines into four groups: (1)
Off-the-shelf general domain LLMs, which include
GPT-3.5 (OpenAI, 2022), GPT-4 (OpenAI, 2023),
Llama3-8B-it (Meta-AI, 2024), and Gemma2-27B-
it (Team et al., 2024). (2) Off-the-shelf domain-
specific LLMs, including PMC-llama-13B (Wu

2We convert the multiple-choice questions in SciQ into
short-phrase answer generation tasks to better assess the
model’s generative capabilities.

3https://pubmed.ncbi.nlm.nih.gov/
4https://huggingface.co/datasets/AlaaElhilo/

Wikipedia_ComputerScience
5https://huggingface.co/datasets/CCRss/arxiv_

papers_cs

et al., 2024), MEDITRON-70B (Chen et al., 2023),
AdaptLLM-v2-8B (Cheng et al., 2024), BioMistral-
7B (Labrak et al., 2024) and MedLlama3-8B (John
Snow Labs, 2024) in the medical domain, as well
as SciTulu 7B and 70B (Wadden et al., 2024) in
both the scientific domain and the computer sci-
ence domain, due to the absence of LLMs specifi-
cally fine-tuned for the computer science domain.
(3) General domain retrieval-augmented LLMs,
which include Self-RAG-13B (Asai et al., 2024),
ChatQA1.5-8B and 70B (Liu et al., 2024). (4)
Domain-specific Retrieval-augmented LLMs, in-
cluding RAFT (Zhang et al., 2024c) and Evi-
denceRAG6 (Schimanski et al., 2024). Since RAFT
and EvidenceRAG have not released their check-
points, we re-implemented their methods using the
same backbones as our approach. Note that for all
the baseline models, we conduct the zero-shot eval-
uation and augment the context with retrieval for
fair comparison. We also note that we do not com-
pare with several domain-specific baselines such as
(Zhang et al., 2024b; Nori et al., 2023) which have
access to task-specific examples that overlap with
our evaluation tasks.

4.3 Implementation Details

We use Llama3-it 8B (Meta-AI, 2024) and
Gemma2-it 27B (Team et al., 2024) as our back-
bones. For the Gemma-2 model, we use LoRA (Hu
et al., 2022) (r = 32, α = 32) during fine-tuning
due to resource constraints. For both stages, we set
the global batch size to 64, with gradient accumu-
lation as 8 and train the model for 1 epoch. For
Stage-I, the learning rate is set to 5e − 7 and for
Stage-II, it is set to 2e−7 for the Llama3 backbone
and 5e − 7 for the Gemma backbone. AdamW
optimizer (Loshchilov and Hutter, 2019) is used
with β1 = 0.9 and β2 = 0.95. To create context-
enhanced examples for our synthetic queries, we
use Dragon (Lin et al., 2023) to extend context
length for SimRAG and baselines, which improves
RAG model robustness (Yu et al., 2024, 2023). For
retrieval during evaluation on medical datasets, we
follow the original MIRAGE benchmark by using
the top-10 retrieval results as context, ensembled
from multiple models. For other datasets, we fetch
the top-10 passages by Google Search7. All exper-
iments are conducted on 8 NVIDIA A100 GPUs.
The prompt format for answer and question gener-

6We named this method ourselves, as the model does not
have an officially designated name.

7https://www.searchapi.io
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Table 1: Results of our proposed method and baselines in the medical domain. All the presented methods use
RAG for inference. Bold and underline highlight the best and second best performance, respectively. ∗: the main
metric used for average calculation. †: models trained using synthetic data generated from GPT-4. ‡: our own
implementation of the models with the same unlabeled corpora. The notations are the same for the following tables.

Datasets PubMedQA BioASQ MedQA MedMCQA MMLU-med LiveQA MedicationQA Avg.

