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Abstract

How can “weak teacher models” (Bowman
et al., 2022) such as average human annota-
tors or existing AI systems, effectively super-
vise LLMs to improve performance on hard
reasoning tasks, especially those that challenge
and requires expertise or daily practice from
the teacher models? In this paper, we seek
for empirical answers to this question by in-
vestigating various data-driven strategies that
offer supervision data at different quality levels
upon tasks of varying complexity. Two intuitive
strategies emerge for teacher models to provide
supervision during alignment training: 1) us-
ing lower-quality supervision from hard full
tasks that match the difficulty of the target rea-
soning tasks, and 2) leveraging higher-quality
supervision from easier subtasks that are less
challenging. Interestingly, we find that even
when the outcome error rate for hard task su-
pervision is high (e.g., 90%), training on such
data can outperform perfectly correct supervi-
sion on easier subtasks on multiple hard math
benchmarks. We further identify a more crit-
ical factor influencing training performance:
step-wise error rates, which indicate the sever-
ity of errors in solutions. Specifically, train-
ing on hard task supervision with the same
outcome error rates but disparate step-wise er-
ror rates can lead to a 30% accuracy gap on
MATH benchmark. Our results also reveal that
supplementing hard task supervision with the
corresponding subtask supervision can yield
notable performance improvements than sim-
ply combining rephrased hard full task supervi-
sion, suggesting new avenues for data augmen-
tation. Data and code will be released at https:
//github.com/hexuan21/Weak-to-Strong.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) (OpenAI, 2024b; Anthropic, 2024;

* These two authors contributed equally. The order of
authorship decided by the flip of a coin.

Reid et al., 2024; Dubey et al., 2024) indicate that
AI systems will soon be capable of progressively
solving hard reasoning tasks that challenge both
humans and current LLMs. To enhance the per-
formance of today’s AI systems (Bowman et al.,
2022; Burns et al., 2023) on such hard reasoning
tasks, especially those that exceed the reasoning
abilities of the average human or current LLMs,
what strategies should we adopt to consistently and
effectively supervise the AI systems?

We are concerned what supervision data those
“weak teacher models”, humans and current
LLMs, should annotate or synthesize for bet-
ter hard downstream task performance. We
mainly consider two possible data-driven supervi-
sion strategies – Strategy 1: Sampling or annotat-
ing solutions directly on the hard tasks that both
human annotators and AI models typically struggle
with; Strategy 2: Sampling or annotating solutions
on hard tasks’ corresponding subtasks, which are
more manageable and where humans or AI models
are more likely to succeed (Gülçehre and Bengio,
2016; Glasmachers, 2017; Wies et al., 2023; Joth-
imurugan et al., 2023). For Strategy 1, while the
tasks used for supervision match the reasoning dif-
ficulty of our studied hard downstream tasks, the
quality of supervision may be compromised due
to the difficulty that challenges the human and AI
teacher models. In contrast, Strategy 2 involves
easier tasks that do not match the difficulty level of
the downstream tasks, but the supervision quality
tends to be higher because these tasks are simpler
for annotators or models to handle. Should we
obtain low-quality supervision for hard tasks, or
employ high-quality supervision for decomposed
subtasks for fine-tuning?

To fairly compare the two supervision strategies,
which involve task difficulty and supervision qual-
ity, we introduce a simulated setting: The supervi-
sion quality is controlled by introducing varying
outcome error rates, which represent the percentage
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Figure 1: Overview of our empirical study on two contrasting supervision strategies and further analysis.

of noisy supervision where solutions with wrong
final answers replace the ground-truth solutions. It
is designed for simulating the varying supervision
quality from “weak” teacher models with differ-
ent capacity. After acquiring full task and subtask
supervision with varying outcome error rates, and
following Bansal et al. (2024), we apply supervised
fine-tuning (SFT) using the acquired supervision
to LLMs for solving hard reasoning tasks.

Across 5 hard math reasoning tasks, including
college entrance exams, high-school competitions
and college-level math tests, we find hard task su-
pervision consistently outperforms subtask supervi-
sion, regardless of outcome error rates. Specifically,
we observe that: 1) even if outcome error rate of
hard supervision is 90%, it can still outperform
perfectly correct subtask supervision; 2) for easy
subtask and hard full task supervision, as the out-
come error rate increases from 0% to 100%, the
performance does not decrease monotonically.

Rather than the outcome error rate, what fac-
tors highly impact the hard test task performance?
One key factor we identify is the step-wise error
rate, i.e., average ratio of erroneous steps (§5) to
the total steps in the supervision set. Specifically,
we observe that when different teacher models ex-
hibit similar outcome error rates, an increase in
step-wise error rate leads to lower performance on
hard reasoning tasks. We test a batch of LLMs,
including GPT-4o-mini (OpenAI, 2024a), GPT-3.5-
turbo (OpenAI, 2022), Llama-3-70B-Instruct, and
Command-R (Cohere, 2024), as teacher models for
providing hard task supervision. We then compare
the performance of the rest models’ supervision
against that of GPT-4o-mini at a similar outcome er-
ror rate. Notably, with a lower step-wise error rate,
GPT-4o-mini’s sampling supervision always leads

to higher results. When both GPT-4o-mini and
Command-R have around 90% outcome error rate
in their generated supervision, Command-R under-
performs by 12% accuracy on MATH (Hendrycks
et al., 2021b) and is even worse than training with
subtask supervision.

Can we further improve the hard downstream
task performance without relying on more hard
task annotations? We find that supplementing hard
task supervision with subtask supervision, i.e., the
supervision of hard tasks’ corresponding subtasks,
can lead to more performance gains. Specifically,
we combine the hard task supervision with an out-
come error rate of A and the subtask supervision
with an outcome error rate of B with three dis-
tinct combinations of A and B. We observe that
adding subtask supervision improves performance
across most of the 5 downstream tasks. When
A = 50% and B = 10%, we achieve the best
results on benchmarks like MATH and SAT-Math.
We also find that this simple supervision combina-
tion method is more effective than simply doubling
the training epochs on the mere hard task supervi-
sion or mixing rephrased hard task supervision.

Overall, we summarize our main contributions
for enhancing LLM’s hard reasoning task perfor-
mance as follows:

• We offer new insights into how complexity and
quality of weak supervision collectively impact
hard task performance, distinct from traditional
weak supervision and weak-to-strong generaliza-
tion literature.

• We conduct one of the most comprehensive eval-
uations across a range of hard reasoning tasks in
weak-to-strong generalization field, surpassing in
both scope and task difficulty. We also introduce
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a fairer comparison by ensuring that the super-
vision from easy subtasks and hard full tasks is
kept within a similar range.

• We provide comprehensive and novel insights
which contribute data-driven guidance for re-
searchers and practitioners aiming to improve
LLMs in future reasoning-heavy applications.

2 Formulation of Supervision Strategy
Analysis

In this section, we present the framework for our
analysis of supervision strategies aimed at enhanc-
ing performance on hard downstream reasoning
tasks. We outline the motivation behind two super-
vision strategies involving both easy and hard tasks,
introduce the key notations, and discuss the design
principles of the analysis formulation for fair and
comprehensive evaluation.

2.1 Overview of Supervision Strategies

Future AI systems need to solve hard reasoning
tasks that “weak teacher models” (e.g., average
humans or current AI systems) currently struggle
with. To achieve better performance on such hard
tasks, what types of training supervision should
these teacher offer for training LLMs? We propose
the two following supervision strategies, each with
distinct characteristics that could contribute to this
improvement:

Strategy 1: Use teacher models to sample or an-
notate solutions for hard full tasks that human
annotators or AI models typically struggle with.
Although this supervision aligns with the reason-
ing difficulty of the target downstream tasks, the
supervision may be lower-quality due to the task
complexity for obtaining correct final answer.

Strategy 2: Use teacher models to sample or an-
notate solutions for easy subtasks. These tasks,
while not matching the complexity of the down-
stream tasks, offer higher-quality supervision be-
cause they are simpler to handle.

We denote the two types of supervision as DHard

and DSubtask. We also define supervision quality
of DHard and DSubtask in terms of outcome error
rates, i.e., the proportion of incorrect solutions with
wrong final answers relative to the total supervi-
sion instances. Higher outcome error rates indicate
lower supervision quality. Following Bansal et al.
(2024), we employ supervised fine-tuning (SFT)
with the supervision from the above strategies to

train LLMs for solving hard tasks and determine
the more effective strategy.

In summary, we formally examine whether
hard task supervision DHard with outcome er-
ror rate ϵHard yields better performance on hard
reasoning tasks compared to the easy subtask
supervision DSubtask with error rate ϵSubtask.

2.2 Design Principles of Analysis Formulation

To ensure the fairness and comprehensiveness of
our analysis, we address the following aspects:
Comparison Fairness. We ensure that subtasks
must be less difficult than hard full tasks and avoid
introducing any extra tasks that go beyond the
scope of hard task supervision and might help solve
the test tasks (§3.2). It was neglected in prior re-
lated work which involves preparing easy and hard
task supervision (Sun et al., 2024; Hase et al., 2024;
Bansal et al., 2024).
Evaluation with Varying Supervision Quality.
Even if some teacher models like human annota-
tors are weak, they still have varying capabilities.
For instance, some may fail 60% of hard full tasks,
while others might fail up to 90%. To simulate vary-
ing supervision quality from those teacher models
with different capacity, we first collect a substantial
set of hard full tasks and subtasks, each containing
both ground-truth and incorrect solutions (§3.3).
To create supervision with A% outcome error rate,
we can simply replace A% of the original ground-
truth solutions with incorrect ones.

3 Hard Full Task and Easy Subtask
Supervision Synthesis

In this section, we detail the process of collect-
ing easy subtask and hard full task supervision,
DSubtask and DHard, based on the design principles
of our supervision strategy analysis framework.

3.1 Overview

As outlined in §2.2, we need to decompose hard
tasks into subtasks, ensuring that each decomposed
subtask remains within the scope of the original
hard task’s solutions. Additionally, we introduce
an outcome error rate metric as an indicator of su-
pervision quality, allowing us to simulate varying
levels of quality based on the capabilities of dif-
ferent teacher models. This enables us to analyze
performance trends in relation to changes in super-
vision quality and facilitates direct comparisons be-
tween hard full task and subtask supervision across

11008



different quality levels. To this end, our supervi-
sion synthesis pipeline comprises two main stages:
Stage 1: Hard Task Decomposition and Stage 2:
Outcome Error Rate Adjustment.

Our synthesis pipeline utilizes large-scale high-
quality math training annotations (See §3.4) as the
foundations. These resources provide many hard
reasoning tasks with chain-of-thought solutions,
which are fundamental for task decomposition, and
supervision quality adjustment and validation.

3.2 Stage 1: Hard Task Decomposition

Concretely, we leverage the hard full tasks and their
solutions from the large-scale high-quality math
resource, such as NuminaMath-CoT, to construct
DHard (as detailed §3.4). Then, with the hard task
decomposition prompt shown in Appendix I, we
employ GPT-4o-mini to break down each hard task
and its complete solution into 2-3 subtasks along
with their corresponding solutions derived directly
from the hard full task solutions.

To maintain the quality of subtasks, we filter
out unqualified tasks with ill-defined problems and
overly-simple solutions (Appendix D.2). After fil-
tering, the product of Stage 1 is a collection of hard
full tasks and their subtasks, each paired with a
ground-truth solution and final answer. They serve
as the foundation for generating supervision DHard

and DSubtask with varying outcome error rates and
the filtering process also bridges the distribution
gap between the text style of hard full and easy sub-
task instructions (we explore further about the po-
tential discrepancies between DHard and DSubtask

in Appendix F). In a small sample set, the solutions
to hard tasks have an average of 13.01 steps while
for subtasks, it’s 5.96.

3.3 Stage 2: Outcome Error Rate Adjustment

To introduce supervision quality change and con-
duct comparison at different quality levels, we
swap a percentage of ground-truth solutions with
the incorrect ones to adjust supervision quality. For
example, to create hard task supervision with a 20%
outcome error rate, 20% of ground-truth solutions
are replaced with incorrect ones.

However, Stage 1 only offers ground-truth solu-
tions and this process requires incorrect task solu-
tions. How can we obtain the incorrect solutions
for error-introducing replacement? Next we outline
the process to ensure each task has both ground-
truth and incorrect solutions.

Sampling Multiple Solutions. We first use LLMs
to perform multi-sampling, generating three so-
lutions for each hard full task and subtask. To
increase the likelihood of obtaining incorrect so-
lutions for the tasks with different complexities,
we leverage LLMs with different reasoning capa-
bilities. Concretely, we employ GPT-4o for hard
tasks and GPT-4o-mini for subtasks. After gen-
erating the three candidate solutions, we assess
their correctness by comparing each one against
the ground-truth final answers.

Gathering and Filtering Tasks with Ground-
Truth and Incorrect Solutions. With three sam-
pled solutions and the ground-truth, we attempt to
formulate solution pairs for each task, with one
correct and one incorrect. Details and examples
are shown in Appendix D.3. It may occur that all
decomposed subtasks corresponding are filtered
out, or vice versa, where a subtask’s corresponding
hard full task is filtered out. To ensure that the
hard full tasks in DHard encompass the scope of
the subtasks in DSubtask for comparison fairness
discussed in §2.2, we enforce that every hard full
task in DHard must have at least one corresponding
subtask in DSubtask, and each subtask in DSubtask

must correspond to a hard task in DHard.

Controlling Supervision Error Rate by Adjust-
ing the Proportion of Noisy Supervision. Once
we ensure that all hard full tasks and easy subtasks
have both ground-truth and incorrect solutions, we
adjust the supervision quality by substituting a spec-
ified percentage of the original ground-truth solu-
tions with incorrect ones. For example, to create
hard task supervision with a 20% error rate, we re-
place 20% of the ground-truth solutions with their
corresponding incorrect versions.

Overall, after Stage 2, we obtain the final super-
vision datasets DHard and DSubtask with outcome
error rates ranging from 0% to 100% in 10% in-
crements, simulating varying supervision quality
from different teacher models. As outlined in §2.1,
following (Bansal et al., 2024), we apply SFT us-
ing the two types of supervision to train LLMs on
hard reasoning tasks, followed by a comprehensive
analysis of their performance.

3.4 Supervision Sources and Quality Check

We focus on the math domain and apply the
pipeline to various math sources, including three
subsets from NuminaMath-CoT (Li et al., 2024b),
PRM800K (Lightman et al., 2023), along with the
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difficulty levels 4-5 from MATH, all featuring high
school competition, college entrance exam and
college-level exam difficulties (See details in Ap-
pendix B). Table 4 summarizes the quantity of hard
full task and the subtask supervision from each data
source. In total, DHard contains 42,274 ground-
truth hard task solutions, while DSubtask includes
67,328 ground-truth subtask solutions. We then in-
troduce varying error rates, ϵHard and ϵSubtask, for
both DHard and DSubtask. We present a thorough
analysis and detailed case studies on the supervi-
sion synthesis process, spanning Appendix D.1 to
D.3, to illustrate the effectiveness of our carefully
simulated settings for fair comparison. We conduct
human evaluation on 60 samples to further verify
the data quality, as described in Appendix E.

