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Abstract

In a systematic way, we investigate a widely
asked question: Do LLMs really understand
what they say?, which relates to the more famil-
iar term Stochastic Parrot. To this end, we pro-
pose a summative assessment over a carefully
designed physical concept understanding task,
PHYSICO. Our task alleviates the memoriza-
tion issue via the usage of grid-format inputs
that abstractly describe physical phenomena.
The grids represents varying levels of under-
standing, from the core phenomenon, applica-
tion examples to analogies to other abstract
patterns in the grid world. A comprehensive
study on our task demonstrates: (1) state-of-
the-art LLMs, including GPT-4o, o1 and Gem-
ini 2.0 flash thinking, lag behind humans by
∼40%; (2) the stochastic parrot phenomenon
is present in LLMs, as they fail on our grid
task but can describe and recognize the same
concepts well in natural language; (3) our task
challenges the LLMs due to intrinsic difficul-
ties rather than the unfamiliar grid format, as
in-context learning and fine-tuning on same for-
matted data added little to their performance.

1 Introduction

Recent years have witnessed remarkable advance-
ments in large language models (LLMs) (Brown
et al., 2020; Achiam et al., 2023; Team et al., 2023).
Thanks to the substantial model capacity and mas-
sive training data, LLMs have achieved new state-
of-the-arts on a variety of NLP tasks, even surpass-
ing humans on some of them (Min et al., 2023;
Chang et al., 2024). Nowadays the application of
LLMs has become widespread, facilitating daily
work and life, and profoundly influencing people’s
work and lifestyles (Bommasani et al., 2021; Peng
et al., 2024; Demszky et al., 2023).

On the other hand, despite the great success of
LLMs, many researchers argue that LLMs may not

*Equal contribution.

Figure 1: Illustration of a “Stochastic Parrot” by our
PHYSICO task consisting of both low-level and high-
level subtasks in parallel. For a concept Gravity, an
LLM can generate its accurate description in natural lan-
guage, but cannot interpret its grid-format illustration.

really understand what they claim they do (Ben-
der and Koller, 2020; Bender et al., 2021; Bom-
masani et al., 2021; Mitchell and Krakauer, 2023)
due to their strong memorization ability. In par-
ticular, Bender et al. (2021) questioned whether
LLMs are just Stochastic Parrots that repeat words
based on correlations without true understanding.
This argument has been acknowledged by many
research papers and dozens of them even include
this term in their titles.1 Unfortunately, to our best
knowledge, there are no quantitative experiments to
verify the stochastic parrot phenomenon in LLMs.
Existing studies indicate that LLMs may fail on
one particular challenging task (Chakrabarty et al.,
2022; Shapira et al., 2023; Hessel et al., 2023; Tong
et al., 2024), but they do not demonstrate that LLMs
claimed to understand those tasks by providing a
controlled and paired evidence.

This paper aims to provide quantitative evidence
to validate the argument of stochastic parrot in
LLMs. To this end, from the perspective of ed-
ucational and cognitive psychology, we first em-
ploy the approach of summative assessment (Black
and Wiliam, 1998a,b) to measure understanding in
LLMs. Its key idea is to design various tasks that

1https://scholar.google.com/scholar?hl=en&q=
llms+are+stochastic+parrot.
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test different understanding levels regarding a spe-
cific concept. Following the principle of Bloom’s
taxonomy (Armstrong, 2010; Krathwohl, 2002),
we design tasks that reflect different levels of un-
derstanding. Consequently, we develop PHYSICO,
a task designed to assess understanding of basic
physical concepts from high school such as Gravity.
Our focus on physical concepts stems from both
their fundamental relevance to important topics of
world models and embodied systems (Savva et al.,
2019; Duan et al., 2022; Xiang et al., 2023), and
their rich denotations and connotations that enable
effective design of summative assessment tasks.

Specifically, PHYSICO includes two subtasks
corresponding to two coarse levels of understand-
ing in Bloom’s taxonomy, as shown in Figure 1.
One is the low-level understanding subtask in the
natural language format, aimed at measuring the
remembering (or memorization) ability of LLMs.
The other involves the same concepts but in an ab-
stract representation format inspired by (Chollet,
2019), which is designed to measure the high-level
understanding beyond remembering of LLMs.

We conduct comprehensive experiments on
PHYSICO with representative open-source and
commercial LLMs.2 We obtain two key findings:
(1) State-of-the-art LLMs perform perfectly on the
low-level understanding subtask (>95% in Accu-
racy) but lags behind humans by a large margin
(∼40% in Accuracy) on the high-level subtask,
which verifies the stochastic parrot phenomenon in
LLMs. (2) Further analysis shows that our high-
level subtask challenges LLMs due to the intrinsic
difficulty of deep understanding rather than the un-
familiar format.

This paper makes the following contributions:

• We introduce a psychology-appealing approach
(summative assessment) and a corresponding
task PHYSICO to measure the understanding of
LLMs.

• Based on PHYSICO, we provide a quantitative
experiment to successfully verify the stochastic
parrot phenomenon in LLMs.

• As a by-product, our work presents a challeng-
ing comprehension task for existing text-only
and multimodal LLMs, which establishes a sub-
stantial performance gap between humans and
machines.

2Throughout this paper, LLM refers to either standard text-
only LLMs or large multimodal models for simplicity.

2 Measuring Concept Understanding via
Summative Assessment

It is intrinsically challenging to measure the extent
to which LLMs understand a sentence or concept.
Indeed, Bender and Koller (2020) provide a defini-
tion of "understanding" from a linguistic perspec-
tive, but this definition depends on another abstract
and unmeasurable term, “meaning”. Therefore,
even with this definition, accurately measuring "un-
derstanding" remains elusive.

We approach the measurement of whether LLMs
understand a concept from an educational and
cognitive perspective, using summative assess-
ment (Black and Wiliam, 1998a,b; Harlen and
James, 1997). Summative assessment is widely
used by educators as an appealing strategy to eval-
uate students’ understanding and knowledge ac-
quisition in educational and cognitive psychology.
For example, when middle school physics teachers
want to know whether a student truly understands
the concept “Gravity”, they would design a series
of questions specifically related to the concept of
gravity to assess comprehension, e.g., the prop-
erties like inverse square law and examples like
orbital motions. If a student struggles to answer
many of these questions, the teacher may conclude
that the student does not understand the concept
well or has a poor grasp of it.

We extend the idea of summative assessment to
evaluating the concept understanding of machines.
Formally, assume S denotes an intelligent system
and C is a specific concept. To evaluate the extent
how S understands the concept C, our summative
assessment includes the following two steps:
• Task design towards C: design several concept

understanding tasks, each of which consists of
several questions manually created towards un-
derstanding the concept C.

