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Abstract

The spread of harmful content online is a dy-
namic issue evolving over time. Existing detec-
tion models, reliant on static data, are becoming
less effective and generalizable. Developing
new models requires sufficient up-to-date data,
which is challenging. A potential solution is
to combine existing datasets with minimal new
data. However, detection tasks vary—some
focus on hate speech, offensive, or abusive con-
tent, which differ in the intent to harm, while
others focus on identifying targets of harmful
speech such as racism, sexism, etc—raising
the challenge of handling nuanced class differ-
ences. To address these issues, we introduce a
novel transfer learning method that leverages
class-specific knowledge to enhance harmful
content detection. In our approach, we first
present label-specific soft prompt tuning, which
captures and represents class-level information.
Secondly, we propose two approaches to trans-
fer this fine-grained knowledge from source
(existing tasks) to target (unseen and new tasks):
initializing the target task prompts from source
prompts and using an attention mechanism that
learns and adjusts attention scores to utilize the
most relevant information from source prompts.
Experiments demonstrate significant improve-
ments in harmful content detection across En-
glish and German datasets, highlighting the
effectiveness of label-specific representations
and knowledge transfer. 1

1 Introduction

The increasing proliferation of harmful content and
its evolving nature require effective and generaliz-
able detection methods. One solution for detecting
hateful content in new domains involves preparing
new adequate data, which presents challenges in
data collection and annotation. Another approach is

∗This work was done while the author was affiliated with
LMU Munich.

1The code and prompts are available at https://github.
com/FaezeGhorbanpour/LabelSoftPromptTuning

to utilize existing datasets and transfer their knowl-
edge. However, directly applying these datasets
for transfer learning is not straightforward. Vari-
ous datasets have been developed to identify offen-
sive language, hate speech, sexism, or racism, but
nuanced differences among classes, variations in
annotation styles, and differences in scope make it
challenging to apply these datasets to new, unseen
tasks (MacAvaney et al., 2019; Fortuna et al., 2020;
Bourgeade et al., 2023).

In contrast to previous work that addresses these
challenges through data augmentation (Al-Azzawi
et al., 2023), domain-adapted models (Caselli et al.,
2021a), or specific model instructions (Plaza-del
arco et al., 2023), we argue that effectively differ-
entiating between classes of harmful language re-
quires modeling fine-grained class representations.
With these representations, we can analyze label in-
formation across multiple tasks (Meng et al., 2020;
Inagaki, 2022) and transfer knowledge between
tasks in a fine-grained manner (Hangya and Fraser,
2024; Ludwig et al., 2022).

Large language models (LLMs) (Devlin et al.,
2019; Radford et al., 2019; Raffel et al., 2020)
have demonstrated strong performance across vari-
ous tasks, but fine-tuning them is challenging and
costly. Parameter-efficient fine-tuning (PEFT) ad-
dresses this by training only a small number of
parameters (Liu et al., 2022a; Houlsby et al., 2019;
Xie and Lukasiewicz, 2023). Our method builds
on soft prompt tuning (SP), a PEFT approach intro-
duced by Lester et al. (2021), using fewer parame-
ters to achieve competitive results. SP scales well
with larger models and effectively captures task-
level information (Qin et al., 2021; Goswami et al.,
2023). However, it learns a single-task represen-
tation, which we argue is insufficient for harmful
content detection, where more fine-grained class-
level representations are necessary.

We present an edition of the SP approach for
harmful text detection by introducing label-specific
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Figure 1: Overview of label-specific soft prompt tuning.
For example, for a task with two classes, our method em-
ploys two label-specific prompts, prompting the LLM
to predict if the given label-specific prompt and the in-
stance’s label match.

soft prompts. This method allows LLMs to cap-
ture the nuanced concepts associated with different
harmful language types. As shown in Figure 1,
we pair the input with each label-specific prompt,
pass them through the model, and predict whether
the input’s and the soft prompt’s label match (yes
or no). This helps the model learn the right soft
prompt and the nuances of each class.

Recent work leveraged transfer learning to boost
performance in low resource settings (Kapil and
Ekbal, 2020; Glavaš et al., 2020). However, finding
the right existing tasks (source) for a new unseen
task (target) is not straightforward. Firstly, harmful
content detection datasets often have partly overlap-
ping label sets, e.g. the Mandl et al. (2019) dataset
has labels hateful, offensive and normal, while the
dataset of Founta et al. (2018) has hateful, abusive,
spam and normal. Secondly, labels of the same
name often have different definitions, e.g. hate
speech and offensive are defined as two separate
classes in some datasets (Mathew et al., 2021; Tora-
man et al., 2022); however, some others include
hate speech in the offensive class (Sigurbergsson
and Derczynski, 2020).

Label-specific soft prompts enable fine-grained
knowledge transfer between tasks. Instead of trans-
ferring all knowledge, including irrelevant or mis-
aligned labels, we propose transferring only essen-
tial information by selecting the appropriate label
soft prompts. This can be achieved simply by ini-
tializing the label-specific soft prompts with the
same type of source prompts directly or by aver-

aging them as depicted in the left side of Figure
2. Alternatively, as shown on the right side of
Figure 2, the model can be trained to select the
required information from source label prompts au-
tonomously. To achieve this, we use an attentional
mixture of soft prompts across all label prompts,
allowing the model to learn how to utilize them
effectively. Our proposed attentional transfer learn-
ing method, designed for label-specific learning
and inspired by Asai et al. (2022), automatically
identifies which source label prompts are most use-
ful for each target label. Additionally, this method
measures the relation between source and target
labels by providing attention scores.

Evaluation of our fine-grained transfer learning
method across five tasks demonstrates the effec-
tiveness of label-specific knowledge transfer com-
pared to baseline methods. Based on label types
(names), the initialization method performs well,
showing that label names can guide the transfer
and selection of source label prompts. The atten-
tion method, by contrast, removes the dependency
on specific label types and uses attention scores to
identify the most effective source label prompts for
the target labels. More importantly, it outperforms
other methods, demonstrating that target labels can
benefit from a broader range of source prompts,
rather than being limited to those of the same type.
Additionally, our first stage—label-specific source
prompt tuning—outperforms task-specific prompt
tuning, even when the tunable parameters for task-
specific prompts are increased.

Overall, our method exhibits these characteris-
tics:

• We introduce transferring class-level informa-
tion in harmful content detection tasks using
label-specific soft prompts through two ap-
proaches: initialization-based and attention-
based methods.