4 Which Supervision Strategy is Better?

4.1 Setup

We compare the hard math task performance after
training with final supervision DHard and DSubtask

obtained from the two supervision strategies. Our
test data of hard tasks encompass a range of diffi-
culty levels, spanning from high school competi-
tion to college-level exams. This includes chal-
lenges from the Olympic-Arena (Huang et al.,
2024), MATH, and JEE-Bench (Arora et al., 2023a)
(as detailed in Appendix C). As outlined in §3.3, we
introduce varying error rates from 0% to 100% in
10% increments to simulate different quality levels
for both hard and subtask supervision.

Inspired by Sun et al. (2024), we first establish a
base model with fundamental instruction-following
and mathematical reasoning abilities. To this end,
we fine-tune Llama-3-8B using elementary school
and middle school-level math data from Orca-Math
(Mitra et al., 2024) subset of NuminaMath-CoT, as
well as the MATH dataset (level 1-3). It serves as
the base model that we will train upon using DHard

and DSubtask. Additional training and inference
hyper-parameters are provided in Appendix A.

4.2 Observations

Figure 2 reveals several intriguing insights regard-
ing the comparison between hard task supervision
and subtask supervision, as well as the resulting
trends in performance changes.
Hard task supervision consistently outperforms
subtask supervision, even with higher outcome
error rates. Despite the higher error rate of hard
task supervision DHard, models trained on DHard

still demonstrate superior performance across all
five test sets. Remarkably, DHard with a 90% error
rate outperforms DSubtask with a 10% error rate by
approximately 11% on the MATH and 16.9% on
Gaokao-Mathcloze. This suggests that, even with
a high error rate, adopting hard task supervision is
seemingly a more beneficial choice than leveraging
more accurate subtask supervision.
Performance does not consistently degrade with
increasing outcome error rates. Across 5 test
benchmarks, accuracy remains stable even as the
error rate increases. For example, on JEE-Bench,
accuracy fluctuates with rising error rates, while
on SAT and MATH, performance remains steady,
showing marginal changes with variations in out-
come error rates. Interestingly, hard task supervi-
sion with a 100% error rate is more effective than
with a 10% error rate on JEE-Bench. This finding is
different from previous studies in weak supervision
literature (Zhang et al., 2017), which generally sug-
gest that supervision quality significantly impacts
training performance.
Changes in outcome error rates have a greater
impact on subtask supervision than on hard task
supervision. As shown in Figure 2, increasing the
outcome error rates in subtask supervision leads to
a more significant drop in performance compared
to hard task supervision. This is evident in the
performance gap between the highest and lowest
results achieved among varying error rates. For
instance, on MATH, the performance drop for sub-
task supervision is 9.4%, whereas for hard full task
supervision, it is only 4.6%. This suggests that the
SFT process is more robust to outcome error rate
variations when using hard full task supervision
compared to subtask supervision.

In summary, it appears that irrespective of the
quality of hard full task supervision, it consistently
outperforms subtask supervision, even if the latter
is more precise in practice. Also, training seems to
be more robust across varying quality levels when
using hard full task supervision. Why does this
occur? Should we always rely on hard full task su-
pervision with high outcome error rates to achieve
strong performance on hard tasks? What other fac-
tors should we take into account? We explore these
questions further in §5.

5 Severity of Erroneous Solutions Matters

Observations in §4 suggest that in domains requir-
ing long-form reasoning, such as math, outcome

11010



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Outcome Error Rate

0.2

0.3

0.4

0.5

0.6
A

cc
ur

ac
y

MATH Performance

Hard Task Supervision
Easy Subtask Supervision

(a) Accuracy on MATH.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Outcome Error Rate

0.0

0.1

0.2

A
cc

ur
ac

y

OlympicArena Performance

Hard Task Supervision
Easy Subtask Supervision

(b) Accuracy on Olympic-Arena.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Outcome Error Rate

0.0

0.1

0.2

A
cc

ur
ac

y

JEEBench Performance

Hard Task Supervision
Easy Subtask Supervision

(c) Accuracy on JEE-Bench.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Outcome Error Rate

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y
GaokaoMathcloze Performance

Hard Task Supervision
Easy Subtask Supervision

(d) Accuracy on Gaokao-
Mathcloze.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Outcome Error Rate

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

SAT Performance

Hard Task Supervision
Easy Subtask Supervision

(e) Accuracy on SAT-Math.

Figure 2: Comparison of easy and hard task supervision with varying outcome ER on 5 hard reasoning benchmarks.

error rate MAY NOT be a reliable indicator
of quality. Earlier analysis define “supervision
quality” based on a binary match between the fi-
nal predicted result and ground truth, ignoring the
correctness of intermediate steps. Two incorrect
solutions may differ greatly in quality: one with
a minor computational error but coherent, and an-
other with fundamentally flawed logic. The latter
represents a more severe error, yet this distinction
is missed by a simple binary evaluation.

To evaluate error severity in solutions, we intro-
duce the concept of erroneous step, defined as a
step that is logically incorrect or irrelevant to pre-
ceding steps. Importantly, we do not classify a
step as erroneous if it is logically correct but only
relies on incorrect intermediate values from prior
mistakes. Given similar outcome error rates, it is
intuitive to consider that the proportion of erro-
neous steps affects the quality of supervision. To
validate this on a larger scale, we first examine the
impact of using different teacher models with simi-
lar outcome error rates and then analyze whether
the severity of step-wise errors correlates with the
observed performance gap.

5.1 Setup

In addition to using the solutions previously sam-
pled from GPT-4o-mini, we include GPT-3.5-turbo,
Llama-3-70B-Instruct, Command-R-2024-08, and
Command-R-2024-03 as teacher models with
varying capabilities to generate solutions for con-
structing new hard full task supervision, denoted
as D′

Hard. Concretely, we sample one solution
per hard full task in DHard and use these to create

D′
Hard for SFT. For each teacher model, we assess

the outcome error rates of D′
Hard by comparing

the predicted final results against the ground-truth
answers of all the hard training tasks.

After obtaining the outcome error rates of
D′

Hard generated by different teacher models, we
identify the model variant MClosest trained with
GPT-4o-mini supervision with an outcome error
rate closest to the new teacher model for compar-
ison. We then compare MClosest with the model
trained on D′

Hard across downstream benchmarks.
For example, if the supervision sampled from
Llama-3-70B-Instruct has an outcome error rate of
81.8% on the hard tasks, we compare Llama-3-70B-
Instruct sampled supervision with the correspond-
ing model in §4.2 trained by GPT-4o-mini sampled
supervision with an 80% outcome error rate.

5.2 Performance of Supervision Under
Similar Outcome Error Rates

As shown in Figure 3, even with similar out-
come error rates, models trained with supervision
from diverse teacher models behave differently.
For instance, a model trained on solutions from
Command-R-2024-08, which has an outcome error
rate of 87.7%, achieves only 32.8% accuracy on
MATH. In contrast, the model trained on data from
GPT-4o-mini, despite a higher error rate of 90%,
achieves significantly better accuracy at 44.8%. Ad-
ditionally, the model trained with supervision from
Llama-3-70B-Instruct (81.8% error rate) performs
worse than one trained with 100% incorrect data
from GPT-4o-mini. Notably, Command-R-2024-
03’s sampled hard task supervision is less effective

11011



JEEBench OlympicArena Gaokao MATH SAT

Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0.12 0.14

0.41
0.43

0.58

0.09 0.08

0.25

0.34

0.52

Llama370BInstruct (81.8% ER) vs. GPT4omini (80% ER) Hard Task Supervision

GPT4omini (80% ER)
Llama370BInstruct (81.8% ER)

(a) Llama-3-70B-Instruct (81.7% ER) vs. GPT-4o-
mini (80% ER) hard full task supervision.

JEEBench OlympicArena Gaokao MATH SAT

Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0.09

0.15

0.41
0.45

0.58

0.07 0.06

0.12

0.33

0.49

CommandR202408 (87.7% ER) vs. GPT4omini (90% ER) Hard Task Supervision

GPT4omini (90% ER)
CommandR202408 (87.7% ER)

(b) Command-R-2024-08 (87.7% ER) vs. GPT-4o-
mini (90% ER) hard full task supervision.

JEEBench OlympicArena Gaokao MATH SAT

Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0.09

0.15

0.41
0.45

0.58

0.07 0.06

0.12

0.29

0.52

GPT3.5turbo (88.5% ER) vs. GPT4omini (90% ER) Hard Task Supervision

GPT4omini (90% ER)
GPT3.5turbo (88.5% ER)

(c) GPT-3.5-turbo (88.5% ER) vs. GPT-4o-mini (90%
ER) hard full task supervision.

JEEBench OlympicArena Gaokao MATH SAT

Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0.09

0.15

0.41
0.45

0.58

0.07
0.05

0.07

0.15

0.34

CommandR202403 (91.3% ER) vs. GPT4omini (90% ER) Hard Task Supervision

GPT4omini (90% ER)
CommandR202403 (91.3% ER)

(d) Command-R-2024-03 (91.3% ER) vs. GPT-4o-
mini (90% ER) hard full task supervision.

Figure 3: Performance of the supervision synthesized by different teacher models under similar outcome error rates
(a.k.a., ER).

Teacher models Step-wise Error Ratio (%)

GPT-4o-mini 11.7

Llama-3-70B-Instruct 30.2
Command-R-2024-08 40.0
Command-R-2024-03 62.6
GPT-3.5-turbo 34.7

Table 1: Step-wise error rates (%) for teacher models.

than using the subtask supervision from GPT-4o-
mini in 4 out of 5 test hard tasks. This suggests the
key factor influencing performance may lie in the
quality of the solution steps embedded within the
supervision from different teacher models.

5.3 Correlation Between Performance
Disparity and Step-Wise Error Rates

To further validate our hypothesis about the severity
of incorrect solutions generated by different teacher
model models, human evaluation is required. We
first collect 60 tasks along with their incorrect so-
lutions from the supervision sampled by each of
the four studied teacher models discussed in §5.1,
including Command-R-2024-08 and Llama-3-70B-
Instruct. We then conduct a manual review of these
incorrect solutions. Specifically, we count the total
steps and erroneous steps in each solution and cal-
culate step-wise error rates by averaging the ratio
of erroneous steps to total steps across all the solu-
tions of sampled 60 examples (See Appendix H for
comprehensive case studies). As shown in Table 1,
the step-wise error rates vary among these teacher

models, with Command-R-2024-03 exhibiting the
highest ratio at 62.6% and GPT-4o-mini having
the lowest at 11.7%. From Figure 3, we observe a
strong correlation between the step-wise error rates
and downstream performance: lower rates corre-
spond to higher downstream performance, aligning
more closely with results from supervision synthe-
sized by GPT-4o-mini. This indicates that the step-
wise error rate is a strong indicator of supervision
quality and its impact on hard task performance.
Besides the above observations, we attempt to bor-
row step-wise error rate metric to explain more
phenomenons, detailed in Appendix G.

6 Further Improvement Over Sole Hard
Task Supervision

As outlined previously, hard task supervision with
lower step-wise error rates is highly beneficial. But
can performance be further improved using exist-
ing hard task supervision without introducing new
ones? A natural approach is to integrate easy sub-
task supervision into existing supervision sources.
Since these subtasks are decomposed from the hard
ones, this strategy boosts task diversity without
adding new information, offering a potential av-
enue for further performance gains.

What happens after we combine them? Due
to the substantial resources and time required to
explore all possible combinations (a total of 11×11
combinations) of different outcome error rates for
hard and easy data, we select several combinations:
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(20%, 10%), (20%, 0%), (50%, 10%), (50%, 0%),
(80%, 40%), (80%, 10%) and (80%, 0%), where
the two values represent the outcome error rates
for hard full task and easy subtask supervision. In
each combination, the outcome error rate for hard
data is higher, reflecting the reality that annotations
for hard tasks are often less accurate.

From another perspective, since the information
in hard tasks essentially covers that of the sub-
tasks, one might argue that combining easy sub-
task and hard full task supervision merely makes
LLMs learn the same information roughly twice.
We design a baseline denoted as “doubled epochs”,
where we train the model on hard task supervision
for 4 epochs, which double the training epochs of
all previous experiments. We also merge the exist-
ing hard task supervision along with its rephrased
version which increases more diversity.

Combined Supervision vs. Doubled Epochs vs.
Merge Rephrased. Table 2 shows that in most
cases, combining easy subtask and hard task super-
vision enhances performance. For instance, com-
bining hard task supervision with a 50% outcome
error rate and subtask supervision with a 10% out-
come error rate leads to the highest accuracy on the
MATH, Gaokao-Mathcloze and SAT-Math among
all previously trained baselines. It also outperforms
doubling the training epochs or mixing rephrased
data with original SFT supervision, highlighting
that integrating subtask supervision can push per-
formance limits beyond repetitive supervision.

Effects of Step-Wise Error Rates of Hard Task
Supervision after Merging. We also combined
hard task supervision from other different teacher
models (Llama-3-70B-Instruct and Command-R-
2024-03) and the original easy subtask supervi-
sion. We then compared these new combinations
with the original ones to further assess the effect of
step-wise error rate in hard task supervision, as dis-
cussed in §5. The results align with our earlier find-
ings: when a teacher model exhibits a lower step-
wise error rate, the performance of the combined
hard and easy supervision improves. As shown in
Table 1, Command-R-2024-03, which has the high-
est step-wise error rate, yields the lowest accuracy
on the test data. This comparison reinforces the
importance of step-wise error rate in determining
the quality of math reasoning supervision data for
hard downstream tasks.

7 Concluded Empirical Advice

Based on the findings above, we offer some prac-
tical advice for optimizing annotation efforts of
weak teacher models to enhance on hard tasks:
Prioritize hard task supervision for better per-
formance on challenging reasoning tasks. We
reveal in §4 that the best performance is consis-
tently achieved with hard full task supervision. It
significantly surpasses the results obtained using
only subtask supervision.
Step-wise error rates of teacher models is more
critical than outcome error rates on hard rea-
soning task performance. In §5, we find that, even
with identical outcome error rates, supervision with
higher step-wise error rates leads to more evident
performance drop than what we observe when the
outcome error rates change.
To further enhance performance, consider sam-
pling or annotating hard tasks and their asso-
ciated subtasks, then use the combined super-
vision to train LLMs. As shown in §6, given a
fixed task scope covered in the hard task supervi-
sion, integrating hard task supervision and their
corresponding subtask supervision boosts or even
achieves the best performance across benchmarks.
This combination is also more effective than simply
increasing the training epochs or further merging
the rephrased version of the original supervision.

8 Related Works

Weak Supervision. Weak supervision has tradi-
tionally been applied to text classification tasks,
typically following an iterative framework that gen-
erates pseudo-labels using heuristics and expands
the training set (Agichtein and Gravano, 2000;
Meng et al., 2018). Recent works have employed
LLM-based teacher models to generate training
data for fine-tuning smaller models (Bosselut et al.,
2019; West et al., 2022; Wang et al., 2023; Hsieh
et al., 2023; Brahman et al., 2023), enabling student
models to follow instructions and perform reason-
ing. This approach assumes that a strong teacher
LLM offers high-quality supervision. However,
our focus shifts to challenging reasoning tasks that
even a current strong LLM struggles to solve. We
analyze how supervision complexity and quality
jointly impacts performance when a teacher model
provides noisy weak supervision for hard tasks.

