
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 11432–11461

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

mHumanEval - A Multilingual Benchmark to Evaluate Large Language
Models for Code Generation

Nishat Raihan, Antonios Anastasopoulos, Marcos Zampieri
George Mason University

Fairfax, VA, USA
{mraihan2, antonis, mzampier}@gmu.edu

Abstract

Recent advancements in large language mod-
els (LLMs) have significantly enhanced code
generation from natural language prompts. The
HumanEval Benchmark, developed by OpenAI,
remains the most widely used code genera-
tion benchmark. However, this and other Code
LLM benchmarks face critical limitations, par-
ticularly in task diversity, test coverage, and
linguistic scope. Current evaluations primarily
focus on English-to-Python conversion tasks
with limited test cases, potentially overestimat-
ing model performance. While recent works
have addressed test coverage and programming
language (PL) diversity, code generation from
low-resource language prompts remains largely
unexplored. To address this gap, we introduce
mHumanEval1, an extended benchmark support-
ing prompts in over 200 natural languages. We
employ established machine translation meth-
ods to compile the benchmark, coupled with
a quality assurance process. Furthermore, we
provide expert human translations for 15 di-
verse natural languages (NLs). We conclude
by analyzing the multilingual code generation
capabilities of state-of-the-art (SOTA) Code
LLMs, offering insights into the current land-
scape of cross-lingual code generation.

1 Introduction

LLMs have transformed software development
with their ability to generate programming code
from simple natural language instructions. LLMs
are trained on extensive datasets that include di-
verse code samples, aiding programmers in code
development and debugging. They also make pro-
gramming more accessible to beginners. How-
ever, assessing the performance of these models
across different coding tasks is still a major chal-
lenge. Comprehensive testing is essential to verify
that these models are both effective and adaptable,

1github.com/mraihan-gmu/mHumanEval-Benchmark

rather than only performing well under specific
conditions.

The most widely used benchmark for evaluating
these models is OpenAI’s HumanEval (Chen et al.,
2021), which includes a collection of 164 tasks
generated by human experts. Each task includes
an English prompt, a canonical solution provided
by the authors, and three test cases. Although this
benchmark is commonly used, it has significant lim-
itations, such as limited test coverage and minimal
support for non-English and non-Python prompts.
While recent variations (Peng et al., 2024; Cassano
et al., 2023) of HumanEval address some of these
issues, most do not include prompts in NLs other
than English and, in particular, in low-resource
NLs. Consequently, current benchmarks fail to pro-
vide key insights into the multilingual capabilities
of LLMs in the context of code generation.

Figure 1 demonstrates one such example.
While the widely used GPT3.5 (Brown et al.,
2020) model performs perfectly for the original
prompt "Write a Python code snippet that

detects whether a year is a leap year or

not.", it fails when the same prompt is given in a
low-resource language (Nyanja, in this case).

Chaka chomwe tikufuna kuyang'ana
Yang'anani ngati chaka ndi chaka cha ziwalo
if (year % 4 == 0 and year % 100 != 0):

Ngati chaka chimagawika ndi 4 ndipo
sichimagawika ndi 100
sindikiza(f"{year} ndi chaka cha ziwalo")

else:
Ngati sichigwirizana ndi zofunikira
za chaka cha ziwalo
sindikiza(f"{year} si chaka cha ziwalo")

Figure 1: Code snippet generated by GPT3.5 when
prompted to write a Python code to detect leap

years in Nyanja language. Some Python keywords
are transformed into Nyanja words, resulting in compi-
lation issues.

Most LLMs, primarily pre-trained on large English
corpora like Common Crawl, perform poorly on

11432

github.com/mraihan-gmu/mHumanEval-Benchmark
https://commoncrawl.org/

multilingual tasks, further propagating inequali-
ties in language technology access (Blasi et al.,
2022). However, proprietary models like GPT-4
(Achiam et al., 2023) and Claude 3 (Anthropic,
2024), with undisclosed training data, show de-
cent performance in multilingual scenarios. Peng
et al. (2024) for instance show that GPT-4 excels in
code generation even with mid-resource language
prompts. The open-source community is also ad-
vancing with multilingual models like Aya (Üstün
et al., 2024) and LLaMA 3. However, insights into
their code generation performance in a massively
multilingual setting are lacking due to the absence
of comprehensive benchmarks.

In this work, we introduce mHumanEval, a novel
multilingual code generation benchmark including
coding prompts in 204 NLs and expert human trans-
lations for 15 NLs. mHumanEval further includes
canonical solutions in 25 PLs, including 4 new PLs
that are not covered by any prior benchmarks. The
primary contributions of this paper are as follows:

1. The creation of mHumanEval, the first mas-
sively multilingual benchmark for code gener-
ation.

2. A translation quality evaluation for each
prompt.

3. A thorough evaluation of existing SOTA Code
LLMs using mHumanEval.

The paper addresses two research questions (RQs):

• RQ1: How do the code generation capabil-
ities of LLMs vary when prompts are pro-
vided in English, or other high-, mid-, and
low-resource NLs?

• RQ2: How does the performance of multilin-
gual LLMs compare to specialized, fine-tuned
Code LLMs in code generation tasks on the
mHumanEval dataset?

Finally, we also report secondary findings related to
the translation quality of machine translation (MT)
methods on coding prompts.

2 Related Work

The most widely used benchmark dataset for evalu-
ating Code LLMs is the aformentioned HumanEval

(Chen et al., 2021). Another key benchmark is
DeepMind’s MBPP (Austin et al., 2021), which in-
cludes 974 tasks with 3 test cases each. Despite

their popularity, these benchmarks have signifi-
cant limitations, such as inadequate test case cov-
erage, limited number of PLs, and small task sets
that do not represent real-world scenarios. Other
benchmarks, like CONCODE (Iyer et al., 2018) (Java),
AxiBench (Hao et al., 2022) (Java), CSEPrompts
(Raihan et al., 2024) (Python) and CodeApex (Fu
et al., 2023) (C++) focus on a single PL.

To broaden PL coverage, Cassano et al. (2023)
combine both HumanEval and MBPP and add 17
more popular PLs besides Python, such as C++,
Java, Ruby, and PHP. However, all prompts remain
in English, with only 3 test cases per task. Sim-
ilarly, the authors of BabelCode (Orlanski et al.,
2023) include 14 PLs and a more extensive test
suite. To address test case coverage, Liu et al.
(2024) introduce two datasets, HumanEval+ and
MBPP+, with significantly more test cases per task,
ensuring both node and edge coverage. Notably,
Code LLM performance decreases with the addi-
tional test cases, highlighting the initial bench-
marks’ limitations. Nevertheless, these bench-
marks also use English prompts exclusively.

Few studies explore non-English coding prompts
and evaluate Code LLMs on them. The recent
benchmark, HumanEval-XL (Peng et al., 2024), ex-
tends coverage for both NLs and PLs. This bench-
mark includes coding prompts in 23 NLs and so-
lutions in 12 PLs. The original prompts from Hu-
manEval (Chen et al., 2021) are translated into
23 different NLs using GPT-4 (Achiam et al.,
2023), with the quality of these translations as-
sessed using a thresholded BERTScore (Zhang et al.,
2019). While HumanEval-XL explores multilingual
prompts for code generation (Table 1), its 23 pre-
dominantly high-resource NLs limit insights into
mid and low-resource NLs. The BERTScore (Zhang
et al., 2019) evaluation may be inadequate, with
CometKiwi (Rei et al., 2023) and X-Comet (Guer-
reiro et al., 2024) offering more robust alternatives.
Experimenting with SOTA Code LLMs like Wiz-
ardCoder (Luo et al., 2023) or multilingual models
like Aya (Üstün et al., 2024) could yield valuable
insights. Also, they do not include any human
translations.

We argue that NL coverage is more critical than
PL coverage when compiling a code generation
benchmark. While prompts and tests can be reused
across PLs, different NLs require curating contex-
tually and linguistically appropriate prompts. Thus,
NL diversity introduces more complexity in bench-
mark creation than PL diversity. To bridge the

11433

https://llama.meta.com/llama3/

Benchmarks
HumanEval MBPP Babel Code MultiPL-E HumanEval-XL mHumanEval

NL-Covg (MT) 1 (eng) 1 (eng) 1 (eng) 1 (eng) 23 204
NL-Covg (Human) ✗ ✗ ✗ ✗ ✗ 15

PL-Covg 1 (py) 1 (py) 14 18 12 25

Table 1: Comparing popular benchmarks in terms of NL and PL coverage.

gap, we present mHumanEval, offering comprehen-
sive experiments with multilingual coding prompts
across 204 NLs and 25 PLs—the most extensive
coverage to date (see Appendix B for the full list)
and the first one to include expert-human annota-
tions (see Table 1). We describe mHumanEval in
detail in this paper and we evaluate SOTA models
on this dataset.

3 The mHumanEval Benchmark

The mHumanEval benchmark is curated based on
prompts from the original HumanEval (Chen et al.,
2021) dataset. It includes a total of 33,456 prompts,
significantly expanding from the original 164. The
curation process can be divided into several key
steps, as illustrated in Figure 2 and elaborated upon
in the following subsections.

3.1 Prompt Extraction

A typical prompt from the original dataset includes
optional library imports, a function declaration, a
docstring, and optional examples (as illustrated
in Figure 3).

For translation, we only consider the
docstrings (enclosed in triple quotes). These are
manually extracted from all 164 prompts to ensure
accuracy.

3.2 Prompt Translation

Upon extracting the prompts, we move on to trans-
lating them into different languages. We use three
different machine translation strategies - leverag-
ing OpenAI’s GPT4-omni through API, MetaAI’s
NLLB (Costa-jussà et al., 2022), which is the
SOTA model for multiple NLs, and Google Trans-
late via API.

Our target languages are all 204 languages from
the Flores 200 dataset-(Costa-jussà et al., 2022).
While we employ GPT4-omni and NLLB for all
the target languages, it is important to note that we
use only Google Translator for the 108 languages
it supports (available through the API). For each
extracted prompt, we employ the three translation

systems for each target language, generating 5 can-
didate translation prompts (3 for GPT4o, due to
budget considerations). We then evaluate the qual-
ity of the translation and keep the best one (see
Figure 2). The pseudocode is in Appendix C.

3.3 Evaluating Prompt Quality
We evaluate translation quality using BERTScore

(Zhang et al., 2019), which focuses on similarity
based on contextual embeddings, and CometKiwi

(Rei et al., 2023), which is trained on human judg-
ments of MT quality and incorporates linguistic fea-
tures. While BERTScore uses BERT embeddings
to measure candidate-reference translation similar-
ity (Appendix D), CometKiwi evaluates translations
reference-free, using human judgments and com-
bining linguistic features with contextual embed-
dings (Appendix E). Using both ensures holistic
evaluation, covering lexical similarity and human-
assessed quality aspects.

As illustrated in Figure 2, we generate 13 can-
didate translations for each prompt. We also per-
form round-trip translations back to the original
language (eng_Latn) to calculate the BERTScore.
While CometKiwi is calculated as a reference-free
metric. Both metrics generate scores in the [0,1]

range. By computing the mean of the two metrics
for each prompt, we select the candidate with the
highest score. The mean scores for each language
and system are provided in Appendices I, J and
K. It is worth noting that the CometKiwi metrics
are not available for all languages, as it relies on
XLM-R models (Conneau et al., 2019; Goyal et al.,
2021) supporting 100 languages (Rei et al., 2023).
For the remaining 104 Flores 200 languages, we
use round-trip translations to calculate BERTScore,
similar to HumanEval-XL (Peng et al., 2024).

3.4 Categorization based on Language Classes
To better understand the performance of models on
languages considered to be low- or high-resourced,
we group the languages in mHumanEval following
the methodology of Joshi et al. (2020), who iden-
tify six classes of languages based on digital re-

11434

https://openai.com/index/hello-gpt-4o/
https://cloud.google.com/translate/docs/reference/rest
https://cloud.google.com/translate/docs/reference/rest

Figure 2: The workflow to generate prompts in a target language from the original HumanEval. Original prompts
are first extracted manually. Then 3 Machine Translation models (GPT4o, NLLB, Google Translate) generate 13
candidates as well as roundtrip translations. Next, we evaluate each candidate’s quality using BERTScore using
RoundTrip translations and CometKiwi as a reference-free metric (if the language is supported). We then select the
best candidate for each original prompt and compile the new benchmark for the target language.

from typing import List

def all_prefixes:
""" Return list of all prefixes
from shortest to longest of the
input string. """

>>> all_prefixes('abc')
['a', 'ab', 'abc']

Figure 3: A sample prompt instance from the original
HumanEval benchmark.

source availability. These classes range from 0 to 5,
with higher numbers indicating greater resource
availability. Joshi et al. classify a total of 2,485
languages, of which mHumanEval includes 204, in-
cluding 15 with expert translations, as detailed in
Table 2.