• We propose a label-specific attention-based
method, automating fine-grained knowledge
transfer by learning attention scores. This
method enhances the contribution of source
label prompts to target tasks, leading to per-
formance improvements.

• Few-shot results further highlight the effec-
tiveness of fine-grained knowledge transfer
of attention-based method, even when using
limited samples for target tasks.
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Figure 2: Transfer learning architecture for label-specific soft prompt tuning: The left side shows the initialization
method, where two source tasks (A and B) are used to initialize the target task’s labels. The right side illustrates the
attentional method, where task B has additional labels processed by attention modules trained to use the source
prompts regardless of their types.

2 Related Work

Transfer Learning for Harmful Text Detection.
Fine-tuning pre-trained language models (PLM)
for harmful content detection is a well-established
research approach, focusing on adapting LLMs to
specific tasks such as detecting harmful text. In
contrast, hard prompting methods, which involve
manually designing textual templates and querying
the model (Guo et al., 2023; Huang et al., 2023;
Roy et al., 2023), can be less robust. These meth-
ods rely on altering prompts to change responses,
which often lacks the stability and effectiveness
achieved through fine-tuning. HateBERT (Caselli
et al., 2021b) retrained the BERT (Devlin et al.,
2019) model for detecting abusive language. Sarkar
et al. (2021) and Okpala et al. (2022) applied trans-
fer learning techniques to offensive language iden-
tification. Sabry et al. (2022) explore the effective-
ness of T5 for hate speech detection by investigat-
ing data augmentation techniques and ensemble
methods, and Adewumi et al. (2023) introduces
HaT5, a Text-to-Text Transformer based on T5.
However, these papers did not consider various
types of harmful content and the generalizability
of their transfer learning methods. While a prior
study He et al. (2024) explored soft prompts for
general toxic content detection without modifica-
tion, our work focuses on harmful contents with
label-specific prompts tuned using PEFT methods.
This allows our model to capture the subtleties of
different harmful categories.

Incorporating Label-specific Information in
Training. Work such as Wang et al. (2018); Li

et al. (2022); Liu et al. (2022b) utilizes label em-
beddings to create more informative text represen-
tations and enhance text classification. In the paper
by Xiao et al. (2019), a multi-view attention mech-
anism is proposed to learn label-specific represen-
tations for text classification. Meng et al. (2020)
introduce a text classification approach using only
label types for self-training LLMs. None of these
works measured the knowledge transfer of their
label-specific representations. Müller et al. (2022)
introduced label tuning, which adapts models to
new tasks by fine-tuning label embeddings. Unlike
our method, they use label text as hard prompts and
transfer encoder weights instead of soft prompts,
which is less efficient for transfer learning, espe-
cially when dealing with multiple source tasks.

Generalization Capability to Diverse Harm-
ful Detection Tasks. Recent research highlights
concerns about the generalizability of current hate
speech detection models (Swamy et al., 2019). Al-
though they perform well on their own test sets,
their accuracy drops significantly when tested on
different datasets (Yin and Zubiaga, 2021). This
indicates that existing test data do not accurately
represent future cases, leading to overestimating
these models’ generalization capabilities (Karan
and Šnajder, 2018; Arango et al., 2022). Bourgeade
et al. (2023) analyze hate speech detection models,
finding topic-diverse training data improves their
ability to generalize across different hate speech
types. Hangya and Fraser (2024) addresses abusive
content detection by training a model on multi-
ple datasets and adapting it to specific tasks with
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minimal data, achieving strong multilingual perfor-
mance. However, retraining a model is less effi-
cient compared to using soft prompts. Our exper-
iments demonstrate that our approach has strong
generalization capabilities and efficiently transfers
fine-grained knowledge to target tasks.

3 Methodology

The methodology is organized into two stages:
source prompt tuning (label-specific soft prompt
tuning) and target prompt tuning (transfer learn-
ing for label soft prompts). The second stage has
two approaches: initialization and attention-based
methods. Each subsection starts with a problem
statement, followed by its formulations.

3.1 Label-specific soft prompt tuning

The proposed method for label-specific source
prompt tuning, illustrated in Figure 1, builds on
highly parameter-efficient soft prompt tuning with
a single task-specific prompt, presented by Lester
et al. (2021). We propose a novel approach called
label-specific soft prompt tuning that leverages mul-
tiple soft prompts, equal to the number of classes in
a task. This allows the model to learn fine-grained
prompts tailored to each class.

To achieve this, we transform the dataset into
a contrastive format, which we define as pairing
each input with every possible label to check if
they match. For example, in a binary classifica-
tion of hate or normal, an instance X labeled
as hate is traditionally expected to be classified
as hate. In the new format, we create two input
pairs: (X,hate) with an expected output of yes,
and (X,normal) with an expected output of no.

Before feeding these pairs into the PLM, we
prepend a soft prompt corresponding to the accom-
panying label of the input. This allows the model
to predict whether the input and the associated la-
bel match. Essentially, the model learns to identify
the most relevant soft prompt for each class and
to store label-specific information in them. This
method is especially effective for detecting harmful
speech because it enables the model to differentiate
explicit harmful content.
Problem Formulation Formally, given a task
with n instances and k classes, consider an in-
put sequence with m token embeddings Xi =
{x1, x2, ..., xm}, and its corresponding class label
yi. To form a soft prompt we prepend l tokens,
denoted as P = {p1, p2, ..., pl}, to every instance.

pj ∈ Rd similar to xj ∈ Rd represents an embed-
ding vector, and d signifies the input dimension.

In task-specific prompt tuning, only one soft
prompt is considered for a task. The training objec-
tive is to maximize the likelihood of decoding the
desired output class yi,

Li = max
P

log p (yi | P ;Xi)

where, only P is trainable. For text classification,
yi is the text of the label corresponding to Xi.

When we shift to a contrastive setting, the num-
ber of instances becomes n× k, and the labels are
converted to {no, yes}. Here, the input involves
associating each instance with soft prompts of k
classes. If the correct soft prompt of the instance’s
label is associated with the instance, the output is
yes; otherwise, it is no. In the label-specific tun-
ing, we have k soft prompts, and we indicate them
with P̂ = {P 1, P 2, ..., P k}, where P j is the soft
prompt of label j. Therefore, for an instance Xi

with label yi, we have k instances in the contrastive
format ([P 1, Xi], [P

2, Xi], ..., [P
k, Xi]), and the

output will be Zi = {Z1
i , Z

2
i , ..., Z

k
i } :

Zj
i =

{
yes, if P j = yi

no, if P j ̸= yi

The goal of label-specific prompt training is to
maximize the likelihood of the outputs Zi by opti-
mizing only over the prompts P̂ :

Lj
i = max

P j
log p

(
Zj
i | P j ;Xi

)

During inference, the predicted label is chosen
based on the label-soft prompt with the highest
confidence among those predicted as matches.

j = argmax
j

log p
(
Zj
i | P j ;Xi

)

where Zj
i = yes

3.2 Transfer learning for label soft prompts
In the second stage, we aim to transfer label knowl-
edge between tasks. Source tasks, for which we
have label soft prompts available, help to tune and
generate label soft prompts for target tasks.

