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Abstract

Large language models (LLMs) exhibit re-
markable capabilities on not just language
tasks, but also various tasks that are not lin-
guistic in nature, such as logical reasoning
and social inference. In the human brain,
neuroscience has identified a core language
system that selectively and causally supports
language processing. We here ask whether
similar specialization for language emerges in
LLMs. We identify language-selective units
within 18 popular LLMs, using the same local-
ization approach that is used in neuroscience.
We then establish the causal role of these units
by demonstrating that ablating LLM language-
selective units – but not random units – leads
to drastic deficits in language tasks. Corre-
spondingly, language-selective LLM units are
more aligned to brain recordings from the hu-
man language system than random units. Fi-
nally, we investigate whether our localization
method extends to other cognitive domains:
while we find specialized networks in some
LLMs for reasoning and social capabilities,
there are substantial differences among mod-
els. These findings provide functional and
causal evidence for specialization in large lan-
guage models, and highlight parallels with the
functional organization in the brain.1

1 Introduction

Recent advancements in large language models
(LLMs) have revealed their potential to perform
far more than language processing tasks, show-
casing abilities in reasoning (Sun et al., 2023),
problem-solving (Giadikiaroglou et al., 2024), and
even mimicking aspects of human Theory of
Mind (Street et al., 2024). Despite these impres-
sive feats, the internal workings of LLMs remain
poorly understood, especially in relation to how
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1Code available via github.com/bkhmsi/llm-localization
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Figure 1: Identifying Specialized and Causally Task-
Relevant Units in LLMs. (1) To identify language-
selective units, we compare unit activations in response
to language (sentences) versus a matched control con-
dition (lists of non-words), and identify the units that
exhibit the strongest selectivity to sentences over non-
words. The same method is used in neuroscience to
localize the human brain’s language network (e.g., Fe-
dorenko et al., 2010). (2) Testing the causal role of
the identified language-selective units, we ablate those
units as well as a set of random units, and (3) com-
pare the resulting performance drop. Ablating 1% of
LLM language units leads to vast language deficits
(p < 5−238) for all models tested. Beyond language,
only a few models exhibit specialization for reasoning
(n=3, p < 5−2, Multiple Demand network) and social
inferences (n=4, p < 5−5, Theory of Mind network).
Plots averaged across n LLMs each; random control re-
peated with 3 different seeds.

specific components of these models contribute to
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Model Ablate Language Units Ablate Random Units

Gemma-2B 11 liquido sota(.)uggoon3 jumped over the lazy lamb.
Phi-3.5-Mini-Instruct AME.AME and:ough.. MAR jumps over the lazy dog.
Falcon-7b SomeSReadWhenISearchSome jumps over the lazy dog.
Mistral-7B-v0.3 foxfool foolfoolfoolfool jumps over the lazy dog.
LLaMA-3.1-8B-Instruct of An O of An O of jumps over the lazy dog.

Table 1: Disruption of Language Modeling Abilities Continuations of the prompt “The quick brown fox” across
five different models, following the ablation of the top 1% of language-selective units compared to the ablation
of an equivalent number of randomly selected units. The baseline generation without ablation for all models was
“jumps over the lazy dog.”

manifesting distinct cognitive functions.
The field of neuroscience has made significant

strides in mapping out the functional organiza-
tion of the human brain, for instance by identi-
fying specialized cognitive networks such as the
language network (Fedorenko et al., 2010, 2024),
the Multiple Demand network (Duncan, 2010; As-
sem et al., 2020b), and the Theory of Mind net-
work (Saxe and Kanwisher, 2013), each under-
lying distinct cognitive behaviors. In this paper,
we draw inspiration from neuroscience to investi-
gate whether similar functional specialization ex-
ists within LLMs.

Specifically, we use the same localizer exper-
iments developed by neuroscientists to identify
functional brain regions. These experiments con-
trast activations between target conditions of in-
terest (e.g., sentences) and perceptually matched
control conditions (see Section 3). We discover
that, much like the human brain, there exists a
set of units in LLMs that are critical for lan-
guage processing, analogous to the human lan-
guage network (Fedorenko et al., 2024, Fig. 2).
We find that these units show similar response pat-
terns as those observed in the human language
areas (Shain et al., 2024; Schrimpf et al., 2021),
and, moreover, demonstrate selectivity for nat-
ural language compared to mathematical equa-
tions and computer code, much like the human
brain (Ivanova et al., 2020; Fedorenko et al., 2011,
2024).