Metrics ACC ACC ACC ACC ACC Rouge-L∗ / MAUVE Rouge-L∗ / MAUVE —

Proprietary LLMs, For Reference Only

GPT-3.5 (OpenAI, 2022) 67.40 90.29 66.61 58.04 75.48 42.3 / 62.5 36.3 / 46.0 62.35
GPT-4 (OpenAI, 2023) 70.60 92.56 82.80 66.65 87.24 44.0 / 65.9 41.5 / 59.2 69.34

Medical LLMs

PMC-Llama 13B (Wu et al., 2024) 56.00 65.21 42.58 48.29 52.53 35.7 / 60.6 36.4 / 38.3 48.10
MEDITRON 70B (Chen et al., 2023) 56.40 76.86 49.57 52.67 65.38 — — —
AdaptLLM-v2 8B (Cheng et al., 2024) 45.00 78.80 43.13 42.74 51.24 30.2 / 48.0 39.2 / 51.4 47.19
BioMistral 7B (Labrak et al., 2024) 59.20 82.69 32.52 32.20 47.47 43.1 / 63.2 39.6 / 51.9 48.11
MedLlama3 8B (John Snow Labs, 2024) 74.20 83.50 61.43 61.18 77.13 27.9 / 45.2 29.8 / 35.0 59.31

Retrieval-Augmented LLMs

Self-RAG 13B† (Asai et al., 2024) 71.20 73.70 48.60 44.00 53.90 35.6 / 54.1 39.3 / 46.4 52.33
ChatQA1.5 8B (Liu et al., 2024) 66.40 82.69 42.36 46.97 61.40 39.3 / 65.5 39.9 / 48.9 54.15
ChatQA1.5 70B (Liu et al., 2024) 74.80 83.17 68.89 62.54 80.51 40.1 / 66.3 40.8 / 50.2 64.40
‡Backbone: Llama3-8B-Instruct

Llama3-8B-it (Meta-AI, 2024) 64.60 88.51 55.30 58.91 69.79 34.1 / 54.1 37.2 / 45.6 58.34
RAFT 8B† (Zhang et al., 2024c) 73.40 88.67 54.28 60.15 70.25 36.2 / 55.6 38.9 / 56.4 60.26
EvidenceRAG 8B† (Schimanski et al., 2024) 75.00 90.61 57.74 61.13 72.27 36.6 / 57.8 34.6 / 53.6 61.14
SimRAG 8B 80.00 91.75 62.92 67.51 75.57 44.4 / 66.6 40.1 / 57.4 66.04

w/o Stage II 78.00 90.45 60.56 65.22 74.56 42.8 / 62.9 38.5 / 55.6 64.30
‡Backbone: Gemma2-27B-Instruct

Gemma2-27B-it (Team et al., 2024) 56.20 89.32 59.70 57.30 75.67 37.4 / 52.8 40.2 / 57.0 59.40
RAFT 27B† (Zhang et al., 2024c) 67.20 91.70 62.22 61.56 78.97 39.4 / 62.2 40.2 / 48.2 63.04
EvidenceRAG 27B† (Schimanski et al., 2024) 63.00 90.61 62.14 61.80 79.43 34.5 / 58.6 34.5 / 44.6 60.85
SimRAG 27B 73.60 92.07 63.63 64.16 81.63 39.9 / 66.8 41.2 / 62.1 65.17

w/o Stage II 66.00 91.59 62.45 58.67 79.61 37.2 / 61.6 40.8 / 58.6 62.33

Table 2: Results of our proposed method and baselines
in the scientific domain.

Models MMLU-sci ARC SciQ Avg.

Metrics ACC ACC EM / F1∗ —

Proprietary LLMs, For Reference Only

GPT-3.5 (OpenAI, 2022) 66.40 75.30 40.30 / 62.73 68.14
GPT-4 (OpenAI, 2023) 87.46 94.03 43.24 / 66.03 82.51

Scientific LLMs

SciTulu 7B (Wadden et al., 2024) 55.95 53.84 22.2 / 40.55 50.11
SciTulu 70B (Wadden et al., 2024) 71.80 52.82 18.6 / 36.69 53.77

Retrieval-Augmented LLMs

Self-RAG 13B† (Asai et al., 2024) 48.69 73.10 31.60 / 51.87 57.89
ChatQA 8B (Liu et al., 2024) 54.46 52.22 40.40 / 60.60 55.76
ChatQA 70B (Liu et al., 2024) 75.21 81.06 50.00 / 68.41 74.89
‡Backbone: Llama3-8B-Instruct