• Evaluating S: ask S to answer the questions
from the tasks and calculate its accuracy.

Requirements for Validity The success (valid-
ity) of the proposed evaluation approach highly
depends on the task design (Black and Wiliam,
1998a,b). For example, if the questions are too easy,
even a weak system could answer them correctly.
This leads to an overestimation of the system’s un-
derstanding capabilities, making the assessment in-
effective. To ensure good validity, we adhere to the
principles outlined in summative assessment (Black
and Wiliam, 1998a,b) for task design:
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• Alignment with evaluating objectives: the ques-
tions should be related to the targeted concept,
and should measure the specific knowledge about
the targeted concept.

• Different difficulty levels: the questions should
be with different difficulty levels from easy to
difficult level, to ensure that the evaluation results
have distinctiveness for different systems.

• Variety: the questions should reflect various un-
derstanding aspects of the targeted concept; ad-
dressing both its denotation and connotation.

• Simplicity: while not mandatory, a simpler bench-
mark for humans can more effectively high-
light the issue faced by current models, i.e., the
stochastic parrot effect in LLMs.

3 Task Design and Dataset Construction

3.1 Task Design Principle

We borrow the idea of Bloom’s taxonomy (Krath-
wohl, 2002; Armstrong, 2010) from education re-
search to fulfill the requirements for task design
in Section 2, so as to ensure the assessment valid-
ity. Bloom’s taxonomy offers an ideal principle to
these requirements with an ordering of six cogni-
tive skills (from low to high level) for knowledge
understanding: Remembering, Understanding, Ap-
plying, Analyzing, Evaluating and Creating.

Generally, it is nontrivial to strictly follow this
principle since there is no clear boundary among
the last four skills of understanding. As a result,
we group the last four high-level skills into one and
consider the following two levels of understanding:
• Low-level Understanding: covering the two

lowest-level skills in Bloom’s taxonomy, i.e.,
retrieving relevant knowledge from long-term
memory and rephrasing in one’s own words.

• High-level Understanding: covering the aspects
for understanding the knowledge beyond mem-
orization. As shown by the examples in Section
3.2.2, our tasks directly correspond to a spec-
trum from the understanding level of applying to
the level of analyzing in Bloom’s taxonomy, e.g.,
applying the knowledge to explain a physical
phenomenon, analyzing a concrete property of a
concept in a generalized and abstract manner,3.

Based on these two levels, we design the following
PHYSICO task for summative assessment.

3For example, the flow of electric current can be abstracted
as moving from high potential to low potential.

3.2 Our PHYSICO Task
PHYSICO is essentially a physical concept under-
standing task, which primarily targets on 52 phys-
ical concepts or phenomena: e.g., gravity, light
reflection, acceleration, buoyancy, inertia, etc (see
Appendix A for the full list). Our focus on physi-
cal concepts is motivated by two main reasons: 1)
understanding physical concepts is critical for intel-
ligent systems to interact with the world, which is
ultimate goal of embodied AI (Savva et al., 2019;
Duan et al., 2022; Xiang et al., 2023); 2) design-
ing tasks centered around physical concepts allows
us to more easily control different levels of under-
standing and ensure the diversity of each concept.

For each physical concept, PHYSICO involves
both low-level understanding subtasks and high-
level subtasks, following our task design principles.

3.2.1 Low-level Understanding Subtasks
Physical Concept Selection (text) First, to eval-
uate whether an LLM possesses the knowledge of
our included concepts, we design a task to recog-
nize a concept from its corresponding Wikipedia
definition. Specifically, we manually masked
the synonyms of the concept with placeholder
[PHENOMENON]. Meanwhile, highly relevant enti-
ties were masked as [MASK] to alleviate shortcuts.
For example, in the definition of Gravity, the
terms “gravity” and “gravitation” were masked as
[PHENOMENON], while “Isaac Newton” was masked as
[MASK]. Details can be found in Appendix B. We
then present the LLMs with the same four choices
as in our following high-level subtasks.

Physical Concept Selection (visual) Second, we
evaluate if the LLMs can recognize our concepts
represented with real-life pictures. To this end,
we query our concepts on Google image search,
and select the images that reflect the same core
properties and examples annotated in our following
high-level tasks. This results in 100 examples. We
construct the same four-choice instances as above.

Physical Concept Generation Finally, we di-
rectly ask the LLMs to generate the description of
a concept with its core properties and representa-
tive examples. For instance, the concept Gravity is
described as “a force that pulls objects with mass
towards each other”, followed by the example “an
apple falls to the ground” as shown in Figure 1. We
then evaluate the performance of LLMs by measur-
ing the quality of the description and its coverage
of knowledge required by our PHYSICO and we
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employ both automatic and human metrics as pre-
sented in Section 5.2. This provides a quantitative
measure of the knowledge LLMs can recall in the
context of our assessment.

3.2.2 High-level Understanding Subtasks
The low-level subtasks are depicted in natural lan-
guage thus are likely to be remembered by the
LLMs due to their extensive training data. To as-
sess whether the LLMs possess a deep understand-
ing of the knowledge, we require the subtasks that
can 1) represent the high-level understanding skills;
2) avoid the effects of memorization.

The Abstraction and Reasoning Corpus
(ARC) (Chollet, 2019) provides a compelling way
by using grids (or matrices) instead of texts to
represent a concept. While the LLMs have seen
matrices during pre-training, the data is less likely
to be correlated to physical concepts. We hence
adopt this idea to represent our subtask as abstract
representations in the grid world that associate to
the key properties of a physical concept.

The PHYSICO-CORE Set Our first subtask aims
to cover the core properties or most representative
examples/applications of the assessed concepts. To
ensure our set remains generally comprehensible
to humans, we maintain a high school-level diffi-
culty and selected 52 common physical concepts
within the curriculum. To enhance the diversity
and richness, five annotators have labeled multiple
core aspects of each concept. For example, the an-
notated core aspects of Gravity include attraction
between two bodies, motion on an inclined plane,
objects falling to grounds and orbital motions.

For each aspect of a concept, the annotator is
asked to draw several pairs of abstract grid repre-
sentations. The aspect of the concept is guaranteed
to be illustrated by the pair, such that it explains
the transformation from the input to the output. For
example, Figure 1 forms a direct abstract visual-
ization of the Gravity concept from textbooks, i.e.,
apple falling from a tree. This results in 1,200
paired grid examples for the 52 concepts, which
form 400 3-shot instances.

Figure 2 presents two examples from this subtask
that delve deeper into the concept of Gravity com-
pared to Figure 1. The top example demonstrates
an application of the inverse square law of grav-
ity. The bottom one presents a parabola, linking
the knowledge of gravity to inertia. These exam-
ples demonstrate the difficulty of inferring their

Figure 2: Examples of input-output grids labeled as
Gravity, with increasing difficulty levels.

ground-truth labels solely by recalling the concept
of Gravity without high-level understanding skills.