Further, ablating even a small percentage of
these language-selective units results in a signif-
icant decline in language performance, demon-
strated qualitatively in Table 1 and quantitatively
in Figure 3 through benchmarks like SyntaxGym
(Gauthier et al., 2020), BLiMP (Warstadt et al.,
2019), and GLUE (Wang et al., 2018). Finally,
the language-selective units show stronger align-

ment with the brain’s language network compared
to randomly sampled units, especially when se-
lecting a small number of units to predict brain ac-
tivity (Figs. 4, 5). Despite substantial evidence for
the existence of a language network in all LLMs
we tested, we only found evidence of units se-
lective for social (Theory of Mind) and reason-
ing (Multiple Demand) tasks in a subset of models
(Figure 6).

2 Preliminaries

The Human Language Network. The human
language network comprises a set of brain re-
gions that are functionally defined by their in-
creased activity to language inputs over percep-
tually matched controls (e.g., lists of non-words)
(Fedorenko et al., 2010; Lipkin et al., 2022, Sec-
tion 3). These regions are predominantly localized
in the left hemisphere, within frontal and temporal
areas, and demonstrate a strong selectivity for lan-
guage processing over various non-linguistic tasks
such as music perception (Fedorenko et al., 2012;
Chen et al., 2023) and arithmetic computation (Fe-
dorenko et al., 2011; Monti et al., 2012). Crucially,
these regions exhibit only weak activation in re-
sponse to meaningless non-word stimuli, whether
during comprehension or production (Fedorenko
et al., 2010; Hu et al., 2023). This high degree of
selectivity is well-established through neuroimag-
ing studies and is further supported by behav-
ioral data from aphasia studies: In individuals with
damage confined to these language areas, linguis-
tic abilities are significantly impaired, while other
cognitive functions—such as arithmetic computa-
tions (Benn et al., 2013; Varley et al., 2005), gen-
eral reasoning (Varley and Siegal, 2000), and The-
ory of Mind (Siegal and Varley, 2006)—remain
largely intact. In addition to language-specific
systems, the brain supports higher-level cognition
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through distinct networks that handle demanding
tasks and social reasoning.

The Multiple Demand Network. The Multi-
ple Demand Network (MD), encompassing bilat-
eral frontal, parietal, and temporal regions, is acti-
vated during cognitively demanding tasks, show-
ing a consistent “hard > easy” response across
various task types (e.g., spatial, verbal, mathemat-
ical; Duncan and Owen, 2000; Fedorenko et al.,
2013; Shashidhara et al., 2020). This network un-
derpins key cognitive functions such as working
memory, cognitive control, and attention, and is
linked to fluid intelligence (Woolgar et al., 2010;
Assem et al., 2020a).

The Theory of Mind Network. The Theory
of Mind (ToM) network, primarily located in
the bilateral temporo-parietal junction and corti-
cal midline, is involved in reasoning about men-
tal states—whether one’s own or others’ (Saxe and
Kanwisher, 2003; Gallagher et al., 2000; Saxe and
Powell, 2006). Functionally and anatomically dis-
tinct from the language network, the ToM network
is engaged across different content types (e.g., ver-
bal, non-verbal) and is engaged in understand-
ing non-literal language such as sarcasm, and for
discourse comprehension where multiple perspec-
tives need to be inferred (Koster-Hale and Saxe,
2013; Hauptman et al., 2023).

3 Localizing the Language Network

The human language network is defined function-
ally rather than anatomically which means that
units are chosen according to a ‘localizer’ exper-
iment (Saxe et al., 2006). Specifically, the lan-
guage network is the set of neural units (e.g.,
voxels/electrodes) that are more selective to sen-
tences over a perceptually-matched control con-
dition (e.g., lists of nonwords) (Fedorenko et al.,
2010) as illustrated in Figure 1. In previous stud-
ies comparing artificial models to brain activity
in the language network, units were selected by
evaluating representations at different model lay-
ers and choosing the ones that maximized brain
alignment (Schrimpf et al., 2021; Goldstein et al.,
2022; Caucheteux and King, 2022; Tuckute et al.,
2024b). However, LLMs learn diverse concepts
and behaviors during their considerable pretrain-
ing, not all of which are necessarily related to lan-
guage processing. Therefore, we here characterize
the language units in LLMs using functional lo-

calization as is already standard in neuroscience.
This approach comes with the advantage of com-
parability across different models since we can
choose a fixed set of units which are localized in-
dependently of the critical experiment or modality.