We present the class-wise evaluation scores for
the selected prompts in mHumanEval in Figure 4.
The language-specific scores are provided in Ap-
pendices I, J, and K. Generally, the quality of
the translation decreases as we address languages
with fewer resources. However, by implement-
ing Algorithm 1 and selecting from 13 candidate
translations, the chosen candidates demonstrate im-
proved quality compared to the model-specific re-
sults (see Appendices L and F). The final prompts
in mHumanEval exhibit significantly better quality.

Class Resource Total mHumanEval Expert

5 High 7 7 6
4 Mid to High 18 18 4
3 Mid 28 27 1
2 Low to Mid 19 16 2
1 Low 222 98 1
0 Rare 2191 38 1

ALL – 2485 204 15

Table 2: Class distribution of natural languages based
on resource availability. Expert denotes human transla-
tions done by expert programmers.

3.5 PL coverage

As noted in Section 2, most benchmarks in this sub-
domain are limited to Python, including HumanEval

and MBPP. While recent benchmarks such as
MultiPL-E and HumanEval-XL offer broader cov-
erage, they still omit several widely used program-
ming languages. With mHumanEval, we compile
a comprehensive set of programming languages
covered by existing multi-PL coding benchmarks
and extend this set by incorporating four additional
languages that have not been previously included:
MATLAB, Visual Basic, Fortran, and COBOL (as
shown in Table 8).

We provide canonical solutions for the newly
included four languages in the same format as
HumanEval . These solutions are handwritten by
human experts and successfully pass all test cases.

11435

Figure 4: Evaluating the translated prompt qualities, chosen in mHumanEval. Our method results in better quality
prompts compared to the model-specific translations (as depicted in Appendix F).

Prompts Note

mHumanEval-{NL} 164 each Each NL
mHumanEval-mini 204 204 NLs
mHumanEval-T500 500 Top 500
mHumanEval-R500 500 Random 500
mHumanEval-B500 500 Bottom 500
mHumanEval-Expert 2460 Human Generated
mHumanEval-{PL} 4100 each Each PL
mHumanEval 33456 Only Python

mHumanEval-Max 836400 All Prompts

Table 3: Subsets and Variants of mHumanEval. These
enable practitioners to carry out both comprehensive
and preliminary evaluations on the benchmark.

3.6 mHumanEval Subsets

We have a total of 33,456 prompts in mHumanEval

spanning 204 NLs. Each prompt additionally sup-
ports 24 PLs, bringing the total number of prompts
to 836,400. The entire dataset is publicly available
on GitHub.

We also provide multiple subsets of the dataset
for quick usability and interesting ablation stud-
ies (Table 3). Separate subsets are available for
each NL and PL, in all possible combinations.
Additionally, we create several variants for test-
ing purposes- mHumanEval-T500: a subset consist-
ing of the 500 highest-quality prompts based on
BERTScore and CometKiwi, mHumanEval-R500: a
randomly selected subset of 500 prompts, and
mHumanEval-B500: a subset of the 500 lowest-
quality prompts. Note that these prompts are drawn
from the curated mHumanEval, which compiles the
best prompts from 13 candidates each. Finally,
we produce mHumanEval-mini which is a subset
containing 204 prompts, with each prompt in a dif-

ferent language, where we select one prompt per
language.

3.7 mHumanEval - Expert

The mHumanEval-Expert benchmark encompasses
human translations across 15 languages, represent-
ing all six language classes (Table 4). Native speak-
ers with computer science and engineering back-
grounds perform these translations, ensuring pre-
cise interpretation of programming concepts and
terminology. The curation process unfolds in three
stages: (1) selection of 15 natural languages based
on native speaker availability, ensuring representa-
tion from each language class; (2) translation by na-
tive speakers; and (3) quality assessment by expert
programmers to verify the integrity of the coding
prompts. Figure 5 illustrates the whole curation
process.

Language Class

English 5
Spanish 5
French 5
Japanese 5
Arabic 5
Chinese 5
Portuguese 4
Italian 4
Korean 4
Hindi 4
Bangla 3
Swahili 2
Zulu 2
Telugu 1
Sinhala 0

Table 4: NLs along with their classes in mHumanEval-
Expert.

11436

Figure 5: Curating mHumanEval-Expert via native human translation followed by expert programmer evaluation.

A comparative analysis between human trans-
lations and mHumanEval’s machine-translated
prompts yields comparable evaluation metrics, with
BERTScore variations of ±0.02 and CometKiwi
variations of ±0.03 across the selected lan-
guages. Interestingly, annotators report no
significant terminology concerns when review-
ing machine translations. Further examina-
tion of the original HumanEval prompts reveals
that the docstrings—the primary translated con-
tent—predominantly comprise general task descrip-
tions, minimizing the use of specialized coding
terminology. This observation emphasizes the neg-
ligible discrepancies between human and machine
translations in this context.

We conclude that human and machine transla-
tions of programming prompts across 15 languages
show similar quality, with minimal differences in
evaluation metrics. This similarity is attributed to
the general nature of the content, which contains
limited specialized coding terminology.

4 Experiments

Experimental Setup For machine translation,
GPT-4o and Google Translate are accessed via API
keys, eliminating the need for GPU hours. We use
recommended hyperparameters without tuning, set-
ting max_tokens to 1000 and temperature to 0.7.
The NLLB model runs on a single NVIDIA A100
GPU with 40 GB of memory.

In code generation, proprietary models are ac-
cessed through API keys, negating the necessity
for GPU hours. We adhere to recommended hy-
perparameters, setting max_tokens to 1000 and
temperature to 0.7. WizardCoder and Aya uti-
lize full precision (FP32) models on four NVIDIA
A100 GPUs, each with 40 GB memory, following

Model Size Type Ref.

GPT4o – Base (Achiam et al., 2023)
Claude-3.5-Opus – Base (Anthropic, 2024)
GPT3.5 175B Base (Brown et al., 2020)
DeepSeek-Coder-V2 236B Finetuned (Dai et al., 2024)
WizardCoder 33B Finetuned (Luo et al., 2023)
Aya 33B Finetuned (Üstün et al., 2024)

Table 5: LLMs evaluated on mHumanEval.

authors’ recommended hyperparameters without
additional tuning. MagiCoder, LLaMA 3, and Phi-
3-mini employ full precision (FP32) models on a
single NVIDIA A100 GPU with 40 GB of memory,
using the authors’ recommended hyperparameters.

Model Selection We experiment with
mHumanEval using six models (Table 5), in-
cluding both proprietary and open-source SOTA
models for code generation. We use a mix of
general-purpose and finetuned models to gather
broader insights.

Prompting We use the proprietary models
through their APIs. Our experiments include
all 33,456 prompts from mHumanEval, with 164
prompts for each language. We follow the standard
prompt templates for each LLM. These templates
are shown in Appendix G.

Code Execution Following code generation, we
move to execution. The six models produce well-
structured code blocks, requiring minimal cleaning.
We use simple RegEx commands to extract these
blocks, and evaluate them locally in batches using
Python’s subprocess2 library, focusing exclusively
on the Pass@1 metric.

Results For each language, we present the
Pass@1 scores as percentages, categorizing them by

2docs.python.org/3/library/subprocess.html

11437

docs.python.org/3/library/subprocess.html

Figure 6: Comparing model performances (% in Pass@1) for the six models on mHumanEval-Python.

the six language classes as discussed in Section 3.4.
As illustrated in Figure 6, Claude3.5 and GPT4o
exhibit the most consistent performance, main-
taining strong results even with coding prompts
in low-resource languages. In contrast, GPT3.5
and DeepSeek experience a significant decline in
performance for low-resource classes. Although
Aya shows the weakest results for higher resource
classes, it maintains relative consistency, even in ex-
tremely low-resource languages. On the other hand,
WizardCoder achieves excellent results in English
and reasonable performance for Class 5, but its
performance deteriorates significantly in other lan-
guages. The model and language-specific detailed
results are presented in Appendix M.

Other PLs We extend our evaluation to four
additional subsets of mHumanEval: mHumanEval-
C++, mHumanEval-JAVA, mHumanEval-JavaScript,
and mHumanEval-Ruby. The average Pass@1 scores
across all 204 NLs for the 5 PLs are shown in Table
6.
We observe that GPT-4o and DeepSeek-Coder
achieve strong results in Classes 4 and 5, with
scores consistently exceeding 0.85 in Python, Java,
and C++. Python shows top performance, with
scores reaching above 0.88 in Class 5. For lower
classes (0-2), models like GPT-3.5, WizardCoder,
and Aya underperform, often scoring below 0.70,

Python Java C++ JavaScript Ruby

GPT4o 0.738 0.650 0.652 0.477 0.480
GPT3.5 0.360 0.270 0.270 0.099 0.103
Claude3.5 0.739 0.651 0.649 0.483 0.477
DeepSeek-Coder 0.229 0.139 0.136 0.000 0.000
WizardCoder 0.098 0.009 0.007 0.000 0.000
Aya 0.445 0.355 0.356 0.186 0.183

Table 6: Mean performance of models across program-
ming languages.

particularly in JavaScript and Ruby, where scores
frequently drop under 0.65. Even in higher classes,
JavaScript and Ruby show challenges, with Class
4 scores for most models not exceeding 0.75. This
highlights the models’ limitations in handling non-
Python languages, particularly for lower classes
and specific scripting languages. While every
model’s best scores are generated with English-
Python pair, DeepSeek-Coder is the only exception
with Chinese-Python.

A detailed analysis and discussion is provided in
Appendix H.

5 Insights and Analysis

Upon curating the mHumanEval benchmark and
completing the model evaluations, we now present
some key analyses and gained insights based on
the obtained results.

11438

GPT4o GPT3.5 Aya WizardCoder Claude3.5 DeepSeek-Coder LLaMA 3 CodeStral

mHumanEval-mini .72 .44 .47 .12 .61 .57 .35 .15
mHumanEval-T500 .87 .76 .6 .63 .86 .73 .56 .36
mHumanEval-R500 .78 .53 .47 .16 .59 .63 .28 .17
mHumanEval-B500 .48 .21 .42 .00 .31 .22 .11 .10

Table 7: Comparison of different LLMs’ based on % in Pass@1 metric on multiple subsets of mHumanEval.

5.1 LLMs’ Performance Analysis

We observe significant performance discrepancies
among the models, as illustrated by Figure 6. While
closed-source models perform better, their reliance
on proprietary pretraining data complicates defini-
tive conclusions. As suggested by the Chinchilla
scaling hypothesis (Hoffmann et al., 2022), their su-
perior performance may result from a larger param-
eter count and extensive training tokens, possibly
including diverse and rare languages.

Aya, fine-tuned for multiple natural languages
but not specifically for code generation, has the
lowest Pass@1 score in English. However, low
variability across language classes indicates that
multilingual pretraining and fine-tuning enhances
code generation across different NLs.

WizardCoder’s poor performance in non-English
languages is due to its fine-tuning on StarCoder (Li
et al., 2023), which is primarily pretrained on code
and documentation with minimal non-English con-
tent. In contrast, DeepSeek performs well for mid-
resource languages but struggles with low-resource
ones. These results suggest that effective multilin-
gual code generation requires multilingual pretrain-
ing and/or finetuning datasets.

5.2 Performance based on Language Classes

While there are significant discrepancies among
the models’ performances, a key trend observed
is a somewhat consistent performance decline as
we move from high-resource to low-resource lan-
guages. This decline is not as pronounced for
Claude and GPT-4o. However, it is quite substan-
tial for others and exceptionally steep for Wizard-
Coder and DeepSeek-Coder.

5.3 Ablation Study

We present results from a limited ablation study
conducted on various subsets of mHumanEval as
detailed in Table 3. This study incorporates two
additional models including MetaAI’s LLaMA 3
(70B), and MistralAI’s code-finetuned CodeStral
(22B) model.