Llama3-8B-it (Meta-AI, 2024) 67.15 71.08 20.80 / 42.47 60.23
RAFT 8B† (Zhang et al., 2024c) 69.22 73.12 48.20 / 68.56 70.30
EvidenceRAG 8B† (Schimanski et al., 2024) 71.59 75.34 53.10 / 70.11 72.35
SimRAG 8B 77.31 81.40 57.50 / 72.17 76.96

w/o Stage II 75.95 80.20 53.80 / 70.16 75.44
‡Backbone: Gemma2-27B-Instruct

Gemma2-27B-it (Team et al., 2024) 76.11 85.75 44.80 / 66.99 76.28
RAFT 27B† (Zhang et al., 2024c) 78.79 86.95 53.10 / 70.91 78.88
EvidenceRAG 27B† (Schimanski et al., 2024) 78.84 86.69 45.60 / 67.50 77.68
SimRAG 27B 81.28 88.65 58.10 / 74.99 81.64

w/o Stage II 78.38 86.86 54.50 / 72.00 79.08

ation and inference can be found in Appendix E.

5 Experimental Results

5.1 Main Results

Table 1, Table 2, and Table 3 present the experimen-
tal results for the medical, scientific, and computer
science domains, respectively. The results of the
14 tasks in MMLU-sci can be found in Appendix D
From the results, we have the following findings:

Table 3: Results of our proposed method and baselines
in the computer science domain. MC, AS, FB, OG
stands for multiple-choice, assertion, fill-in-the-blank
and Open-ended generation, respectively.

Models MC AS FB OE Overall

Metrics ACC ACC Auto Auto —

Proprietary LLMs, For Reference Only

GPT-3.5 (OpenAI, 2022) 54.89 67.30 42.93 50.11 55.74
GPT-4 (OpenAI, 2023) 71.48 73.62 56.87 71.43 70.34

Scientific LLMs

SciTulu 7B (Wadden et al., 2024) 38.40 56.56 27.66 32.29 40.44
SciTulu 70B (Wadden et al., 2024) 44.24 60.18 31.06 54.76 46.87

Retrieval-Augmented LLMs

Self-RAG 13B† (Asai et al., 2024) 29.87 54.52 30.64 24.94 34.56
ChatQA 8B (Liu et al., 2024) 35.33 60.18 27.66 29.82 39.11
ChatQA 70B (Liu et al., 2024) 54.94 62.67 34.89 38.53 53.07
‡Backbone: Llama3-8B-Instruct

Llama3-8B-it (Meta-AI, 2024) 52.69 60.41 26.81 44.12 50.80
RAFT 8B† (Zhang et al., 2024c) 54.57 60.86 32.76 40.23 52.38
EvidenceRAG 8B† (Schimanski et al., 2024) 54.42 62.67 35.02 42.30 53.06
SimRAG 8B 60.63 64.93 34.47 47.11 57.63

w/o Stage II 59.88 61.99 34.47 46.82 56.55
‡Backbone: Gemma2-27B-Instruct

Gemma2-27B-it (Team et al., 2024) 59.96 62.22 40.00 57.50 58.08
RAFT 27B† (Zhang et al., 2024c) 60.93 66.06 39.15 53.80 59.07
EvidenceRAG 27B† (Schimanski et al., 2024) 60.63 62.22 40.85 54.40 58.34
SimRAG 27B 62.87 66.74 43.83 54.60 60.96

w/o Stage II 61.00 65.84 41.70 54.00 59.36

(1) SimRAG consistently outperforms baselines
across these domains and a variety of question-
answering formats. In medical, scientific, and com-
puter science domain, the average performance
gain is 8.01%, 6.37%, 8.61% over the Llama vari-
ant and 1.19%, 3.50%, 3.20% over the Gemma vari-
ant, respectively. Besides, SimRAG also achieves
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Table 4: Performance of SimRAG using Llama-3-8b-it as the backbone and its variants across medical datasets.

Method PubMedQA BioASQ MedQA MedMCQA MMLU-med LiveQA MedicationQA Avg.