3.2.1 Initialization method
In this method, we transfer knowledge between
tasks by initializing target soft prompts with source
label prompts of the same type. We align source
prompts with target labels, e.g., matching labels
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like “normal,” “hate,” “offensive,” and “racism.”
As Figure 2 shows, we initialize target label soft
prompts before training or inference, either using a
single source prompt or averaging multiple prompts
for a comprehensive initialization.
Problem Formulation. In mathematical terms,
let P̂s = {P 1

s , P
2
s , . . . , P

R
s } be a set of source

soft prompts, where P r
s is the prompt for the

r-th label among all source tasks. Let P̂t =
{P 1

t , P
2
t , . . . , P

k
t } be label-specific prompts for a

new target task. The function type(·) returns each
prompt’s label category (e.g., “normal” or “hate”).

Two initialization strategies are considered be-
fore training. In simple initialization, P i

t is directly
copied from a single P r

s that shares the same label
type, i.e. type(P r

s ) = type(P i
t ). In average initial-

ization, if multiple P r
s share the same type, we use

their average:

P i
t =

1

|Si|
∑

r∈Si

P r
s ,

where Si = {r : type(P r
s ) = type(P i

t )}
Thus, simple initialization uses exactly one match-
ing source prompt, whereas average initialization
blends all matching source prompts. These initial-
ized target prompts then learn label-specific infor-
mation in the target task. The rest of the training
approach for this setup follows the same approach
for source prompt tuning, with the primary differ-
ence being how the soft prompts are initialized.

3.2.2 Attention-based method
In the second approach, attentional mixtures of
label-specific soft prompts, we adapt the atten-
tion mechanism to handle distinct labels within
the same task, building on the task-specific atten-
tional mixtures proposed by Asai et al. (2022). Our
approach differs from the task-specific method, not
only by using multiple target prompts and atten-
tion modules but also by making the target prompts
more active in the attention calculation. This en-
sures that each label-specific attention module is
trained uniquely for its corresponding label.

After converting the dataset to a contrastive for-
mat, as done in source prompt tuning, the associ-
ated label of each instance determines which atten-
tion module and soft prompt to use. If the label
is “hate,” the attention module and soft prompt for
hate are used; if it is “normal,” the normal attention
module and soft prompt are applied.

Additionally, unlike the initialization method
that fixes source prompts at the start, this method

uses the same source prompts across all attention
modules, allowing the model to adaptively priori-
tize them during training. While the initialization
method is easy to use, it requires knowing which
labels have matching definitions in advance, which
can be error-prone, as useful labels might be over-
looked or less relevant ones might be chosen.
Problem Formulation. As in the previous sec-
tion, let P̂s = {P 1

s , P
2
s , . . . , P

R
s } be a set of

non-trainable source soft prompts, and let P̂t =
{P 1

t , P
2
t , . . . , P

k
t } be a set of trainable label-

specific soft prompts for a target task. Similar
to source prompt tuning, we prepend a final soft
prompt to the input. In task-specific tuning (Asai
et al., 2022), a single Pt serves as one of the source
prompts (but is trainable), and attention is applied
over P̂s plus the input embedding to form the final
prompt. The model is then trained by maximizing:

α = softmax
(
[Ps, Pt] · LNorm (W.Xi)

τ

)

G =
∑

α⊙ [Ps, Pt]

Li = max
Pt,θG

log p
(
yi | G(Ps, Pt, Xi) + Pt; Xi

)
.

where [a, b] indicates stacking of vectors a and
b. W,Pt are trainable parameters and LNorm is
the layer normalization function (Ba et al., 2016).
Finally, G+ Pt is prepended to all Xi and passed
to the LLM.
However, for our label-specific method, we adopt
almost a similar formulation but introduce separate
attention modules and soft prompts for each label
j. Moreover, the operands of the attention module
differ from those of the task-specific one to ensure
that each attention module is tuned differently from
the others.

We test different attention mechanisms: no at-
tention with equal weights, dot product attention,
and a trainable attention module. For each label j,
the inputs of attention mechanisms are the embed-
ding X ∈ Rm×d, the label soft prompt P j

t ∈ Rl×d,
and the same set of source prompts Ps ∈ Rr×l×d.
To ensure each label has distinct and effective
operands, we add P j

t to each source prompt P r
s

(for r = 1, . . . , R), and pass the sums to an atten-
tion function:

αj = softmax




(
P j
t + Ps

)
· LNorm

(
W j .Xi

)

τ




Gj =
∑

αj ⊙
(
P j
t + Ps

)
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Finally, the output of the attention Gj is
prepended to all instances labeled j. We thus maxi-
mize:

Lj
i = max

P j
t ,θGj

log p
(
Zj
i | Gj(Ps, P

j
t , Xi); Xi

)
.

where {P j
t ,W

j} are learned for each label j.
The attention scores are the normalized attention
weights (aj ∈ Rr) obtained using the softmax func-
tion (Radford et al., 2021). These scores indicate
the relevance between the source prompts and in-
stances associated with the labels of a task.

4 Experimental Setup

4.1 Datasets
For the evaluation, we consider five primary
datasets for the transfer learning experiments: Hate-
Speech 18 (de Gibert et al., 2018), SRW 16
(Waseem and Hovy, 2016), OLID (Zampieri et al.,
2019), and German datasets: GermEval 18 (Risch
et al., 2021) and the German tasks of HASOC 19
(Mandl et al., 2019). To have more source prompts
for transfer learning, we also include the following
tasks: Hateval 19 (Basile et al., 2019), the English
tasks of HASOC 19 (Mandl et al., 2019), Xdomain
(Toraman et al., 2022), HateXplain (Mathew et al.,
2021), and Abuse (Founta et al., 2018). Addition-
ally, we experimented with different sub-tasks on
datasets providing multiple levels of annotation.
The goal of incorporating various sub-tasks is to
encompass a wide range of labels to show the gen-
eralizability of our approach in transfer learning
and few-shot experiments. The harmful detection
datasets we used contain explicit harmful content,
which means the hateful content is directly present
within the sentences. Detailed dataset information
is provided in Appendix B.