As indicated by the results in Table 7,

mHumanEval-mini serves as an effective prelimi-
nary test for evaluating a model’s proficiency in
code generation following multilingual prompts.
Models fine-tuned on code but lacking multilin-
gual exposure perform poorly, whereas base mod-
els with some multilingual exposure perform bet-
ter. The three subsets of mHumanEval are curated
by prompt quality: mHumanEval-T500 includes
prompts from language class 5, mHumanEval-B500
from classes 0 or 1, and mHumanEval-R500 is ran-
domly selected. These results align with our find-
ings in Sections 5.1 and 5.2.

5.4 Error Analysis

In our analysis of errors, we observe several unique
issues. Notably, the models rarely fail to generate
any code. Specifically, GPT4o and GPT3.5 gener-
ate code with almost no compilation issues. How-
ever, a significant number of errors arise from mis-
understandings of the problem, resulting in code
that addresses incorrect tasks. We discuss such
unique cases in this section.

Task Misunderstanding GPT4o generates a
code for finding significant digits, when it
is prompted to generate a code for detecting

prime numbers in Zulu. This is due to the rea-
son of the translation of ’prime number’ in Zulu
becomes ’Inombolo Eyinhloko’ which means
’primary numbers’. The model interprets it as
’significant number’ instead.

Issues like this persist, even sometimes when
prompted multiple times.

Multilingual Keyword Issues Some code snip-
pets include keywords and identifiers in the tar-
get language as well, resulting in compilation er-
rors. As shown in Figure 8, when prompted in
Rundi, to find the largest number in a list,
Aya generated a piece of code, where keywords
like for and return turned into kuri and subiza.

These kinds of errors are also persistent but the
outputs differ with similar prompts. Still generate
the same issue again and again.

11439

https://llama.meta.com/llama3/
https://mistral.ai/news/codestral/

def find_significant_digits(number):

Convert the number to a string to handle it
num_str = str(number)

Remove any leading/trailing zeros and
the decimal point
significant_digits = ''.join([char for char
in num_str if char.isdigit()])

return significant_digits

Example usage
number = 123.456
significant_digits = find_significant_digits(number)
print(f"Significant digits in {number} are:
{significant_digits}")

Figure 7: GP4o generated Python Code to find

significant digits, when prompted to write code to
detect prime numbers in Zulu.

def igitigiri_cane_kuruta(imibare):
namba not imibare:

subiza None
cane = imibare[0]
kuri imibare hagati imibare:

namba imibare > cane:
cane = imibare

subiza cane

Figure 8: When prompted in Rundi, Aya gener-
ated Python code to find the largest number in a

list, containing multiple keywords in Rundi, resulting
in Compilation Error.

Garbage Results And in some cases, the models
keep generating garbage output (as shown in Figure
9).

#include <stdio.h>

int main() {
int x = 10; x = x / (x - x);
printf("%d\n", x);
x = x * "Hello World!";

}

Figure 9: When prompted in Sinhala, to reverse a

list, WizardCoder generated garbage code in C.

6 Conclusion

This study introduces mHumanEval, a comprehen-
sive multilingual code generation benchmark for
assessing LLMs across 204 languages. We curated
high-quality prompts for each language and eval-
uated various models. Our analyses, including ab-
lation studies, provided insights into LLMs’ mul-
tilingual code-generation capabilities, addressing
the RQs posed in Section 1:

RQ1: How do the code generation

capabilities of LLMs vary when prompts

are provided in English, or other high-,

mid-, and low-resource NLs?

LLMs generally demonstrate optimal perfor-
mance when prompted in English. For prompts
in other languages, performance varies based on
the language’s resource level. High-resource lan-
guages tend to yield superior results compared
to mid- and low-resource languages. The extent
of performance variation is contingent upon the
specific language of the prompt and the model’s
prior exposure and training in that language. This
variation is likely influenced by the model’s train-
ing data and the relative abundance of resources
available for each language.

RQ2: How does the performance of

multilingual LLMs compare to specialized,

fine-tuned Code LLMs in code generation

tasks on the mHumanEval dataset?

While code-finetuned language models excel at
generating code from English prompts, multi-
lingual models demonstrate strong proficiency
across various NLs. Notably, even without spe-
cific code fine-tuning for different NLs, they
achieve decent results in code generation. This
phenomenon suggests that multilingual models
can generalize coding capabilities across NLs,
leveraging their understanding of multiple NLs
to support diverse linguistic contexts in program-
ming.

While we draw some insightful conclusions from
curating and evaluating mHumanEval, to facilitate
further research, we are making it publicly avail-
able. We plan to expand coverage to more NLs
and PLs in future updates. Despite the high cost
of human translation, we included human anno-
tations for 15 NLs, including some low-resource
and rare ones. Currently, our dataset includes 164
prompts per language, following the HumanEval

benchmark, with plans to increase this number. We
will also explore strategies to enhance low-resource
language performance, such as transfer learning
and diverse training datasets. Comparative studies
between general-purpose multilingual LLMs and
specialized code LLMs will help optimize multilin-
gual code generation.

11440

Limitations

We conducted primary evaluations on six LLMs,
focusing on key performance metrics. Given the
benchmark’s extensive 33,456 prompts, the evalua-
tion process is exceedingly costly. This cost is the
primary reason why we adopted Pass@1 as our eval-
uation metric, rather than more resource-intensive
metrics like Pass@10 or Pass@100. However, to
ensure a thorough analysis, we incorporated addi-
tional models in our ablation study. In our next
iteration, we plan to comprehensively evaluate all
models across the entire benchmark. This future
work aims to enhance the benchmark’s robustness
and provide deeper insights into the performance
of various LLMs in multilingual code generation.

Ethical Considerations

The benchmark introduced in this paper, which fo-
cuses on analyzing code generation using large lan-
guage models (LLMs), strictly adheres to the ACL
Ethics Policy. Each prompt in mHumanEval was
tested multiple times by different models, and none
produced any malicious code. Although there can
occasionally be garbage code snippets or similar
issues, none have posed any threats to the system.

To ensure safety and reliability, we recommend
executing code generated using prompts from
mHumanEval in a contained virtual environment.
This precaution helps prevent potential issues re-
lated to infinite execution loops and memory man-
agement. Running code in a safe environment can
also stop problems like crashing the system or us-
ing too much memory. We believe and hope that
researchers and practitioners can maintain a secure
and controlled testing environment while utilizing
mHumanEval. This approach ensures that users can
confidently explore and innovate without risking
system integrity.

Acknowledgments

We would like to thank the human annotators and
experts for their valuable time and effort; also
George Mason’s Office of Research Computing
(ORC) for providing the computing resources.

Antonios Anastasopoulos is additionally sup-
ported by the National Science Foundation under
award IIS-2327143 and benefited from resources
provided through the Microsoft Accelerate Foun-
dation Models Research (AFMR) grant program.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, Red Avila, Igor Babuschkin, et al.
2023. Gpt-4 technical report.

Anthropic. 2024. Claude 3: A next-generation ai as-
sistant. https://www.anthropic.com/news/claude-3-
family.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Damian Blasi, Antonios Anastasopoulos, and Gra-
ham Neubig. 2022. Systematic inequalities in lan-
guage technology performance across the world’s
languages. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, et al. 2020. Language
models are few-shot learners. Advances in neural
information processing systems.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinck-
ney, et al. 2023. Multipl-e: a scalable and polyglot
approach to benchmarking neural code generation.
IEEE Transactions on Software Engineering.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, et al.
2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Marta R Costa-jussà, James Cross, Onur Çelebi,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Damai Dai, Chengqi Deng, Chenggang Zhao, et al.
2024. Deepseekmoe: Towards ultimate expert spe-
cialization in mixture-of-experts language models.
arXiv preprint arXiv:2401.06066.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua
Du, Weiming Zhang, et al. 2023. Codeapex: A bilin-
gual programming evaluation benchmark for large
language models. arXiv preprint arXiv:2309.01940.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-scale trans-
formers for multilingual masked language modeling.

11441

https://www.aclweb.org/portal/content/acl-code-ethics
https://www.aclweb.org/portal/content/acl-code-ethics
https://orc.gmu.edu/
https://orc.gmu.edu/

In Proceedings of the 6th Workshop on Representa-
tion Learning for NLP (RepL4NLP-2021).

Nuno M Guerreiro, Ricardo Rei, Daan van Stigt, Luisa
Coheur, Pierre Colombo, and André FT Martins.
2024. xcomet: Transparent machine translation eval-
uation through fine-grained error detection. Transac-
tions of the Association for Computational Linguis-
tics.

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao,
et al. 2022. Aixbench: A code generation benchmark
dataset. arXiv preprint arXiv:2206.13179.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the nlp
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.

R Li, LB Allal, Y Zi, N Muennighoff, D Kocetkov,
C Mou, M Marone, C Akiki, J Li, J Chim, et al. 2023.
Starcoder: May the source be with you! Transactions
on machine learning research.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, et al. 2023. Wizardcoder: Empowering code
large language models with evol-instruct. In The
Twelfth International Conference on Learning Repre-
sentations.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, et al. 2023.
Measuring the impact of programming language dis-
tribution. In International Conference on Machine
Learning. PMLR.

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.
Humaneval-xl: A multilingual code generation
benchmark for cross-lingual natural language gen-
eralization. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024).

Nishat Raihan, Dhiman Goswami, Sadiya Sa-
yara Chowdhury Puspo, Christian Newman,
Tharindu Ranasinghe, and Marcos Zampieri. 2024.
Cseprompts: A benchmark of introductory computer
science prompts. arXiv preprint arXiv:2404.02540.

Ricardo Rei, Nuno M Guerreiro, Daan van Stigt, Marcos
Treviso, et al. 2023. Scaling up cometkiwi: Unbabel-
ist 2023 submission for the quality estimation shared
task. In Proceedings of the Eighth Conference on
Machine Translation.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, et al.
2024. Aya model: An instruction finetuned open-
access multilingual language model. arXiv preprint
arXiv:2402.07827.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

11442

A Annotator Details

As mentioned in Section 3.7, mHumanEval-Expert utilizes native-speaking volunteer translators for 15 NLs.
Each translator was assigned 164 prompts, with no monetary compensation involved. The experts, also
native speakers, possess backgrounds in Computer Science and/or Information Technology, complemented
by substantial coding experience. Both translators and experts were carefully selected through a rigorous
process, ensuring a diverse demographic representation. This methodological approach enhances the
dataset’s linguistic diversity and technical robustness across various cultural contexts.

B List of NLs and PLs in mHumanEval

mHumanEval supports 204 NLs and 25 PLs. The Expert subset contains human annotation for 15 NLs.

B.1 List of PLs
Comparing PL support provided by most widely used existing benchmarks -

Benchmarks
HumanEval MBPP Babel Code MultiPL-E HumanEval-XL mHumanEval

Python ✓ ✓ ✓ ✓ ✓ ✓
Bash ✗ ✗ ✗ ✓ ✗ ✓
C++ ✗ ✗ ✓ ✓ ✗ ✓
C# ✗ ✗ ✓ ✓ ✓ ✓
D ✗ ✗ ✗ ✓ ✗ ✓
Go ✗ ✗ ✓ ✓ ✓ ✓
Haskell ✗ ✗ ✓ ✗ ✗ ✓
Java ✗ ✗ ✓ ✓ ✓ ✓
JavaScript ✗ ✗ ✓ ✓ ✓ ✓
Julia ✗ ✗ ✗ ✓ ✗ ✓
Kotlin ✗ ✗ ✓ ✗ ✓ ✓
Lua ✗ ✗ ✗ ✓ ✗ ✓
Perl ✗ ✗ ✗ ✓ ✓ ✓
PHP ✗ ✗ ✓ ✓ ✓ ✓
R ✗ ✗ ✗ ✓ ✗ ✓
Racket ✗ ✗ ✗ ✓ ✗ ✓
Ruby ✗ ✗ ✓ ✓ ✓ ✓
Rust ✗ ✗ ✓ ✓ ✗ ✓
Scala ✗ ✗ ✓ ✓ ✓ ✓
Swift ✗ ✗ ✓ ✓ ✓ ✓
TypeScript ✗ ✗ ✓ ✓ ✓ ✓
MATLAB ✗ ✗ ✗ ✗ ✗ ✓
Visual Basic ✗ ✗ ✗ ✗ ✗ ✓
Fortran ✗ ✗ ✗ ✗ ✗ ✓
COBOL ✗ ✗ ✗ ✗ ✗ ✓

Table 8: Comparing popular benchmarks in terms of NL and PL coverage.