SimRAG 8B 80.00 91.75 62.92 67.51 75.57 44.4 40.1 66.04

SimRAG w/o general SFT data 79.60 90.78 59.47 61.92 73.09 39.9 38.9 63.38
SimRAG w/o general-domain QA 80.20 91.10 61.04 65.31 72.91 42.8 39.4 64.68
SimRAG w/o general retrieval data 79.40 90.94 57.97 62.42 71.72 39.4 38.9 62.96
SimRAG w/o Stage-I 76.80 89.81 57.97 60.02 70.71 39.3 38.5 61.87

comparable performance to strong proprietary mod-
els: when using Gemma2-27B as the backbone,
we achieve 93.99%, 98.95% and 86.66% of the
performance of GPT-4. This demonstrates the ef-
fectiveness and robustness of SimRAG in adapt-
ing general-domain LLMs to specialized domain
knowledge using only unlabeled corpora.
(2) Domain-specific LLMs (e.g. SciTulu and MedL-
lama), although fine-tuned on relevant data, under-
perform compared to SimRAG because they are
not optimized for RAG tasks, where effectively
utilizing retrieved context is crucial. As a result,
they struggle to incorporate relevant context into
their answers, leading to weaker performance. On
the other hand, general-domain RAG models (e.g.
ChatQA) face distribution shifts when applied to
specialized tasks, as they struggle to integrate the
retrieved domain-specific knowledge accurately.
(3) Domain-specific retrieval-augmented LLMs
such as RAFT and EvidenceRAG still show sub-
optimal performance despite utilizing the power-
ful (yet expensive) GPT-4 model to generate syn-
thetic training data. In contrast, SimRAG, fine-
tuned specifically for the QA generation task, pro-
duces more accurate and contextually relevant syn-
thetic QA pairs, leading to better downstream per-
formance across all QA tasks.
(4) Although the CS domain is relatively new and
less-studied compared to other natural and social
sciences, SimRAG still demonstrates promising
performance in this area. This justifies the poten-
tial for adapting SimRAG to emerging domains.

5.2 Ablation Studies

Effect of Stage-I and Stage-II. Table 1 to 4 show
that retrieval-oriented fine-tuning (Stage-I) signif-
icantly enhances LLM performance on QA tasks
compared to the original backbone, demonstrating
its effectiveness. However, further improvements
become challenging after this stage. When the
LLMs are fine-tuned on self-synthesized training
tuples, their performance on target tasks improves
even more, with an average increase of 2.21% for

Table 5: Results of the 5 datasets from the medi-
cal MIRAGE benchmark (Xiong et al., 2024), using
DRAGON (Lin et al., 2023) as an alternative retriever.

Models PubMedQA BioASQ MedQA MedMCQA MMLU-med Avg.

Llama3-8B-it (2024) 57.00 81.55 55.70 55.16 65.93 63.07
SimRAG 8B 79.60 91.42 60.80 63.88 74.01 73.94

Gemma2-27B-it (2024) 58.80 89.48 57.97 55.13 76.67 67.61
SimRAG 27B 73.60 90.94 62.29 60.39 79.06 73.26

Llama and 3.50% for Gemma.. This suggests that,
with access to a target domain corpus, LLMs can
generate high-quality synthetic data, enabling self-
improvement and further boosting performance.
Effect of Different Retrievers. We show the per-
formance of SimRAG using Dragon (Lin et al.,
2023) as the retriever in Table 5. The results show
consistent performance improvements of SimRAG
over the LLM backbone, demonstrating that Sim-
RAG is robust to different retriever choices and
that its self-improvement mechanism consistently
enhances performance.

5.3 Study on Pseudo-labeled Tuples
We mainly demonstrate the advantage of SimRAG
in generating pseudo-labeled data from the follow-
ing three perspectives.
Effect of different question generation models.
To demonstrate the benefit of training on question
generation and question-answering data, we com-
pare the performance of Stage-II using different
synthetic question-answer pairs. These pairs are
generated either directly by Llama-3-8b-it or by
an off-the-shelf QG model with T5-Large (Raf-
fel et al., 2020) as the backbone. The results
demonstrate that our approach achieves better per-
formance on average, demonstrating the clear ad-
vantage of leveraging the fine-tuned model itself
for pseudo-labeled data generation.
Effect of question filtering. We further demon-
strate the advantages of question filtering in Fig-
ure 3, showing that removing low-quality data
not only improves overall model performance but
also accelerates the training process. It is also
worth noting that even without filtering, SimRAG
can achieve strong performance, suggesting that
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Table 6: Two case studies comparing the generated pseudo-labeled QA pairs from our fine-tuned model after
Stage-I with those generated by the backbone model, Llama3-8B-it. Green and red texts represent the corresponding
information between the generated QA pairs and the ground truth context.