Specifically, we present each LLM with 240
unique 12-word-long sentences and 240 unique
strings of 12 non-words used in neuroscience (Fe-
dorenko et al., 2010), ensuring matched sequence
lengths across conditions. Human participants
are typically exposed to 96 sentences/non-word
strings during an experimental fMRI session (Lip-
kin et al., 2022). We then capture the activations
from the units at the output of each Transformer
block for each stimulus. We define the model’s
language network as the top-k units that maxi-
mize the difference in activation magnitude be-
tween sentences and strings of non-words, mea-
sured by positive t-values from a Welch’s t-test.
This localization method selects a targeted set of
units across the entire network, rather than restrict-
ing the representations to a single a priori stage as
done in prior work (Schrimpf et al., 2021; Gold-
stein et al., 2022; Caucheteux and King, 2022;
Tuckute et al., 2024b). We examine unit activa-
tions after each Transformer block. For instance,
for a model like LLAMA-3-8B (Dubey et al.,
2024) which consists of 32 Transformer blocks
and a hidden dimension of 4096, we consider
32×4096 = 131, 072 units, from which we select
the most language selective units as the model’s
“language network”.

4 Experimental Setup

Models We selected 10 autoregressive LLMs
from a diverse range of model families to
investigate their language-selective units:
GPT2-{LARGE, XL} (Radford et al., 2019),
LLAMA-2-{7B, 13B} (Touvron et al., 2023),
LLAMA-3.1-8B-INSTRUCT (Dubey et al.,
2024), MISTRAL-7B-V0.3 (Jiang et al., 2023),
FALCON-7B (Almazrouei et al., 2023), PHI-
3.5-MINI-INSTRUCT (Abdin et al., 2024), and
GEMMA-{2B, 7B} (Team et al., 2024). The
models were downloaded from the HuggingFace
platform (Wolf et al., 2019).

Language Benchmarks To assess the signifi-
cance of the localized units on the models’ linguis-
tic abilities, we utilize three widely used bench-
marks that measure formal linguistic competence
(Mahowald et al., 2024). First, SyntaxGym (Gau-
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Figure 2: Distribution of Language Units Across Layers. (a) The distribution of the top 1% most language-
selective units across layers in a sample of five different models. The models are displayed from top to bottom,
with each layer labeled by the percentage of units identified as belonging to the top 1% language-selective units.
(b) The language selectivity index for all models in the study (n=18) plotted against the relative depth of the layers.

thier et al., 2020) offers 30 subtasks focused on
evaluating syntactic knowledge. Second, BLiMP
(Warstadt et al., 2019) contains 67 subtasks, each
consisting of 1,000 minimal pairs designed to
test contrasts in syntax, morphology, and seman-
tics. Third, GLUE (Wang et al., 2018) includes 8
subtasks aimed at assessing the models’ broader
language understanding. The models are eval-
uated by calculating the negative log-likelihood
of each candidate answer given the context, se-
lecting the candidate that minimizes surprisal as
the model’s prediction. This method, commonly
used in psycholinguistics, has been shown to cor-
relate with human behavioral measures (Smith and
Levy, 2013). SyntaxGym and BLiMP are evalu-
ated in a zero-shot setting, while GLUE tasks are
tested with 2-shot examples in context to achieve
reasonable performance in the non-ablation set-
ting.

Brain Alignment Benchmarks To validate the
model language units’ alignment to the human lan-
guage network, we employ two approaches: i)
investigating whether the model units can repli-
cate landmark neuroscience studies that quali-
tatively describe the response profiles observed
in the human language regions, and ii) quanti-
tatively testing the alignment of language units
with brain responses from the human language
network. For the first approach, we closely fol-
low the analyses in Fedorenko et al. (2010) and
Shain et al. (2024), using the same set of exper-
imental conditions which are commonly used in
neuroimaging studies examining lexical and syn-
tactic processing. For the second approach, we
measure how well the language units can predict

brain activity in the human language network. To
do so, we utilize the TUCKUTE2024 (Tuckute
et al., 2024b) and PEREIRA2018 (Pereira et al.,
2018) benchmarks on the Brain-Score platform
(Schrimpf et al., 2018, 2020). TUCKUTE2024
consists of brain responses from 5 participants
who each read 1,000 linguistically diverse sen-
tences, while PEREIRA2018 consists of 15 sub-
jects reading short passages presented one sen-
tence at a time spanning various different top-
ics. See Appendix F for more details about the
datasets.