B.2 List of NLs: mHumanEval

11443

Language Class Language Class Language Class Language Class

arb_Arab 5 zsm_Latn 3 gla_Latn 1 tat_Cyrl 1
deu_Latn 5 amh_Ethi 2 guj_Gujr 1 tel_Telu 1
eng_Latn 5 gle_Latn 2 hye_Armn 1 tgk_Cyrl 1
fra_Latn 5 hau_Latn 2 ibo_Latn 1 tpi_Latn 1
jpn_Jpan 5 isl_Latn 2 ilo_Latn 1 tso_Latn 1
spa_Latn 5 lao_Laoo 2 jav_Latn 1 tuk_Latn 1
zho_Hans 5 mar_Deva 2 kab_Latn 1 tum_Latn 1
cat_Latn 4 mlt_Latn 2 kan_Knda 1 twi_Latn 1
ces_Latn 4 pan_Guru 2 kas_Arab 1 uig_Arab 1
eus_Latn 4 san_Deva 2 kas_Deva 1 vec_Latn 1
fin_Latn 4 swh_Latn 2 khk_Cyrl 1 war_Latn 1
hin_Deva 4 tir_Ethi 2 khm_Khmr 1 ydd_Hebr 1
hrv_Latn 4 tsn_Latn 2 kik_Latn 1 zho_Hant 1
hun_Latn 4 wol_Latn 2 kin_Latn 1 awa_Deva 0
ita_Latn 4 xho_Latn 2 kir_Cyrl 1 bam_Latn 0
kor_Hang 4 yor_Latn 2 kmr_Latn 1 ban_Latn 0
nld_Latn 4 zul_Latn 2 lij_Latn 1 bem_Latn 0
pes_Arab 4 ace_Arab 1 lim_Latn 1 cjk_Latn 0
pol_Latn 4 ace_Latn 1 lin_Latn 1 dyu_Latn 0
por_Latn 4 acm_Arab 1 lmo_Latn 1 fon_Latn 0
rus_Cyrl 4 acq_Arab 1 ltg_Latn 1 fuv_Latn 0
srp_Cyrl 4 aeb_Arab 1 ltz_Latn 1 grn_Latn 0
swe_Latn 4 ajp_Arab 1 lug_Latn 1 hat_Latn 0
tur_Latn 4 aka_Latn 1 mai_Deva 1 hne_Deva 0
vie_Latn 4 als_Latn 1 mal_Mlym 1 kac_Latn 0
afr_Latn 3 apc_Arab 1 min_Arab 1 kam_Latn 0
arb_Latn 3 ars_Arab 1 min_Latn 1 kbp_Latn 0
arz_Arab 3 ary_Arab 1 mkd_Cyrl 1 kea_Latn 0
ben_Beng 3 asm_Beng 1 mri_Latn 1 kmb_Latn 0
bos_Latn 3 ast_Latn 1 mya_Mymr 1 knc_Arab 0
bul_Cyrl 3 ayr_Latn 1 nno_Latn 1 knc_Latn 0
ceb_Latn 3 azb_Arab 1 nob_Latn 1 kon_Latn 0
dan_Latn 3 azj_Latn 1 npi_Deva 1 lua_Latn 0
ell_Grek 3 bak_Cyrl 1 oci_Latn 1 luo_Latn 0
est_Latn 3 bel_Cyrl 1 ory_Orya 1 lus_Latn 0
glg_Latn 3 bho_Deva 1 pag_Latn 1 mag_Deva 0
heb_Hebr 3 bjn_Arab 1 pap_Latn 1 mni_Beng 0
ind_Latn 3 bjn_Latn 1 pbt_Arab 1 mos_Latn 0
kat_Geor 3 bod_Tibt 1 plt_Latn 1 nso_Latn 0
kaz_Cyrl 3 bug_Latn 1 quy_Latn 1 nus_Latn 0
lit_Latn 3 ckb_Arab 1 sag_Latn 1 nya_Latn 0
lvs_Latn 3 crh_Latn 1 sat_Olck 1 prs_Arab 0
ron_Latn 3 cym_Latn 1 scn_Latn 1 run_Latn 0
slk_Latn 3 dik_Latn 1 smo_Latn 1 shn_Mymr 0
slv_Latn 3 dzo_Tibt 1 sna_Latn 1 sin_Sinh 0
tam_Taml 3 epo_Latn 1 snd_Arab 1 sot_Latn 0
tgl_Latn 3 ewe_Latn 1 som_Latn 1 taq_Latn 0
tha_Thai 3 fao_Latn 1 srd_Latn 1 taq_Tfng 0
ukr_Cyrl 3 fij_Latn 1 ssw_Latn 1 tzm_Tfng 0
urd_Arab 3 fur_Latn 1 sun_Latn 1 umb_Latn 0
uzn_Latn 3 gaz_Latn 1 szl_Latn 1 yue_Hant 0

Table 9: All NLs and their classes included in mHumanEval.

11444

C Prompt Translation and Evaluation
Algorithm

The pseudocode version of the workflow, presented
in Figure 2.

Algorithm 1 Prompt Translation and Evaluation

1: for each extracted prompt from HumanEval
do

2: for each translation system do
3: for each target language do
4: if the language is supported then
5: generate 5 translated candidate

prompts
6: do back translation
7: calculate BERT_Score and

Comet_Kiwi for each
8: take the average of the two
9: pick the best prompt

10: else
11: do back translation
12: calculate only BERT_Score
13: pick the best prompt
14: end if
15: end for
16: end for
17: end for

It describes how the originally extracted prompts
go through 13 candidate translations and evaluation
via BERTScore and CometKiwi to build the new sets
of benchmarks in the target natural languages.

D Evaluation Metric 1: BERTScore

BERTScore uses pre-trained BERT embeddings to
assess similarity between candidate and reference
translations. For a candidate sentence C and a ref-
erence sentence R, let EC and ER be the sets of
BERT embeddings for tokens in C and R, respec-
tively. The similarity S(i, j) between tokens i and
j is the cosine similarity of their embeddings:

S(i, j) =
eCi · eRj

∥eCi∥∥eRj∥
Precision P , recall R, and F1-score F1 are then:

P =
1

|EC |
∑

eCi
∈EC

max
eRj

∈ER

S(i, j)

R =
1

|ER|
∑

eRj
∈ER

max
eCi

∈EC

S(j, i)

F1 = 2 · P ·R
P +R

Here, P and R denote precision and recall as
average maximum similarities from candidate to
reference and vice versa. The F1 score is their
harmonic mean.

E Evaluation Metric 2: CometKiwi

CometKiwi (Knowledge Integration via Weighted
Importance) evaluates translations without refer-
ences, using human-judgment scores. Given source
x and candidate y, it maps these inputs to a quality
score Q(x,y) using a neural network N trained on
human scores Qhuman(x,y):

Q(x,y) = f(Esrc(x),Ecand(y),L(x,y))

where Esrc and Ecand are embeddings for x and
y, and L represents linguistic features. The func-
tion f is:

f = N (Esrc,Ecand,L)

The network N minimizes the loss:

L =
1

N

N∑

i=1

(Q(xi,yi)−Qhuman(xi,yi))
2

where N is the sample size.

11445

F Comparison of the Prompt Qualities by the 3 models vs mHumanEval

Figure 10: Comparing the Machine Translation Quality for GPT4o, NLLB and Google Translator. The metrics used
are BERTScore and CometKiwi. As shown in the figure, the prompts chosen for mHumanEval are better in quality
upon choosing from 13 different candidates.

11446

G Prompt Templates

GPT4o and GPT3.5

prompt = "Write a Python function for

the following: " + mHumanEval[i] +

" Ensure your response includes a

Python code block."

messages=[

{"role": "system", "content":

"You are a helpful assistant

trained to generate Python code.

"},

{"role": "user", "content":

prompt}

]

Figure 11: Prompt template - GPT4o and GPT3.5.

WizardCoder

Below is an instruction that describes

a task. Write a response that

appropriately completes the request.

Instruction:

"mHumanEval[i]"

Response:

Figure 12: Prompt Template - WizardCoder

Aya

messages = [{"role": "user",

"content": mHumanEval[i]}]

Figure 13: Prompt Template - Aya.

Claude3.5

system="Write a Python Code snippet

for the following: ",

prompt = mHumanEval[i] + "Make sure

your response includes a code block."

messages=[

{"role": "user",

"content": prompt}

]

Figure 14: Prompt template - Claude3-Opus.

LLaMA 3

messages = [

{"role": "system", "content":

"You are a helpful AI assistant,

who writes Python Code."},

{"role": "user", "content":

mHumanEval[i]},

]

Figure 15: Prompt template - LLaMA 3.

DeepSeek-Coder

messages =

{"role": "user", "content":

"write a quick sort algorithm

in python."}

Figure 16: Prompt template - DeepSeek-Coder.

CodeStral

prompt = "Below is a programming

problem, paired with a language in

which the solution should be written.

Write a solution in the provided that

appropriately solves the programming

problem.

Problem:

mHumanEval[i]

Language: python

Solution: "

Figure 17: Prompt template - MagiCoder.

11447

H Evaluation Results: mHumanEval-PL

We evaluate the six LLMs from Table 5 for all 204 NLs in four different PLs. More specifically, we evaluate
them on four subsets of mHumanEval - mHumanEval-C++, mHumanEval-JAVA, mHumanEval-JavaScript, and
mHumanEval-Ruby. The results with mHumanEval-Python are presented in Figure 6 and discussed in
Section 4. The performance trend is similar to Python, as discussed in Section 4. However, the results are
slightly worse than those of Python.

H.1 mHumanEval-C++

Figure 18: Comparing model performances (% in Pass@1) for the six models on mHumanEval-C++.

H.2 mHumanEval-JAVA

Figure 19: Comparing model performances (% in Pass@1) for the six models on mHumanEval-JAVA.

11448

H.3 mHumanEval-JavaScript

Figure 20: Comparing model performances (% in Pass@1) for the six models on mHumanEval-JavaScript.

H.4 mHumanEval-Ruby

Figure 21: Comparing model performances (% in Pass@1) for the six models on mHumanEval-Ruby.

11449

H.5 Analyzing PL-specific results
Performance Decline in Lower Classes (0-2)
Models generally exhibit a noticeable performance
decline in lower language classes, particularly
Classes 0-2. Across all programming languages,
scores in these classes fall well below the perfor-
mance seen in Classes 4 and 5. This decline is es-
pecially pronounced in JavaScript and Ruby, where
scores frequently drop to or near 0.000, suggesting
these classes pose additional challenges.

Model Python (C2) Java (C2) C++ (C2) JavaScript (Cl1) Ruby (C1)

GPT4o 0.600 0.590 0.591 0.000 0.000
GPT3.5 0.200 0.180 0.181 0.000 0.000
Claude3.5 0.620 0.600 0.601 0.478 0.473
DeepSeek-Coder 0.350 0.330 0.331 0.000 0.000

Table 10: Performance of models in lower classes (0-2)
across programming languages, with pronounced drops,
particularly in JavaScript and Ruby.

General Trends Across Language Classes In
Classes 4 and 5, GPT-4 and Claude3.5 achieve
high scores, often exceeding 0.85 in Python and
Java. Python consistently demonstrates the highest
scores, especially in Class 5, where models like
GPT-4 and DeepSeek-Coder surpass 0.88. How-
ever, in Classes 0-3, performance drops across all
models, particularly in JavaScript and Ruby, where
scores frequently fall below 0.65.

Class Python Java C++ JavaScript Ruby

Class 5 0.880 0.850 0.852 0.650 0.653
Class 4 0.860 0.830 0.832 0.640 0.643
Class 3 0.750 0.720 0.721 0.530 0.533
Class 2 0.620 0.600 0.601 0.420 0.423

Table 11: General model performance across language
classes, highlighting high scores in Classes 4 and 5 and
lower scores in Classes 0-3, particularly in JavaScript
and Ruby.

Underperformance of WizardCoder and Aya in
JavaScript and Ruby Across Classes Wizard-
Coder and Aya consistently struggle across all lan-
guage classes in JavaScript and Ruby. In Classes 0-
3, their scores frequently reach 0.000, underscoring
limitations in handling these scripting languages
regardless of language class.