The PHYSICO-ASSOCIATIVE Set Many in-
stances in the original ARC dataset can be solved
via association or analogy to physical concepts.
Therefore, as a second source of subtasks, we
ask annotators to manually pick input-output grids
from ARC that can evoke their associations to spe-
cific physical concepts and assign these concepts
as ground-truth labels. Different from PHYSICO-
CORE, we adopt an open-coding schema and al-
low the inclusion of new concepts during anno-
tation. The annotators have reviewed 500 ARC
instances to filter out the required ones. After cross-
validation to ensure agreement, it results in a collec-
tion of 200 instances with physical concept labels.

This relabelling approach covers additional 15
physical concepts. The resulted subtasks have
each example represent an abstract aspect of a con-
cept with possible distracting information. Conse-
quently, the resulted task is more subjective hence
more challenging than the PHYSICO-CORESet.

Creation of Classification Tasks We create four-
choice tasks on the annotated data. Each instance
consists of 3 unique grid pairs as input examples.
This results in 200 instances for PHYSICO-CORE

development set, 200 instances for PHYSICO-
CORE test set, and 200 instances for ASSOCIATIVE

respectively. For each instance, we select three ad-
ditional labels from our concept pool, along with
the ground-truth label, as candidate options. We
manually avoid ambiguity during the negative sam-
pling. For example, if Gravity is the ground-truth,
concepts like Magnet will not be sampled.

4 Overview of Our Studies

In the following sections, we conduct a series
of studies on our PHYSICO tasks. Our studies
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RQ1: Do LLMs possess the necessary knowledge in 
natural language format to succeed in low-level tasks?

RQ2: Can humans perform well on the high-level tasks?

RQ3: Can LLMs perform well on the high-level tasks 
using matrix-format input representations?

RQ4: Can LLMs perform well on the high-level tasks 
using visual input representations?

RQ5: Are our tasks challenging for LLMs primarily due 
to their unfamiliarity with grid representations?

RQ6: Can LLMs easily benefit from supervised training 
on labeled data?

Hypothesis1: SOTA LLMs 
exhibit the Stochastic Parrot 
Phenomenon

Hypothesis2: SOTA LLMs lag 
behind humans on our high-
level tasks by a large margin

Hypothesis3: The primary 
challenge for LLMs in our 
tasks is the intrinsic difficulty 
of deep understanding, rather 
than the unfamiliar format.

Figure 3: Overview of the research questions answered
in our study and their relationships.

are organized into six Research Questions (RQs),
through which we aim to answer three Hypotheses
as shown in Figure 3. In summary, we propose to:

(1) Examine the quantitative disparity in LLMs’
performances between low-level (RQ 1) and high-
level subtasks (RQ 3, RQ 4). This aims to highlight
the existence of stochastic parrot phenomenon
in LLMs’ understanding of physical concepts.

(2) Assess the performance gap between LLMs
(RQ 3, RQ 4) and humans on our high-level sub-
tasks (RQ 2). This aims to demonstrate that LLMs
fall significantly short of human understanding.

(3) Investigate the shortcomings of in-context
learning and supervised fine-tuning in improving
LLMs on our high-level subtasks (RQ 5, RQ 6).
This aims to underscore the intrinsic limitations
of SOTA LLMs in achieving deep understanding.

Experimented Models We use commercial
LLMs, including GPT-3.5 (gpt-3.5-turbo-1106),
GPT-4 and GPT-4v (gpt-4-turbo-2024-04-09),
GPT-4o (gpt-4o-2024-05-13); and open-
source LLMs, including Llama-3
(Llama-3-8B-Instruct) (MetaAI, 2024) and
Mistral (Mistral-7B-Instruct-v0.2) (Jiang et al.,
2023), InternVL-Chat-V1-5 (Chen et al., 2023,
2024)and LLaVA-NeXT-34B (Liu et al., 2023a,b).
We use the default inference configurations of the
LLMs. Considering the randomness, we run each
experiment 3 times and compute the average and
standard derivation. We also experimented with
the recent thinking models like o1.

5 Validation on Low-Level Subtasks

To illustrate the stochastic parrot phenomenon
with PHYSICO, a necessary condition is to ensure
the LLMs can perform well on the low-level un-
derstanding subtasks, i.e., whether LLMs exhibit
strong skills of recalling and describing the defini-
tions, core properties and representative examples
of the physical concepts in our tasks. That is:

(a) Mistral Llama-3 GPT-3.5 GPT-4

81.0±1.3 88.5±0.7 97.3±0.3 95.0±0.9

(b) InternVL LLaVA GPT-4v GPT-4o

66.3±7.7 66.7±5.8 93.7±0.9 93.7±0.5

Table 1: Accuracy on the text-based (a) and visual-based
(b) concept selection subtasks.

RQ 1: Can LLMs perform well on low-level sub-
tasks, i.e., understanding the definitions of physi-
cal concepts in natural language?

To answer RQ 1, we evaluate the LLMs’ abilities
to comprehend the definitions of these concepts and
generate their descriptions and examples in natural
language, as defined in Section 3.2.1.

5.1 Concept Selection Subtask

Settings We provide the standard definition of
a concept based on Wikipedia with its synonyms
masked; then ask the LLMs to identify the concept,
under the same four-choice setting throughout the
experiments. We evaluate the representative text-
only LLMs and compute the accuracy.

Results Table 1 shows that the GPT (both text-
based and visual-based) models perform near per-
fect on recognition of our physical concepts from
standard text-based definitions and from the real-
life images. Moreover, we observed that open-
source models make more mistakes compared with
the closed-source models due to the smaller model
size. For the text-based models, both Mistral and
Llama-3 are not as good as the closed-source mod-
els. Surprisingly, both InternVL and LLaVA are
much worse than the open-source GPT models.
One possible reason to this discrepancy is that our
text-based concepts are from Wikipedia which is
usually used as a part of the training data for open-
source LLMs. In contrast, some of our selected im-
ages for those concepts may not be included in the
training data of both InternVL and LLaVA which
thereby can not memorize those visual instances.

5.2 Concept Generation Subtask

Settings We evaluate the descriptions LLMs gen-
erate for a concept. The evaluation of text gen-
eration is in general difficult. Moreover, in our
scenario each concept have many different ground-
truth examples in its description, thus existing auto-
matic metrics such as BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005) are not
capable of accurately measuring the quality. There-
fore, we rely on mainly human evaluation for this
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Mistral Llama-3 GPT-3.5 GPT-4

92.6 100 100 100

Table 2: Human evaluations on concept generation.

subtask. We also propose an automatic metric via a
self-play game for completeness in Appendix B.3.