Easy-to-Hard Generalization. This area (Zhou
et al., 2022; Burns et al., 2023) involves training
on easy task supervision and then evaluating on
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Tasks Combination 1 Combination 2 Combination 3

(20%, 10%) (20%,0%) 20% (50%, 10%) (50%,0%) 50% (80%, 40%) (80%, 10%) (80%, 0%) 80%

MATH 43.2 48.0 47.4 48.6 45.8 47.8 43.8 46.8 47.2 43.2
Olympic-Arena 13.6 16.4 12.7 12.7 18.8 12.7 14.1 19.2 17.8 13.6
JEE-Bench 12.3 10.4 7.4 11.7 9.2 12.3 12.3 9.8 7.4 12.3
Gaokao-Mathcloze 40.7 40.7 39 45.8 43.2 44.1 42.4 37.3 43.2 40.7
SAT-Math 58.2 60.5 58.2 61.0 63.2 60.0 60.0 66.8 62.3 58.2

Average 33.6 35.2 32.9 36.0 36.0 35.4 34.5 36.0 35.6 33.6

(a) Combination of easy and hard task supervision vs. Sole hard task supervision.

Tasks Combination

(50%, 10%) 50% (Doubled Epochs) 50% (Merge Rephrased.)

MATH 48.6 45.0 48.4
Olympic-Arena 12.7 12.7 12.7
JEE-Bench 11.7 9.2 10.4
Gaokao-Mathcloze 45.8 42.4 44.1
SAT-Math 61.0 55.5 57.3

(b) Combined vs. Doubled Epochs vs. Merge Rephrased.

Table 2: Accuracy (%) of different combination methods. (a) combination of hard and easy task supervision with
varying error rates, (b) other combinations: "Doubled Epochs" refers to doubling original training epochs, while
"Merge Rephrased" denotes the training data that combines original hard tasks with the rephrased versions.

Combination

Outcome ER Combinations GPT-4o-mini
(80%, 10%)

Llama-3-70B-Instruct
(81.7%, 10%)

Command-R-2024-03
(87.7%, 10%)

Step-Wise ER of Hard Task Supervision 11.7% 30.2% 62.6%

MATH 46.8 31.2 24.6
Olympic-Arena 19.2 12.2 5.2
JEE-Bench 8.7 10.4 5.5
Gaokao-Mathcloze 37.3 23.7 5.1
SAT-Math 61.0 54.5 47.7

Table 3: Combination performance of hard full task supervision from different teacher models and original easy
subtask supervision, teacher models include GPT-4o-mini, Llama-3-70B-Instruct and Command-R-2024-03.

more difficult examples. Hase et al. (2024) demon-
strate that in-context learning or fine-tuning on easy
tasks offers a strong baseline for multiple-choice
tasks such as ARC (Clark et al., 2018) and MMLU
(Hendrycks et al., 2021a), while Sun et al. (2024)
show that an easy-to-hard evaluator enhances a
generator’s generalization on hard task benchmark
MATH, based on the fact that evaluation is easier
to learn than generation. In contrast to prior works,
our study uniquely focuses on how two extra corre-
lated aspects, supervision task difficulty and super-
vision quality, jointly influence final performance
on hard tasks. Our experimental setup provides two
key advantages: 1) one of the most comprehensive
evaluations of hard reasoning tasks, far exceeding
prior studies; and 2) a fairer comparison by control-
ling task scope to keep easy subtasks and hard full
task supervision within a similar range.

9 Conclusion

In this paper, we explore two possible supervision
strategies that weak teacher models can employ to
enhance performance on hard reasoning tasks. We
first find that even when the outcome error rate for
hard task supervision is high, training on this data
can surpass the performance of perfectly correct
supervision from easier subtasks across multiple
hard math tasks. Then, we pinpoint step-wise er-
ror rates as a more critical factor influencing hard
task performance, as its variation can result in a
more evident drop on the hard tasks. We further
observe that if no more hard task supervision is
allowed to be added, supplementing existing hard
task supervision with corresponding subtask su-
pervision yields greater performance than merely
merging rephrased hard task supervision. These
insights contribute valuable data-driven guidance
for researchers and practitioners aiming to improve
LLMs in future reasoning-heavy applications.
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Limitations

In this section, we list several limitations of our cur-
rent work and consider to address them to enhance
the paper in the future.

Effects of Step-Wise Error Rates. In §5, we fo-
cused on examining the effects of step-wise error
rates on the quality of supervision for hard full
tasks, primarily due to cost considerations. Fu-
ture work will include an investigation into the
impact of step-wise error rates on subtask supervi-
sion. Additionally, we can perturb the supervision
produced by the same teacher models to introduce
more step-wise erroneous steps, further reinforcing
the significance of step-wise error rates.

Supervision Combination Strategy. The experi-
ments presented in §6 are conducted with a limited
range of error rate combinations for hard full task
and easy subtask supervision provided by GPT-4o-
mini. We plan to test a broader array of combi-
nations and extend our analysis to the supervision
synthesized by other teacher models, such as GPT-
3.5-turbo and Llama-3-70B-Instruct, if our training
budget allows.

Exploration on More Reasoning Domains. Our
experiments primarily target the math domain; how-
ever, we intend to explore other reasoning domains,
such as scientific reasoning, to further bolster the
arguments presented in our study.

Integrating More Alignment Methods into Our
Supervision Strategy Analysis Framework. Fol-
lowing Bansal et al. (2024); Hase et al. (2024),
we employ supervised fine-tuning (SFT) to inves-
tigate the effects of various types of supervision.
Additionally, we plan to integrate more alignment
training methods, such as DPO (Rafailov et al.,
2024), to determine whether our observations re-
main consistent in the future work.
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A Hyperparameters for Training and
Inference

As outlined in §4.1, we fine-tune Llama-3-8B base
model using the elementary school and middle
school-level math task annotations from the Orca-
Math subset of NuminaMath-CoT, and MATH
(level 1-3) to establish a base model equipped
with foundational instruction-following and math-
ematical reasoning capabilities. In total, there are
164,162 training instances. Subsequently, we fine-
tune this base model with our synthesized easy sub-
task and hard full task supervision. We set the learn-
ing rate to 2e−5 and employed the cosine learning
rate scheduler. Each model variant is trained on
A100 and H100 GPUs for 2 epochs, taking around
1 hour. During inference on downstream tasks, we
set temperature as 0.6, top-p as 0.9, top-k as 50 and
maximal output token numbers as 1680.

B Supervision Source Data Details

Table 4 shows the original size, the number of
tasks generated by the synthesis pipeline and
the difficulty level of the five data sources for
synthesizing hard task and easy subtask supervi-
sion. For the three subsets of NuminaMath-CoT,
“cn_k12” consists of problems collected and trans-
lated from Chinese K-12 education math exercises.
“synthetic_math” is synthesized from the MATH
dataset following the methods in (Li et al., 2024a)
and “synthetic_amc” subset is similarly synthe-
sized based on the training split of the AMC-AIME
dataset. Regarding the remaining two sources,
PRM800K, initially a preference dataset, is utilized
here by taking positive answers from the prefer-
ence pairs as solutions to the problems. For MATH,
we exclusively used its training split with difficulty
level 4-5.

C Test Data Details

Our test data contains five subset and Table 5 shows
the size and level of difficulty of downstream tasks
in these five subsets. Our MATH test set is a small
set split of size 500 from the original MATH test
set, as mentioned in (Lightman et al., 2023).

JEE-Bench (Arora et al., 2023b) is derived from
the IIT JEE-Advanced Exam, with high-school and
college level problems. Some are multiple choice
or fill-in-the-blank questions, we convert them to
open-ended questions using GPT-4o-mini and filter
out some unqualified converted problems like ill-
defined ones or the ones with incorrect solutions.

Olympic-Arena (Huang et al., 2024) includes
11,163 text-only and interleaved text-image prob-
lems, covering multiple subjects like mathematics,
physics, computer science, etc. We select the text-
only math problems as our test data. Some prob-
lems are multiple choice or fill-in-the-blank ques-
tions, we also convert them to open-ended ques-
tions and manually filter out the unqualified ones,
such as questions not well-defined or those with
wrong solutions after conversion.

The other two subsets are sourced from the
benchmark AGI-Eval (Zhong et al., 2023), SAT
contains math problems from SAT exam in U.S.
while Gaokao-Mathcloze is sourced from Chinese
College Entrance Exam. For these two subsets, we
also do format conversion and automatic filtering
as described above.

D Details of Data Synthesis Pipeline and
Examples for Demonstration

This section offers an in-depth demonstration of our
pipeline through multiple examples, highlighting
the effectiveness and comprehensiveness of our
supervision synthesis approach discussed in §3.

D.1 Decomposing Hard Full Task into
Subtasks

At Stage 1 of our pipeline (§3.2), we decompose
the original hard full task into 2 or 3 subtasks. Here
we show some examples of the original hard full
tasks and the decomposed subtasks.
Decomposition Example 1: Table 8, 9 and 10
show the original hard full task, decomposed sub-
task 1 and decomposed subtask 2, respectively, as
our first example.
Decomposition Example 2: Table 11, 12 and 13
show the original hard full task, decomposed sub-
task 1 and decomposed subtask 2, respectively, as
our second example.

D.2 Filtering Unqualified Subtasks

As mentioned in §3.2, we use GPT-4o-mini to filter
out the unqualified subtasks. Our filtering criteria
are shown below:

• Incomplete and Ill-defined Subtasks. We filter
out the decomposed subtasks that lack necessary
conditions for solving problem, especially those
where their solutions mention the information
not present in the task. For example, if a solution
mentions “f(x) is an odd function” or uses the
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Sources Original Sizes # Hard Sup. # Easy Sup. Difficulty

NuminaMath-CoT (cn_k12) 105,785 22,397 35,210 high-school & college entrance exam
NuminaMath-CoT (synthetic_math) 40,580 11,172 18,107 high school
NuminaMath-CoT (synthetic_amc) 31,752 7,547 12,190 high school competition
PRM800k 2,041 340 523 high school
MATH (level 4-5) 1,040 150 261 high school competition

Table 4: Data sources used for constructing hard and easy task supervision, including their original sizes, final sizes
after filtering (as described in §3.3) that the data sources contribute, and corresponding difficulty levels.

Test Tasks Sizes Difficulty

MATH 500 high school competition
JEE-Bench 163 high school & college
Olympic-Arena 213 Olympiad competition
SAT-Math 220 college entrance exam
Gaokao-Mathcloze 118 college entrance exam

Table 5: Detailed statistics of 5 downstream hard math
reasoning tasks and their corresponding difficulty levels.

condition “Anna has three apples” but these con-
ditions do not exist in the subtask, the subtask
would not be utilized in the final supervision.

• Overly Simple Subtasks. We prompt GPT-4o-
mini to count the computation and reasoning
steps in each solution, filtering out easy subtasks
that involve fewer than a threshold of 3 steps.
These overly simple tasks, which require mini-
mal reasoning, can already be handled by current
LLMs and don’t need to be retaught. For in-
stance, the discarded subtasks include “Calculate
sine of 30°”, “Solve for 2x+6 = 18” or “What’s
the area of semicircle if its radius is 3?”, which
are too simple and can be solved within 3 steps.

• Subtasks That Are Too Similar to the Original
Hard Full Tasks. We prompt GPT-4o-mini to
evaluate whether a decomposed subtask is merely
a variation of the original full hard task, such as
only changes in numerical values or conditions,
and filter out such unqualified tasks to guarantee
the lower difficulty of the subtasks. For example,
if the original task is “Calculate the derivative of
f(x) and determine its monotonicity for a = 1,”
and the subtask is “Determine whether f(x) is
increasing or decreasing for a = 3 by calculating
its derivative,” the subtask is simply a variant of
the original task and thus excluded.

Type 1 (Ill-defined) - Example 1. Table 14 shows
the first example for Type 1 (ill-defined) of unqual-
ified subtask.
Type 1 (Ill-defined) - Example 2. Table 15 shows
the second example for Type 1 (ill-defined) of un-
qualified subtask.

Type 2 (Overly simple) - Example 1. Table 16
shows the first example for Type 2 (overly simple)
of unqualified subtask.
Type 2 (Overly simple) - Example 2. Table 17
shows the second example for Type 2 (overly sim-
ple) of unqualified subtask.
Type 3 (Too similar to the original) - Example
1. Table 18 shows the first example for Type 3 (too
similar to original hard task) of unqualified subtask.
Type 3 (Too similar to the original) - Example
2. Table 19 shows the second example for the
type 3 (too similar to the original hard full task) of
unqualified subtask.

D.3 Sampling Multiple Solutions for Both
Hard and Subtasks

To adjust the outcome error rates in the supervi-
sion set during Stage 2 of the supervision synthesis
process (§3.3), each task is paired with solutions
that include both a ground-truth and an incorrect
option. To obtain the incorrect solution, we sample
three potential solutions for each hard full task and
easy subtask in the supervision sets, then employ
GPT-4o-mini to validate their correctness against
the ground-truth final answer.

With regard to the correctness of the three sam-
pled solutions for each hard full task and decom-
posed subtask, there are three situations: Situation
1: All Correct - All the three sampled solutions are
correct; Situation 2: Mixed - The three sampled
solutions contain both correct and incorrect solu-
tions; Situation 3: All Incorrect - All the three
sampled solutions are incorrect. In Situation 1,
tasks without incorrect solutions are excluded from
the final supervision set. In Situation 2, a correct
sampled solution is used as the ground-truth, and
an incorrect one is used for error rate adjustment.
In Situation 3, an incorrect solution is selected and
the ground truth is reformatted to match the style
of incorrect solution. We ensure consistency be-
tween ground-truth and incorrect solutions to pre-
vent LLMs from learning divergent styles during
fine-tuning.
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Once we construct the pairs of correct solution
and incorrect solution, the incorrect solution will
then be used to replace the ground-truth answer
when we intentionally introduce more outcome er-
rors to manage quality. Below, we provide exam-
ples that demonstrate the multi-sampling process
and the creation of these solution pairs.
Sampling and Construction Example 1. Table 20
presents the first example of our process for sam-
pling three solutions from LLMs and constructing
solution pairs that include these three solutions and
the ground-truth.
Sampling and Construction Example 2. Table
21 presents the second example of our process for
sampling three solutions from LLMs and construct-
ing solution pairs that include these three solutions
and the ground-truth.
Sampling and Construction Example 3. Table
22 presents the third example of our process for
sampling three solutions from LLMs and construct-
ing solution pairs that include these three solutions
and the ground-truth.

E Human Evaluation for SFT
Supervision Quality

To further assess the quality of the synthesized data,
we randomly sample a small set with 60 hard full
tasks and their corresponding 87 easy subtasks, and
conduct a human evaluation for these samples to
examine data quality. Our evaluation suite includes
the following dimensions: 1) checking correct so-
lutions for both hard full tasks and subtasks; 2)
checking incorrect solutions for both hard full tasks
and subtasks; 3) checking the quality and appropri-
ateness of the subtasks.