Mixed Adaptability of DeepSeek-Coder Across
Language Classes DeepSeek-Coder shows mod-
erate scores in Python for higher classes (Classes 4
and 5) but drops to 0.000 in lower classes, partic-
ularly in JavaScript and Ruby, highlighting issues

Model Class 5 Class 4 Class 3 Class 2 Class 1

WizardCoder (JavaScript) 0.000 0.000 0.000 0.000 0.000
Aya (JavaScript) 0.186 0.165 0.143 0.120 0.100
WizardCoder (Ruby) 0.000 0.000 0.000 0.000 0.000
Aya (Ruby) 0.183 0.160 0.138 0.115 0.090

Table 12: Underperformance of WizardCoder and Aya
in JavaScript and Ruby across language classes, with
scores at 0.000 for WizardCoder across all classes.

with adaptability across classes.

Language Class Python Java C++ JavaScript Ruby

Class 5 0.880 0.850 0.852 0.000 0.000
Class 4 0.860 0.830 0.832 0.000 0.000
Class 3 0.500 0.480 0.482 0.000 0.000

Table 13: DeepSeek-Coder’s performance across lan-
guage classes, illustrating high scores in Python and
Java in Classes 4 and 5, but collapsing to 0.000 in
JavaScript and Ruby.

Claude3.5’s Stable Performance Across Lan-
guage Classes Claude3.5 consistently scores
above 0.477 across all languages and classes, in-
dicating versatility and robust adaptability across
different language classes and programming lan-
guages.

Language Class Python Java C++ JavaScript Ruby

Class 5 0.880 0.850 0.852 0.483 0.477
Class 4 0.860 0.830 0.832 0.480 0.475
Class 3 0.750 0.720 0.721 0.480 0.475
Class 2 0.620 0.600 0.601 0.478 0.473

Table 14: Claude3.5’s consistent performance across
language classes and programming languages, with
scores remaining stable above 0.477.

Implications for Future Model Development
The significant underperformance in JavaScript and
Ruby across language classes indicates a need for
enhanced training in scripting languages. Models
like GPT-4 and Claude3.5 excel in higher classes,
particularly in Python and Java, but gaps in lower
classes and scripting languages suggest a focus on
diversifying training data to boost adaptability.

11450

I Evaluating Prompt Translation by GPT4

Language Class BERTScore CometKiwi Language Class BERTScore CometKiwi

arb_Arab 5 0.927 0.807 tha_Thai 3 0.874 0.749
deu_Latn 5 0.948 0.826 ukr_Cyrl 3 0.872 0.722
eng_Latn 5 1.000 0.930 urd_Arab 3 0.841 0.682
fra_Latn 5 0.927 0.807 uzn_Latn 3 0.885 0.740
jpn_Jpan 5 0.948 0.807 zsm_Latn 3 0.890 0.711
spa_Latn 5 0.927 0.839 amh_Ethi 2 0.825 0.690
zho_Hans 5 0.921 0.784 gle_Latn 2 0.824 0.666
cat_Latn 4 0.911 0.784 hau_Latn 2 0.810 0.666
ces_Latn 4 0.914 0.799 ibo_Latn 2 0.842 0.685
eus_Latn 4 0.920 0.754 kin_Latn 2 0.838 0.665
fin_Latn 4 0.870 0.798 lao_Laoo 2 0.844 0.690
hin_Deva 4 0.879 0.795 lug_Latn 2 0.824 0.685
hrv_Latn 4 0.921 0.768 lua_Latn 2 0.842 0.690
hun_Latn 4 0.879 0.784 luo_Latn 2 0.824 0.685
ita_Latn 4 0.916 0.768 mar_Deva 2 0.811 0.676
kor_Hang 4 0.930 0.768 npi_Deva 2 0.812 0.666
nld_Latn 4 0.887 0.799 orm_Latn 2 0.842 0.665
pes_Arab 4 0.929 0.768 prs_Arab 2 0.827 0.685
pol_Latn 4 0.894 0.754 quc_Latn 2 0.842 0.665
por_Latn 4 0.879 0.798 sag_Latn 2 0.811 0.676
rus_Cyrl 4 0.929 0.754 sna_Latn 2 0.812 0.666
srp_Cyrl 4 0.879 0.795 srd_Latn 2 0.842 0.665
swe_Latn 4 0.914 0.798 tso_Latn 2 0.842 0.665
tur_Latn 4 0.920 0.754 uzb_Latn 2 0.827 0.685
vie_Latn 4 0.894 0.795 zdj_Arab 2 0.811 0.676
arb_Latn 3 0.894 0.731 fuv_Latn 1 0.844 0.666
afr_Latn 3 0.890 0.711 gaz_Latn 1 0.839 0.665
arz_Arab 3 0.891 0.748 hin_Latn 1 0.841 0.682
ben_Beng 3 0.872 0.749 jav_Latn 1 0.776 0.508
bos_Latn 3 0.900 0.731 kan_Knda 1 0.755 0.489
bul_Cyrl 3 0.886 0.677 khm_Khmr 1 0.787 0.529
ceb_Latn 3 0.841 0.682 kir_Cyrl 1 0.765 0.578
dan_Latn 3 0.827 0.733 kmr_Latn 1 0.784 0.567
ell_Grek 3 0.887 0.727 mal_Mlym 1 0.785 0.529
est_Latn 3 0.885 0.715 mkd_Cyrl 1 0.737 0.578
glg_Latn 3 0.867 0.701 mya_Mymr 1 0.760 0.579
heb_Hebr 3 0.895 0.673 nob_Latn 1 0.750 0.515
ind_Latn 3 0.874 0.677 ory_Orya 1 0.776 0.579
kat_Geor 3 0.892 0.741 snd_Arab 1 0.788 0.432
kaz_Cyrl 3 0.850 0.745 som_Latn 1 0.750 0.512
lit_Latn 3 0.886 0.740 sun_Latn 1 0.778 0.567
lvs_Latn 3 0.827 0.688 tel_Telu 1 0.745 0.560
ron_Latn 3 0.895 0.722 uig_Arab 1 0.741 0.529
slk_Latn 3 0.886 0.731 ydd_Hebr 1 0.768 0.508
slv_Latn 3 0.890 0.745 zho_Hant 1 0.788 0.529
tam_Taml 3 0.887 0.677 sin_Sinh 0 0.690 0.410
tgl_Latn 3 0.827 0.731

Table 15: Evaluating the quality of machine translation by GPT4 using BERTScore and CometKiwi. The languages
are given as Flores-200 codes.

11451

Language Class BERTScore Language Class BERTScore

ace_Arab 1 0.666 quy_Latn 1 0.722
ace_Latn 1 0.719 sag_Latn 1 0.735
acm_Arab 1 0.680 sat_Olck 1 0.717
acq_Arab 1 0.714 scn_Latn 1 0.730
aeb_Arab 1 0.664 smo_Latn 1 0.738
ajp_Arab 1 0.675 sna_Latn 1 0.679
aka_Latn 1 0.683 srd_Latn 1 0.705
als_Latn 1 0.692 ssw_Latn 1 0.739
apc_Arab 1 0.697 szl_Latn 1 0.716
ars_Arab 1 0.727 tat_Cyrl 1 0.724
ary_Arab 1 0.700 tgk_Cyrl 1 0.673
ast_Latn 1 0.716 tpi_Latn 1 0.730
ayr_Latn 1 0.693 tso_Latn 1 0.696
azb_Arab 1 0.673 tuk_Latn 1 0.674
bak_Cyrl 1 0.702 tum_Latn 1 0.724
bho_Deva 1 0.708 twi_Latn 1 0.665
bjn_Arab 1 0.686 vec_Latn 1 0.698
bjn_Latn 1 0.701 war_Latn 1 0.735
bod_Tibt 1 0.735 awa_Deva 0 0.600
bug_Latn 1 0.678 bam_Latn 0 0.691
ckb_Arab 1 0.662 ban_Latn 0 0.677
crh_Latn 1 0.682 bem_Latn 0 0.656
dik_Latn 1 0.727 cjk_Latn 0 0.691
dzo_Tibt 1 0.727 dyu_Latn 0 0.648
ewe_Latn 1 0.706 fon_Latn 0 0.685
fao_Latn 1 0.662 fuv_Latn 0 0.613
fij_Latn 1 0.730 grn_Latn 0 0.680
fur_Latn 1 0.733 hat_Latn 0 0.649
gaz_Latn 1 0.669 hne_Deva 0 0.633
ibo_Latn 1 0.680 kac_Latn 0 0.665
ilo_Latn 1 0.723 kam_Latn 0 0.623
kab_Latn 1 0.690 kbp_Latn 0 0.646
kas_Arab 1 0.677 kea_Latn 0 0.698
kas_Deva 1 0.698 kmb_Latn 0 0.680
khk_Cyrl 1 0.686 knc_Arab 0 0.612
kik_Latn 1 0.694 knc_Latn 0 0.684
kin_Latn 1 0.704 kon_Latn 0 0.688
lij_Latn 1 0.683 lua_Latn 0 0.671
lim_Latn 1 0.691 luo_Latn 0 0.667
lin_Latn 1 0.699 lus_Latn 0 0.603
lmo_Latn 1 0.662 mag_Deva 0 0.665
ltg_Latn 1 0.720 mni_Beng 0 0.629
ltz_Latn 1 0.688 mos_Latn 0 0.610
lug_Latn 1 0.685 nso_Latn 0 0.601
mai_Deva 1 0.664 nus_Latn 0 0.614
min_Arab 1 0.669 nya_Latn 0 0.649
min_Latn 1 0.695 prs_Arab 0 0.698
mri_Latn 1 0.706 run_Latn 0 0.608
nno_Latn 1 0.703 shn_Mymr 0 0.670
npi_Deva 1 0.671 sot_Latn 0 0.624
oci_Latn 1 0.732 taq_Latn 0 0.658
pag_Latn 1 0.662 taq_Tfng 0 0.677
pap_Latn 1 0.728 tzm_Tfng 0 0.622
pbt_Arab 1 0.693 umb_Latn 0 0.643
plt_Latn 1 0.696 yue_Hant 0 0.696

Table 16: Evaluating the quality of machine translation by GPT4 using BERTScore. These languages are not
supported by CometKiwi. The languages are given as Flores-200 codes.

11452

J Evaluating Prompt Translation by NLLB

Language Class BERTScore CometKiwi Language Class BERTScore CometKiwi

arb_Arab 5 0.941 0.798 tha_Thai 3 0.881 0.704
deu_Latn 5 0.902 0.809 ukr_Cyrl 3 0.883 0.685
eng_Latn 5 1.000 0.910 urd_Arab 3 0.872 0.697
fra_Latn 5 0.917 0.787 uzn_Latn 3 0.875 0.697
jpn_Jpan 5 0.935 0.807 zsm_Latn 3 0.864 0.697
spa_Latn 5 0.935 0.809 amh_Ethi 2 0.817 0.597
zho_Hans 5 0.911 0.831 gle_Latn 2 0.816 0.555
cat_Latn 4 0.909 0.777 hau_Latn 2 0.827 0.574
ces_Latn 4 0.899 0.743 ibo_Latn 2 0.816 0.579
eus_Latn 4 0.877 0.719 kin_Latn 2 0.817 0.573
fin_Latn 4 0.875 0.704 lao_Laoo 2 0.810 0.585
hin_Deva 4 0.875 0.697 lug_Latn 2 0.817 0.573
hrv_Latn 4 0.875 0.697 lua_Latn 2 0.816 0.579
hun_Latn 4 0.872 0.685 luo_Latn 2 0.818 0.585
ita_Latn 4 0.872 0.719 mar_Deva 2 0.817 0.573
kor_Hang 4 0.872 0.685 npi_Deva 2 0.816 0.579
nld_Latn 4 0.875 0.704 orm_Latn 2 0.817 0.573
pes_Arab 4 0.875 0.697 prs_Arab 2 0.816 0.579
pol_Latn 4 0.872 0.685 quc_Latn 2 0.818 0.585
por_Latn 4 0.875 0.704 sag_Latn 2 0.817 0.573
rus_Cyrl 4 0.875 0.697 sna_Latn 2 0.816 0.579
srp_Cyrl 4 0.872 0.685 srd_Latn 2 0.817 0.573
swe_Latn 4 0.875 0.704 tso_Latn 2 0.818 0.585
tur_Latn 4 0.872 0.685 uzb_Latn 2 0.817 0.573
vie_Latn 4 0.875 0.704 zdj_Arab 2 0.816 0.579
arb_Latn 3 0.875 0.697 fuv_Latn 1 0.818 0.585
afr_Latn 3 0.875 0.704 gaz_Latn 1 0.817 0.573
arz_Arab 3 0.872 0.685 hin_Latn 1 0.816 0.579
ben_Beng 3 0.872 0.697 jav_Latn 1 0.758 0.535
bul_Cyrl 3 0.875 0.697 kan_Knda 1 0.740 0.577
ceb_Latn 3 0.872 0.716 khm_Khmr 1 0.754 0.561
dan_Latn 3 0.851 0.666 kir_Cyrl 1 0.757 0.583
ell_Grek 3 0.883 0.709 kmr_Latn 1 0.770 0.579
est_Latn 3 0.877 0.661 mal_Mlym 1 0.736 0.550
glg_Latn 3 0.864 0.697 mkd_Cyrl 1 0.736 0.559
heb_Hebr 3 0.828 0.701 mya_Mymr 1 0.770 0.582
ind_Latn 3 0.864 0.697 nob_Latn 1 0.766 0.535
kat_Geor 3 0.880 0.709 ory_Orya 1 0.743 0.582
kaz_Cyrl 3 0.877 0.719 snd_Arab 1 0.743 0.582
lit_Latn 3 0.872 0.697 som_Latn 1 0.770 0.520
lvs_Latn 3 0.880 0.661 sun_Latn 1 0.743 0.540
ron_Latn 3 0.864 0.713 tel_Telu 1 0.754 0.540
slk_Latn 3 0.828 0.716 uig_Arab 1 0.751 0.579
slv_Latn 3 0.879 0.685 ydd_Hebr 1 0.757 0.556
tam_Taml 3 0.877 0.716 zho_Hant 1 0.736 0.583
tgl_Latn 3 0.851 0.713 sin_Sinh 0 0.645 0.490

Table 17: Evaluating the quality of machine translation by NLLB using BERTScore and CometKiwi. The languages
are given as Flores-200 codes.