Human evaluation metric We ask the annota-
tors to evaluate the quality of the generated de-
scriptions. The evaluation uses binary scores: each
description receives a score of 0 if it consists of any
factual error on the concept itself or any unfaithful
examples,4 and a score of 1 otherwise.

Results The results of automatic and human eval-
uations are shown in Table 2. According to human
evaluation, there are no factual errors in the gen-
erated descriptions except for Mistral, confirming
that our selected concepts rely on basic and widely
accepted knowledge. Thought accurate, the open-
source LLMs sometimes include correct but uncom-
mon facts, e.g., listing single-slit diffraction as an
example of Wave Interference. The additional self-
play results in Appendix B.3 further justify that
all LLMs can accurately recognize the concepts
from the descriptions they wrote by themselves.
Combining the conclusions, it shows the LLMs can
generate correct and sufficient information.

Remark We asked the annotators of our CORE

set to evaluate whether the core properties they
annotated are covered by the LLMs’ generated de-
scriptions. This corresponds to measuring the recall
of the generated descriptions on core properties/ex-
amples of concepts from PHYSICO-CORE. The
recall rates for GPT-3.5 and GPT-4 are 85.0 and
90.0, respectively. Of course, there are some ex-
ceptional examples from PHYSICO-CORE missed
in the descriptions. One example is that the LLMs
fails to draw the connection between movable pul-
ley and the Lever concept. Moreover, by manually
checking these missed properties and examples,
we found that most of them can be recalled if we
query the LLMs in a second turn by prompting “Any
more core properties or examples?”. This confirms
that the LLMs are aware of and are able to re-
call the core properties of concepts covered by the
PHYSICO-CORE, though some of them may not
have the top conditional probabilities of generation.

Conclusion LLMs understand the concepts cov-
ered by PHYSICO in natural language format. No-

4For example, if the LLMs generated a wrong year in the
description, it is not counted as incorrect physical knowledge.

tably, we find that the properties and examples
annotated in PHYSICO-CORE are within the LLMs’
knowledge and are highly likely to pop up when the
corresponding physical concepts are queried.

6 Experiments on High-Level Subtasks

This section answers the research questions regard-
ing our high-level understanding subtasks.

RQ 2: Can Humans understand the abstract rep-
resentations?

First of all, we investigate the performance of
humans who possess the knowledge required by
our PHYSICO. For each instance in our PHYSICO,
we asked three independent annotators who were
not involved in our task design to perform the same
classification task presented to the LLMs. The an-
notators are provided with the same inputs used as
prompts for the LLMs; and are permitted to consult
GPT-4o for definitions of concepts they find un-
clear (mainly happens to the CORE-Test set). The
results indicate that our tasks are largely solvable to
people with a college-level education. Specifically,
on the PHYSICO-CORE tasks, humans achieved
an accuracy rate higher than 90%. The PHYSICO-
ASSOCIATIVE tasks present greater challenges and
subjectivity because the annotations are personal-
ized based on the annotators’ individual perspec-
tives and experiences. Despite these challenges,
humans can still achieve a notable average accu-
racy of 77.8% in solving these tasks.

We conducted a detailed investigation into
human performance on a subset of PHYSICO-
ASSOCIATIVE. Participants were asked to anno-
tate instances where they believed none of the four
candidate answers adequately explained the inputs.
The results revealed a 10.4% rate of disagreement.
On these disagreed-upon examples, human accu-
racy was 33.3%, explaining a major factor for the
human performance decline.

Conclusion Our study demonstrates that humans
can perform the PHYSICO tasks quite well.

RQ 3: Can LLMs understand concepts in the
abstract representations of the matrix format?

A straightforward solution for our PHYSICO is
to represent the grid-formatted examples as ma-
trices. By representing the matrices with a token
sequence, they can be integrated into an instruc-
tion prompt for text-based LLMs, following exist-
ing prompting methods for ARC tasks (Acquaviva
et al., 2022; Xu et al., 2023; Wang et al., 2023,
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Models Dev Test
CORE-Dev CORE-Test ASSOC.

Random 25.0 25.0 25.0

te
xt

-o
nl

y

GPT-3.5 26.5±2.5 24.4±0.8 30.0±2.5
GPT-4 41.3±1.3 28.2±2.3 38.3±1.2
GPT-4o 34.0±2.9 31.3±2.9 35.5±2.5
o3-mini-high 46.0∗ 46.5 42.5

Mistral 21.5±0.3 26.0±1.4 23.2±0.4
Llama-3 23.5±2.5 27.3±0.6 21.7±2.0
DeepSeek-R1 41.5 29.5 55.0

m
ul

ti-
m

od
al

GPT-4v 34.2±1.6 28.7±2.4 32.0±1.5
GPT-4o 52.3±0.8 45.2±2.3 36.5±0.4

+CoT 46.0±2.5 43.5±0.8 39.5±1.1
o1 53.0 42.5 34.5
Gemini2 FTE 49.8±0.8 43.2±2.0 36.8±3.1

InternVL 26.3±1.6 26.9±4.1 24.8±1.3
LLaVA 26.2±1.1 28.5±1.5 24.7±3.2

Humans 92.0±4.3 89.5±5.1 77.8±6.3

Table 3: Performance of different text-only and multi-
modal LLMs on our tasks. InternVL denotes InternVL-
Chat-V1-5 and LLaVA denotes LLaVA-NeXT-34B.
Gemini FTE refers to the Gemini 2.0 Flash Thinking
Experimental model. We use italic fonts to refer to the
recent thinking models.

2024). We use the prompt shown in Figure 7 to
query the answers from the evaluated LLMs.

Results The top (text-only) section of Table 3
presents the results. All the LLMs perform poorly
on the three sets of our PHYSICO. Notably, GPT-
3.5, Mistral, and Llama-3 failed to show significant
improvement over random performance. Even for
the remarkable GPT-4, GPT-4o and GPT-4v, their
performance is not descent and particularly there is
a huge performance gap between them and humans.

In addition, as our PHYSICO is essentially an in-
ductive reasoning task from grid-represented exam-
ples, we also tested the thinking (o1-style) models
concurrently with our work. We experimented with
gemini-2.0-flash-thinking-exp-1219, o1-2024-12-17,
o3-mini-2025-01-31 and DeepSeek-R1. The former
two models support multimodal inputs. Because
o1 is very slow and especially has a limited quota,
we first compare it on a subset of 50 instances
for both text and multimodal input. This prelim-
inary study gives an accuracy of 42.0 (text) and
46.0 (visual), where GPT-4 (text) performs 44.0.
We therefore run the full experiment with o1 (vi-
sual) only. The reasoning models indeed achieve
better results in the text-only setting, but fails to
significantly improve over GPT-4o. The detailed
performance decomposition of GPT-4, GPT-4o, o1
and Gemini FTE can be found in Appendix D.