Case Study 1

Corpus / Type Textbooks / Claim Verification

Context Title: Histology Ross, Text: For its survival, the body needs to ensure a continuous delivery of energy despite highly variable supplies of nutrients
from the external environment. To meet the body’s energy demands when nutrient supplies are low, adipose tissue efficiently stores excess energy.
The body has a limited capacity to store carbohydrate and protein, therefore energy reserves are stored within lipid droplets of adipocytes in the form
of triglycerides. Triglycerides represent a dynamic form of energy storage that is added to when food intake is greater than energy expenditure and is
tapped when energy expenditure is greater than food intake. The energy stored in adipocytes can be rapidly released for use at other sites in the body.

Llama3-8B-it Claim: The energy stored in adipocytes can be rapidly released for use at other sites in the body.
Label: Supported.

SimRAG
(after Stage-I)

Claim: The body stores energy in the form of triglycerides in adipose tissue.
Label: Supported.

Case Study 2

Corpus / Type Wikipedia the medical subset / Short-span QA

Context Title: Cognitive behavioral therapy, Text: Emerging evidence for cognitive behavioral interventions aimed at reducing symptoms of depression,
anxiety, and obsessive-compulsive disorder in autistic adults without intellectual disability has been identified through a systematic review. While
the research was focused on adults, cognitive behavioral interventions have also been beneficial to autistic children.

Llama3-8B-it Question: What age group of individuals with autism spectrum disorder, who do not have intellectual disability, have been found to benefit from
cognitive behavioral interventions aimed at reducing symptoms of depression, anxiety, and obsessive-compulsive disorder, and are also a focus of?
Answer: children.

SimRAG
(after Stage-I)

Question: What is one of the disorders that cognitive behavioral therapy can help with?
Answer: anxiery.

the synthetic questions generated from fine-tuned
LLMs are already highly relevant to the context.
Effect of diverse question types. From Figure 2,
we observe that SimRAG achieves the best perfor-
mance when all three different types are included.
These results justify the necessity for incorporat-
ing different task types into the fine-tuning step in
Stage-II. Besides, claim verification benefits Pub-
MedQA and BioASQ more, while multiple-choice
questions boost performance on MedQA, MedM-
CQA, and MMLU, aligning with the question types
in each dataset. Lastly, we observe that removing
short-span QA leads to the largest performance
drops, indicating its central role in adapting the
LLM’s performance towards specialized domains.

5.4 Case Studies

To better illustrate the quality of pseudo-labeled
samples generated by SimRAG after Stage-I fine-
tuning, we present two case studies in Table 6,
comparing the samples produced by SimRAG with
those from the baseline model, Llama3-8B-it.

In the first case, where the model is asked to

generate a claim supported by the context, Llama3-
8B-it simply selects a sentence from the context.
This results in relatively simple QA pairs, making
the task less challenging for Stage-II training.

In the second case, the model is tasked with
generating an answer first, and then formulating
a question based on the context and the answer.
While Llama3-8B-it does not copy a sentence ex-
actly, it generates a lengthy question that closely
paraphrases the context. This makes the question
overly dependent on the original text, making it
difficult to interpret without it. Additionally, the
model misinterprets the context by implying that
the research was focused on children when actually
adults are the focus. In contrast, after fine-tuning on
answer generation and query generation in Stage-I,
SimRAG generates higher-quality QA pairs that are
self-contained and understandable without relying
on the context. These QA pairs also present more
challenging tasks, as they require deeper compre-
hension of the context, providing harder and more
effective training data for Stage-II.
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6 Conclusion

We introduce SimRAG, an instruction fine-tuning
framework designed to enhance LLMs for domain-
specific question-answering tasks. By equipping
LLMs with joint capabilities for both question an-
swering and question generation, SimRAG enables
the generation of diverse, high-quality synthetic
questions from unlabeled domain-relevant corpora.
This approach facilitates effective adaptation to spe-
cialized fields, where distribution shifts and limited
domain-specific data typically pose challenges. Ex-
tensive experiments across 11 datasets in three do-
mains show that SimRAG consistently outperforms
baseline models, demonstrating its effectiveness
in tackling the challenges of retrieval-augmented,
domain-specific question-answering tasks.