4.2 Training Details
We use open-source HuggingFace language mod-
els and the Pytorch framework. Following stan-
dard practices, we set the length of soft prompts to
100 tokens (Lester et al., 2021; Asai et al., 2022).
Given that we are addressing a classification prob-
lem with mostly imbalanced datasets, we use macro
F1 score as our main metric. Each reported result
is the average performance over three runs. Further
experimental details are provided in Appendix A.

Adhering to the standard methodology employed
in prior prompt-based studies (Lester et al., 2021;
Asai et al., 2022; Ma et al., 2022), we primarily

conduct our experiments using the publicly avail-
able pre-trained T5-base model, which contains
220M parameters. Additionally, our study includes
evaluations with the T5-Small (60M) and T5-Large
(770M) models. We use LLMs in a sequence-to-
sequence manner, converting harmful text classifi-
cation tasks into a format where the model gener-
ates the token corresponding to the input’s label.

4.3 Initialization of soft prompts

In task-specific soft prompt tuning we follow the
standard procedure and initialize soft prompts with
the embeddings of randomly chosen vocabulary
items (Lester et al., 2021; Asai et al., 2022). In
label-specific tuning we initialize label-specific soft
prompts with the embeddings of the label’s name
(repeated over the 100 tokens). Our assumption is
that this approach makes these soft prompts distinct
from each other during the initial epochs, leading to
faster convergence. In contrast, since the baseline
only contains one task-specific soft prompt, such a
fine-grained distinction cannot be made.

5 Evaluation

Although our main contribution is the transfer learn-
ing of label-specific soft prompts, to maintain co-
herence with the methodology section, we first
present the evaluation and visualizations of the first
stage. Then, we discuss the two transfer learning
methods: Initializing and Attentional, in that order.

5.1 Source Prompt Tuning Results

This section presents the results of the first stage
of our methodology: source prompt tuning, which
refers to label-specific soft prompt tuning. This
stage provides source label-soft prompts for the
second stage (transfer learning). Interestingly, this
stage, by incorporating soft prompts for each label
in a task, achieves higher performance compared
to task-specific prompt tuning (Lester et al., 2021),
even without transfer learning.

The results are shown in Table 1, which com-
pares the performance of label-specific source
prompt tuning with task-specific one. In the three
LLMs used in our study, label-specific prompt tun-
ing, on average, performs better, indicating that
contrasting label soft prompts with instance embed-
dings gives the model a chance to learn label differ-
ences, supporting our claim that fine-grained rep-
resentation can distinguish harmful content types
more. This improvement is not due to the increased
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Figure 3: t-SNE visualization of label soft prompts in various hate speech tasks. (a) Binary tasks distinguishing hate
speech vs normal speech. (b) Fine-grained tasks are classifying types of hate speech. (c) Targeted tasks identifying
specific groups targeted by hate speech. In the figure, each label is represented by a name above its corresponding
dot, where the first part denotes the task it belongs to, and the second part indicates the label type.

T5 small T5 base T5 large

task label task label task label

GermEval 18 binary 69.98 70.46 62.67 70.98 73.47 72.12
fine-
grained

37.31 39.41 32.14 40.23 42.62 39.84

HateSpeech 18 binary 72.57 74.42 73.58 76.43 76.02 76.65

HASOC 19 (de) binary 55.23 55.00 52.95 51.92 55.10 56.69
fine-
grained

29.81 30.51 29.96 32.72 35.36 28.01

SRW 16 binary 83.29 85.94 83.11 85.27 85.18 85.92
fine-
grained

57.33 57.39 57.55 58.26 58.27 58.03

OLID
offensive 76.01 76.36 77.48 78.4 78.38 79.78
targeted 54.28 60.28 47.02 61.47 57.54 62.16
target 49.31 52.31 54.68 57.51 46.31 51.37

average 58.51 60.01 57.11 61.32 60.83 61.06

Table 1: Source soft prompt tuning results. All of the
results are F1-macro (p.p.) scores. Task- and label-
specific approaches are indicated by task and label. The
best scores of a given model and task are bold.

tunable parameters in label-specific prompt tuning,
as shown in Appendix D.

5.2 Visualization of Prompts
After the first stage, we have soft prompts for each
label across all our source tasks; here, we want to
see if these prompt vectors have a numeric rela-
tionship and can be clustered effectively. To depict
the prompt vectors, we reshaped the prompts with
dimensions (prompt_length×model_dim) into
a 1D vector with dimensions (prompt_length ∗
model_dim) and passed it to t-SNE (van der
Maaten and Hinton, 2008) to reduce its dimension
and depict it (Figure 3).

In Figure 3a, the soft prompts for binary classifi-
cation are displayed. The hate prompts are grouped

closely together, as are the normal soft prompts.
In Figure 3b, different types of hate speech in the
tasks are displayed. This figure also illustrates the
closeness of label-specific soft prompts that have
the same label types. As shown, profanity prompts
(yellow) are notably close to each other, as are the
offensive soft prompts. Figure 3c displays the tasks
involved in classifying hate speech based on the
targeted group. The clustering is not as evident as
in other figures due to the complex nature of these
labels and the overlap among instances.

The clustering of similar label soft prompts led
us to explore the potential benefits of transfer learn-
ing from source label soft prompts. The next sec-
tion on initialization-based transfer learning results
will demonstrate that the identified clusters of simi-
lar label types in the plots are indeed functioning
as expected.

5.3 Transfer Learning Results: Initializing

Here, we aim to investigate knowledge transfer
between tasks by initializing target soft prompts
with label-specific source soft prompts of the same
type. In choosing source label-specific prompts, we
considered matching label types, i.e., we used hate
source prompts for hate target labels and normal
source prompts for normal target labels.