We conducted an in-depth investigation into the
discrepancy in the performance of DeepSeek-R1,

which achieves strong results on ASSOC.-Test but
performs poorly on CORE-Test. It revealed that
R1 tends to develop transformation rules based on
physical concepts and then applies these rules to
predict the exact outputs from given inputs. While
this strategy works well for ARC examples due
to their deterministic nature, the CORE examples
typically lack this property. We believe that tuning
the prompts to provide better guidance could help
mitigate this issue, which we leave for future work.

Conclusion Comparing the human performance
in RQ 2 to the best-performing LLMs reveals a
huge gap. While these tasks are simple or triv-
ial for humans, LLMs face substantial challenges,
indicating a lack of deep understanding.

When comparing LLMs’ performance on low-
level natural language tasks in RQ 1 to high-level
abstract pattern understanding tasks, we observe
significant declines. This highlights the presence
of the stochastic parrot phenomenon in LLMs.
Our dataset also quantifies the severity of this phe-
nomenon. For example, while GPT-3.5 performs
on par with GPT-4 on the low-level tasks, it nearly
drops to random guessing on our high-level tasks,
revealing its tendency to act as a stochastic parrot
with the physical concepts in our dataset.

RQ 4: Can multimodal LLMs perform well on
our tasks with visual input representations?

Next, we explore whether multi-modal LLMs
can effectively solve our tasks when the input ex-
amples are presented as visual images rather than
matrices like in RQ 3. We use the prompt in Fig-
ure 8 to query the answers from evaluated LLMs.

Results The bottom (multi-modal) section of Ta-
ble 3 shows the results. Consistent with the ob-
servations in RQ 3, a significant gap between the
performance of LLMs and humans exists.

Notably, the recently introduced GPT-4o outper-
forms all other LLMs on PHYSICO-CORE by 10%
with visual inputs but lags behind GPT-4 on matrix
inputs. This discrepancy may be due to GPT-4o’s
training on images that directly illustrate physical
concepts, making it more adept at solving problems
like in Figure 1. However, this advantage does not
extend to the more abstract problems in PHYSICO-
ASSOCIATIVE that require further knowledge appli-
cation skills, highlighting the LLMs’ lack of deep
understanding even with multi-modal training.

Finally, given that LLMs can generate high-
quality descriptions of the concepts (see RQ 1),
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we adopt a chain-of-thought (Wei et al., 2022) ap-
proach. It first asks the LLMs to describe each
choice and then makes predictions. The results in
Table 3 (+CoT) show limited improvement or per-
formance drop, further confirming the presence of
the stochastic parrot phenomenon.

RQ 5: Is PHYSICO challenging mainly due to
LLMs’ unfamiliarity with grid representations?
One might argue that the challenges of PHYSICO

might be due to the uncommon nature of the task
format (especially the matrix-format inputs) en-
countered during LLM training, rather than a lack
of deep understanding. We disprove this hypothesis
from two perspectives:

(1) We show that GPT-4o is actually famil-
iar with the grid representations to some extent.
Specifically, we conducted a human study to exam-
ine GPT-4o’s fundamental visual comprehension
skills (Girshick et al., 2014; Long et al., 2015; He
et al., 2017), including recognizing objects from
the grids, describing their colors and shapes, and
identifying which objects have their color, shape,
or position changed from input to output. These
tasks correspond to the fundamental computer vi-
sion tasks of segmentation and object detection.

We sampled 60 grid pairs from our dataset and
had 3 annotators determine if GPT-4o provides
correct answers. For each object, the answer is
counted as correct only if the shape, color, and
positions are all answered correctly. Our results
show an accuracy of 86.7%, which is significantly
better compared to the accuracy on our high-level
tasks. This confirms that GPT-4o is indeed familiar
with the grid inputs, which aligns with the findings
of the concurrent study (Wu et al., 2025), but still
cannot handle our PHYSICO tasks effectively.

Additionally, we studied Chain-of-Thoughts
with the low-level understanding results as inter-
mediate steps. On the PHYSICO-CORE-Dev set,
the results below show that it still fails to improve
over the vanilla GPT-4o prompting, showing that
the GPT-4o model cannot connect the low-level
understanding with high-level concepts.

CoT - definitions 46.0±2.5 CoT - low-level 50.7±0.5

(2) We show that making the LLMs more famil-
iar with the grid representations does not lead to
significant improvement. Specifically, we conduct
the following experiments with text-only LLMs:
• ICL on other concepts. Compare the perfor-

mance of zero-shot GPT-4 with GPT-4 using

Models CORE ASSOC.

GPT-4 41.3±1.3 39.0±0.6
w/ ICL-3-shot 39.5±1.6 36.2±1.7
w/ ICL-9-shot 32.8±1.0 39.0±1.6

Mistral 21.5±0.3 23.2±0.4
w/ FT on syn-tasks 20.9±0.7 22.5±0.5
w/ FT on ARC 20.9±0.8 25.5±0.9

Llama-3 23.5±2.5 21.7±2.0
w/ FT on syn-tasks 23.0±1.1 23.2±2.7
w/ FT on ARC 22.2±1.6 22.4±1.2

Table 4: Performance of LLMs with in-context learning
or fine-tuning on grid-format data.

in-context learning (ICL) on few-shot examples
from concepts other than the assessed one.

• FT on synthetic matrix data. Compare the open-
source LLMs before and after fine-tuning on a
large amount of matrix-input data (Appendix E)

• FT on the ARC task. Compare the open-source
LLMs before and after fine-tuning on the orig-
inal ARC (Chollet, 2019) task, which ensures
that all inputs from the PHYSICO-ASSOCIATIVE

examples have been seen during model training.
Despite that both the ICL and SFT approaches
make LLMs more familiar with matrix-format in-
puts, neither approach significantly improves the
results as shown in Table 4.

Conclusion GPT-4o is somehow familiar with
the grid format and further enhancing the famil-
iarity of grid format for LLMs is not the key to
addressing our challenges.

RQ 6: How much can LLMs benefit from training
on labeled data?

Many tasks that challenge LLMs can see signif-
icant performance boosts through ICL or SFT on
labeled data (Hessel et al., 2023; Yu et al., 2023;
Berglund et al., 2023). When such improvements
are observed, it suggests that LLMs inherently pos-
sess the necessary skills to excel in their tasks, need-
ing only minimal training effort.