Limitation

While SimRAG demonstrates notable improve-
ments, there are some limitations to our approach:
Single Round Pseudo-Label Generation: Our
current method relies on a single round of query
generation from the corpus, which may restrict
the refinement of pseudo label quality. Iterative
refinement of generated synthetic queries could
potentially lead to better results.
Additional Training Time: The incorporation of
synthetic query generation and filtering adds time
complexity compared to baseline models, which
may affect efficiency in environments with limited
computational resources. However, we would like
to note that our method will not increase the in-
ference time complexity compared to the existing
RAG approaches with the same backbone models.
Stronger Query Generation Models: Although
we achieved strong performance with Llama3 8B
and Gemma2 27B models, leveraging more pow-
erful query generation models, such as Llama-3.1-
70B-it (Meta-AI, 2024), could yield further gains.
However, using larger models would incur higher
computational costs beyond our current budget.
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A Training Data Details

We include the training dataset, the number of ex-
amples used in each stage, as well as the instruction
format in Table 7. Note that in our implementation,
we use the interleave_datasets() function
to generate the final training data by merging
multiple sources. The numbers presented in the
table represent the sample counts of the training
data from their original sources. In Stage-I, we
set stopping_strategy=“all_exhausted”, an
oversampling strategy where dataset construction
stops only after every sample from all datasets has
been included at least once. In Stage-II, we use
stopping_strategy=“first_exhausted”, an
undersampling strategy where construction stops
as soon as one dataset has ran out of samples. In
this case, the pseudo-labeled QA dataset is the first
to run out, ensuring that all its samples are fully
utilized, while only a small portion of the other
datasets is included.

B Test Data Details

We evaluate on 11 datasets in total from the med-
ical, scientific and computer science domain. (1)
Medical:

• MMLU-med (Hendrycks et al., 2021) is a sub-
set of six tasks related to biomedicine, includ-
ing anatomy, clinical knowledge, professional
medicine, human genetics, college medicine, and
college biology. It contains 1089 questions in
total.

• MedMCQA (Pal et al., 2022) includes multiple-
choice questions derived from Indian medical
entrance exams, covering 2400 healthcare topics
across 21 medical subjects. We use the 4,183-
question development set from MedMCQA, as
the test set lacks provided ground truths.

• MedQA (Jin et al., 2021) is collected from the US
Medical Licensing Examination, containing 1273
four-option multiple-choice questions focused on
real-world scenarios from professional medical
board exams.

• BioASQ (Tsatsaronis et al., 2015) includes 618
questions constructed from biomedical literature
without providing the ground truth snippets, chal-
lenging RAG systems to infer answers indepen-
dently.
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Table 7: The blending ratio of different datasets with their specific prompt format in Stage-I and Stage-II fine-tuning.
For Stage-II Pseudo-labeled QA Samples, the two numbers represent the # sample for the Llama and Gemma
backbones, respectively.

Dataset Specific Instruction Stage-I Stage-I Stage-II Stage-II
# Samples Blending Ratio # Samples Blending Ratio

Instruction Fine-tuning

ChatQA SFT Data — 60000 0.18 128000 0.12

Question Answering

DROP

Answer the following question with a short span.

12000 0.034 29195 0.04

NarrativeQA 12000 0.034 40000 0.04

Quoref 4800 0.014 10996 0.015

ROPES 4800 0.014 10924 0.015

Squad1.1 16000 0.045 40000 0.035

Squad2.0 16000 0.045 52474 0.05

OpenbookQA Answer the following question by selecting one of the provided
options with A, B, C, or D. Please answer with the capitalized

alphabet only, without adding any extra phrase or period.

2000 0.006 82092 0.005

LogiQA 4000 0.012 7376 0.006

NQ Answer the following question with a short phrase. 16000 0.045 46426 0.04

TatQA-arithmetic
Answer the following question with a number from context or the

math arithmetic using +,-,*, or /.
8325 0.045 24975 0.034

TatQA-others
Answer the following question with a short span, or a full and

complete answer.
3176 0.023 9528 0.013

WebGLM

Please give a full and complete answer for the question using only
the provided search results (some of which might be irrelevant)
and cite them properly. Use an unbiased and journalistic tone.

When citing several search results, use [1][2][3].