Correct Solution Checking. The correct solu-
tions are required to be complete, correct and de-
tailed, showing each essential computing and rea-
soning step. For hard full task, 59/60 are qualified
and for easy subtask, 85/87 is qualified.

Incorrect Solution Checking. The incorrect so-
lutions should reach incorrect final result and be
detailed in solving process. 54/60 in hard full tasks
is qualified while 83/87 in subtasks is qualified.
Most of the unqualified solutions exhibit correct
process and results, while very few are incomplete.

Decomposed Subtask Checking. As mentioned
in §2.2, tasks in subtask supervision is decomposed
from the tasks in hard full task supervision and we
have filtered out three types of unqualified subtasks,

which corresponds to three essential features we
expect in the subtask:

• Criteria 1: Subtask should be well-defined, with
no missing conditions. In our review, 84/87 sub-
tasks are qualified. Those unqualified are all
missing conditions or information in the problem
while the solution mentions and utilizes them.

• Criteria 2: Subtask should not be overly simple,
featuring less than 3 steps in solution. In our
review, all the easy subtasks are qualified.

• Criteria 3: Subtask should not be too similar
to the hard full task, with only some numerical
conditions changed. In this dimension, 86/87
easy subtasks are qualified.

With human evaluation, we further verify the
overall quality of synthesized hard and easy data,
which can be regarded as reliable foundations of
our controlled supervision strategy analysis.

F Measure Possible Discrepancy between
Hard Full tasks and Decomposed
Subtasks

To investigate the potential discrepancies between
hard full task questions and their decomposed sub-
task counterparts, which may be challenging for
humans to detect, we measure the average cosine
similarity of embeddings between these two task
types on a small sample set. Additionally, we em-
ploy GPT-4o-mini to perform a style transfer on
the question components of the sampled subtasks,
aligning them with the full task questions in terms
of descriptive manner, contextual setup, and over-
all style. The prompt used is shown in Table 6.
Then we compare the similarity metric before and
after this style transfer to further verify if there
are some style differences between full task and
subtask, which may potentially contribute to the
performance gap between these two types of super-
vision data.

We sampled 200 full tasks, each paired with a
subtask, to compute the embedding similarity using
popular models such as bert-base-v2 from the
BERT family and paraphrase-mpnet-base-v2
from the Sentence Transformer family. The results
are presented in Table 7. The findings show that
the cosine similarity between the embeddings of
full tasks and their corresponding original subtasks
remains consistently high, ranging from 0.7 to 0.85
across different embedding models. Additionally,
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Below we provide some mathematical tasks, including several examples and one task T to be refined and modified
in style.
Please modify the task T to make its style is as similar as possible to that of the examples, making the question type
(if example tasks are not MCQ, then task T MUST NOT be MCQ), description manner, contextual setup, and the
overall style are aligned closely. **BUT DO NOT CHANGE THE ORIGINAL MEANING OF THE TASK T**.
Input format:
Example Task 1: <example task 1>
Example Task 2: <example task 2>
Example Task 3: <example task 3>
Task to be refined: <task T to be modified>
Here we provide the examples and the task T to be modified, please ONLY output the modified version of task T,
NO OTHER TEXTS!

Table 6: Prompt template for transferring style of the questioin part of subtasks to the style of full task in our
measure of the style differences between two types of tasks.

after style transfer, the subtasks maintain the high
similarity scores with the full tasks, with no signifi-
cant differences compared to the original subtasks.
These results further confirm that the gap between
the two types of supervision data is marginal.

G Other Phenomenons Explained by
Step-Wise Error Rates

In addition to the observations and conclusions
regarding the correlation between step-wise error
rates and downstream performance, several phe-
nomena can be explained by this new metric:

To be Explained 1: When outcome error rates
in hard full task supervision vary, performance
remains relatively stable. As discussed in §4.2,
GPT-4o-mini serves as the teacher model for hard
full tasks and human evaluation in §5.3 shows GPT-
4o-mini has a low step-wise error rates, with most
errors involving just a single incorrect step, while
the rest are accurate. This observation suggests that,
despite the varying outcome error rates, the pro-
portion of noisy supervision was minimal, which
explains why models fine-tuned with hard full task
supervision are robust to varying outcome error
rates, as seen in §4.2, where performance remains
stable across different outcome error rates on both
MATH and SAT-Math.

To be Explained 2: Hard full task supervision
consistently outperforms subtask supervision.
We can imagine that, for example, where a com-
plex task requires 10 steps, while a simpler task
only needs 5 steps. If both tasks contain one erro-
neous step, the step-wise error rates for the subtask
becomes proportionally higher. In line with this
reasoning, our sample set shows that, for hard full
tasks, there is an average of 1.36 erroneous steps

out of an average of 13.08 total steps, while sub-
tasks have 1.14 erroneous steps out of 5.96 total
steps. The number of erroneous steps is similar
between hard full task and easy subtask supervi-
sion. This step-wise rate difference may become
one of the possible factors about why easy sub-
task supervision tends to be less effective than hard
full task supervision under identical outcome error
rates, resulting in consistently lower performance.

H Case Study for Step-Wise Error Rate

As discussed in §4.2, models consistently perform
better when trained with supervision from hard full
tasks. They also demonstrate robustness against
varying outcome error rates, even when these rates
differ significantly, such as between 0% and 100%.
This leads us to explore how other factors, such as
the severity of erroneous solutions, impact super-
vision quality and downstream performance. To
measure severity, we consider the metric, step-wise
error rate. Defined in §5, the step-wise error rate
represents the proportion of erroneous steps rela-
tive to the total number of steps. Importantly, we
exclude steps that, while based on incorrect numer-
ical values from prior errors, exhibit correct logic
and reasoning. In this context, we focus solely on
the logical correctness of each step.

We present case studies of sampled solutions
from five different teacher models with vary-
ing reasoning capabilities: Command-R-2024-03,
Command-R-2024-08, GPT-3.5-turbo, Llama-3-
70B-Instruct, and GPT-4o-mini. Each case study
includes annotations of the correctness of individ-
ual steps, along with explanations for any errors
identified and step-wise error rate calculation.
Example 1 for Step-Wise Error Rate. Table 23,
24, 25, 26, 27 shows the first example of step-wise
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Embedding Model Sim(Full Task, Original Subtask) Sim(Full Task, Style Transferred Subtask) |δ|
albert-base 0.8311 0.8327 0.0016
bert-base-v2 0.8549 0.8535 0.0014

paraphrase-MiniLM-L12-v2 0.6970 0.6993 0.0023
paraphrase-mpnet-base-v2 0.7498 0.7493 0.0005

Table 7: Cosine similarity between the embeddings of full task and subtask text instructions, and the change in
similarity after subtask style transfer. The marginal variation suggests that the subtask and full task instructions are
already highly similar before applying any post-hoc methods to reduce the style disparity between them.

Hard task (full task) of Example 1:

In an arithmetic sequence {an} where all terms are distinct, a1 = 1, and a1, a2, a5 form a geometric sequence. The sum of the first n terms of sequence
{bn} is Sn = 2n+1 − 2. (1) Find the general formulas for sequences {an} and {bn}. (2) Let cn = 2an + log2bn, find the sum of the first n terms of
sequence {cn} denoted as Tn.

Solution:

Part (1): Finding General Formulas
- Sequence {an}:
Given a1 = 1, let the common difference be d. Thus, we have: - a2 = a1 + d = 1 + d - a5 = a1 + 4d = 1 + 4d
Since a1, a2, and a5 form a geometric sequence, we apply the property that the square of the middle term equals the product of the first and third terms:

(a1 + d)2 = a1(a1 + 4d)

Substituting a1 = 1 gives:
(1 + d)2 = 1(1 + 4d)

Simplifying, we find:
1 + 2d+ d2 = 1 + 4d

d2 − 2d = 0

d(d− 2) = 0

Thus, d = 0 or d = 2. Since d = 0 would imply no progression (which contradicts the distinct terms condition), we discard it and accept d = 2.
Therefore, the general formula for {an} is:

an = 1 + (n− 1)d = 1 + 2(n− 1) = 2n− 1

- Sequence {bn}:
Given Sn = 2n+1 − 2, the nth term bn can be found by subtracting the sum of the first n− 1 terms from the sum of the first n terms:

bn = Sn − Sn−1 = (2n+1 − 2)− (2n − 2) = 2× 2n − 2n = 2n

For n = 1, we directly verify that b1 = 2 fits the formula. Thus, the general formula for {bn} is:

bn = 2n

#### Part (2): Sum of the First n Terms of Sequence {cn}
Given cn = 2an + log2 bn and using the formulas derived in part (1), we have:

cn = 22n−1 + n

To find the sum Tn of the first n terms of {cn}:

Tn =
n∑

k=1

(22k−1 + k)

Breaking it down:
Tn = (2 + 23 + 25 + . . .+ 22n−1) + (1 + 2 + 3 + . . .+ n)

Using the formula for the sum of a geometric series and the sum of the first n natural numbers:

Tn =
2(1− 4n)

1− 4
+

n(n+ 1)

2

Simplifying:

Tn =
22n+1 − 2

3
+

n2 + n

2

Therefore, the sum of the first n terms of sequence {cn} is:

Tn =
22n+1 − 2

3
+

n2 + n

2

.

Table 8: Decomposition - Example 1: Hard task.
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Easy task 1 of Example 1:

Given an arithmetic sequence {an} where a1 = 1 and the common difference d = 2. Find the explicit formula for the n-th term an of the sequence.

Solution:

The general formula for an arithmetic sequence is given by:
an = a1 + (n− 1)d

Substituting the known values, we get:
an = 1 + (n− 1) · 2

Simplifying:
an = 1 + 2n− 2 = 2n− 1

Thus, the explicit formula for the n-th term of the sequence {an} is:

an = 2n− 1

Table 9: Decomposition - Example 1: Easy task 1.

Easy task 2 of Example 1:

Given an arithmetic sequence {an} where a1 = 1 and the common difference d = 2. Find the explicit formula for the n-th term an of the sequence.

Solution:

To find the 5th term b5, we use the relationship between the sum of the first n terms and the n-th term:

bn = Sn − Sn−1

Calculating S5 and S4:

S5 = 25+1 − 2 = 26 − 2 = 64− 2 = 62

S4 = 24+1 − 2 = 25 − 2 = 32− 2 = 30

Now, substituting into the equation for b5:

b5 = S5 − S4 = 62− 30 = 32

Therefore, the 5th term of the sequence {bn} is:

b5 = 32

Table 10: Decomposition - Example 1: Easy task 2.

Hard task (full task) of Example 2:

Find the range of real numbers m for which the quadratic equation x2 + (m− 1)x+ 1 = 0 has solutions in the interval [0, 2].

Solution:

For the quadratic equation x2 + (m− 1)x+ 1 = 0 to have solutions in the interval [0, 2], it must satisfy certain conditions related to its discriminant and
the values of x at the endpoints of the interval.

First, let’s consider the discriminant of the equation, ∆ = (m− 1)2 − 4 ∗ 1 ∗ 1 = m2 − 2m− 3.

For the equation to have real solutions, the discriminant must be non-negative, ∆ ≥ 0.

This gives us m2 − 2m− 3 ≥ 0, which simplifies to (m− 3)(m+ 1) ≥ 0. This inequality holds for m ≤ −1 or m ≥ 3.

However, we also need to ensure that the solutions are within the interval [0, 2]. By evaluating the quadratic equation at the endpoints of the interval, we
get:

1. For x = 0: 02 + (m− 1)0 + 1 = 1, which is always positive.

2. For x = 2: 22 + (m− 1)2 + 1 = 4+ 2m− 2 + 1 = 2m+ 3, which needs to be non-negative for the solutions to lie within the interval. This gives us
2m+ 3 ≥ 0, simplifying to m ≥ − 3

2
.

Combining these conditions, we find that the range of m for which the quadratic equation has solutions in the interval [0, 2] is (−∞,−1) .

Table 11: Decomposition - Example 2: Hard task.

examination for the solutions to the same problem
sampled from five supervision teacher models.
Example 2 for Step-Wise Error Rate. Table 28,
29, 30, 31, 32 shows the second example of step-
wise examination for the solutions to the same prob-

lem sampled from five supervision teacher models.
Example 3 for Step-Wise Error Rate. Table 33,
34, 35, 36, 37 shows the third example of step-wise
examination for the solutions to the same problem
sampled from five supervision teacher models.
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Easy task 1 of Example 2:

Determine the values of m for which the discriminant of the quadratic equation x2 + (m− 1)x+ 1 = 0 is non-negative.

Solution:

The discriminant ∆ of the quadratic equation x2 + (m− 1)x+ 1 = 0 is given by:

∆ = (m− 1)2 − 4 · 1 · 1 = m2 − 2m− 3.

To find the values of m for which the discriminant is non-negative, we need to solve the inequality:

m2 − 2m− 3 ≥ 0.

Factoring the quadratic expression yields:

(m− 3)(m+ 1) ≥ 0.

To solve this inequality, we can find the critical points where the expression equals zero:
1. m− 3 = 0 gives m = 3. 2. m+ 1 = 0 gives m = −1.
Now we analyze the sign of the product (m− 3)(m+ 1):
- For m < −1, both factors are negative, hence the product is positive.

- For −1 < m < 3, one factor is negative and the other is positive, hence the product is negative.

- For m > 3, both factors are positive, hence the product is positive.

Thus, the solution to the inequality is:

m ≤ −1 or m ≥ 3.

The values of m for which the discriminant is non-negative are therefore:
(−∞,−1) ∪ (3,∞) .

Table 12: Decomposition - Example 2: Easy task 1.

Easy task 2 of Example 2:

Find the values of m such that the value of the quadratic equation x2 + (m− 1)x+ 1 = 0 evaluated at x = 2 is non-negative.

Solution:

Evaluating the quadratic equation at x = 2:

22 + (m− 1) · 2 + 1 = 4 + 2(m− 1) + 1 = 2m+ 3.

We want this expression to be non-negative:

2m+ 3 ≥ 0.

Solving for m:

2m ≥ −3 ⇒ m ≥ −3

2
.

Thus, the values of m for which the quadratic evaluated at x = 2 is non-negative are:

[−3

2
,∞) .

Table 13: Decomposition - Example 2: Easy task 2.

I Prompt Templates

We utilize multiple advanced LLMs in both supervi-
sion synthesis and quality controls. Here we show
all prompt templates used in our experiments.

In Stage 1 of our supervision synthesis pipeline,
we utilize GPT-4o-mini to decompose hard full
tasks into 2 or 3 easy subtasks, as outlined in Ta-
ble 38. Following this decomposition, we apply
filtering process using GPT-4o-mini to eliminate
unqualified subtasks, with the prompt in Table 39.

In Stage 2, we sample three solutions for each
full hard full task and easy subtask, as shown in
Table 40, and verify their correctness using the
prompt as shown in Table 41. When construct-

ing pairs of correct and incorrect solutions, as dis-
cussed in §3.3, we employ style transfer to the
ground-truth solution when all sampled solutions
are incorrect, with the prompt for style transfer
provided in Table 42, then we take the transferred
version as the correct solution in the pair.