We demonstrate that this is not the case for our
tasks, where light-weight training of LLMs on la-
beled data does not improve for our tasks. Given
the current lack of large-scale training data for our
purpose, we conduct an extreme case study: models
learn from the same concepts in PHYSICO-CORE

and are tested on the same concepts in PHYSICO-
ASSOCIATIVE. To this end, we select the instances
that consists of at least two choices that exist in the
PHYSICO-CORE, leaving 80 examples.

We conduct the following experiments on this
subset to answer RQ 6:
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GPT-4 42.9±2.4 GPT-4o 40.4±2.1 Llama-3 22.1±2.8
+ ICL on CORE 40.0±1.0 + ICL on CORE 37.1±2.6 + SFT on CORE 20.9±2.7

Table 5: Accuracy on the subset of ASSOCIATIVE subtask that has overlapped concepts with CORE.

• ICL on the same concepts. Compare the zero-
shot GPT-4/4o and GPT-4/4o with ICL5 on exam-
ples for the same concepts from PHYSICO-CORE.
Specifically, for each instance, we sample 9 ex-
amples from PHYSICO-CORE with their labels
among the choices of the instance.

• SFT on the CORE set. Compare the open-source
LLMs before and after fine-tuning on labeled
data from PHYSICO-CORE.

Results Table 5 shows that ICL and SFT on the
labeled examples of the same concepts lead to
a consistent, though not severe, drop in perfor-
mance. The results suggest that the models have
become overfitted to the "clean" examples from the
PHYSICO-CORE. They appear to have learned su-
perficial correlations from the demonstrations that
do not generalize well, providing further evidence
of the stochastic parrot phenomenon. The difficulty
of generalization within the same concepts indi-
cates the challenges of our tasks to the supervised
fine-tuning paradigm.

Conclusion Together with the results for RQ 5
and RQ 6, it suggests that the low performance of
LLMs is not likely to be improved from prompting
techniques alone. There exists intrinsic inefficiency
in the pre-training of LLMs, which results in the
lack of necessary skills for deep understanding.

7 Related Work

Stochastic Parrots on LLMs The pioneer study
by (Bender and Koller, 2020) questioned the un-
derstanding ability of large models; and Bender
et al. (2021) first introduced the terminology of
stochastic parrot. The concept of stochastic parrot
has received great attention, leading to a surge of
studies on this topic. According to Google Scholar,
the term “stochastic parrot” appears in the titles of
dozens of papers from diverse research fields (Borji,
2023; Li, 2023; Duan et al., 2024; Henrique et al.,
2023). However, although the concept of stochas-
tic parrots in LLMs is widely accepted and recog-
nized, to the best of our knowledge, there is a lack
of quantitative experiments to precisely verify this
viewpoint. This gap directly motivates our work.

5For GPT-4o, we implement ICL with multi-turn dialogues.
Each shot in the demonstration is provided in one turn which
asks the GPT-4o to explain the image.

Abstract Reasoning Challenge Abstract reason-
ing challenge (ARC) aims to examine the inductive
reasoning ability in a few-shot scenario (Chollet,
2019) and it has been used as a remarkable testbed
to measure the intelligence of LLMs. Recently,
many research efforts have been made on improv-
ing the performance of LLMs on ARC bench-
mark (Tan and Motani, 2023; Wang et al., 2023;
Xu et al., 2023; Mirchandani et al., 2023; Wang
et al., 2024; Huang et al., 2024). We draw inspira-
tion from ARC by utilizing input-output grids as
abstract representations in our task design. How-
ever, our task is significantly different from the
ARC-style work — our high-level understanding
task focuses on comprehending the transformation
rules from inputs to outputs and relating them to
physical concepts, and is designed to assess the
stochastic parrot phenomenon.

Challenging Tasks towards LLMs’ Understand-
ing Extensive recent efforts have been made on
designing tasks that challenge the understanding
abilities of LLMs (Chakrabarty et al., 2022; Tong
et al., 2024; Shapira et al., 2023; Hessel et al., 2023;
Donadel et al., 2024; Li et al., 2024). For exam-
ple, Hessel et al. (2023) proposed a humor un-
derstanding task, revealing a large performance
gap between LLMs and humans. As a by-product,
our PHYSICO challenges the understanding capa-
bilities of LLMs, relating it to the above studies.
However, we make primary contribution to provide
an quantitative experiment to verify stochastic par-
rots in LLMs via controllably paired low-level and
high-level tasks.

8 Conclusion

We introduce PHYSICO, a novel task to assess ma-
chines’ understanding of physical concepts at dif-
ferent levels. Our experiments reveal that: 1) LLMs
lag significantly behind humans on PHYSICO, indi-
cating a lack of deep understanding of the covered
concepts; 2) LLMs exhibit the stochastic parrot
phenomenon, as they excel at low-level remember-
ing tasks but struggle with high-level understanding
tasks; 3) LLMs’ poor performance stems from its
intrinsic deficiencies, as neither in-context learning
nor fine-tuning improves their results.
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A Details of the Included Concepts in our
PHYSICO

Concepts in PHYSICO-CORE The concepts in
PHYSICO-CORE are basic physical concepts that
we manually design problems for. The develop-
ment set covers 27 concepts and the test set covers
25 concepts as follows:

reference frame 12 gravity 10
reflection 10 refraction 10
light imaging 10 communicating vessels 10
cut 10 laser 10
surface tension 10 move 10

buoyancy 10 acceleration 10
inertia 10 electricity 10
repulsive force 8 wave 8
lever 6 optical filters 6
compression 4 diffuse reflection of light 4

wave interference 4 diffusion 4
vortex 4 expansion 4
nuclear fission 2 nuclear fusion 2
diffraction of waves 2

Table 6: Concepts and their corresponding number of
instances in PHYSICO-CORE-Dev.

atmospheric pressure 12 energe conservation 10
elastic force 10 friction 9
photoelectric effect 8 heat conduction 8
doppler effect 8 electromagnetic wave 8
melting 8 vaporization 8

fluid pressure 8 thermal expansion and contraction 8
Brownian motion 8 splashing 8
oscillation 8 relativity 8
lighting 8 lifting 8
force composition 8 pulley 8

inclined plane 8 Bernoulli effect 7
fictitious force 6 siphon 6
resonance 4

Table 7: Concepts and their corresponding number of
instances in PHYSICO-CORE-Test.