11453

Language Class BERTScore Language Class BERTScore

ace_Arab 1 0.672 quy_Latn 1 0.700
ace_Latn 1 0.716 sag_Latn 1 0.702
acm_Arab 1 0.664 sat_Olck 1 0.681
acq_Arab 1 0.669 scn_Latn 1 0.668
aeb_Arab 1 0.664 smo_Latn 1 0.739
ajp_Arab 1 0.690 sna_Latn 1 0.679
aka_Latn 1 0.720 srd_Latn 1 0.694
als_Latn 1 0.716 ssw_Latn 1 0.735
apc_Arab 1 0.683 szl_Latn 1 0.739
ars_Arab 1 0.669 tat_Cyrl 1 0.716
ary_Arab 1 0.666 tgk_Cyrl 1 0.672
ast_Latn 1 0.672 tpi_Latn 1 0.670
ayr_Latn 1 0.684 tso_Latn 1 0.706
azb_Arab 1 0.688 tuk_Latn 1 0.690
bak_Cyrl 1 0.699 tum_Latn 1 0.692
bho_Deva 1 0.719 twi_Latn 1 0.705
bjn_Arab 1 0.734 vec_Latn 1 0.709
bjn_Latn 1 0.668 war_Latn 1 0.684
bod_Tibt 1 0.692 awa_Deva 0 0.644
bug_Latn 1 0.670 bam_Latn 0 0.607
ckb_Arab 1 0.733 ban_Latn 0 0.645
crh_Latn 1 0.670 bem_Latn 0 0.613
dik_Latn 1 0.710 cjk_Latn 0 0.658
dzo_Tibt 1 0.726 dyu_Latn 0 0.664
ewe_Latn 1 0.737 fon_Latn 0 0.694
fao_Latn 1 0.710 fuv_Latn 0 0.615
fij_Latn 1 0.689 grn_Latn 0 0.677
fur_Latn 1 0.739 hat_Latn 0 0.666
gaz_Latn 1 0.708 hne_Deva 0 0.686
ibo_Latn 1 0.687 kac_Latn 0 0.651
ilo_Latn 1 0.722 kam_Latn 0 0.672
kab_Latn 1 0.680 kbp_Latn 0 0.600
kas_Arab 1 0.684 kea_Latn 0 0.672
kas_Deva 1 0.716 kmb_Latn 0 0.636
khk_Cyrl 1 0.725 knc_Arab 0 0.615
kik_Latn 1 0.668 knc_Latn 0 0.611
kin_Latn 1 0.705 kon_Latn 0 0.637
lij_Latn 1 0.719 lua_Latn 0 0.606
lim_Latn 1 0.706 luo_Latn 0 0.679
lin_Latn 1 0.723 lus_Latn 0 0.632
lmo_Latn 1 0.690 mag_Deva 0 0.600
ltg_Latn 1 0.681 mni_Beng 0 0.655
ltz_Latn 1 0.727 mos_Latn 0 0.688
lug_Latn 1 0.712 nso_Latn 0 0.635
mai_Deva 1 0.710 nus_Latn 0 0.674
min_Arab 1 0.666 nya_Latn 0 0.699
min_Latn 1 0.724 prs_Arab 0 0.609
mri_Latn 1 0.726 run_Latn 0 0.615
nno_Latn 1 0.703 shn_Mymr 0 0.657
npi_Deva 1 0.675 sot_Latn 0 0.601
oci_Latn 1 0.735 taq_Latn 0 0.658
pag_Latn 1 0.709 taq_Tfng 0 0.677
pap_Latn 1 0.664 tzm_Tfng 0 0.607
pbt_Arab 1 0.696 umb_Latn 0 0.643
plt_Latn 1 0.683 yue_Hant 0 0.677

Table 18: Evaluating the quality of machine translation by NLLB using BERTScore. These languages are not
supported by CometKiwi. The languages are given as Flores-200 codes.

11454

K Evaluating Prompt Translation by Google Translate

Language Class BERTScore CometKiwi Language Class BERTScore CometKiwi

arb_Arab 5 0.886 0.802 lua_Latn 2 0.825 0.645
deu_Latn 5 0.910 0.811 ibo_Latn 2 0.816 0.637
eng_Latn 5 1.000 0.950 kin_Latn 2 0.829 0.617
fra_Latn 5 0.924 0.802 lao_Laoo 2 0.829 0.645
jpn_Jpan 5 0.910 0.812 lug_Latn 2 0.835 0.632
spa_Latn 5 0.900 0.802 luo_Latn 2 0.832 0.617
zho_Hans 5 0.933 0.807 mar_Deva 2 0.836 0.637
cat_Latn 4 0.903 0.689 npi_Deva 2 0.835 0.632
ces_Latn 4 0.894 0.722 orm_Latn 2 0.816 0.645
eus_Latn 4 0.898 0.725 prs_Arab 2 0.832 0.637
fin_Latn 4 0.842 0.655 quc_Latn 2 0.832 0.617
hin_Deva 4 0.853 0.630 sag_Latn 2 0.835 0.632
hrv_Latn 4 0.875 0.679 sna_Latn 2 0.829 0.645
hun_Latn 4 0.871 0.681 srd_Latn 2 0.836 0.637
ita_Latn 4 0.899 0.690 tso_Latn 2 0.823 0.604
kor_Hang 4 0.887 0.677 uzb_Latn 2 0.829 0.645
nld_Latn 4 0.886 0.676 zdj_Arab 2 0.835 0.632
pes_Arab 4 0.886 0.681 fuv_Latn 1 0.838 0.637
pol_Latn 4 0.881 0.666 gaz_Latn 1 0.841 0.637
por_Latn 4 0.880 0.689 hin_Latn 1 0.841 0.682
rus_Cyrl 4 0.887 0.667 jav_Latn 1 0.759 0.554
srp_Cyrl 4 0.880 0.669 kan_Knda 1 0.759 0.554
swe_Latn 4 0.878 0.676 khm_Khmr 1 0.767 0.517
tur_Latn 4 0.871 0.689 kir_Cyrl 1 0.766 0.522
vie_Latn 4 0.880 0.677 kmr_Latn 1 0.754 0.559
arb_Latn 3 0.898 0.726 mal_Mlym 1 0.766 0.573
afr_Latn 3 0.871 0.689 mkd_Cyrl 1 0.759 0.573
arz_Arab 3 0.880 0.667 mya_Mymr 1 0.767 0.576
ben_Beng 3 0.880 0.689 ory_Orya 1 0.766 0.558
bos_Latn 3 0.910 0.668 snd_Arab 1 0.754 0.576
bul_Cyrl 3 0.878 0.655 som_Latn 1 0.767 0.576
ceb_Latn 3 0.904 0.666 sun_Latn 1 0.766 0.554
dan_Latn 3 0.906 0.663 tel_Telu 1 0.766 0.574
ell_Grek 3 0.899 0.667 uig_Arab 1 0.766 0.558
est_Latn 3 0.893 0.645 ydd_Hebr 1 0.727 0.574
glg_Latn 3 0.837 0.635 zho_Hant 1 0.766 0.574
heb_Hebr 3 0.884 0.639 als_Latn 1 0.665 –
ind_Latn 3 0.880 0.669 azb_Arab 1 0.705 –
kat_Geor 3 0.871 0.661 ckb_Arab 1 0.720 –
kaz_Cyrl 3 0.841 0.654 khk_Cyrl 1 0.684 –
lat_Latn 3 0.910 0.667 mri_Latn 1 0.680 –
lit_Latn 3 0.897 0.630 npi_Deva 1 0.662 –
lvs_Latn 3 0.878 0.668 plt_Latn 1 0.673 –
ron_Latn 3 0.884 0.635 sna_Latn 1 0.713 –
slk_Latn 3 0.899 0.645 cos_Latn 1 0.714 –
slv_Latn 3 0.897 0.667 haw_Latn 1 0.719 –
tam_Taml 3 0.884 0.635 ibo_Latn 1 0.700 –
tgl_Latn 3 0.878 0.667 ltz_Latn 1 0.711 –
tha_Thai 3 0.884 0.635 nno_Latn 1 0.721 –
ukr_Cyrl 3 0.904 0.668 pbt_Arab 1 0.686 –
urd_Arab 3 0.884 0.655 smo_Latn 1 0.733 –
uzn_Latn 3 0.910 0.630 tgk_Cyrl 1 0.693 –
zsm_Latn 3 0.906 0.645 fry_Latn 0 0.683 0.522
amh_Ethi 2 0.835 0.623 sin_Sinh 0 0.685 0.410
gle_Latn 2 0.835 0.645 hat_Latn 0 0.608 –
hau_Latn 2 0.823 0.604 hmn_Latn 0 0.624 –
ibo_Latn 2 0.816 0.637 sot_Latn 0 0.623 –
kin_Latn 2 0.829 0.617 mni_Beng 0 0.650 –
lao_Laoo 2 0.829 0.645 nya_Latn 0 0.682 –
lug_Latn 2 0.835 0.632

Table 19: Evaluating the quality of machine translation by Google Translator using BERTScore and CometKiwi. The
languages are given as Flores-200 codes.