12000 0.034 43579 0.023

StrategyQA
Answer the following question with Yes or No.

1526 0.005 4578 0.006

BoolQ 4000 0.012 9427 0.013

FaVIQ Answer the following question with Yes or No. Is the statement
{claim} correct?

2000 0.006 10906 0.01

FEVER 2000 0.006 10444 0.01

Pseudo-labeled Question Answering

Short-span QA Answer the following question with a short span. — — 150,000 / 45,000 0.2625

Multiple-choice QA
Answer the following question by selecting one of the provided
options with A, B, C, or D. Please answer with the capitalized

alphabet only, without adding any extra phrase or period.
— — 50,000 / 15,000 0.0875

Claim Verification
Answer the following question with Yes or No. Is the statement

{claim} correct?
— — 100,000 / 30,000 0.175

Answer Generaion

Squad1.1
Based on the context, generate candidate spans within the passage

that are likely to be answers to a question. Separate different
candidate answers with a semicolon (’;’).

18877 0.063 — —

Squad2.0 18863 0.059 — —

DROP 4984 0.023 — —

WebQuestions 1084 0.012 — —

Query Generaion

NQ

Based on the context, please generate a question. The answer to
the question should be {answer}.

20000 0.068 — —

Squad1.1 20000 0.068 — —

StrategyQA 131 0.023 — —

WebQuestions 24000 0.068 — —

FaVIQ Based on the context, please generate a claim that can be
supported/refuted by the context.

10000 0.028 — —

FEVER 10000 0.028 — —

• PubMedQA (Jin et al., 2019) is a biomedical re-
search QA dataset consisting of 1000 manually
annotated questions based on PubMed abstracts.
Answers in PubMedQA are structured as yes/no/-
maybe to reflect the validity of the questions.

• LiveQA (Abacha et al., 2017) and Medica-
tionQA (Abacha et al., 2019) are two QA datasets
focusing on answering consumer health ques-

tions about medications, including 100 and 674
question-answer pairs, respectively.

(2) Scientific:

• SciQ (Welbl et al., 2017) is a scientific question-
answering dataset containing 13,679 crowd-
sourced science exam questions about Physics,
Chemistry, and Biology, among others.
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• ARC-easy/challenge (Clark et al., 2018) contains
7,787 authentic multiple-choice science ques-
tions at the grade-school level, designed to fos-
ter advanced question-answering research. The
dataset is divided into a Challenge Set, with ques-
tions that stumped both a retrieval-based and a
word co-occurrence algorithm, and an Easy Set.

• MMLU-Sci (Hendrycks et al., 2021) is the Mas-
sive Multitask Language Understanding dataset,
designed to test a wide range of language under-
standing abilities across 57 tasks. In this work,
we select 14 subjects to ensure the evaluation is
not limited to certain fields.

(3) Computer Science:

• CS-Bench (Song et al., 2024) is a recently-
proposed benchmark specifically designed to as-
sess the performance of large language models
(LLMs) in computer science. It contains around
5,000 carefully selected test samples that span 26
subfields within four major areas of computer sci-
ence, covering various task forms and divisions
of knowledge and reasoning.

C Baseline Descriptions

• Self-RAG (Asai et al., 2024) utilizes instruction
fine-tuning to adaptively retrieve passages based
on the question and determine if the passage con-
tains useful information for answering the ques-
tion.

• ChatQA (Liu et al., 2024) is a fine-tuning
pipeline tailored for RAG and conversational QA
tasks via aggregating multiple QA and dialogue
datasets.

• RAFT (Zhang et al., 2024c) is a domain-specific
fine-tuning approach that incorporates top-k pas-
sages as context during fine-tuning, helping to
address discrepancies between training and test-
ing data.

• EvidenceRAG (Schimanski et al., 2024) leverage
off-the-shelf LLMs (GPT-4) to generate context-
aware question answering datasets, which is then
used to fine-tune the student model.

D Additional Experimental Results

We list the per-task results of MMLU-sci in Table 8.

E Prompt Details

E.1 Answer Generation

[System]

[Context]

Based on the context , generate
several candidate spans within
the passage that are likely to be
answers to a question. The

answers can be entities , verbs or
even numbers. Make sure that the
answers are different and

diverse. Separate different
candidate answers with a
semicolon (';').