In §5, we study the severity of erroneous answers
and utilize five different teacher models to sample
solutions of hard full tasks. Here we use the same
prompt templates as the data synthesis pipeline
in §3 for both sampling (Table 40) and checking
solutions (Table 41).

In §6, we explore the strategy of combining hard
full tasks and easy subtasks, with two baselines of
1) training with doubled epochs and 2) training with

11024



Unqualified easy task - Type 1 (Ill-defined) - Example 1

Task:

Let bn = L(2)
(
25
n

)
, where L(2)(x) denotes the second iterate of L(x). Determine bn as n approaches infinity

Solution:

First, we need to compute L(2)(x):

L(1)(x) = L(x) = x− x2

2
.

Comment: The definition of L(x) does not exist in the problem.
Now we apply L again to L(x):

L(2)(x) = L(L(x)) = L

(
x− x2

2

)
.

Comment: It’s NOT mentioned in the problem what’s “iterate of L(x)” and how to calculate it.
Substituting x− x2

2
into L:

L

(
x− x2

2

)
=

(
x− x2

2

)
− 1

2

(
x− x2

2

)2

.

Calculating
(
x− x2

2

)2

:
(
x− x2

2

)2

= x2 − x3 +
x4

4
.

Now, substituting back:

L(2)(x) = x− x2

2
− 1

2

(
x2 − x3 +

x4

4

)
,

which simplifies to:

L(2)(x) = x− x2

2
− 1

2
x2 +

1

2
x3 − 1

8
x4.

Combining terms gives:

L(2)(x) = x− 3

4
x2 +

1

2
x3 − 1

8
x4.

Now, we evaluate bn = L(2)
(
25
n

)
:

bn = L(2)

(
25

n

)
=

25

n
− 3

4

(
25

n

)2

+
1

2

(
25

n

)3

− 1

8

(
25

n

)4

.

Calculating each term:
1. 25

n
2. − 3

4
· 625

n2 = − 1875
4n2 3. 1

2
· 15625

n3 = 7812.5
n3 4. − 1

8
· 390625

n4 = − 48828.125
n4

As n approaches infinity, the higher-order terms vanish. Therefore, the leading term dominates:

bn ≈ 25

n
.

Thus, as n approaches infinity,

bn → 0.

The value that bn approaches is 0 .

Table 14: Unqualified easy task - Type 1 (Ill-defined) - Example 1.

rephrased tasks merged with original data. The
prompt template used for rephrasing in the second
baseline is shown in Table 43.
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Unqualified easy task - Type 1 (Ill-defined) - Example 2

Task:

Given triangle AMC with AM = kx, AC = 3, and MC = x
2

, find the relationship between k, x, and cos(180◦ − θ).

Solution:

Using the Law of Cosines for triangle AMC:

(x
2

)2

+ 32 − 2 · x
2
· 3 · cos(180◦ − θ) = (kx)2

Comment: Which angle of the triangle is cos(180◦ − θ) is not defined in the problem (we can infer from the formula above it’s angle ACM).
Substituting the cosine identity cos(180◦ − θ) = − cos θ:

x2

4
+ 9 + 3x cos θ = k2x2

Rearranging gives:

3x cos θ = k2x2 − 9− x2

4

Thus, isolating cos θ:

cos θ =
k2x2 − 9− x2

4

3x

This provides a relationship between k, x, and cos θ in triangle AMC.
Conclusion:

cos θ =
k2x2 − 9− x2

4

3x
.

Table 15: Unqualified easy task - Type 1 (Ill-defined) - Example 2.

Unqualified easy task - Type 2 (Overly Simple) - Example 1

Task:

Given a quadratic function f(x) = ax2 + bx+ c with a > 0 and b > 0, find the expression for the value of f(1) in terms of a, b, c

Solution:

To find the expression for f(1), we start with the quadratic function defined as f(x) = ax2 + bx+ c.
1. Substitute x = 1 into the function:

f(1) = a(12) + b(1) + c = a+ b+ c.

2. Therefore, the expression for f(1) in terms of a, b, and c is:

f(1) = a+ b+ c.

Thus, the value of f(1) is expressed as a+ b+ c.
Comment: the solution has only one step, which indicates this decomposed easy task is overly simple.

Table 16: Unqualified easy task - Type 2 (Overly Simple) - Example 1.

Unqualified easy task - Type 2 (Overly Simple) - Example 2

Task:

Find the expression for the first derivative of the function f0(x) =
1
x

Solution:

To find the first derivative f1(x) of the function f0(x) =
1
x

, we can use the power rule for differentiation.
1. Rewrite the function: f0(x) = x−1. 2. Apply the power rule: The derivative of xn is n · xn−1. Therefore, for f0(x):

f1(x) =
d

dx
(x−1) = −1 · x−2 = − 1

x2
.

Thus, the expression for the first derivative is:

f1(x) = − 1

x2
.

Comment: the solution has only two steps, which indicates this decomposed easy task is overly simple.

Table 17: Unqualified easy task - Type 2 (Overly Simple) - Example 2.
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Unqualified easy task - Type 3 (too similar to the original task) - Example 1

Hard Task (full task):
Given the function h(x) = 3 ln(x)− x3 +1 defined on the interval

[
1
e
, e
]
, find the critical points of h(x) and determine whether h(x) has a maximum or

minimum at these points.

Easy task 2 (unqualified, too similar):
Evaluate the values of the function h(x) = 3 ln(x)− x3 + 1 at the endpoints of the interval

[
1
e
, e
]

and determine the minimum and maximum values of
h(x) over this interval.
Comment: decomposed easy task is almost the same as hard task since they solve for the same things.

Table 18: Unqualified easy task - Type 3 (too similar to the original task) - Example 1.

Unqualified easy task - Type 3 (too similar to the original task) - Example 2

Hard Task (full task):

A conical hill stands with its base on level ground and has a total height of 10,000 feet. Given that the top one-tenth of the volume of the hill is above the
cloud layer, what is the height of the cloud layer above the ground in feet?

Easy task 2 (unqualified, too similar):

Given a conical hill with a total height of 10,000 feet, if the portion of the cone above the cloud layer represents one-tenth of the volume, what is the height
of that portion above the cloud layer in feet?

Comment: the decomposed easy task has the same difficulty of hard task, even though they solve for different things, their solutions are comparable.

Table 19: Unqualified easy task - Type 3 (too similar to the original task) - Example 2.
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Sampling multiple solutions and constructing pairs - Example 1

Task (this example is from hard tasks):

Two circles intersect at points A(1, 3) and B(m, n), and both of their centers lie on the line x− y − 2 = 0. What is the value of m+ n?

Ground Truth:

Given that the circles intersect at points A(1, 3) and B(m, n) and that the centers of both circles lie on the line x− y − 2 = 0, we can derive the slope of
line segment AB as follows:

...... (process partly omitted here)
Substituting n = −1 back into equation (3) gives us:

m− (−1) = 6

m+ 1 = 6

m = 5

Thus, we have found the coordinates B(m,n) to be B(5,−1). Now we calculate m+ n:

m+ n = 5 + (−1)

m+ n = 4

Sampled solution 1: (Correct)

To solve the problem, we start by noting that the centers of both circles lie on the line given by the equation x− y − 2 = 0. We can rewrite this line in
slope-intercept form as y = x− 2.
Let the centers of the two circles be denoted as C1(x1, y1) and C2(x2, y2). Since both centers lie on the line, we have:

...... (process partly omitted here)
Rearranging terms, we find:

n+m = 4

Thus, the value of m+ n is:

4

Sampled solution 2: (Incorrect)

Let the centers of the two circles be C1(h1, k1) and C2(h2, k2). Since both centers lie on the line x− y − 2 = 0, we can express the coordinates of the
centers in terms of a single variable. The equation can be rewritten as y = x− 2. Therefore, we can say:
- For C1(h1, k1): k1 = h1 − 2 - For C2(h2, k2): k2 = h2 − 2

...... (process partly omitted here)
Thus,

m+ n = 2 + 0 = 2.

Therefore, the value of m+ n is

2 .

Sampled solution 3: (Incorrect)

Let the centers of the two circles be C1(h1, k1) and C2(h2, k2). Since both centers lie on the line x− y − 2 = 0, we can express their coordinates in
terms of a single variable t:

...... (process partly omitted here)
n = 5− 2 = 3.

Thus:

m+ n = 5 + 3 = 8.

Therefore, the final result is:

8 .

Comment: There are both correct and incorrect solutions in the samples, thus we choose sample 1 as correct solution in the pair and choose sample 3
(randomly chosed) as incorrect solution in the pair.

Table 20: Sampling multiple solutions and constructing pairs - Example 1.

11028



Sampling multiple solutions and constructing pairs - Example 2

Task (this example is from easy tasks):

Solve the inequality 1−x
x−5

≥ 1 with respect to x

Ground Truth:

To solve the inequality 1−x
x−5

≥ 1, we follow these steps:

1. **Given Inequality**: 1−x
x−5

≥ 1.

2. **Transforming the inequality**: Rewrite as 1−x
x−5

− 1 ≥ 0, which gives 1−x−(x−5)
x−5

≥ 0.

...... (process partly omitted here)

7. **Conclusion**: The solution is in the interval [3, 5), excluding x = 5.

Thus, the solution set is:
{x | 3 ⩽ x < 5}

Sampled solution 1: (Inorrect)

To solve the inequality 1−x
x−5

≥ 1, find a common denominator:
1−x
x−5

≥ 1

Combine fractions:

...... (process partly omitted here)
3. x > 5: Choose x = 6 yields < 0. Not a solution.

Therefore, solution is 3 < x < 5

Sampled solution 2: (Incorrect)

To solve the inequality 1−x
x−5

≥ 1, find a common denominator:

Multiplying both sides by (x− 5):

1− x ≥ x− 5

Simplifying gives:

1 + 5 ≥ 2x

Thus, solution is:

x ≤ 3

Sampled solution 3: (Incorrect)

To solve the inequality 1−x
x−5

≥ 1, find common denominator:

Multiplying both sides by x− 5:

1− x ≥ x− 5

Simplifying yields:

1 ≥ 0, true for all x.

Thus, solution is:

x ∈ R

Ground truth with style transferred: (Reference)

To solve the inequality 1−x
x−5

≥ 1, we start by reformulating it: 1. Start with the inequality:

1− x

x− 5
≥ 1.

...... (process partly omitted here)
6. We will now test the sign of (2x− 6)(x− 5) across the intervals created by these points: - For x < 3: both factors 2x− 6 < 0 and x− 5 < 0 yield a
positive product. - For 3 < x < 5: 2x− 6 < 0 and x− 5 < 0 yield a positive product. - For x > 5: both factors 2x− 6 > 0 and x− 5 > 0 yield a
positive product.
7. Evaluating the overall expression, we find it is non-positive exactly in the interval [3, 5), since at x = 3 it equals zero, and we exclude x = 5 due to the
denominator. Thus, the solution set is: [3, 5) .

Comment: All the samples are incorrect, thus we convert the style of ground truth to the style of sampled solution and take transferred ground truth as
correct solution and choose sample 2 (randomly chosed) as incorrect solution in the pair.

Table 21: Sampling multiple solutions and constructing pairs - Example 2.
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Sampling multiple solutions and constructing pairs - Example 3

Task (this example is from easy tasks):

Given an arithmetic sequence {an} where a1 = 1, a2 = b2, and a4 + 2 = b3, if the common difference of the sequence is d, find the value of d if it is
known that a4 = 7.

Ground Truth:

Since we know that a1 = 1 and the common difference is d, we can express the terms of the arithmetic sequence as follows: - a2 = a1 + d = 1 + d -
a4 = a1 + 3d = 1 + 3d Given a4 = 7, we can set up the equation:

1 + 3d = 7

Subtracting 1 from both sides gives:
3d = 6

Dividing both sides by 3 yields:
d = 2

Thus, the value of the common difference d is 2

Sampled solution 1: (Correct)

The general formula for an arithmetic sequence is an = a1 + (n− 1)d, where an is the nth term, a1 is the first term, d is the common difference, and n is
the term number.
Given a1 = 1, a2 = b2, and a4 = 7, we can write the following equations: 1. a2 = a1 + d = 1 + d = b2 2. a4 = a1 + 3d = 1 + 3d = 7 .
From equation 2, we can solve for d: 1 + 3d = 7, 3d = 6, d = 2

Therefore, the common difference of the arithmetic sequence is 2

Sampled solution 2: (Correct)

Since the sequence is arithmetic, we know that an = a1 + (n − 1)d. We are given that a4 = 7, so we can substitute n = 4 into the formula:
a4 = a1 + (4− 1)d = 1 + 3d = 7.

Solving for d: 3d = 6, d = 2

Therefore, the common difference of the sequence is 2

Sampled solution 3: (Correct)

The general formula for an arithmetic sequence is an = a1 + (n− 1)d, where an is the nth term, a1 is the first term, and d is the common difference.
Given that a1 = 1 and a4 = 7, we can write: a4 = a1 + 3d = 7
Substitute a1 = 1 into the equation:

1 + 3d = 7 Solving for d: 3d = 6, d = 2

Therefore, the common difference d is 2

Comment: All the sampled solutions are correct, in this case we skip and discard this example.

Table 22: Sampling multiple solutions and constructing pairs - Example 3.

Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by Command-R-2024-03

Task:

Given sin
(
α− π

6

)
= 1

3
, then sin

(
2α− π

6

)
+ cos 2α = ( )

A: − 2
3

, B: 2
3

, C: − 7
9

, D: 7
9

Solution:

We can write: sin
(
2α− π

6

)
= sin

(
α− π

3
+ α

)
(Step 1: wrong, it should be “sin

(
α− π

6
+ α

)
”)

= sin
(
α− π

3

)
· cosα+ cos

(
α− π

3

)
· sinα (Step 2: correct)

= sinα · cosα− 1
3
· sinα (Step 3: wrong, it incorrectly take sin

(
α− π

3

)
as sinα, and take cos

(
α− π

3

)
as − 1

3
)

=
2

3
. (Step 4: wrong, the value of above equation can not be calculated since sinα and cosα are not known.)

Therefore, the final answer is B.

Comment:

There are 4 steps totally while 3 of them are wrong, step-wise error ratio is 75.0%.

Table 23: Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by
Command-R-2024-03.
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Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by Command-R-2024-08

Task:

Given sin
(
α− π

6

)
= 1

3
, then sin

(
2α− π

6

)
+ cos 2α = ( )

A: − 2
3

, B: 2
3

, C: − 7
9

, D: 7
9

Solution:

Let’s think step by step to solve this trigonometry problem.

We are given that sin(α− π
6
) = 1

3
. (Step 1: correct)

We can use the double-angle formula for sine to rewrite sin(2α− π
6
) as:

sin(2α− π
6
) = sin(2α) cos(π

6
)− cos(2α) sin(π

6
) (Step 2: correct)

Now, we can substitute sin(α− π
6
) = 1

3
:

sin(α) cos(α) = 1
3
cos(π

6
) = 1

3
· 1
2
= 1

6
(Step 3: wrong, cos(π

6
) is

√
3

2
, not 1

2
)

cos2(α) = 1− sin2(α) = 1− 1
9
= 8

9
(Step 4: correct)

sin2(α) = 1
9

(Step 5: correct)

Substituting these values back into our equation:
sin(2α − π

6
) = 1

6
− 1

2
· 8

9
+ 1

2
· 1

9
(Step 6: correct, this step substitutes values into equation of Step 2, sin(2α) cos(π

6
) = 2 sin(α) cos(α) cos(π

6
),

since Step 3 mistakenly take cos(π
6
) as cos( 1

2
), so here sin(2α) cos(π

6
) = 2 sin(α) cos(α) 1

2
= sin(α) cos(α) = 1

6
. The error is due to previous wrong

numerical values, not this step.)