The first eight columns of Table 2 display the
results of this experiment. Among the different ini-
tializing methods, using multiple source prompts
and averaging them (all same type source prompts)
is better than using only one random source prompt
(1 same type source prompt). Moreover, when
mixing incompatible label source prompts for the
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Initializing Method Attentional Method

task label task label

Random 1 random All Random Label’s 1 same All same All Attention Types

Vocabs SP SPs Vocabs Token Type SP Type SPs SPs Constant Dot Ours

GermEval 18 binary 62.67 65.78 71.02 69.93 70.98 71.27 71.38 71.31 70.58 70.75 50.76 70.75
fine-
grained

32.14 35.15 32.98 39.97 40.23 40.61 42.18 42.44 37.57 37.04 20.29 42.33

HateSpeech 18 binary 73.58 73.71 74.79 76.07 76.43 77.49 78.21 76.88 76.62 76.72 66.29 77.03

HASOC 19 (de) binary 52.95 50.19 56.52 53.30 49.33 51.92 46.65 45.63 53.23 50.06 46.04 53.57
fine-
grained

29.96 41.35 30.05 31.63 32.72 38.83 32.67 30.33 39.49 30.12 28.89 33.76

SRW 16 binary 83.11 84.04 84.89 86.02 85.27 86.58 86.69 87.13 85.69 86.80 82.74 86.78
fine-
grained

57.55 58.01 57.18 58.21 58.26 58.32 58.78 58.02 58.60 58.15 49.32 58.39

OLID
offensive 77.48 77.01 77.97 78.45 78.40 77.96 79.65 78.09 78.65 79.37 62.23 78.04
targeted 47.02 59.80 55.06 57.58 61.47 53.17 63.91 53.28 55.75 66.96 46.96 67.71
target 54.68 54.81 48.56 51.81 57.51 50.49 59.40 46.80 48.96 48.49 20.85 56.73

average 57.11 59.98 58.90 60.30 61.32 61.06 61.95 58.99 60.51 60.45 47.44 62.51

Table 2: Different settings of transfer learning methods using the T5-base model. All of the results are F1-macro
(p.p.) scores. Task- and label-specific approaches are indicated by task and label. SP = Source Prompt. The two
best scores of a given target task are bold.

target tasks (all source prompts), the performance
decreases. This indicates that same-type knowl-
edge transfer is more beneficial. Since we have the
types of labels as the relationships among labels
from other tasks, we can use label-specific source
prompts for the target task. However, in a transfer
learning scenario involving task-specific prompt
tuning, we lack advanced information about the
relationships between tasks to utilize them effec-
tively. Table 2 also shows that initializing the soft
prompts with the label’s token is a better choice
than initializing it with random vocabs.

5.4 Transfer Learning Results: Attentional

Our second transfer learning method is the atten-
tional mixture of label-soft prompts; this section
presents its evaluation. This approach transfers
knowledge from source prompts to target tasks by
using an attention mechanism, eliminates random
selection of source label prompts, and measures
which prompts the model utilizes.

The last four columns of Table 2 correspond
to this method. task represents the task-specific
mixture of soft prompts (Asai et al., 2022) as the
baseline, while our attentional method is in the last
column, labeled ours. Comparing these two shows
that fine-grained knowledge transfer is effective.
The other three columns (Attention Types) present
an ablation study on attention type: Constant ap-
plies no attention, Dot uses a dot product between
source prompts and input embeddings, and Ours is
an attention module with trainable parameters. The

results show that trainable attention (our choice)
performs best. Additionally, comparing all the
same type SPs to Ours confirms that the attentional
method performs better on average.

T5 small T5 base T5 large

task label task label task label

GermEval 18 binary 69.23 70.37 70.58 70.75 73.47 73.93
fine-
grained

37.68 40.58 37.57 42.33 42.92 39.84

HateSpeech 18 binary 74.94 74.94 76.62 77.03 78.66 76.83

HASOC 19 (de) binary 55.22 56.09 53.23 53.57 52.90 54.38
fine-
grained

25.41 32.79 39.49 33.76 40.65 37.36

SRW 16 binary 85.82 85.77 85.69 86.78 86.71 87.22
fine-
grained

57.31 57.40 58.60 58.39 57.80 57.25

OLID
offensive 76.20 76.86 78.65 78.04 78.74 80.30
targeted 50.96 63.69 55.75 67.71 58.67 64.43
target 48.62 50.38 48.96 56.73 49.77 52.37

average 58.14 60.89 60.51 62.51 62.03 62.39

Table 3: Attentional target prompt tuning results. All of
the results are F1-macro (p.p.) scores. Task- and label-
specific approaches are indicated by task and label. The
best scores of a given model and task are in bold.

Table 3 compares the results of task-specific
attentional transfer learning (task) and the label-
specific approach (label) across three LLMs, from
small to large. As shown for most tasks and mod-
els, label-specific target prompt tuning outperforms
task-specific prompts, particularly in binary tasks.
This may be because, in fine-grained tasks, target la-
bel prompts and their respective attention modules
require more guidance to effectively differentiate
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Target task Label Top 3 source labels (with their tasks)

GermEval 18 - binary normal offensive (Olid_offensive), offensive (Xdomain_politics), normal (Xdomain_religion)
offensive normal Hateval 19_aggressive, hate (Hasoc 19_en_fine-grained), normal (Hasoc 19_de_binary)

GermEval 18 - fine-grained

normal normal (Xdomain_politics), racism (HateXplain - target), religious (HateXplain - target)
profanity religious (HateXplain - target)
insult unintentional (Hasoc 19_en_targeted), generic (Hateval 19_target), offensive (Hasoc 19_de_fine-grained)
abuse racism (HateXplain - target), normal (Olid_offensive), normal (Xdomain_politics)

HateSpeech 18 - binary normal individual (Hateval 19_target), racism (SRW 16_fine-grained), profanity (Hasoc 19_de_fine-grained)
hate hate (Xdomain_politics)

SRW 16 - binary offensive hate (Hasoc 19_de_fine-grained), offensive (Hasoc 19_de_fine-grained), profanity (Hasoc 19_de_fine-grained)
normal normal (Olid_offensive)

SRW 16 - fine-grained
sexism profanity (Hasoc 19_de_fine-grained), hate (Hasoc 19_de_fine-grained), offensive (Hasoc 19_de_fine-grained)
racism hate (HateSpeech 18 - binary), profanity (GermEval 18_fine-grained), normal (Xdomain_religion)
normal unintentional (Hasoc 19_en_targeted), hate (Hasoc 19_de_fine-grained), profanity (Hasoc 19_de_fine-grained)

Table 4: Top three source label prompts utilized by each target task’s label, based on the attention scores.

between subtle harmful content types. To compare
source soft prompt tuning (first stage) with trans-
fer learning (second stage), Table 1 and Table 3
are examined. The comparison of label columns
in both tables shows that transfer learning outper-
forms the first stage alone for harmful content de-
tection across three LLMs.