5 A Specialized Language Network in
LLMs

Figure 2(a) shows the percentage of language units
in each layer that belong to the top 1% of the
most selective units for five models analyzed in
this study (additional heatmaps for other models
can be found in Appendix B). Figure 2(b) demon-
strates a language selectivity index against the rel-
ative depth of each layer across all models tested.
This index is calculated by summing 1− p-values
for each unit where p < 0.05 after false discovery
correction, and normalizing by the hidden dimen-
sion size.

6 The LLM Language Network is
Causally Involved in Language
Processing

Table 1 qualitatively illustrates the disruption in
language modeling abilities when 1% of language-
selective units are ablated, in contrast to no dis-
ruption when an equivalent set of randomly sam-
pled units is ablated. To quantify this effect, Fig-
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(a) (b) (c) (d)SyntaxGym BLiMP GLUE GLUE Subtasks (1% Lesion)

Figure 3: Lesion Studies. The average performance change after ablating the top x% of language-selective units,
compared to ablating three random sets of units for each model. Performance is evaluated across 10 models and
three language benchmarks: (a) SyntaxGym, (b) BLiMP, and (c) GLUE, with (d) presenting results for individual
subtasks within GLUE when ablating the top 1% of language units.

ure 3 shows the average change in performance
across the 10 LLMs after ablating the top-{0.125,
0.25, 0.5, 1}% of language-selective units for a
set of three language benchmarks which measure
formal linguistic competencies (Mahowald et al.,
2024). For comparison, we also measure perfor-
mance changes after ablating an equivalent num-
ber of units randomly sampled from the remain-
ing units in the model (e.g., if 0.125% of the most
language-selective units are ablated, the random
units are sampled from the remaining 99.875%),
some of which may also have significant language
selectivity. Random sampling results are aver-
aged over three seeds for each model. The results
underscore the distinct role of language-selective
units: ablating just 0.125% of these units leads
to a notable performance drop across all three
benchmarks (Cohen’s d = 0.8, large effect size;
p < 5−43). In contrast, ablating the same number
of randomly sampled units has minimal impact on
performance (Cohen’s d = 0.1, small effect size;
p = 2−4), highlighting the unique contribution of
language-selective units to the model’s linguistic
capabilities. We found that not all tasks are im-
pacted equally (Figure 3(d)): within GLUE, lin-
guistic acceptability (COLA) and sentiment anal-
ysis (SST2) experience much more drastic perfor-
mance deficits compared to Question NLI (QNLI)
and Winograd NLI (WNLI). This variation may be
attributable to the reliance on other non-language-
specific units. We report the fine-grained results
per model in Appendix D.

7 Similarity Between the Language
Network in LLMs and Brains

Qualitatively Similar Response Profiles Be-
tween the Language Network in LLMs and
Brains. In this analysis, we record the responses
of the localized units to the exact stimuli from

four experimental conditions used in neuroscien-
tific studies (Fedorenko et al., 2010; Shain et al.,
2024), along with a set of non-linguistic stimuli
such as arithmetic equations and code. This al-
lows us to assess how well the selectivity of lo-
calized language units generalizes to new stimuli
from the same conditions (sentences and strings
of non-words) and how well they map onto re-
sults from neuroscience (Amalric and Dehaene,
2019; Ivanova et al., 2020; Fedorenko et al.,
2024). Stimuli are presented in four condi-
tions (examples in Figure 4a): Sentences ,
denoted as S, are well-formed sentences con-
taining both lexical and syntactic information.
Unconnected Words , W, are scrambled sen-

tences containing lexical but not syntactic in-
formation. Jabberwocky Sentences , J,
where content words are replaced by pronounce-
able non-words (such as “pront”, or “blay”),
thus containing syntactic but not lexical informa-
tion. Unconnected Non-Words , N, which
are scrambled Jabberwocky sentences containing
neither lexical nor syntactic information. Note
that we use a disjoint set of Sentences and
Non-Words for the original functional localiza-

tion (Section 3). The brain’s language regions are
highly sensitive to linguistic structure: responses
to S are numerically higher than all other condi-
tions (Fedorenko et al., 2010; Shain et al., 2024;
Fedorenko et al., 2024).