= 1
6
− 4

9
+ 1

18
(Step 7: correct)

= 1
6
− 11

18
(Step 8: wrong, − 4

9
+ 1

18
= − 7

18
, not − 11

18
)

= 3−11
18

(Step 9: correct, Step 9 carries wrong values from Step 8 but its calculation is correct, thus this step is not included in “erroneous steps”)

= − 8
18

(Step 10: correct)

= − 2
3

(Step 11: wrong, − 8
18

= − 4
9

, not − 2
3

)

So, the value of sin(2α− π
6
) + cos(2α) is − 2

3
.

Therefore, the correct answer is **A: − 2
3

**.

Comment:

There are 11 steps totally while 3 of them are wrong, step-wise error ratio is 27.3%.

Table 24: Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by
Command-R-2024-08.
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Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by GPT-3.5-turbo

Task:

Given sin
(
α− π

6

)
= 1

3
, then sin

(
2α− π

6

)
+ cos 2α = ( )

A: − 2
3

, B: 2
3

, C: − 7
9

, D: 7
9

Solution:

Using the angle subtraction formula for sine, we have:

sin(α) cos(π
6
)− cos(α) sin(π

6
) = 1

3
(Step 1: correct)

sin(α)
√
3
2

− cos(α) 1
2
= 1

3
(Step 2: correct)

√
3 sin(α)− cos(α) = 2

3
. . . (1) (Step 3: correct)

Now, we need to find sin(2α) and cos(2α):

sin(2α) = 2 sin(α) cos(α) (Step 4: correct)

cos(2α) = 1− 2 sin2(α) (Step 5: correct)

Substitute sin(α) from equation (1):

sin(2α) = 2
(√

3 sin(α)− 2
3

2

)
cos(α) (Step 6: wrong, if substituting sin(α) into equation (1), it should be 2

( 2
3
+cos(α)√

3

)
cos(α))

=
√
3 sin(α) cos(α)− 2

3
cos(α) (Step 7: correct)

=
√
3 · 2

3
− 2

3
cos(α) (Step 8: wrong, sinα cosα is not 2

3
).

= 2
√
3− 2 cos(α) (2) (Step 9: wrong, it should be 2

√
3

3
− 2

3
cos(α))

Now, the given expression sin(2α− π
6
) + cos(2α):

sin(2α) cos(π
6
)− cos(2α) sin(π

6
) + 1− 2 sin2(α) (Step 10: correct)

Substitute sin(2α) from equation (2):
(
2
√
3− 2 cos(α)

) √
3
2

− 1− 2 sin2(α) (Step 11: wrong, it should be
(
2
√
3− 2 cos(α)

) √
3

2
+ 1

2
(1− 2 sin2(α)))

= 3−
√
3 cos(α)− 1− 2

(√
3 sin(α)−2

3

)
(Step 12: wrong, it should be 3−

√
3 cos(α)− 1− 2 sin2(α))

= 2−
√
3 cos(α)−

√
3 sin(α) + 4

3
(Step 13: wrong, it should be 2−

√
3 cos(α)− 2

√
3

3
sin(α) + 4

3
)

= 2− 2
√

3
3

+ 4
3

(Step 14: wrong, sin(α) and cos(α) are not 1
3

)

= 2− 2
3

(Step 15: wrong, − 2
√

3
3

+ 4
3
̸= − 2

3
)

=
4

3
(Step 16: correct)

Therefore, the final result is 4
3

, which is not one of the provided answer choices.

Comment:

There are 16 steps totally while 8 of them are wrong, step-wise error ratio is 50.0%.

Table 25: Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by
GPT-3.5-turbo.
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Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by Llama-3-70B-Instruct

Task:

Given sin
(
α− π

6

)
= 1

3
, then sin

(
2α− π

6

)
+ cos 2α = ( )

A: − 2
3

, B: 2
3

, C: − 7
9

, D: 7
9

Solution:

To solve this problem, we’ll use the identities for the sine of a sum and the cosine of a double angle.

Given: sin(α− π
6
) = 1

3

We need to find: sin(2α− π
6
) + cos 2α

First, let’s find sin(2α− π
6
) using the sine of a sum identity:

sin(2α− π
6
)

= sin(α− π
6
+ α) (Step 1: correct)

= sin(α− π
6
) cosα+ cos(α− π

6
) sinα (Step 2: correct)

We are given sin(α− π
6
) = 1

3
. Let’s find cos(α− π

6
): (Step 3: correct)

cos(α− π
6
)

= ±
√

1− sin2(α− π
6
) (Step 4: correct)

= ±
√

1− 1
9

(Step 5: correct)

= ± 2
√
2

3
(Step 6: correct)

We’ll choose the positive value for cos(α− π
6
) since we don’t know the quadrant of α− π

6
. (Step 7: wrong, since we don’t know the quadrant of α− π

6
,

we cannot decide whether cos(α− π
6
) is positive or not.)

Now, let’s find sinα and cosα:
sinα

= sin
(
π
6
+

(
α− π

6

))
(Step 8: correct)

= sin π
6
cos

(
α− π

6

)
+ cos π

6
sin

(
α− π

6

)
(Step 9: correct)

=
√

3
2

× 2
√

2
3

+ 1
2
× 1

3
(Step 10: wrong, sin π

6
̸=

√
3

2
and cos π

6
̸= 1

2
)

=
√

6+1
6

(Step 11: wrong, it shoule be 2
√
6+1
6

)

cosα = cos
(
π
6
+

(
α− π

6

))
(Step 12: correct)

= cos π
6
cos

(
α− π

6

)
− sin π

6
sin

(
α− π

6

)
(Step 13: correct)

=
√

3
2

× 2
√

2
3

− 1
2
× 1

3
(Step 14: correct)

=
√

6−1
6

(Step 15: wrong, it should be 2
√
6−1
6

)
Now we can find sin(2α− π

6
):

sin(2α− π
6
)

= 1
3
×

√
6−1
6

+ 2
√

2
3

×
√

6+1
6

(Step 16: correct)

=
√

6−1+4
√
2+4

18
(Step 17: wrong, it should be

√
6−1+4

√
3+2

√
2

18
)

Next, let’s find cos 2α using the cosine of a double angle identity:
cos 2α

= cos2 α− sin2 α (Step 18: correct)

=
(√

6−1
6

)2

−
(√

6+1
6

)2

(Step 19: correct)

= 6−2
√

6+1
36

− 6+2
√

6+1
36

(Step 20: correct)

= − 2
√
6

18
(Step 21: correct)

Now, we can find the final answer:
sin(2α− π

6
) + cos 2α

=
√

6−1+4
√
2+4

18
− 2

√
6

18
(Step 22: correct)

=
√

6−1+4
√
2+4−2

√
6

18
(Step 23: correct)

= 4+4
√

2−3
√
6−1

18
(Step 24: wrong, it should be 4+4

√
2−

√
6−1

18
)

= − 7
9

(Step 25: wrong, it should be 3+4
√
2−

√
6

18
)

### Final Result: −7

9

Comment:

There are 25 steps totally while 7 of them are wrong, step-wise error ratio is 28.0%.

Table 26: Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by
Llama-3-70B-Instruct.
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Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by GPT-4o-mini

Task:

Given sin
(
α− π

6

)
= 1

3
, then sin

(
2α− π

6

)
+ cos 2α = ( )

A: − 2
3

, B: 2
3

, C: − 7
9

, D: 7
9

Solution:

Given the equation:

sin
(
α− π

6

)
= 1

3

We can use the sine addition formula to express sin(2α− π
6
):

sin(2α− π
6
) = sin(2α) cos

(
π
6

)
− cos(2α) sin

(
π
6

)
(Step 1: correct)

Since cos
(
π
6

)
=

√
3

2
and sin

(
π
6

)
= 1

2
, the equation becomes: (Step 2: correct)

sin(2α− π
6
) = sin(2α) ·

√
3

2
− cos(2α) · 1

2
(Step 3: correct)

Next, we need to find sin(2α) and cos(2α). We can use the double angle formulas:

sin(2α) = 2 sin(α) cos(α) (Step 4: correct)

cos(2α) = cos2(α)− sin2(α) (Step 5: correct)

To find sin(α) and cos(α), we can use the identity:

sin2(α) + cos2(α) = 1 (Step 6: correct)

From sin(α− π
6
) = 1

3
, we can rewrite:

sin(α) = sin
(
α− π

6

)
cos

(
π
6

)
+ cos

(
α− π

6

)
sin

(
π
6

)
(Step 7: correct)

Let x = sin(α) and y = cos(α), we have:

x− 1
2
y = 1

3
·
√
3

2
(Step 8: wrong, it should be x = 1

3
·
√
3
2

+ 1
2
cos

(
α− π

6

)
, i.e., cos

(
α− π

6

)
̸= y)

Now we can express sin2(α) + cos2(α) = 1:

x2 + y2 = 1 (Step 9: correct)

We substitute y from the first equation into the second. Solving these will yield x and y.

Instead, let’s calculate sin(2α− π
6
) + cos(2α):

Using sin(2α) = 2xy and cos(2α) = y2 − x2: (Step 10: correct)

sin(2α− π
6
) + cos(2α) =

(
2xy ·

√
3
2

− (y2 − x2) · 1
2

)
+ (y2 − x2) (Step 11: correct)

Simplifying:

=
√
3xy − 1

2
(y2 − x2) + (y2 − x2) (Step 12: correct)

=
√
3xy + 1

2
(y2 − x2) (Step 13: correct)

Next, substituting x = 1
3

to find y: (Step 14: wrong, x = sinα ̸= 1
3

)

y =
√

1−
(
1
3

)2
=

√
8
9
= 2

√
2

3
(Step 15: wrong,

√
8
9
= ± 2

√
2

3
)

Now we can compute the final value:

=
√
3
(

1
3
· 2

√
2

3

)
+ 1

2

((
2
√
2

3

)2

−
(
1
3

)2
)

(Step 16: correct)

Calculating the expression yields:

=
√
3
(

2
√

2
9

)
+ 1

2

(
8
9
− 1

9

)
(Step 17: correct)

= 2
√

6
9

+ 7
18

(Step 18: correct)

Comparing with the options, we find:

sin(2α− π
6
) + cos(2α) = − 2

3
(Step 19: wrong, this estimation based on options is not reasonable. )

Thus, the answer is:

−2

3

Comment:

There are 19 steps totally while 4 of them are wrong, step-wise error ratio is 21.1%.

Table 27: Example 1 for step-wise error ratio - “Trigonometric identity transformations”: Supervision sampled by
GPT-4o-mini.
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Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-R-2024-03

Task:

Given that a, b, c, and d are nonzero real numbers, find all possible values of the expression a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| .

Solution:

We can rewrite the expression as
a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd|

= |a|+|b|+|c|+|d|+|abcd|
|abcd| (Step 1: wrong, the process of making common denominator of fractions is written wrong)

= |a|+|b|+|c|+|d|
|abcd| (Step 2: wrong, term |abcd| is missing. )

= |a+b+c+d|
|abcd| . (Step 3: wrong, |a|+ |b|+ |c|+ |d| ̸= |abcd|)

We have four cases to consider, depending on the sign of the expression a+ b+ c+ d.

1. If a+ b+ c+ d > 0, then the numerator is positive, and so is the entire expression. (Step 4: wrong)

Therefore, we have
a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| = 1 . (Step 5: wrong, the calculation result is not 1.)

2. If a+ b+ c+ d < 0, then the numerator is negative, and the expression is also negative. (Step 6: wrong, since both the numerator and denominator in
Step 3 are absolute values, it’s always non-negative. )

So we can write
a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| = − |−(a+b+c+d)|

|abcd| = −1 . (Step 7: wrong, the calculation result is not −1)

3. If a+b = −c−d, the expression is undefined as it involves dividing by zero. (Step 8: wrong, the denominator is |abcd|, it’s not 0 when a+b = −c−d.)

4. If a+ b ̸= −c− d, we can write
a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd|

= |a+b|+|c+d|
|abcd| (Step 9: wrong, the process of making common denominator of fractions is written wrong)

≥ |a+b−(c+d)|
|abcd| (Step 10: wrong, |a+ b|+ |c+ d| ≠ |a+ b− (c+ d)|)

= |(a+b)−(−c−d)|
|abcd| (Step 11: wrong, |a+ b− (c+ d)| ̸= |a+ b− (−c− d)|)

= 2max{|a+b|,|c+d|}
|abcd| (Step 12: wrong, |a+ b− (−c− d)| ̸= 2max{|a+ b|, |c+ d|})

≥ 2

min{|abcd|} .(Step 13: wrong, this result is not reasonable at all.)

Equality occurs when a+ b = ±(c+ d), and both a+ b and c+ d have the same sign. (Step 14: wrong)

The answer is a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| ≥

2

min{|abcd|}

Comment:

There are 14 steps totally while 14 of them are wrong, step-wise error ratio is 100.0%.

Table 28: Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-
R-2024-03.
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Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-R-2024-08

Task:

Given that a, b, c, and d are nonzero real numbers, find all possible values of the expression a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| .

Solution:

Let’s consider the possible cases for the signs of a, b, c, and d.

1. All of a, b, c, and d are positive:

In this case, a
|a| = 1, b

|b| = 1, c
|c| = 1, d

|d| = 1, and abcd
|abcd| = 1. (Step 1: correct)

So, the expression evaluates to 1 + 1 + 1 + 1 + 1 = 5. (Step 2: correct)

2. One of a, b, c, or d is negative, and the rest are positive:

Without loss of generality, let’s assume a is negative and b, c, and d are positive. (Step 3: correct)

Then, a
|a| = −1, b

|b| = 1, c
|c| = 1, d

|d| = 1, and abcd
|abcd| = −1. (Step 4: correct)

The expression becomes −1 + 1 + 1 + 1− 1 = 0. (Step 5: wrong, −1 + 1 + 1 + 1− 1 = 1)

3. Two of a, b, c, or d are negative, and the other two are positive:

There are two sub-cases to consider:

Case 3.1: a and b are negative, and c and d are positive.

Case 3.2: a and c are negative, and b and d are positive.

For Case 3.1:
a
|a| = −1, b

|b| = −1, c
|c| = 1, d

|d| = 1, and abcd
|abcd| = 1. (Step 6: correct)

The expression evaluates to −1− 1 + 1 + 1 + 1 = 1. (Step 7: correct)

For Case 3.2:
a
|a| = −1, b

|b| = 1, c
|c| = −1, d

|d| = 1, and abcd
|abcd| = −1. (Step 8: wrong, when a and c are negative, b and d are positive, abcd

|abcd| = 1)

The expression becomes −1 + 1− 1 + 1− 1 = 0. (Step 9: wrong, −1 + 1− 1 + 1− 1 = −1)

4. Three of a, b, c, or d are negative, and one is positive:

Similarly, there are three sub-cases:

Case 4.1: a, b, and c are negative, and d is positive.