The attention-based approach eliminates the
need for manually selecting and averaging source
label prompts. Instead, it uses all source label
prompts, and the model learns to leverage them
by adjusting attention scores. Table 4 shows the
top three source label prompts with the highest
attention scores for each label of the target tasks.
For example, in the SRW 16_binary task, which
has two classes (normal and offensive), the source
label prompt that the normal soft prompt utilizes
the most is normal prompt from OLID - offensive
sub-task. On the other hand, the offensive soft
prompt draws on multiple source prompts: hate, of-
fensive, and profanity prompts, all from the source
task HASOC 19 - de_fine-grained. The attention
score tables indicate that most target labels utilize
source label prompts of the same type, such as Ger-
mEval 18_fine-grained_normal and HateSpeech
18 - binary_hate. However, there are target la-
bels that diverge from this pattern and use different
types of source labels, such as GermEval 18_bi-
nary_normal and GermEval 18_binary_offensive.

5.5 Few-shot Experiments Results
This experiment evaluates the attentional transfer
learning of label-specific soft prompts from source
tasks to target tasks with fewer training samples.
Table 5 shows results for 1, 16, and 64-shot training
sets for the target task. We compare two methods:
task-specific and label-specific attentional target
prompt tuning. The table demonstrates that, in

1 16 64

task label task label task label

GermEval 18 binary 31.84 41.75 54.16 54.52 54.59 60.46
fine-
grained

19.93 16.71 08.16 20.15 22.74 27.42

SRW 16 binary 39.45 49.20 61.18 57.27 68.24 63.82
fine-
grained

21.33 20.20 33.61 33.63 45.18 47.64

OLID
offensive 41.61 41.00 64.08 57.63 65.32 58.78
targeted 46.50 44.96 31.69 56.33 51.97 55.22
target 09.37 26.51 27.79 37.13 27.97 41.64

average 30.00 34.33 40.10 45.24 48.00 50.71

Table 5: Results of few-shot learning for attentional
target prompt tuning. All of the results are F1-macro
(p.p.) scores. Task- and label-specific approaches are
indicated by task and label. The best scores of a given
shot and task are bold.

most tasks and shot settings, label-specific tuning
performs better with limited training data, indicat-
ing that source label prompts combined with the
attentional method can be effectively utilized for
new target tasks with limited samples.

6 Conclusion

We introduce transfer learning of label-specific
soft prompt tuning for harmful content detection,
where prompts are tailored to individual labels to
capture fine-grained distinctions between content
types. Moreover, we propose attentional knowl-
edge transfer at the class level, enabling the model
to learn label nuances from source prompts. Ex-
perimental results show that label-specific prompt
tuning improves performance on English and Ger-
man datasets, achieving higher F1-macro scores
than the baseline. Few-shot experiments further
validate the method, demonstrating enhanced per-
formance in target tasks with limited data.
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Limitations

This study demonstrates the potential of label-
specific soft prompts for harmful content detection
and knowledge transfer among tasks. However,
limitations exist. Firstly, we have not explored this
technique with LLMs beyond the T5 series. Al-
though most soft prompt tuning research utilizes
T5, and our approach is generally applicable to
other LLMs, their performance has not been val-
idated. Due to limited access to computational
resources, we were unable to conduct all the trans-
fer learning experiments for every dataset used in
the initial stage and for more LLMs.

Our method can be applied to other PEFT meth-
ods, but we chose SP due to its parameter efficiency
and because it prepends tunable parameters to the
input. Using explicit harmful detection datasets,
which primarily contain clearly inappropriate lan-
guage, the initial layers of the language model are
more likely to focus on these indicators.

The findings suggest that label-based knowledge
sharing between tasks holds promise, particularly
for complex text classification like harmful detec-
tion with nuanced categories. However, investigat-
ing its effectiveness in broader text classification
tasks, such as topic classification, sentiment analy-
sis, or domain identification, would be valuable for
future research.
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XHate-999: Analyzing and detecting abusive lan-
guage across domains and languages. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 6350–6365.

Koustava Goswami, Lukas Lange, Jun Araki, and
Heike Adel. 2023. SwitchPrompt: Learning domain-
specific gated soft prompts for classification in low-
resource domains. In Proceedings of the 17th Con-
ference of the European Chapter of the ACL, pages
2689–2695. ACL.

Keyan Guo, Alexander Hu, Jaden Mu, Ziheng Shi, Zim-
ing Zhao, Nishant Vishwamitra, and Hongxin Hu.
2023. An investigation of large language models for
real-world hate speech detection. In 2023 ICML and
Applications (ICMLA), pages 1568–1573. IEEE.

Viktor Hangya and Alexander Fraser. 2024. How to
solve few-shot abusive content detection using the
data we actually have. In Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pages 8307–8322. ELRA
and ICCL.

Xinlei He, Savvas Zannettou, Yun Shen, and Yang
Zhang. 2024. You only prompt once: On the capa-
bilities of prompt learning on large language models
to tackle toxic content. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 64–64. IEEE
Computer Society.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th ICML, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Fan Huang, Haewoon Kwak, and Jisun An. 2023. Chain
of explanation: New prompting method to generate
quality natural language explanation for implicit hate
speech. In Companion Proceedings of the ACM Web
Conference 2023, page 90–93. ACM.

Takeshi Inagaki. 2022. Information propagation by
composited labels in natural language processing.
arXiv preprint arXiv:2205.11509.

Prashant Kapil and Asif Ekbal. 2020. A deep neu-
ral network based multi-task learning approach to
hate speech detection. Knowledge-Based Systems,
210:106458.

Mladen Karan and Jan Šnajder. 2018. Cross-domain
detection of abusive language online. In Proceedings
of the 2nd Workshop on Abusive Language Online
(ALW2), pages 132–137. ACL.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
EMNLP, pages 3045–3059.

Hui Li, Guimin Huang, Yiqun Li, Xiaowei Zhang, and
Yabing Wang. 2022. Concept-based label distribution
learning for text classification. International Journal
of Computational Intelligence Systems, 15(1):85.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay
Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. 2022a. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning.
NeurIPS, 35:1950–1965.

Minqian Liu, Lizhao Liu, Junyi Cao, and Qing Du.
2022b. Co-attention network with label embedding
for text classification. Neurocomputing, 471:61–69.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Florian Ludwig, Klara Dolos, Torsten Zesch, and
Eleanor Hobley. 2022. Improving generalization of
hate speech detection systems to novel target groups
via domain adaptation. In Proceedings of the Sixth
Workshop on Online Abuse and Harms (WOAH),
pages 29–39. ACL.

Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qifan
Wang, Wei Wu, Xiaojun Quan, and Dawei Song.
2022. XPrompt: Exploring the extreme of prompt
tuning. In Proceedings of the 2022 Conference on
EMNLP, pages 11033–11047. ACL.

Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina
Russell, Nazli Goharian, and Ophir Frieder. 2019.
Hate speech detection: Challenges and solutions.
PloS one, 14(8):e0221152.

Thomas Mandl, Sandip Modha, Prasenjit Majumder,
Daksh Patel, Mohana Dave, Chintak Mandlia, and
Aditya Patel. 2019. Overview of the hasoc track at
fire 2019: Hate speech and offensive content identifi-
cation in indo-european languages. In Proceedings
of the 11th Annual Meeting of the Forum for Infor-
mation Retrieval Evaluation, FIRE ’19, page 14–17.
ACM.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam,
Chris Biemann, Pawan Goyal, and Animesh Mukher-
jee. 2021. Hatexplain: A benchmark dataset for ex-
plainable hate speech detection. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 35, pages 14867–14875.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong,
Heng Ji, Chao Zhang, and Jiawei Han. 2020. Text
classification using label names only: A language

11057

https://ojs.aaai.org/index.php/ICWSM/article/view/14991
https://ojs.aaai.org/index.php/ICWSM/article/view/14991
https://ojs.aaai.org/index.php/ICWSM/article/view/14991
https://aclanthology.org/2020.coling-main.559
https://aclanthology.org/2020.coling-main.559
https://aclanthology.org/2023.eacl-main.197
https://aclanthology.org/2023.eacl-main.197
https://aclanthology.org/2023.eacl-main.197
https://doi.org/10.1109/ICMLA58977.2023.00237
https://doi.org/10.1109/ICMLA58977.2023.00237
https://aclanthology.org/2024.lrec-main.729
https://aclanthology.org/2024.lrec-main.729
https://aclanthology.org/2024.lrec-main.729
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00061
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00061
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00061
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1145/3543873.3587320
https://doi.org/10.1145/3543873.3587320
https://doi.org/10.1145/3543873.3587320
https://doi.org/10.1145/3543873.3587320
https://arxiv.org/pdf/2205.11509
https://arxiv.org/pdf/2205.11509
https://www.sciencedirect.com/science/article/abs/pii/S0950705120305876?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0950705120305876?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0950705120305876?via%3Dihub
https://aclanthology.org/W18-5117
https://aclanthology.org/W18-5117
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.1007/s44196-022-00144-y
https://doi.org/10.1007/s44196-022-00144-y
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0925231221016507
https://www.sciencedirect.com/science/article/pii/S0925231221016507
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2022.woah-1.4
https://aclanthology.org/2022.woah-1.4
https://aclanthology.org/2022.woah-1.4
https://aclanthology.org/2022.emnlp-main.758
https://aclanthology.org/2022.emnlp-main.758
https://doi.org/10.1371/journal.pone.0221152
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://ojs.aaai.org/index.php/AAAI/article/download/17745/17552
https://ojs.aaai.org/index.php/AAAI/article/download/17745/17552
https://aclanthology.org/2020.emnlp-main.724
https://aclanthology.org/2020.emnlp-main.724


model self-training approach. In Proceedings of
the 2020 Conference on EMNLP, pages 9006–9017.
ACL.

Thomas Müller, Guillermo Pérez-Torró, and Marc
Franco-Salvador. 2022. Few-shot learning with
Siamese networks and label tuning. In Proceedings
of the 60th Annual Meeting of the ACL, pages 8532–
8545. ACL.

Ebuka Okpala, Long Cheng, Nicodemus Mbwambo,
and Feng Luo. 2022. Aaebert: Debiasing bert-based
hate speech detection models via adversarial learning.
In 2022 21st IEEE ICML and Applications (ICMLA),
pages 1606–1612.

Flor Miriam Plaza-del arco, Debora Nozza, and Dirk
Hovy. 2023. Respectful or toxic? using zero-shot
learning with language models to detect hate speech.
In The 7th Workshop on Online Abuse and Harms
(WOAH), pages 60–68. ACL.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,
Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu, Juanzi
Li, Lei Hou, et al. 2021. Exploring universal intrin-
sic task subspace via prompt tuning. arXiv preprint
arXiv:2110.07867.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Julian Risch, Anke Stoll, Lena Wilms, and Michael
Wiegand. 2021. Overview of the GermEval 2021
shared task on the identification of toxic, engaging,
and fact-claiming comments. In Proceedings of the
GermEval 2021 Shared Task on the Identification
of Toxic, Engaging, and Fact-Claiming Comments,
pages 1–12, Duesseldorf, Germany. Association for
Computational Linguistics.

Sarthak Roy, Ashish Harshvardhan, Animesh Mukher-
jee, and Punyajoy Saha. 2023. Probing LLMs for
hate speech detection: strengths and vulnerabilities.
In Findings of the ACL: EMNLP 2023, pages 6116–
6128. ACL.

Sana Sabah Sabry, Tosin Adewumi, Nosheen Abid,
György Kovács, Foteini Liwicki, and Marcus Liwicki.
2022. Hat5: Hate language identification using text-
to-text transfer transformer. In 2022 International
Joint Conference on Neural Networks (IJCNN), pages
1–7.

Diptanu Sarkar, Marcos Zampieri, Tharindu Ranas-
inghe, and Alexander Ororbia. 2021. fBERT: A
neural transformer for identifying offensive content.
In Findings of the ACL: EMNLP 2021, pages 1792–
1798. ACL.

Gudbjartur Ingi Sigurbergsson and Leon Derczynski.
2020. Offensive language and hate speech detection
for Danish. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 3498–
3508. European Language Resources Association.

Steve Durairaj Swamy, Anupam Jamatia, and Björn
Gambäck. 2019. Studying generalisability across
abusive language detection datasets. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 940–950. ACL.
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Appendix

A Experimental Details

We used the AdamW optimizer (Loshchilov and
Hutter, 2019) with a linear learning rate scheduler
that includes a warm-up period of 10%, an initial
learning rate set to 0.3, and a weight decay of 1e-5.
We train our models with a batch size of 32 over
200 epochs. All experiments use early stopping
techniques based on validation loss, which greatly
reduces training time, especially for attentional tar-
get prompt tuning. In the attention module, the
temperature used is 2087. The maximum sequence
length for the input is set to 256 tokens, and a
dropout rate of 0.1 is applied to the classification
layer to mitigate overfitting. These hyperparame-
ters, including the optimizer settings and dropout
rate, were determined through hyperparameter tun-
ing using Optuna (Akiba et al., 2019). For both
setups, the loss function utilized is Cross Entropy.