The LLM language units exhibit a similar re-
sponse pattern to that of the brain’s language net-
work (Figure 4c, first 4 bars). Consistent with hu-
man neuroscience (Fedorenko et al., 2011; Amal-
ric and Dehaene, 2019; Ivanova et al., 2020), LLM
language units are particularly selective for nat-
ural language compared to arithmetic equations,
C++ code, or random sequences of characters (all
matching the number of tokens and samples in
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Figure 4: Language-Selective Model Units Are Selective for Language and Exhibit Similar Response Profiles
as the Language Network in the Brain. Brain (green) and model (blue) responses for Univariate Condition-Level
Responses. (a) Examples of the four experimental conditions used in this analyses with the ‘+/-’ signs denoting
whether the condition contains lexical or syntactic information, respectively. (b) Human language network re-
sponses to the four conditions; data from (Shain et al., 2024). Brain activity is strongest to S, followed by W and
J, and weakest to N. (c) Language-selective unit responses to the four conditions averaged across 10 models and
condition samples. (d) Control responses from random units averaged across condition samples and 10 models,
with 3 random seeds each.

* ** * n.s.** n.s.** n.s.* n.s.n.s.n.s.

Figure 5: Language Units are Aligned to Brain Data. Raw Pearson correlation between predicted brain activity
from the x% of model units and actual brain activity in the human language network across 10 models. The
alignment of language-selective units shows significantly greater correlation compared to the average of three sets
of randomly selected units when selecting a small subset of units. Error bars represent 95% confidence intervals
calculated across models. See Table 11 for the number of units corresponding to each percentage level per model.

the other conditions). In contrast, responses from
three sets of randomly sampled units show a dif-
ferent response profile (Figure 4d), demonstrating
that the language response profile is not ubiqui-
tously present throughout the LLMs.

Quantitative Alignment Between the Language
Network in LLMs and Brains. Beyond quali-
tative alignment between LLM language units and
brains, we investigate the quantitative alignment
to brain data. Following standard practice in mea-
suring brain alignment, we train a ridge regression
to predict brain activity from model representa-
tions, using the same input stimuli presented to hu-
man participants in neuroimaging studies (Nase-
laris et al., 2011; Schrimpf et al., 2021). We then
measure the Pearson correlation between the pre-
dicted brain activations and the actual brain acti-
vations of human participants on a held-out set.
This process is repeated over 10 cross-validation
splits, and we report the average (mean) Pearson

correlation as our final result which we here refer
to as Brain-Score (Schrimpf et al., 2018, 2020).
Figure 5 shows the average raw correlation when
using {0.03125, 0.0625, 0.125, 0.25, 0.5, 1}% of
model units to predict brain activity for two neu-
ral datasets (Pereira et al., 2018; Tuckute et al.,
2024b). This analysis is repeated for the most lan-
guage selective units, and for three sets of ran-
domly sampled units for each of the 10 models.
See Appendix E for more statistical tests and Ap-
pendix F for more dataset details.

8 Localizing the Multiple Demand &
Theory of Mind Networks

The results so far suggest that the functional lo-
calization methods used in neuroscience to iden-
tify the brain’s language network also applies ef-
fectively to LLMs. This raises a natural question:
can we use the same localizers designed to iden-
tify other brain networks, such as the Theory of
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(d) (e)Average Across Models LLaMA-2-13B-Chat Mistral-7B-Instruct Gemma-1.1-7B-Instruct Qwen-2.5-7B-Instruct(f) Phi-3.5-Mini-Instruct

(a) (b)Average Across Models LLaMA-2-13B-Chat Phi-3.5-Mini-Instruct Gemma-1.1-7B-Instruct Qwen-2.5-7B-Instruct(c)

LLaMA-3.1-8B-Instruct

Figure 6: Multiple Demand and Theory of Mind lesion study. Change in performance on the (top) MATH
multiple-choice benchmark as a function of the difficulty level, and the (bottom) TOMI multiple-choice benchmark,
categorized by whether the question involves a false-belief or true-belief scenario. Results are shown after ablating
the top 1% of MD-selective and ToM-selective units respectively as well as an equivalent number of random units
(across 3 seeds). (a,d) Average performance change for MATH/TOMI, across all 10 models. (b,e) Models where
ablating MD/ToM units leads to a greater performance drop on difficult/false-belief problems compared to random
unit ablation. (c,f) Sample of models showing no difference between ablating MD/ToM units and random units.