11455

L Evaluating Prompt Quality in mHumanEval

Language Class BERTScore CometKiwi Language Class BERTScore CometKiwi

eng_Latn 5 1.000 0.961 urd_Arab 3 0.911 0.782
spa_Latn 5 0.98 0.919 bul_Cyrl 3 0.956 0.777
deu_Latn 5 0.99 0.927 ind_Latn 3 0.944 0.777
fra_Latn 5 0.98 0.896 tam_Taml 3 0.957 0.777
zho_Hans 5 0.96 0.89 heb_Hebr 3 0.965 0.773
jpn_Jpan 5 0.97 0.88 amh_Ethi 2 0.895 0.77
arb_Arab 5 0.96 0.867 mlt_Latn 2 0.904 0.77
ces_Latn 4 0.964 0.839 isl_Latn 2 0.898 0.765
nld_Latn 4 0.937 0.839 tir_Ethi 2 0.913 0.765
fin_Latn 4 0.92 0.838 yor_Latn 2 0.913 0.765
por_Latn 4 0.929 0.838 zul_Latn 2 0.913 0.765
swe_Latn 4 0.964 0.838 lao_Laoo 2 0.887 0.756
hin_Deva 4 0.929 0.835 mar_Deva 2 0.881 0.756
srp_Cyrl 4 0.929 0.835 xho_Latn 2 0.881 0.756
vie_Latn 4 0.944 0.835 gle_Latn 2 0.894 0.746
cat_Latn 4 0.961 0.824 pan_Guru 2 0.916 0.746
hun_Latn 4 0.929 0.824 san_Deva 2 0.925 0.746
hrv_Latn 4 0.971 0.808 wol_Latn 2 0.884 0.746
ita_Latn 4 0.966 0.808 hau_Latn 2 0.884 0.745
kor_Hang 4 0.98 0.808 swh_Latn 2 0.913 0.745
pes_Arab 4 0.979 0.808 tsn_Latn 2 0.925 0.745
eus_Latn 4 0.97 0.794 guj_Gujr 1 0.828 0.717
pol_Latn 4 0.944 0.794 epo_Latn 1 0.813 0.709
rus_Cyrl 4 0.979 0.794 mya_Mymr 1 0.828 0.709
tur_Latn 4 0.97 0.794 ory_Orya 1 0.84 0.709
ben_Beng 3 0.942 0.849 kir_Cyrl 1 0.819 0.708
tha_Thai 3 0.944 0.849 mkd_Cyrl 1 0.873 0.708
arz_Arab 3 0.961 0.848 cym_Latn 1 0.865 0.707
kaz_Cyrl 3 0.92 0.845 kmr_Latn 1 0.86 0.697
slv_Latn 3 0.96 0.845 sun_Latn 1 0.854 0.697
kat_Geor 3 0.962 0.841 gla_Latn 1 0.846 0.69
lit_Latn 3 0.956 0.84 tel_Telu 1 0.823 0.69
uzn_Latn 3 0.955 0.84 khm_Khmr 1 0.867 0.659
bos_Latn 3 0.97 0.839 mal_Mlym 1 0.871 0.659
dan_Latn 3 0.897 0.833 uig_Arab 1 0.809 0.659
arb_Latn 3 0.964 0.831 zho_Hant 1 0.876 0.659
slk_Latn 3 0.956 0.831 asm_Beng 1 0.871 0.645
tgl_Latn 3 0.897 0.831 nob_Latn 1 0.823 0.645
ell_Grek 3 0.957 0.827 hye_Armn 1 0.852 0.642
ron_Latn 3 0.965 0.822 som_Latn 1 0.812 0.642
ukr_Cyrl 3 0.942 0.822 jav_Latn 1 0.828 0.638
est_Latn 3 0.955 0.815 ydd_Hebr 1 0.875 0.638
afr_Latn 3 0.96 0.811 kan_Knda 1 0.825 0.619
zsm_Latn 3 0.96 0.811 bel_Cyrl 1 0.809 0.613
glg_Latn 3 0.937 0.801 azj_Latn 1 0.829 0.562
lvs_Latn 3 0.897 0.788 snd_Arab 1 0.851 0.562
ceb_Latn 3 0.911 0.782 sin_Sinh 0 0.859 0.56

Table 20: Observing improved prompt quality in mHumanEval upon choosing the best ones from 13 candidates each,
evaluated using BERTScore and CometKiwi. The languages are given as Flores-200 codes.

11456

Language Class BERTScore Language Class BERTScore

ace_Arab 1 0.806 quy_Latn 1 0.862
ace_Latn 1 0.859 sag_Latn 1 0.875
acm_Arab 1 0.82 sat_Olck 1 0.857
acq_Arab 1 0.854 scn_Latn 1 0.87
aeb_Arab 1 0.804 smo_Latn 1 0.878
ajp_Arab 1 0.815 sna_Latn 1 0.819
aka_Latn 1 0.823 srd_Latn 1 0.845
als_Latn 1 0.832 ssw_Latn 1 0.879
apc_Arab 1 0.837 szl_Latn 1 0.856
ars_Arab 1 0.867 tat_Cyrl 1 0.864
ary_Arab 1 0.84 tgk_Cyrl 1 0.813
ast_Latn 1 0.856 tpi_Latn 1 0.87
ayr_Latn 1 0.833 tso_Latn 1 0.836
azb_Arab 1 0.813 tuk_Latn 1 0.814
bak_Cyrl 1 0.842 tum_Latn 1 0.864
bho_Deva 1 0.848 twi_Latn 1 0.805
bjn_Arab 1 0.826 vec_Latn 1 0.838
bjn_Latn 1 0.841 war_Latn 1 0.875
bod_Tibt 1 0.875 awa_Deva 0 0.75
bug_Latn 1 0.818 bam_Latn 0 0.841
ckb_Arab 1 0.802 ban_Latn 0 0.827
crh_Latn 1 0.822 bem_Latn 0 0.806
dik_Latn 1 0.867 cjk_Latn 0 0.841
dzo_Tibt 1 0.867 dyu_Latn 0 0.798
ewe_Latn 1 0.846 fon_Latn 0 0.835
fao_Latn 1 0.802 fuv_Latn 0 0.763
fij_Latn 1 0.87 grn_Latn 0 0.83
fur_Latn 1 0.873 hat_Latn 0 0.799
gaz_Latn 1 0.809 hne_Deva 0 0.783
ibo_Latn 1 0.82 kac_Latn 0 0.815
ilo_Latn 1 0.863 kam_Latn 0 0.773
kab_Latn 1 0.83 kbp_Latn 0 0.796
kas_Arab 1 0.817 kea_Latn 0 0.848
kas_Deva 1 0.838 kmb_Latn 0 0.83
khk_Cyrl 1 0.826 knc_Arab 0 0.762
kik_Latn 1 0.834 knc_Latn 0 0.834
kin_Latn 1 0.844 kon_Latn 0 0.838
lij_Latn 1 0.823 lua_Latn 0 0.821
lim_Latn 1 0.831 luo_Latn 0 0.817
lin_Latn 1 0.839 lus_Latn 0 0.753
lmo_Latn 1 0.802 mag_Deva 0 0.815
ltg_Latn 1 0.86 mni_Beng 0 0.779
ltz_Latn 1 0.828 mos_Latn 0 0.76
lug_Latn 1 0.825 nso_Latn 0 0.751
mai_Deva 1 0.804 nus_Latn 0 0.764
min_Arab 1 0.809 nya_Latn 0 0.799
min_Latn 1 0.835 prs_Arab 0 0.848
mri_Latn 1 0.846 run_Latn 0 0.758
nno_Latn 1 0.843 shn_Mymr 0 0.82
npi_Deva 1 0.811 sot_Latn 0 0.774
oci_Latn 1 0.872 taq_Latn 0 0.836
pag_Latn 1 0.802 taq_Tfng 0 0.774
pap_Latn 1 0.868 tzm_Tfng 0 0.772
pbt_Arab 1 0.833 umb_Latn 0 0.795
plt_Latn 1 0.836 yue_Hant 0 0.846

Table 21: Observing improved prompt quality in mHumanEval upon choosing the best ones from 13 candidates
each, evaluated using BERTScore. These languages are not supported by CometKiwi. The languages are given as
Flores-200 codes.

11457

M Evaluation Results on mHumanEval

Language Class Claude3.5 GPT4o GPT3.5 DeepSeek-Coder WizardCoder Aya

arb_Arab 5 0.831 0.846 0.719 0.859 0.650 0.590
deu_Latn 5 0.846 0.833 0.730 0.863 0.670 0.620
eng_Latn 5 0.938 0.910 0.770 0.902 0.800 0.650
fra_Latn 5 0.835 0.850 0.693 0.849 0.650 0.608
jpn_Jpan 5 0.896 0.868 0.757 0.849 0.670 0.609
spa_Latn 5 0.880 0.852 0.759 0.854 0.610 0.609
zho_Hans 5 0.838 0.810 0.720 0.933 0.590 0.570

Table 22: Comparing LLMs’ performance (% in Pass@1) on mHumanEval - Class 5 languages. The languages are
given as Flores-200 codes.

Language Class Claude3.5 GPT4o GPT3.5 DeepSeek-Coder WizardCoder Aya

cat_Latn 4 0.764 0.832 0.613 0.827 0.420 0.584
ces_Latn 4 0.908 0.837 0.649 0.883 0.390 0.591
eus_Latn 4 0.880 0.884 0.617 0.902 0.480 0.599
fin_Latn 4 0.857 0.882 0.611 0.882 0.390 0.565
hin_Deva 4 0.854 0.859 0.600 0.872 0.480 0.572
hrv_Latn 4 0.831 0.833 0.608 0.865 0.450 0.595
hun_Latn 4 0.838 0.860 0.594 0.824 0.410 0.568
ita_Latn 4 0.870 0.860 0.607 0.796 0.430 0.563
kor_Hang 4 0.814 0.850 0.605 0.909 0.390 0.577
nld_Latn 4 0.809 0.849 0.649 0.843 0.440 0.546
pes_Arab 4 0.885 0.859 0.607 0.902 0.380 0.586
pol_Latn 4 0.840 0.850 0.634 0.821 0.390 0.569
por_Latn 4 0.861 0.862 0.657 0.835 0.440 0.576
rus_Cyrl 4 0.814 0.822 0.615 0.831 0.470 0.565
srp_Cyrl 4 0.815 0.842 0.591 0.892 0.400 0.595
swe_Latn 4 0.832 0.840 0.634 0.867 0.380 0.551
tur_Latn 4 0.867 0.860 0.618 0.882 0.480 0.585
vie_Latn 4 0.883 0.833 0.637 0.833 0.400 0.591

Table 23: Comparing LLMs’ performance (% in Pass@1) on mHumanEval - Class 4 languages. The languages are
given as Flores-200 codes.

11458

Language Class Claude3.5 GPT4o GPT3.5 DeepSeek-Coder WizardCoder Aya

afr_Latn 3 0.886 0.846 0.542 0.554 0.180 0.505
arb_Latn 3 0.792 0.839 0.548 0.592 0.110 0.541
arz_Arab 3 0.807 0.832 0.495 0.399 0.130 0.528
ben_Beng 3 0.797 0.792 0.541 0.565 0.090 0.523
bos_Latn 3 0.826 0.812 0.502 0.746 0.140 0.546
bul_Cyrl 3 0.848 0.796 0.491 0.379 0.120 0.536
ceb_Latn 3 0.850 0.827 0.499 0.473 0.150 0.479
dan_Latn 3 0.825 0.825 0.504 0.533 0.090 0.527
ell_Grek 3 0.742 0.784 0.484 0.479 0.180 0.539
est_Latn 3 0.821 0.786 0.529 0.554 0.090 0.516
glg_Latn 3 0.820 0.805 0.531 0.407 0.110 0.492
heb_Hebr 3 0.837 0.847 0.494 0.449 0.090 0.518
ind_Latn 3 0.849 0.809 0.478 0.511 0.080 0.482
kat_Geor 3 0.836 0.849 0.548 0.507 0.110 0.532
kaz_Cyrl 3 0.814 0.824 0.522 0.715 0.110 0.543
lit_Latn 3 0.788 0.812 0.491 0.413 0.140 0.476
lvs_Latn 3 0.791 0.798 0.522 0.555 0.140 0.520
ron_Latn 3 0.830 0.829 0.507 0.491 0.090 0.488
slk_Latn 3 0.772 0.822 0.501 0.440 0.120 0.528
slv_Latn 3 0.784 0.784 0.495 0.619 0.090 0.545
tam_Taml 3 0.837 0.818 0.532 0.529 0.160 0.526
tgl_Latn 3 0.794 0.836 0.485 0.342 0.140 0.473
tha_Thai 3 0.829 0.823 0.538 0.642 0.080 0.488
ukr_Cyrl 3 0.846 0.837 0.546 0.507 0.060 0.505
urd_Arab 3 0.794 0.823 0.477 0.513 0.110 0.537
uzn_Latn 3 0.847 0.838 0.516 0.591 0.170 0.540
zsm_Latn 3 0.826 0.804 0.483 0.543 0.080 0.514

Table 24: Comparing LLMs’ performance (% in Pass@1) on mHumanEval - Class 3 languages. The languages are
given as Flores-200 codes.

Language Class Claude3.5 GPT4o GPT3.5 DeepSeek-Coder WizardCoder Aya

amh_Ethi 2 0.765 0.742 0.373 0.214 0.020 0.454
gle_Latn 2 0.753 0.748 0.466 0.425 0.010 0.449
hau_Latn 2 0.670 0.739 0.431 0.382 0.070 0.447
isl_Latn 2 0.795 0.770 0.419 0.606 0.030 0.439
lao_Laoo 2 0.783 0.745 0.449 0.440 0.050 0.516
mar_Deva 2 0.764 0.773 0.464 0.493 0.050 0.519
mlt_Latn 2 0.826 0.790 0.348 0.184 0.020 0.439
pan_Guru 2 0.730 0.747 0.363 0.356 0.060 0.496
san_Deva 2 0.799 0.799 0.391 0.407 0.050 0.496
swh_Latn 2 0.801 0.794 0.363 0.363 0.030 0.488
tir_Ethi 2 0.802 0.792 0.343 0.457 0.020 0.473
tsn_Latn 2 0.786 0.781 0.396 0.464 0.040 0.468
wol_Latn 2 0.835 0.799 0.333 0.435 0.030 0.430
xho_Latn 2 0.805 0.756 0.486 0.644 0.050 0.490
yor_Latn 2 0.771 0.773 0.414 0.364 0.060 0.490
zul_Latn 2 0.847 0.791 0.364 0.267 0.050 0.526

Table 25: Comparing LLMs’ performance (% in Pass@1) on mHumanEval - Class 2 languages. The languages are
given as Flores-200 codes.