Case 4.2: a, b, and d are negative, and c is positive.

Case 4.3: a, c, and d are negative, and b is positive.

For Case 4.1:
a
|a| = −1, b

|b| = −1, c
|c| = −1, d

|d| = 1, and abcd
|abcd| = −1. (Step 10: correct)

The expression gives −1− 1− 1 + 1− 1 = −3. (Step 11: correct)

For Case 4.2:
a
|a| = −1, b

|b| = −1, c
|c| = 1, d

|d| = −1, and abcd
|abcd| = 1. (Step 12: wrong, when a, b, and d are negative, and c is positive, abcd

|abcd| = −1)

The result is −1− 1 + 1− 1 + 1 = −2. (Step 13: wrong, −1− 1 + 1− 1 + 1 = −1)

For Case 4.3:
a
|a| = −1, b

|b| = 1, c
|c| = −1, d

|d| = −1, and abcd
|abcd| = 1. (Step 14: wrong, when a, c, and d are negative, and b is positive, abcd

|abcd| = −1)

The expression evaluates to −1 + 1− 1− 1 + 1 = −1. (Step 15: correct)

5. All of a, b, c, and d are negative:

In this situation, a
|a| = −1, b

|b| = −1, c
|c| = −1, d

|d| = −1, and abcd
|abcd| = 1. (Step 16: correct)

Thus, the expression evaluates to −1− 1− 1− 1 + 1 = −3. (Step 17: correct)

Final result: [−3,−2,−1, 0, 1, 5]

Comment:

There are 17 steps totally while 6 of them are wrong, step-wise error ratio is 35.3%.

Table 29: Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-
R-2024-08.
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Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-3.5-turbo

Task:

Given that a, b, c, and d are nonzero real numbers, find all possible values of the expression a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| .

Solution:

For any non-zero real number x, we have |x| = x if x > 0 and |x| = −x if x < 0. (Step 1: correct)

Therefore, we can simplify the given expression as follows:

1. a
|a| = 1 if a > 0, and a

|a| = −1 if a < 0. (Step 2: correct)

2. b
|b| = 1 if b > 0, and b

|b| = −1 if b < 0. (Step 3: correct)

3. c
|c| = 1 if c > 0, and c

|c| = −1 if c < 0. (Step 4: correct)

4. d
|d| = 1 if d > 0, and d

|d| = −1 if d < 0. (Step 5: correct)

5. abcd
|abcd| = 1 if abcd > 0, and abcd

|abcd| = −1 if abcd < 0. (Step 6: correct)

Therefore, the expression simplifies to the sum of 5 terms, each 1 or -1 based on the sign of a, b, c, d, and abcd.

After analyzing the sign possibilities, we can see that there are 25 = 32 different combinations of signs that these terms can take. However, not all of these
combinations are possible since a, b, c, and d are non-zero real numbers. (Step 7: correct)

Let’s consider the possible cases:

1. If all a, b, c, and d are positive, then the expression evaluates to 1 + 1 + 1 + 1 + 1 = 5. (Step 8: correct)

2. If one of a, b, c, and d is negative, then the expression evaluates to −1 + 1 + 1 + 1− 1 = 1. (Step 9: correct)

3. If two of a, b, c, and d are negative, then the expression evaluates to −1− 1 + 1 + 1 + 1 = 1. (Step 10: correct)

4. If three of a, b, c, and d are negative, then the expression evaluates to −1− 1− 1 + 1+ 1 = −1. (Step 11: wrong, if three of a, b, c, d are negative, the
expression is −1− 1− 1 + 1− 1 = −3.)

5. If all a, b, c, and d are negative, then the expression evaluates to −1 − 1 − 1 − 1 − 1 = −5. (Step 12: wrong, if all of a, b, c, d are negative, the
expression is −1− 1− 1− 1 + 1 = −3.)

Therefore, the possible values for the expression are 5, 1,−1,−5 .

Comment:

There are 12 steps totally while 2 of them are wrong, step-wise error ratio is 16.7%.

Table 30: Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-3.5-
turbo.
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Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Llama-3-70B-Instruct

Task:

Given that a, b, c, and d are nonzero real numbers, find all possible values of the expression a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| .

Solution:

To solve this problem, we need to consider the possible signs of a, b, c, and d.

If all of a, b, c, and d are positive, then |a| = a, |b| = b, |c| = c, and |d| = d, (Step 1: correct)

so the expression becomes a
a
+ b

b
+ c

c
+ d

d
+ abcd

abcd
= 1 + 1 + 1 + 1 + 1 = 5. (Step 2: correct)

If all of a, b, c, and d are negative, then |a| = −a, |b| = −b, |c| = −c, and |d| = −d, (Step 3: correct)

so the expression becomes a
−a

+ b
−b

+ c
−c

+ d
−d

+ abcd
abcd

= −1− 1− 1− 1 + 1 = −3.(Step 4: correct)

If three of a, b, c, and d are positive and one is negative, then we have either
a
a
+ b

b
+ c

c
− d

d
+ abcd

−abcd
= 1 + 1 + 1− 1− 1 = 0, (Step 5: wrong, 1 + 1 + 1− 1− 1 = 1.)

or
a
a
+ b

b
− c

c
+ d

d
+ abcd

−abcd
= 1 + 1− 1 + 1− 1 = 0, (Step 6: wrong, 1 + 1− 1 + 1− 1 = 1.)

or
a
a
− b

b
+ c

c
+ d

d
+ abcd

−abcd
= 1− 1 + 1 + 1− 1 = 0, (Step 7: wrong, 1− 1 + 1 + 1− 1 = 1)

or

−a
a
+ b

b
+ c

c
+ d

d
+ abcd

−abcd
= −1 + 1 + 1 + 1− 1 = 0. (Step 8: wrong, 1− 1 + 1 + 1− 1 = 1)

If three of a, b, c, and d are negative and one is positive, then we have either

−a
a
− b

b
− c

c
+ d

d
+ abcd

abcd
= −1− 1− 1 + 1 + 1 = 0, (Step 9: wrong, 1− 1 + 1 + 1− 1 = −1)

or

−a
a
− b

b
+ c

c
− d

d
+ abcd

abcd
= −1− 1 + 1− 1 + 1 = 0, (Step 10: wrong, −1− 1 + 1− 1 + 1 = −1)

or

−a
a
+ b

b
− c

c
− d

d
+ abcd

abcd
= −1 + 1− 1− 1 + 1 = 0, (Step 11: wrong, −1 + 1− 1− 1 + 1 = −1)

or
a
a
− b

b
− c

c
− d

d
+ abcd

abcd
= 1− 1− 1− 1 + 1 = 0. (Step 12: wrong, −1 + 1− 1− 1 + 1 = −1)

Therefore, the possible values of the expression are 5,−3, 0 .

Comment:

There are 12 steps totally while 8 of them are wrong, step-wise error ratio is 66.7%.

Table 31: Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Llama-3-
70B-Instruct.

11038



Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-4o-mini

Task:

Given that a, b, c, and d are nonzero real numbers, find all possible values of the expression a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| .

Solution:

To solve the problem, we start by analyzing the individual terms in the expression:
a
|a| ,

b
|b| ,

c
|c| ,

d
|d| ,

abcd
|abcd| .

Each of these fractions represents the sign of the respective variable:

- a
|a| = 1 if a > 0 and −1 if a < 0. (Step 1: correct)

- b
|b| = 1 if b > 0 and −1 if b < 0. (Step 2: correct)

- c
|c| = 1 if c > 0 and −1 if c < 0. (Step 3: correct)

- d
|d| = 1 if d > 0 and −1 if d < 0. (Step 4: correct)

- abcd
|abcd| = 1 if abcd > 0 and −1 if abcd < 0 (Step 5: correct)

Now, let’s denote the number of positive values among a, b, c, and d as p and the number of negative values as n. Since a, b, c, and d are nonzero, we have:

p+ n = 4. (Step 6: correct)

The term abcd
|abcd| evaluates depending on the evenness or oddness of the product abcd. Specifically:

- If p (positive numbers) is even, abcd > 0, hence abcd
|abcd| = 1. (Step 7: correct)

- If p is odd, abcd < 0, so abcd
|abcd| = −1. (Step 8: correct)

Next, we can rewrite our entire expression:
a
|a| +

b
|b| +

c
|c| +

d
|d| +

abcd
|abcd| = p− n+ abcd

|abcd| . (Step 9: correct)

Since n = 4− p, we can substitute:

p− (4− p) + abcd
|abcd| = 2p− 4 + abcd

|abcd| . (Step 10: correct)

From the previous discussion:

- If p is even, abcd
|abcd| = 1, giving:

2p− 4 + 1 = 2p− 3. (Step 11: correct)

- If p is odd, abcd
|abcd| = −1 (Step 12: correct), yielding:

2p− 4− 1 = 2p− 5.

Now let’s evaluate the possible values of p:

- For p = 0:

- Both cases result in 2(0)− 3 = −3. (Step 13: correct)

- For p = 1:

- Both cases yield 2(1)− 3 = −1. (Step 14: wrong, here p is odd, the expression should be 2p− 5 = 2(1)− 5 = −3.)

- For p = 2:

- Results are 2(2)− 3 = 1.(Step 15: correct)

- For p = 3:

- Yields 2(3)− 3 = 3. (Step 16: wrong, here p is odd, the expression should be 2p− 5 = 2(3)− 5 = 1.)

- For p = 4:

- Gives 2(4)− 3 = 5. (Step 17: correct)

Now, collecting the unique values derived from all possible p:

- Values from p = 0: −3

- Values from p = 1: −1

- Values from p = 2: 1

- Values from p = 3: 3

- Values from p = 4: 5

Combining all these unique values, we have:

{−3,−1, 1, 3, 5}. (Step 18: correct)

Thus, the possible values of the expression are:

−3,−1, 1, 3, 5 .

Comment:

There are 18 steps totally while 2 of them are wrong, step-wise error ratio is 11.1%.

Table 32: Example 2 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-4o-mini.
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Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-R-2024-03

Task:

Given point G is the centroid of △ABC, with the sides opposite to angles A, B, C having lengths a, b, c respectively, and it is known that a
5

−→
GA +

b
7

−−→
GB + c

8

−−→
GC =

−→
0 , then the measure of angle B is ?.

Solution:

From the given information, we have:
a
5

−→
GA+ b

7

−−→
GB + c

8

−−→
GC =

−→
0

=⇒ a
5
· 2

−−→
HA

sinA
+ b

7
· 2

−−→
HB

sinB
+ c

8
· 2

−−→
HC

sinC
=

−→
0 (Step 1: wrong,

−−→
HA,

−−→
HB,

−−→
HC are not defined.)

=⇒ 2a
5 sinA

· −−→HA+ 2b
7 sinB

· −−→HB + 2c
8 sinC

· −−→HC =
−→
0 (Step 2: correct)

Since the three vectors
−−→
HA,

−−→
HB and

−−→
HC are coplanar and sum to

−→
0 , the only way for their scaled versions above to also sum to

−→
0 , is for each of them

to be zero individually. (Step 3: correct)

This means that: 2a
5 sinA

= 0 =⇒ sinA =
5a

2
(Step 4: wrong, sinA = 5a

2
can not be inferred from 2a

5 sinA
= 0.)

This also implies sinB = 5b
2
, sinC = 5c

2
. (Step 5: wrong, the reason is same as above step.)

Using the fact that sinA+ sinB + sinC = 1, we get: (Step 6: wrong, sinA+ sinB + sinC = 1 does not always hold for general cases.)
5a
2
+ 5b

2
+ 5c

2
= 1 =⇒ 5

2
(a+ b+ c) = 1 (Step 7: correct)

Since a+ b+ c is just twice the area of the triangle, we get that the area of △ABC is 1
10

. (Step 8: wrong, it’s not mentioned in the problem or we cannot
infer that a+ b+ c is twice the area of the triangle)

In particular, this means that the angle B, which measures 2π
10

, or 12◦ , is the smallest angle of the three. (Step 9: wrong, we cannot infer from the above
steps that angle B is 2π

10
. Also, 2π

10
̸= 12◦)

Comment:

There are 9 steps totally while 6 of them are wrong, step-wise error ratio is 66.7%.

Table 33: Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-
R-2024-03.
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Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-R-2024-08

Task:

Given point G is the centroid of △ABC, with the sides opposite to angles A, B, C having lengths a, b, c respectively, and it is known that a
5

−→
GA +

b
7

−−→
GB + c

8

−−→
GC =

−→
0 , then the measure of angle B is ?.

Solution:

Let’s think step by step to solve this problem involving the centroid of a triangle.

Given that point G is the centroid of △ABC, we know that G is the center of mass of the triangle, and it divides the medians (lines connecting a vertex to
the midpoint of the opposite side) in a 2 : 1 ratio.

From the equation:
a
5

−→
GA+ b

7

−−→
GB + c

8

−−→
GC =

−→
0

We can see that the vector sum of the scaled medians from the centroid to the sides of the triangle is equal to the zero vector. This implies that the centroid
G is equidistant from the sides of the triangle, which is a property of the centroid.

Now, let’s focus on angle B. Since G is the centroid, it divides the median from B to the midpoint of side AC in a 2 : 1 ratio. This means that
GB : GC = 2 : 1. (Step 1: wrong, GB : GC ̸= 2 : 1ifGisthecenteroidandB,Carevertexsoftriangle.)

From the equation, we have:
b
7

−−→
GB = −

(
a
5

−→
GA+ c

8

−−→
GC

)
(Step 2: correct)

Taking the magnitude of both sides, we get:
b
7
· |−−→GB| = a

5
· |−→GA|+ c

8
· |−−→GC| (Step 3: wrong, | −

(
a
5

−→
GA+ c

8

−−→
GC

)
| ≠ a

5
· |−→GA|+ c

8
· |−−→GC|)

Since GB : GC = 2 : 1, we can write:
b
7
· 2 · |−−→GC| = a

5
· |−→GA|+ c

8
· |−−→GC| (Step 4: correct)

Simplifying the equation:
2b
7
· |−−→GC| = a

5
· |−→GA|+ c

8
· |−−→GC| (Step 5: correct)

Now, we can solve for |−−→GC|:
2b
7
· |−−→GC| − c

8
· |−−→GC| = a

5
· |−→GA| (Step 6: correct)

(
2b
7
− c

8

)
· |−−→GC| = a

5
· |−→GA| (Step 7: correct)

Dividing both sides by
(
2b
7
− c

8

)
:

|−−→GC| =
a
5
·|−−→GA|

2b
7

− c
8

(Step 8: correct)

Now, we can use the fact that GB : GC = 2 : 1 to find |−−→GB|:
|−−→GB| = 2 · |−−→GC| = 2 ·

a
5
·|−−→GA|

2b
7

− c
8

(Step 9: correct)

Now, we have the magnitudes of the vectors
−−→
GB and

−−→
GC. To find the measure of angle B, we can use the cosine rule, which states:

c2 = a2 + b2 − 2ab cosC (Step 10: correct)

In our case, we have:

|−−→GC|2 = |−−→GB|2 + |−→GA|2 − 2|−−→GB||−→GA| cosB(Step 11: correct)

Plugging in the values:(
a
5
·|−−→GA|

2b
7

− c
8

)2

= |−−→GB|2 (Step 12: wrong, with the equation from Step 9, it should be
(

a
5
·|−−→GA|

2b
7

− c
8

)2

= 1
4
|−−→GB|2)

Comment:

There are 12 steps totally while 3 of them are wrong, step-wise error ratio is 25.0%, but this solution is incomplete.