Mind network or the Multiple Demand network,
to discover analogous networks in LLMs?

8.1 Functional Localizers
Multiple Demand Network To localize the
Multiple Demand (MD) network, neuroscientists
typically use either spatial or arithmetic tasks that
compare brain activations during a cognitively de-
manding problem (a “hard” task) with those dur-
ing an easier one (Fedorenko et al., 2013). In this
work, we adapted the arithmetic MD localizer into
a verbal format to explore whether a similar net-
work can be identified in LLMs. Instead of using
just the representation of the final token (as was
done for localizing the language network), we av-
erage the activations across all tokens in the con-
text before comparing the two stimulus sets. More
details about the localizer stimuli can be found in
Appendix A.2.

Theory of Mind Network Dodell-Feder et al.
(2011) developed an efficient localizer to iden-
tify brain regions involved in Theory of Mind
(ToM) and social cognition in individual partici-
pants. This was achieved by contrasting brain ac-
tivation during false-belief stories—where charac-
ters hold incorrect beliefs about the world—with
activation during false-photograph stories, where
a photograph, map, or sign depicts an outdated or
misleading world state. The false-photograph sto-
ries are verbalized to match the presentation style
of the false-belief stories for consistency in the
experiment. Each stimuli set consists of only 10

samples, which are sufficient to robustly identify
the ToM network in the brain. Similar to the MD
localizer, we average the activations across all to-
kens in the context before comparing the two stim-
ulus sets. See Appendix A.3 for more details.

8.2 Benchmarks
MATH. The Multiple Demand (MD) network is
involved during cognitively demanding tasks such
as mathematical reasoning. Therefore, to evaluate
the effectiveness of the MD localizer, we use the
multiple choice version of the MATH benchmark
(Hendrycks et al., 2021) introduced by Zhang et al.
(2024). It consists of math questions encompass-
ing several topics ranging from “Counting & Prob-
ability” to “Geometry” and “Algebra”. There are
4,914 questions categorized into 5 levels of diffi-
culty, and each one contains 4 candidate answers
presented to the model.

ToMi. To evaluate the Theory of Mind (ToM)
abilities of the model, we used the TOMI QA
dataset preprocessed by Sap et al. (2022), focus-
ing only on questions that require first-order ToM
reasoning. The dataset consists of 620 stories gen-
erated through a stochastic rule-based algorithm,
which involves selecting two participants, an ob-
ject of interest, and a set of locations or contain-
ers. These elements are combined into a narra-
tive where the object is moved, and questions are
asked about either the object’s original location or
its final location (Le et al., 2019). The questions
include both false-belief scenarios, where a par-
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ticipant was absent when the object was moved,
and true-belief scenarios, where the participant
was present. The task requires the model to in-
fer the “mental states” of the characters and the
realities of the situation in the story. Each sam-
ple presents the model with an instruction, the
story, the question, and two possible answers. The
model’s response is the answer that minimizes sur-
prisal, measured by the negative log-likelihood.

8.3 Models
Given the complexity of the benchmarks used to
evaluate higher-level cognitive networks, which
require advanced reasoning abilities and mod-
els that are capable of following instructions for
zero-shot evaluation, we transitioned all mod-
els to instruction-tuned versions. Additionally,
we included QWEN2.5-{3B, 7B}-INSTRUCT and
LLAMA-3.2-3B-INSTRUCT to maintain a con-
sistent sample size of 10 models, matching those
used in the language evaluations.

8.4 Results
We repeat the lesion analysis performed on the
language network for the Theory of Mind (ToM)
and Multiple Demand (MD) selective units (top
1%). After identifying units with the functional lo-
calizers discussed in Section 8.1, we measure the
change in performance following the ablation of
the most selective units.

Multiple Demand. Figure 6(a-c) illustrates the
change in performance on the MATH multiple-
choice benchmark for a sample of models, broken
down by difficulty level. For a specialized LLM
Multiple Demand network, we would expect a
greater performance drop as the question difficulty
increases, reflecting a more “cognitively demand-
ing” task. This pattern is evident in LLAMA-
2-13B-CHAT, GEMMA-1.1-7B-INSTRUCT, and
PHI-3.5-MINI-INSTRUCT, but is less pronounced
in other models. See Appendix D for results on all
models.