Concepts in PHYSICO-ASSOCIATIVE The fol-
lowing table summarized all the concepts from
PHYSICO-ASSOCIATIVE:

B Details of Analysis Methods in RQ 1

B.1 Masking of Textual Descriptions
This experiment follows the setting in the “Phys-
ical Concept Selection Subtask” in section 3.2.1.
The definitions of the corresponding phenomena
were extracted from Wikipedia as well as gener-
ated by GPT-3.5 and GPT-4. To maintain consis-
tency, the terms representing concepts were masked
as [PHENOMENON] while relevant terms are masked
as [MASK]. For instance, “interference” which cor-
responds to the phenomenon “wave interference”

mirror 30 laser 20
zoom in 15 magnet 14
wave 13 explosion 11
compression 10 rotation 10
gravity 9 expansion 9

move 8 change of reference frame 8
water ripples 7 long exposure 7
reflection 5 wetting 5
diffusion 4 zoom out 3
projection 2 polarization of light 1

vortex 1 chemical bond 1
nuclear fission 1 squeeze 1
nuclear fusion 1 lumination 1
wave interference 1 optical filter 1
vacuum 1

Table 8: Concepts and their corresponding number of
instances in PHYSICO-ASSOCIATIVE.

was masked as [PHENOMENON]. In contrast, “Newton’s
first law of motion” which corresponds to the phe-
nomenon “inertia” was masked as [MASK].

An example of the masked description can be
found in Figure 6.

B.2 Prompts Used for Description Generation
and Classification

Figure 4 and 5 include the prompts used for gener-
ation and classification respectively.

[SYSTEM]
You are an expert in physics. You task is to provide
↪→ a comprehensive definition of a given physical
↪→ concept or phenomenon, with the key properties or
↪→ key examples of the concept included.

[USER]
Please provide me with the definition of the
↪→ physical concept "{{ CONCEPT }}", with the key
↪→ properties or key examples included.

Figure 4: The prompt template used for generating de-
scriptions of physical concepts (denoted as the variable
CONCEPT) in RQ 1.

B.3 Additional Results on the Self-Play Game

Automatic evaluation of a text generation task is
in general difficult. Especially, in our scenario
each concept have many different ground-truth ex-
amples in its description, thus existing automatic
metrics such as BLEU (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005) are not capa-
ble of accurately measuring the quality. Therefore,
we propose an alternative automatic metric via a
self-play game for this subtask:

For each generated description of a concept, we
mask the synonyms of the concept in it as in the
previous selection subtask, and ask the same LLM
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[SYSTEM]
You will be playing a game:
You are given a definition of a physical phenonmenon
↪→ , where the names of the phenonmenon are masked.
Your task is to guess which phenonmenon the
↪→ definiton refers to.
Please select the most close answer from the
↪→ provided options.

[USER]
Here is a definition of a physical phenonmenon,
↪→ where the names of the phenonmenon are masked:

[Definition]

{{ MASKED DESCRIPTION }}

Please guess which phenonmenon the definiton refers
↪→ to. You should choose your answer from the
↪→ following options: {{ CANDIDATE ANSWERS }}

Your response should end with your choice of answer.

Figure 5: The prompt template used for guessing the
referred physical concept from four candidates (denoted
as the variable CANDIDATE ANSWERS) from the natural
language descriptions (denoted as the variable MASKED

DESCRIPTION) in RQ 1.

Mistral Llama-3 GPT-3.5 GPT-4

Human 92.6 100 100 100

SP 89.2±1.6 91.9±0.6 96.0±0.4 99.8±0.2

Table 9: Evaluations on the concept generation subtask,
with metrics of Self-Play success and Human evaluation.

to identify the concept being described from four
options. This metric evaluates the quality of LLMs’
generated concept descriptions in an objective man-
ner.

Results The results of automatic evaluation via
self-play are shown in Table 9 together with the
human evaluation results. In the self-play test, all
LLMs can accurately recognize the physical con-
cepts from the descriptions they wrote by them-
selves. Combined with the conclusion from human
evaluation, it shows the LLMs can generate correct
and sufficient information.

C Details of the Methods Used in RQ 3
and RQ 4

We use the prompt template in Figure 7 for experi-
ments on text-only LLMs (RQ 3); and the template
in Figure 8 for multi-modal LLMs (RQ 4).

D Performance Decomposition in RQ 3
and RQ 4

Table 10 provides a performance decomposition
of text-based GPT-4, text-based o1-preview and
multi-modal GPT-4o on our PHYSICO-CORE-Test

set. Because the rate limit of o1-preview, we con-
duct experiment on a subset of 50 instances. The
result shows that o1-preview does not show supe-
rior results compared to the other two LLMs.

E Construction of Synthetic Training
Data Used in RQ 5

We investigate whether fine-tuning LLMs on ma-
trix property-related questions could improve their
performances on our tasks. Specifically, we gen-
erate 3000 extra input-output grid pairs calculate
the size, transpose, and locations of the subgrid’s
corner elements for these matrices as ground truths.
Furthermore, since correctly recognizing the loca-
tion of the subgrid may contribute more to finish
the Move and Copy tasks compared to other prop-
erties, we create additional ground truths only with
the gold locations of the subgrid’s corner elements.

F Hyperparameters of Supervised
Fine-Tuning in RQ 5 and RQ 6

For all the fine-tuning experiments, we use
LoRA (Hu et al., 2021). We fine-tune each model
for 3 epochs with a batch size of 4 on a single
machine with 8 A100 GPUs. The dimension of
LoRA’s attention layer is set to 64, and the α and
dropout rates are set to 16 and 0.1, respectively.
The learning rate and weight decay are set to 2e-4
and 0.001, respectively. The hyperparameters are
selected according to the development performance
on the synthetic matrix data in Appendix E.
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[PHENOMENON] is a fundamental concept in physics that describes the resistance of any physical object to a change in
↪→ its state of motion. This concept is a central part of [MASK], often referred to as the law of [PHENOMENON].
↪→ According to this law, an object at rest will stay at rest, and an object in motion will continue to move at a
↪→ constant velocity, unless acted upon by a net external force. Here are the key properties and examples of [
↪→ PHENOMENON]:

### Key Properties:
1. **Dependence on Mass**: The [PHENOMENON] of an object is directly proportional to its mass. The greater the mass of
↪→ an object, the greater its [PHENOMENON], and hence, the more force it requires to change its state of motion.

2. **Resistance to Acceleration**: [PHENOMENON] is essentially the resistance of an object to any change in its
↪→ velocity, which includes changes in the speed or direction of the object's motion.

3. **Universal Applicability**: [PHENOMENON] applies to all objects with mass, whether they are microscopic or
↪→ astronomical in scale.

4. **Independence from External Factors**: The [PHENOMENON] of an object is inherent and does not depend on external
↪→ conditions such as the environment, temperature, or pressure.

### Key Examples:
1. **A Parked Car**: A parked car will not move unless a force is applied to it. Once moving, it will continue to move
↪→ at a constant speed in a straight line unless forces like friction or brakes are applied to change its state.