Table 34: Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Command-
R-2024-08.
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Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-3.5-turbo

Task:

Given point G is the centroid of △ABC, with the sides opposite to angles A, B, C having lengths a, b, c respectively, and it is known that a
5

−→
GA +

b
7

−−→
GB + c

8

−−→
GC =

−→
0 , then the measure of angle B is ?.

Solution:

Since point G is the centroid of △ABC, we know that
−→
GA+

−−→
GB +

−−→
GC =

−→
0 . (Step 1: correct)

Given that a
5

−→
GA+ b

7

−−→
GB + c

8

−−→
GC =

−→
0 , we can rewrite it as:

a
5

−→
GA+ b

7

−−→
GB + c

8

−−→
GC = a

5
(
−−→
GB +

−−→
GC) + b

7
(
−→
GA+

−−→
GC) + c

8
(
−→
GA+

−−→
GB) (Step 2: correct)

This simplifies to:
a
5

−−→
BC + b

7

−→
AC + c

8

−→
AB =

−→
0 (Step 3: wrong, a

5
(
−−→
GB +

−−→
GC) + b

7
(
−→
GA+

−−→
GC) + c

8
(
−→
GA+

−−→
GB) = 0 does not imply a

5

−−→
BC + b

7

−→
AC + c

8

−→
AB =

−→
0 , in

other words,
−−→
GB +

−−→
GC ̸= −−→

BC, so do the other two.)

Now, applying the vector sum formula in terms of sides of a triangle, we get:

a
−−→
BC + b

−→
AC + c

−→
AB =

−→
0 (Step 4: wrong, we cannot obtain this equation from a

5

−−→
BC + b

7

−→
AC + c

8

−→
AB =

−→
0 in Step 3.)

This indicates that △ABC is a degenerate triangle, which means the points A, B, C are collinear. (Step 5: wrong, this conclusion is not reasonable.)
Therefore, the angle B must be 180◦ (straight angle) for the sides to form a degenerate triangle. (Step 6: correct)

Comment:

There are 6 steps totally while 3 of them are wrong, step-wise error ratio is 50.0%.

Table 35: Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-3.5-
turbo.

Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Llama-3-70B-Instruct

Task:

Given point G is the centroid of △ABC, with the sides opposite to angles A, B, C having lengths a, b, c respectively, and it is known that a
5

−→
GA +

b
7

−−→
GB + c

8

−−→
GC =

−→
0 , then the measure of angle B is ?.

Solution:

Since G is the centroid of △ABC, we know that
−→
GA+

−−→
GB +

−−→
GC =

−→
0 . (Step 1: correct)

Now, we are given that a
5

−→
GA+ b

7

−−→
GB + c

8

−−→
GC =

−→
0 .

We can multiply the first equation by a constant k such that:

k
−→
GA+ k

−−→
GB + k

−−→
GC =

−→
0 (Step 2: correct)

Comparing this with the given equation, we can see that:

k = a
5
= b

7
= c

8
(Step 3: correct)

Solving for a, b, c, we get:

a = 5k, b = 7k, c = 8k (Step 4: correct)

Now, using the law of cosines on △ABC, we get:

c2 = a2 + b2 − 2ab cos(B) (Step 5: wrong, the implementation of cosine law is wrong, it should be b2 = a2 + c2 − 2ac cos(B))

Substituting the values of a, b, c, we get:

(8k)2 = (5k)2 + (7k)2 − 2(5k)(7k) cos(B) (Step 6: correct)

Simplifying, we get:

64k2 = 25k2 + 49k2 − 70k2 cos(B) (Step 7: correct)

64 = 74− 70 cos(B) (Step 8: correct)

70 cos(B) = 10 (Step 9: correct)

cos(B) = 1
7

(Step 10: correct)

B = cos−1( 1
7
) (Step 11: correct)

B = cos−1(
1

7
)

Comment:

There are 11 steps totally while 1 of them are wrong, step-wise error ratio is 9.1%.

Table 36: Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by Llama-3-
70B-Instruct.
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Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-4o-mini

Task:

Given point G is the centroid of △ABC, with the sides opposite to angles A, B, C having lengths a, b, c respectively, and it is known that a
5

−→
GA +

b
7

−−→
GB + c

8

−−→
GC =

−→
0 , then the measure of angle B is ?.

Solution:

Let’s denote the position vectors of points A, B, and C as
−→
A ,

−→
B , and

−→
C respectively. The position vector of the centroid G of triangle ABC is given by:

−→
G = 1

3
(
−→
A +

−→
B +

−→
C ) (Step 1: correct)

We can express
−→
GA,

−−→
GB, and

−−→
GC as follows:

−→
GA =

−→
A −−→

G =
−→
A − 1

3
(
−→
A +

−→
B +

−→
C ) = 2

3

−→
A − 1

3

−→
B − 1

3

−→
C (Step 2: correct)

−−→
GB =

−→
B −−→

G = 2
3

−→
B − 1

3

−→
A − 1

3

−→
C (Step 3: correct)

−−→
GC =

−→
C −−→

G = 2
3

−→
C − 1

3

−→
A − 1

3

−→
B (Step 4: correct)

Substituting these into the given equation:
a
5

−→
GA+ b

7

−−→
GB + c

8

−−→
GC =

−→
0 (Step 5: correct)

This becomes:
a
5

(
2
3

−→
A − 1

3

−→
B − 1

3

−→
C
)
+ b

7

(
2
3

−→
B − 1

3

−→
A − 1

3

−→
C
)
+ c

8

(
2
3

−→
C − 1

3

−→
A − 1

3

−→
B
)
=

−→
0 (Step 6: correct)

Combining the terms gives:
2a
15

−→
A − a

15

−→
B − a

15

−→
C + 2b

21

−→
B − b

21

−→
A − b

21

−→
C + 2c

24

−→
C − c

24

−→
A − c

24

−→
B =

−→
0 (Step 7: correct)

Collecting the coefficients of
−→
A ,

−→
B , and

−→
C :

(
2a
15

− b
21

− c
24

)−→
A +

(
− a

15
+ 2b

21
− c

24

)−→
B +

(
− a

15
− b

21
+ 2c

24

)−→
C =

−→
0 (Step 8: correct)

For this equation to hold, each coefficient must equal zero:
2a
15

− b
21

− c
24

= 0, − a
15

+ 2b
21

− c
24

= 0, − a
15

− b
21

+ 2c
24

= 0

(Step 9: wrong, since
−→
A,

−→
Band

−→
C are all 2-D vectors, the expression

(
2a
15

− b
21

− c
24

)−→
A +

(
− a

15
+ 2b

21
− c

24

)−→
B +

(
− a

15
− b

21
+ 2c

24

)−→
C =

−→
0 does

not imply all the coefficients are zeros, there exist non-zero solutions for those coefficients.)

After solving, we can use the Law of Cosines to find the angle B.

### Finding Angle B:

To find B using the cosine rule:

cosB = a2+c2−b2

2ac
(Step 10: correct)

From the relationships derived from the above equations, substituting a, b, and c will yield the angle B.

After computation, we find:

B = 90◦ (Step 11: correct)

Thus, the measure of angle B is:

90◦

Comment:

There are 18 steps totally while 2 of them are wrong, step-wise error ratio is 9.1%.

Table 37: Example 3 for step-wise error ratio - “Absolute value of Numbers”: Supervision sampled by GPT-4o-mini.
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1. Definition
We show a math or scientific problem P and its solution S. Your task is:
(1) break down the complete solution S properly into multiple steps,
(2) select part of these steps properly (NEITHER ONE STEP NOR NEARLY ALL THE STEPS),
(3) imagine ${num_subtasks} new problems based on your selected partial steps.
These problems can be seen as “simplified problems” or “partial problems” for the original one and are more simple to
solve.
The new problems are denoted as P-1, P-2, ..., the corresponding solutions are denoted as S-1, S-2, ...
2. Guidelines
(1) Completeness: Each new problem P-1, ..., MUST be an independent, self-contained and well-defined problem, with
clean definitions and all necessary conditions to solve it.
For example problem P-1 CANNOT quote conditions or results directly from original problem P or original solution S,
because P-1 is an independent problem from P ans S. P-1 is also NOT allowed to quote conditions or results directly from
other new problems and new solutions.
Specifically, the following words are NOT allowed to exist in your output: ’original problem’,’original solution’,’previous
problem’,’previous solution’,’all the new problems’, because their existence definitely imply this new problem or solution
quote results from other problems/solutions and are not independent.
(2) Difficulty and Complexity level: Even the new problems are seen as “sub-problems” of the original problem, but they
SHOULD NOT be too simple like computing “

√
64+ 2 = 10”, “sin(π/6) = 0.5”. On the other hand, each new problem

SHOULD NOT be too similar or even same as the whole original problem; the solution of new problem SHOULD only be
a part of the original full one.
(3) The solutions S-1, ..., MUST be self-contained, detailed and complete, providing thorough reasoning and calculations.
Each new solution S-1 or S-2 can not borrow results or intermediate values from the other one; they are INDEPENDENT.
(4) The solutions S-1, S-2, MUST be derived entirely from the original solution S. DO NOT introduce any new methods to
S-1 and S-2 that were not mentioned in S. Do not quote results from original solution S or other new solutions.
(5) It’s acceptable for the solutions S-1, S-2, to overlap. You do not need to divide the original solution S into non-
overlapping parts to create new problems.
3. I/O format:
(1) input format:
### The original problem P: ...
### The original solution S: ...
(2) output format:
### Item 1:
New problem 1: . . .
New solution 1: . . .
. . .
### End
(3) other output details:
The solution can be either in continuous plain text without explicit sequence numbers leading the solving steps or be listed
step by step explicitly, both is okay. Please always make the final results boxed.
4. User Input
Please show:
the ${num_subtasks} new problems and solutions P-1 & S-1, ...
Remind all the guidelines above again.
Here’s the input:
### The original problem P: ${original_problem}
### The original solution S: ${original_solution}

Table 38: Prompt template for decomposing hard tasks into several easy tasks.
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1. Filter out sub-tasks that are ill-defined or missing conditions.

We are providing a math or scientific problem with its solution. Check if the solution use some conditions (like
“n=4”, “f(x)=2x-1”, “Jenny has 6 apples in total”, “the water is poured in this way”, etc) that do not exist in the
problem. If so, then the problem is considered not well-defined.
Output format:
(if problem is well-defind) Conclusion: 1.
(if problem is not well-defind) Conclusion: 0. Reason: (brief reason for it’s not well-defined).
Follow the output format strictly. Here’s the input:
### Problem: ${problem}
### Solution: ${solution}

2. Filter out sub-tasks that contains less than three steps, which are considered as overly simple task.

Here we provide a detailed solution to a math or scientific problem, please count how many arithmetic computation
steps or reasoning steps are there.
Output format (**only output the following things**):
Steps count: (integar).
Here we provide the solution: ${solution}

3. Filter out sub-tasks that are variants of original task with only some numerical values or conditions
changed.

Here we provide two math or scientific problems A and B. If A is a variant of or almost the same as B, which means
the only difference in A and B are values of variables and other things are almost all identical.
The example of two almost same problems:
Problem A: Given a set (S) of eleven distinct integers, where six of the integers are ( 5, 7, 8, 13, 16, ), find the sum
of smallest 3 elements.
Problem B: Given a set (T) of eleven distinct integers, where six of the integers are ( 5, 7, 16, ), find the sum of
smallest 2 elements.
We can see Problem A is just a variant of Problem B, they are very similar and solve for the same things. If you
think Problem A is just a variant of Problem B, output 0; Otherwise, output 1.
Output format (**only output the following things**):
Conclusion: <int, 0 or 1>.
Here is the input, we provide the problems A and B:
### Problem A: ${problem1}
### Problem B: ${problem2}

Table 39: Prompt template for filtering out unqualified decomposed sub-tasks.

Suppose you’re a student learning to solve math/scientific problems, here we provide a math/scientific problem,
please solve it and show **DETAILED** process of computation and reasoning, but **DO NOT** be too naggy
and lengthy. Remember to **BOX FINAL RESULT**.
Input format: ### Problem: ...
Output format: ### Solution: ...

Here’s the problem:
### Problem: ${problem}

Table 40: Prompt template for sampling multiple solutions for hard and easy tasks.
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Suppose you’re a teacher grading students’ homework of math or scientific problems.
Here we provide a math problem, its correct solution S_ref and a solution to be judged for correctness, denoted as S.
Please determine if S is correct based on the **FINAL RESULT of S and S_ref**.
Note in the following several exemptions, S should be considered correct:
(1) If the final result of S looks different from S_ref **only because they round to different digits** during
computation or for the final result, like 1.89, 1.891, 1.8912.
(2) If S reaches a different numerical final value because S use different approximation of some scientific constant,
like gravity g=9.8 or g=10.
(3) If S uses a different method to solve the problem but it reaches the **CORRECT FINAL RESULT**.
In other case, like S has some computation error, or reasoning error or method error, which leads to a wrong result,
S should be considered as an incorrect solution. In one word, **the “FINAL RESULT” is the main thing we use
to judge the correctness**.

Input format:
### Problem:
### Reference Solution:
### Solution to be judged:
Output format:
### Judgement: <int, 1 for correct, 0 for wrong, N/A if you can’t judge it>

Here’s the input:
### Problem: ${problem}
### Reference Solution: ${reference_solution}
### Solution to be judged: ${student_solution}

Table 41: Prompt template for checking the correctness of sampled solutions based on the reference solution.

You’re a model that helps generate a solution with the help of reference answer.
You can refer to the provided information, pretend you haven’t seen it, and generate a concise solution from scratch,
with a little bit rephrasing.

### Problem:
${problem}
### Reference Info:
${reference solution}
Let’s think step by step from scratch! (Use the symbols you commonly utilize in the solution, such as Latex symbols.
Don’t follow the symbols in the reference info. Use less **Conclusion:** paragraph title in the end. Use less ’Let’s’
or ’##’ to start with in the first solution sentence. NOTE that the number of tokens of your solution **SHOULD be
in range of** ${int(sample_avg_token_num*0.8)} to ${int(sample_avg_token_num*1.2)})

Table 42: Prompt template for transferring style of ground-truth to the style of sampled solution, when all the
sampled solutions are incorrect in the construction of {correct/incorrect solution} pairs.

Suppose you’re an expert in generating variants of math or scientific problems and their solutions. Here we provide
a problem or a solution, please rephrase it and make sure **DO NOT** change the original meaning of the problem
or the solution.

Output format:
### Rephrased version: ${your output}.

Here’s the input, which is either a math problem or a student’s solution: ${problem/solution}

Table 43: Prompt template for rephrasing the problem or the solution.
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