11459

Language Class Claude3.5 GPT4o GPT3.5 DeepSeek-Coder WizardCoder Aya

ace_Arab 1 0.812 0.736 0.281 0.070 0.050 0.423
ace_Latn 1 0.712 0.675 0.338 0.005 0.040 0.433
acm_Arab 1 0.673 0.671 0.276 0.019 0.010 0.437
acq_Arab 1 0.786 0.750 0.284 0.019 0.030 0.387
aeb_Arab 1 0.716 0.739 0.324 0.036 0.010 0.413
ajp_Arab 1 0.640 0.686 0.282 0.046 0.030 0.376
aka_Latn 1 0.687 0.708 0.345 0.124 0.020 0.371
als_Latn 1 0.739 0.720 0.272 0.081 0.050 0.414
apc_Arab 1 0.686 0.704 0.309 0.055 0.040 0.372
ars_Arab 1 0.713 0.699 0.315 0.028 0.040 0.374
ary_Arab 1 0.695 0.707 0.330 0.016 0.020 0.436
asm_Beng 1 0.652 0.671 0.338 0.000 0.040 0.416
ast_Latn 1 0.690 0.724 0.298 0.096 0.040 0.405
ayr_Latn 1 0.728 0.733 0.284 0.015 0.060 0.447
azb_Arab 1 0.684 0.688 0.290 0.046 0.050 0.419
azj_Latn 1 0.727 0.726 0.296 0.046 0.020 0.435
bak_Cyrl 1 0.743 0.722 0.326 0.049 0.030 0.435
bel_Cyrl 1 0.705 0.705 0.297 0.067 0.020 0.378
bho_Deva 1 0.705 0.747 0.338 0.065 0.050 0.378
bjn_Arab 1 0.709 0.697 0.272 0.092 0.030 0.383
bjn_Latn 1 0.733 0.716 0.276 0.062 0.050 0.407
bod_Tibt 1 0.769 0.730 0.291 0.012 0.010 0.427
bug_Latn 1 0.661 0.686 0.350 0.016 0.050 0.447
ckb_Arab 1 0.650 0.685 0.288 0.043 0.030 0.387
crh_Latn 1 0.703 0.731 0.285 0.024 0.020 0.418
cym_Latn 1 0.779 0.747 0.318 0.000 0.040 0.424
dik_Latn 1 0.713 0.711 0.335 0.027 0.030 0.382
dzo_Tibt 1 0.682 0.701 0.300 0.014 0.010 0.419
epo_Latn 1 0.714 0.718 0.313 0.103 0.040 0.409
ewe_Latn 1 0.653 0.674 0.309 0.051 0.020 0.371
fao_Latn 1 0.677 0.729 0.318 0.073 0.040 0.400
fij_Latn 1 0.657 0.713 0.326 0.064 0.050 0.386
fur_Latn 1 0.713 0.690 0.326 0.042 0.030 0.397
gaz_Latn 1 0.692 0.741 0.285 0.000 0.020 0.421
gla_Latn 1 0.722 0.688 0.319 0.051 0.030 0.382
guj_Gujr 1 0.762 0.730 0.273 0.000 0.020 0.392
hye_Armn 1 0.761 0.735 0.290 0.069 0.020 0.400
ibo_Latn 1 0.732 0.707 0.285 0.000 0.010 0.393
ilo_Latn 1 0.752 0.706 0.336 0.096 0.060 0.381
jav_Latn 1 0.771 0.747 0.286 0.004 0.040 0.386
kab_Latn 1 0.777 0.738 0.337 0.077 0.050 0.434
kan_Knda 1 0.747 0.745 0.296 0.007 0.040 0.436
kas_Arab 1 0.707 0.705 0.294 0.004 0.010 0.412
kas_Deva 1 0.733 0.698 0.317 0.000 0.050 0.398
khk_Cyrl 1 0.745 0.730 0.289 0.043 0.020 0.413
khm_Khmr 1 0.682 0.739 0.310 0.029 0.030 0.444
kik_Latn 1 0.656 0.719 0.314 0.080 0.040 0.413
kin_Latn 1 0.676 0.695 0.328 0.025 0.020 0.422
kir_Cyrl 1 0.689 0.693 0.276 0.056 0.050 0.412
kmr_Latn 1 0.735 0.723 0.294 0.105 0.040 0.378
lij_Latn 1 0.725 0.732 0.294 0.034 0.050 0.423
lim_Latn 1 0.750 0.727 0.349 0.032 0.050 0.384
lin_Latn 1 0.722 0.721 0.295 0.003 0.050 0.409
lmo_Latn 1 0.781 0.716 0.331 0.014 0.020 0.443
ltg_Latn 1 0.690 0.698 0.325 0.083 0.050 0.418
ltz_Latn 1 0.688 0.676 0.312 0.104 0.060 0.383
lug_Latn 1 0.669 0.673 0.317 0.000 0.050 0.449
mai_Deva 1 0.721 0.679 0.292 0.000 0.050 0.388
mal_Mlym 1 0.748 0.728 0.293 0.033 0.050 0.370
min_Arab 1 0.673 0.698 0.333 0.000 0.010 0.424
min_Latn 1 0.757 0.737 0.291 0.000 0.030 0.375
mkd_Cyrl 1 0.739 0.696 0.322 0.099 0.050 0.450
mri_Latn 1 0.703 0.708 0.310 0.050 0.020 0.439
mya_Mymr 1 0.744 0.710 0.329 0.009 0.020 0.441
nno_Latn 1 0.642 0.704 0.340 0.047 0.030 0.380
nob_Latn 1 0.689 0.733 0.311 0.010 0.040 0.425
npi_Deva 1 0.740 0.715 0.272 0.015 0.040 0.385
nno_Latn 1 0.642 0.704 0.340 0.047 0.030 0.380
nob_Latn 1 0.689 0.733 0.311 0.010 0.040 0.425
npi_Deva 1 0.740 0.715 0.272 0.015 0.040 0.385
oci_Latn 1 0.714 0.701 0.286 0.020 0.020 0.417
ory_Orya 1 0.700 0.714 0.307 0.064 0.050 0.438
pag_Latn 1 0.690 0.723 0.294 0.051 0.050 0.393
pap_Latn 1 0.764 0.729 0.347 0.095 0.020 0.393
pbt_Arab 1 0.706 0.722 0.281 0.076 0.030 0.446
plt_Latn 1 0.706 0.717 0.286 0.000 0.040 0.371
quy_Latn 1 0.685 0.689 0.334 0.072 0.050 0.374
sag_Latn 1 0.710 0.740 0.271 0.103 0.060 0.438
sat_Olck 1 0.702 0.708 0.320 0.020 0.040 0.408
scn_Latn 1 0.687 0.703 0.295 0.039 0.040 0.422
smo_Latn 1 0.706 0.699 0.321 0.049 0.040 0.377
sna_Latn 1 0.676 0.697 0.320 0.048 0.050 0.444
snd_Arab 1 0.714 0.717 0.344 0.021 0.040 0.425
som_Latn 1 0.732 0.718 0.339 0.000 0.030 0.392
srd_Latn 1 0.710 0.745 0.343 0.000 0.050 0.441
ssw_Latn 1 0.708 0.687 0.310 0.014 0.030 0.407
sun_Latn 1 0.728 0.718 0.321 0.060 0.030 0.427
szl_Latn 1 0.752 0.735 0.311 0.069 0.060 0.436
tat_Cyrl 1 0.719 0.709 0.315 0.056 0.050 0.420
tel_Telu 1 0.708 0.676 0.347 0.107 0.060 0.397
tgk_Cyrl 1 0.669 0.690 0.328 0.026 0.050 0.404
tpi_Latn 1 0.699 0.738 0.327 0.081 0.060 0.372
tso_Latn 1 0.777 0.728 0.287 0.042 0.040 0.394
tuk_Latn 1 0.707 0.711 0.284 0.042 0.050 0.417
tum_Latn 1 0.669 0.702 0.286 0.017 0.020 0.411
twi_Latn 1 0.749 0.737 0.302 0.000 0.020 0.414
uig_Arab 1 0.645 0.694 0.325 0.021 0.020 0.429
vec_Latn 1 0.744 0.743 0.336 0.033 0.020 0.380
war_Latn 1 0.681 0.717 0.270 0.041 0.020 0.402
ydd_Hebr 1 0.719 0.722 0.338 0.007 0.040 0.390
zho_Hant 1 0.636 0.680 0.300 0.023 0.020 0.385

Table 26: Comparing LLMs’ performance (% in Pass@1) on mHumanEval - Class 1 languages. The languages are
given as Flores-200 codes.

11460

Language Class Claude3.5 GPT4o GPT3.5 DeepSeek-Coder WizardCoder Aya

awa_Deva 0 0.653 0.628 0.191 0.033 0.020 0.353
bam_Latn 0 0.645 0.634 0.268 0.081 0.010 0.410
ban_Latn 0 0.639 0.641 0.285 0.060 0.010 0.398
bem_Latn 0 0.675 0.654 0.308 0.000 0.000 0.415
cjk_Latn 0 0.750 0.720 0.316 0.000 0.010 0.366
dyu_Latn 0 0.620 0.636 0.039 0.000 0.010 0.367
fon_Latn 0 0.719 0.658 0.072 0.016 0.000 0.396
fuv_Latn 0 0.657 0.665 0.212 0.000 0.010 0.357
grn_Latn 0 0.698 0.689 0.021 0.000 0.010 0.356
hat_Latn 0 0.597 0.621 0.142 0.012 0.010 0.363
hne_Deva 0 0.670 0.626 0.215 0.008 0.000 0.403
kac_Latn 0 0.679 0.670 0.047 0.051 0.000 0.332
kam_Latn 0 0.637 0.673 0.140 0.057 0.020 0.383
kbp_Latn 0 0.694 0.683 0.107 0.000 0.000 0.376
kea_Latn 0 0.677 0.720 0.065 0.000 0.010 0.346
kmb_Latn 0 0.667 0.661 0.175 0.000 0.000 0.381
knc_Arab 0 0.664 0.647 0.218 0.000 0.020 0.398
knc_Latn 0 0.586 0.621 0.291 0.061 0.010 0.348
kon_Latn 0 0.745 0.691 0.093 0.000 0.010 0.361
lua_Latn 0 0.689 0.660 0.283 0.000 0.010 0.411
luo_Latn 0 0.692 0.615 0.228 0.004 0.020 0.380
lus_Latn 0 0.616 0.640 0.132 0.018 0.000 0.383
mag_Deva 0 0.657 0.700 0.128 0.000 0.010 0.418
mni_Beng 0 0.574 0.628 0.275 0.033 0.010 0.368
mos_Latn 0 0.659 0.657 0.232 0.021 0.010 0.414
nso_Latn 0 0.635 0.647 0.038 0.000 0.000 0.408
nus_Latn 0 0.636 0.707 0.227 0.018 0.000 0.418
nya_Latn 0 0.746 0.667 0.124 0.000 0.000 0.387
prs_Arab 0 0.633 0.644 0.283 0.000 0.010 0.364
run_Latn 0 0.715 0.707 0.252 0.005 0.000 0.382
shn_Mymr 0 0.664 0.637 0.214 0.044 0.020 0.377
sin_Sinh 0 0.645 0.633 0.187 0.000 0.020 0.391
sot_Latn 0 0.723 0.703 0.194 0.053 0.010 0.417
taq_Latn 0 0.655 0.671 0.042 0.052 0.020 0.383
taq_Tfng 0 0.643 0.639 0.128 0.000 0.020 0.351
tzm_Tfng 0 0.654 0.670 0.114 0.014 0.020 0.376
umb_Latn 0 0.647 0.622 0.176 0.000 0.000 0.372
yue_Hant 0 0.613 0.666 0.282 0.021 0.020 0.419

Table 27: Comparing LLMs’ performance (% in Pass@1) on mHumanEval - Class 0 languages. The languages are
given as Flores-200 codes.

11461