2. **Astronauts and Objects in Space**: In the vacuum of space, where there is little to no external force, an
↪→ astronaut or any other object will continue moving in the same direction and at the same speed until acted upon by
↪→ another force. This is an example of [PHENOMENON] in a microgravity environment.

3. **Seatbelts in Vehicles**: When a car suddenly stops, the passengers inside tend to lurch forward. This is due to
↪→ the [PHENOMENON] of their bodies; their bodies were in motion and tend to remain in motion despite the car stopping.
↪→ Seatbelts provide the necessary force to counteract this [PHENOMENON] and keep the passengers safe.

4. **Tablecloth Trick**: A classic example demonstrating [PHENOMENON] is the tablecloth trick, where a quick pull of
↪→ the tablecloth can leave dishes undisturbed on a table. The [PHENOMENON] of the dishes (their tendency to resist
↪→ changes in motion) allows them to remain relatively still while the tablecloth is quickly pulled from under them.

Understanding [PHENOMENON] is crucial for analyzing the motion of objects in various physical contexts, from everyday
↪→ life to complex scientific scenarios. It is a cornerstone in the study of dynamics and plays a critical role in
↪→ engineering, automotive safety, aerospace technology, and many other fields.

Figure 6: An example of our masked description for the concept inertia.

Concept GPT-4 (t) GPT-4o (v) o1 (t) o1 (v) Gemini2 FTE (v) DeepSeek R1 (t) o3 (t)

gravity 60.0±8.2 33.3±4.7 50.0 80.0 63.3±0.3 60.0 55.0±5.0
compression 50.0±20.4 50.0±0.0 0.0 50.0 50.0±0.0 0.0 0.0±0.0
diffuse reflection of light 50.0±0.0 33.3±11.8 25.0 25.0 25.0±0.0 25.0 25.0±0.0
lever 0.0±0.0 50.0±0.0 16.7 66.7 77.8±0.9 16.7 8.3±8.3
wave interference 83.3±11.8 100.0±0.0 100.0 100.0 91.7±2.1 75.0 75.0±0.0
spectrum of light and optical filters 66.7±0.0 88.9±15.7 66.7 100.0 94.4±0.9 100.0 100.0±0.0
surface tension 43.3±17.0 50.0±8.2 30.0 90.0 40.0±1.0 40.0 40.0±0.0
nuclear fission 16.7±23.6 100.0±0.0 100.0 50.0 0.0±0.0 50.0 50.0±0.0
nuclear fusion 0.0±0.0 100.0±0.0 50.0 50.0 33.3±33.3 50.0 25.0±25.0
communicating vessels 3.3±4.7 3.3±4.7 10.0 10.0 0.0±0.0 50.0 45.0±5.0
diffraction of waves 83.3±23.6 100.0±0.0 – 100.0 100.0±0.0 100.0 100.0±0.0
reflection 86.7±4.7 43.3±4.7 – 10.0 66.7±1.3 70.0 70.0±0.0
refraction 20.0±8.2 83.3±4.7 – 100.0 50.0±4.0 40.0 50.0±10.0
light imaging 10.0±0.0 0.0±0.0 – 0.0 16.7±0.3 0.0 0.0±0.0
cut 90.0±0.0 73.3±4.7 – 60.0 93.3±0.3 100.0 100.0±0.0
laser 46.7±12.5 53.3±4.7 – 50.0 26.7±2.3 10.0 15.0±5.0
move 96.7±4.7 86.7±4.7 – 30.0 83.3±4.3 60.0 70.0±10.0
buoyancy 43.3±12.5 100.0±0.0 – 100.0 46.7±2.3 40.0 40.0±0.0
acceleration 10.0±8.2 73.3±12.5 – 20.0 46.7±0.3 40.0 30.0±10.0
inertia 80.0±8.2 6.7±4.7 – 10.0 36.7±2.3 30.0 45.0±15.0
electricity 16.7±4.7 53.3±9.4 – 60.0 30.0±0.0 60.0 60.0±0.0
reference frame 27.8±3.9 13.9±3.9 – 66.7 47.2±1.6 25.0 29.1±4.1
repulsive force 20.8±5.9 20.8±11.8 – 50.0 20.8±0.5 100.0 87.5±12.5
diffusion 8.3±11.8 100.0±0.0 – 0.0 83.3±2.1 0.0 0.0±0.0
vortex 0.0±0.0 100.0±0.0 – 75.0 91.7±2.1 0.0 12.5±12.5
expansion 50.0±0.0 75.0±0.0 – 75.0 91.7±2.1 75.0 87.5±12.5
wave 16.7±15.6 33.3±5.9 – 62.5 25.0±0.0 25.0 18.8±6.2

Table 10: Performance decomposition to concepts on PHYSICO-CORE-Dev. t and v refer to LLMs with textual or
visual inputs.
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[SYSTEM]
You will be playing a game:
You are given several examples. Each example consists of an``input grid'' and an ``output grid'' of numbers from 0-9,
↪→ where each number corresponds to a color.
Your task if try to find the common patterns from the examples and abstract the meanings of the patterns in the
↪→ physical or mathematics world.
Based on the recognized meaning, please select the most close description of the common pattern from the provided
↪→ options.

[USER]
Lets play a game where you are transforming an input grid of numbers into an output grid of numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:

Example input grid:
{{ INPUT GRID1 }}

Example output grid:
{{ OUTPUT GRID1 }}

Example input grid:
{{ INPUT GRID2 }}

Example output grid:
{{ OUTPUT GRID2 }}

Example input grid:
{{ INPUT GRID3 }}

Example output grid:
{{ OUTPUT GRID3 }}

Please first try to find the common patterns from the input-output pairs, then answer the following question:

What meanings in the physical or mathematics world can be abstracted from the patterns? Please choose your answer from
↪→ the following options:
{{ CANDIDATE ANSWERS }}

Your response should end with your choice of answer.

Figure 7: The prompt template used in RQ 3. The pair of an INPUT GRID and an OUTPUT GRID consists of one example
of a physical phenomenon in matrix format.

{{ UPLOADED IMAGE }}
[USER]
In the given image, there are two columns of matrices with elements represented by different colors.
The left column represents the inputs, and the right column represents the corresponding outputs.
For each row in the image, the output is derived from the input using the same transformation rule,
which corresponds to a real-world physical concept.

Your task is to identify the physical concept demonstrated in this image from the following options:

{{ CANDIDATE ANSWERS }}

Please select and provide the correct option that matches the transformation shown in the image.
Your response should end with your choice of answer.

Your response should end with your choice of answer.

Figure 8: The prompt template used in RQ 4. UPLOADED IMAGE is an image consists of three or more examples like in
Figure 2.
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