B Datasets Details

Below is a brief overview of the datasets, including
their classes and types.

GermEval 18. This task involves classifying
German tweets from Twitter (Risch et al., 2021).
It includes two sub-tasks: a coarse-grained binary
classification task (normal vs offensive) and a fine-
grained multi-class classification task (normal, pro-
fanity, insult, abuse.)

HateSpeech 18 prepared by de Gibert et al.
(2018) comprises hate speech messages from
Stormfront, the prominent white supremacist fo-
rum on the web. This English dataset focuses solely
on the classification of hate versus normal speech.

OLID. This dataset, gathered from English
tweets using specific keywords (Zampieri et al.,
2019), categorizes tweets into three types: offen-
sive vs normal, intentional vs unintentional insults,
and targets to the individual, group, or others.

Srw 16. Waseem and Hovy (2016) compiled a
set of English tweets related to sexism and racism,
thus labeled as sexism, racism, or neither.

HASOC 19 introduced by Mandl et al. (2019)
includes tweets in Hindi, German, and English.
These tweets are marked for three sub-tasks: nor-
mal vs offensive, if they are offensive categorized
in hate, offensive, and profanity, and intentional
vs unintentional. We only considered German and
English as two separate tasks.

Figure 4: Variety of the labels in our selected hate
speech datasets.

B.1 Additional Datasets

We also applied source prompt tuning on the follow-
ing datasets to obtain more task- or label-specific
soft prompts for use in target prompt tuning.

Hateval 19. This topic-specific hate speech
detection dataset contains tweets targeting immi-
grants and women (Basile et al., 2019). It is anno-
tated with three binary sub-tasks: hate vs normal,
targeted to group vs individual, and aggressive vs
normal. This dataset is in English.

Xdomain. The paper constructs large-scale
tweet datasets for hate speech detection in English
and Turkish (Toraman et al., 2022). We only consid-
ered English tweets in two main domains politics
and religion, which are classified into three labels:
offensive, hate, and normal.

HateXplain presented by Mathew et al. (2021)
and collected from Twitter and Gab. This English
dataset includes two sub-tasks. Firstly, classifying
posts into hate, offensive, and normal. The second
sub-task classifies posts based on the targeted com-
munity into five classes: normal, religious, racism,
sexism, and others.

Founta et al. (2018) in Abuse dataset assembled
an English tweet dataset, that includes tweets cate-
gorized into offensive, abusive, hateful, aggressive,
spam, and normal classes.

B.2 Dataset Statistics

Detailed information regarding the datasets we
used is presented in Table 6. In the table, the size
refers to the total number of data instances. We
used the same train, test, and validation sets as
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provided by the datasets. If no separate sets were
provided, we split the data into 20% for testing and
20% of the remaining data for validation, using a
random seed of zero. The imbalance ratio refers
to the number of instances in the minor class di-
vided by the number of instances in the major class.
Figure 4 illustrates the variety of labels and their
quantities in the datasets used for this study.

C Model Size and Budget

The experiments with T5-large were mostly exe-
cuted on NVIDIA RTX A6000 servers, while other
experiments were primarily conducted on NVIDIA
GeForce GTX 1080 Ti. In task-specific soft
prompt tuning, the number of tunable parameters
is (prompt_length×model_dim), which in our set-
tings is 76,800. However, in label-specific prompt
tuning, this number is multiplied by the number
of classes (k × prompt_length × model_dim), so
for binary classification, it is 153,600. Consid-
ering the total number of parameters in T5-base
(222,958,848), the percentage of tunable parame-
ters to all parameters is less than 1%.

D Effect of Trainable Parameters

We test whether the performance improvement of
our method is only due to the increased number
of trainable parameters in our approach. In this
experiment, we set the soft prompt length of the
task-specific baseline method to be equal to the to-
tal number of trainable parameters of label-specific
prompt tuning, which is calculated as the number
of classes multiplied by 100. For this experiment,
we selected one German and four English tasks,
due to limitations in computational resources. As
depicted in Table 7, even with an increased num-
ber of prompt parameters in task-specific prompt
tuning, its performance is inferior to label-specific
prompt tuning, in some cases even achieving lower
performance than a model with fewer parameters.
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Size Num-Class Imbalance Ratio Classes Language

GermEval 18 binary 7539 2 0.508 normal, offensive de
fine-grained 7539 4 0.021 normal, profanity, insult, abuse de

HateSpeech 18 binary 8990 2 0.126 normal, hate en

HASOC 19 (de) binary 3905 2 0.119 normal, hateful and offensive de
fine-grained 461 3 0.411 hateul, offensive, profanity de

SRW 16 binary 8401 2 0.358 offensive, normal en
fine-grained 8401 3 0.001 sexism, racism, normal en

OLID
offensive 11452 2 0.498 normal, offensive en
targeted 3760 2 0.135 unintentional, intentional en
target 3313 3 0.164 individual, group, others en

Hateval 19
hate 8200 2 0.725 hate, normal en
aggressive 3453 2 0.701 aggressive, normal en
target 3453 2 0.549 individual, generic en

HateXplain hof 17307 3 0.701 hatespeech, normal, offensive en
target 15774 5 0.091 religious, racism, sexism, none, others en

Abuse fine-grained 38095 4 0.05 abusive, hateful, spam, normal en

Xdomain politics 9329 3 0.031 normal, offensive, hate en
religion 9209 3 0.025 normal, offensive, hate en

HASOC 19 (en)
binary 5834 2 0.63 normal, hateful and offensive en
fine-grained 2096 3 0.395 hateul, offensive, profanity en
targeted 2096 2 0.108 unintentional, intentional en

Table 6: Detailed information of datasets.

T5 base T5 large

task label task label

100 k × 100 k × 100 100 k × 100 k × 100

GermEval 18 binary 62.67 68.18 70.98 73.47 72.16 72.00
fine-grained 32.14 36.17 40.23 42.62 38.25 43.25

HateSpeech 18 binary 73.58 73.82 76.43 76.02 77.67 76.22

SRW 16 binary 83.11 83.77 85.27 85.18 84.23 85.92
fine-grained 57.55 57.04 58.26 58.27 57.24 58.03

OLID
offensive 77.48 77.90 78.40 78.38 77.72 79.78
targeted 47.02 49.16 61.47 57.54 57.87 62.16
target 54.68 48.05 57.51 46.31 47.58 51.37

average 63.54 63.17 67.60 66.33 65.88 68.21

Table 7: The effect of the number of trainable parameters in soft prompt tuning. k indicates the number of classes.
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