E.2 Query Generation

[System]

[Context]

Based on the context , please
generate a question that is
relevant to the information
provided. The question should
stand alone and not refer back to
the context explicitly. The

question should be clear and
understandable without needing
the context. The answer to the
question should be [Answer].

E.3 Inference

[System]

[Top 10 Contexts]

[Specific Instruction]

[Question]

The [Specifc Instruction] for each evaluation
dataset depends on their question type and can refer
to those in Table 7.
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Table 8: Results of our proposed method and baselines in the scientific domain.

Models astronomy college college college computer high school high school high school high school high school high school human nutrition virology Avg.biology chemistry physics security geography macroeconomics microeconomics psychology US history world history sexuality

Metrics ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC —

Proprietary LLMs, For Reference Only

GPT-3.5 (OpenAI, 2022) 66.45 65.28 35.00 46.53 65.00 77.27 91.54 64.29 83.12 78.43 72.15 70.99 66.01 47.59 66.40
GPT-4 (OpenAI, 2023) 93.42 93.75 61.00 73.27 91.00 94.95 97.95 94.54 96.15 95.59 94.51 93.13 89.22 56.02 87.46

Scientific LLMs

SciTulu 7B (Wadden et al., 2024) 69.74 63.89 31.00 18.63 62.00 70.20 56.58 57.08 77.43 53.06 57.38 65.65 54.90 45.78 55.95
SciTulu 70B (Wadden et al., 2024) 83.55 80.56 36.00 28.43 83.00 89.39 80.26 79.83 91.19 77.55 77.22 78.63 68.95 50.60 71.80

Retrieval-Augmented LLMs

Self-RAG 13B (Asai et al., 2024) 55.26 58.33 24.00 21.57 60.00 61.11 32.89 45.49 67.89 58.67 58.23 53.44 43.79 40.96 48.69
ChatQA 8B (Liu et al., 2024) 60.53 54.17 29.00 33.33 70.00 64.65 51.32 58.37 74.86 49.49 54.85 59.54 57.19 45.18 54.46
ChatQA 70B (Liu et al., 2024) 82.89 79.17 46.00 48.04 83.00 84.85 80.26 84.98 91.74 86.73 82.28 74.05 77.78 51.20 75.21

Backbone: Llama3-8B-Instruct

Llama3-8B-it (Meta-AI, 2024) 78.29 71.53 38.00 40.20 83.00 82.32 63.16 72.96 84.04 65.31 72.15 69.47 70.26 49.40 67.15
RAFT 8B (Zhang et al., 2024c) 80.26 75.69 37.00 42.16 84.00 79.80 65.79 74.68 83.67 72.45 77.22 73.28 71.24 51.81 69.22
EvidenceRAG 8B (Schimanski et al., 2024) 77.63 78.47 44.00 45.10 85.00 84.85 72.37 74.68 86.24 74.49 79.32 74.05 74.84 51.20 71.59
SimRAG 8B 85.53 81.94 47.00 50.98 88.00 89.90 76.32 84.55 92.66 83.16 81.43 84.73 81.37 54.82 77.31

w/o Stage II 84.87 81.25 49.00 49.02 87.00 88.89 73.68 82.83 90.64 80.61 81.01 83.21 79.41 51.81 75.95

Backbone: Gemma2-27B-Instruct

Gemma2-27B-it (Team et al., 2024) 82.89 84.03 47.00 55.88 84.00 89.39 77.63 81.12 91.93 80.61 84.81 81.68 72.22 52.40 76.11
RAFT 27B (Zhang et al., 2024c) 84.87 88.89 47.00 63.73 86.00 90.91 86.84 84.55 93.58 81.12 85.65 81.68 76.47 51.81 78.79
EvidenceRAG 27B (Schimanski et al., 2024) 84.87 87.50 49.00 60.78 86.00 91.41 86.84 85.41 93.94 81.63 86.08 81.68 76.80 51.81 78.84
SimRAG 27B 90.13 91.67 49.00 68.63 87.00 92.42 85.53 87.98 95.05 84.18 86.92 85.50 78.43 55.42 81.28

w/o Stage II 84.21 87.50 49.00 59.80 84.00 89.90 84.21 82.83 93.58 83.16 86.50 81.68 76.14 54.82 78.38
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