Theory of Mind. Similar to the MD results,
ToM findings are incosistent across models. Fig-
ure 6(d-f) shows the results on a sample of mod-
els on the TOMI benchmark when ablating the
most selective ToM units and three sets of random
units. We differentiate between results for ques-
tions that involves false-belief scenarios and true-
belief ones. Our results indicate that we can lo-
calize specialized units for certain models, such as

MISTRAL-7B-INSTRUCT, but not for others, like
PHI-3.5-MINI-INSTRUCT. This differs from the
findings related to the language network, where
trends were consistent across all models (see Ap-
pendix D).

9 Discussion

Specialized LLM Language Units. Our find-
ings provide compelling evidence that specialized
language units emerge within LLMs. It is par-
ticularly surprising how effectively we can iden-
tify these units with the same limited set of lo-
calization stimuli employed in neuroscience, and
that they prove to be causally relevant for lan-
guage tasks. While we observed consistent re-
sults across all 10 models we tested, it remains an
open question whether this specialization is uni-
versal across all LLMs and under which condi-
tions this specialization does or does not emerge.
For instance, does the nature of the training data or
the specific training objective influence the emer-
gence of these specialized units? Moreover, the
role of non-language-selective units remains un-
clear. It is possible they contribute to other spe-
cialized systems. While our experiments with the
Multiple Demand and Theory of Mind selective
units yielded some promising results, the variabil-
ity across models suggests that these systems may
either emerge more sparsely or be more complex
or challenging to identify.

Consistency with the Brain’s Language Net-
work. Our paper adds to the growing body of
research that uses neuroscience tools to interpret
machine learning models (Schrimpf et al., 2020,
2021; Zador et al., 2023; Tuckute et al., 2024a).
Specifically, our work takes a step towards ana-
lyzing LLM units that are causally useful within
a given system, providing a more stringent no-
tion of functional correspondence (Cao, 2022; Cao
and Yamins, 2024; Mahon, 2023; Prince et al.,
2024). The consistency between the causally im-
portant language units in LLMs and the human
brain may suggest that computations, beyond rep-
resentations, could be shared between these two
systems. This prompts an intriguing question: do
specialized subsystems, such as the language net-
work, always emerge as a consequence of optimiz-
ing for next-word prediction, and is such a simple
objective the driver of specialization in the brain?
Exploring this connection further could shed light
on how cognitive processes evolve from such pre-
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dictive mechanisms.

Related Work Previous work has identified a
core language system within LLMs (Zhao et al.,
2023), but their approach requires finetuning the
model on a next-token prediction task to locate
parameters that exhibit minimal variation during
finetuning. In contrast, our method bypasses addi-
tional training and leverages established research
from language neuroscience. Concurrently, Sun
et al. (2024) have shown that LLMs exhibit brain-
like functional organization by using regressors
to predict brain activity based on artificial neu-
ron responses, and thereby mapping LLM repre-
sentations onto the brain. However, their method
is computationally intensive and lacks the cog-
nitive neuroscience grounding that underpins our
approach. Other efforts have focused on identi-
fying subnetworks that encode factual knowledge
(Meng et al., 2022; Bayazit et al., 2023; Hernan-
dez et al., 2023) and task-specific skill neurons
(Panigrahi et al., 2023).

Future Work. Extending the analyses presented
here to multimodal models could shed light on
whether specialized Multiple Demand and Theory
of Mind units are also responsive to non-linguistic
inputs, regardless of the input modality (e.g., vi-
sual or auditory stimuli). This investigation aligns
with the emergent modularity observed in the
brain, where these networks are robustly dissocia-
ble from language (Mahowald et al., 2024). In
contrast, this dissociation is not evident in LLMs:
ablating the language units renders the model inca-
pable of understanding input sentences and, con-
sequently, unable to perform any task presented
verbally. This limitation applies to all tasks, as the
input to LLMs is solely language-based.

10 Conclusion

In this paper, we explored whether functional spe-
cialization observed in the human brain can be
identified in LLMs. Drawing inspiration from
neuroscience, we applied the same localizers used
in human neuroscience, to uncover language-
selective units within LLMs, showing that a small
subset of these units are crucial for language mod-
eling. Our lesion studies revealed that ablating
even a fraction of these units leads to signifi-
cant drops in language performance across mul-
tiple benchmarks, while randomly sampled non-
language units had no comparable effect. Al-

though we successfully identified a language net-
work analog in all models studied, we found
mixed results when applying similar localization
techniques to Theory of Mind and Multiple De-
mand networks, suggesting that not all cognitive
functions neatly map onto current LLMs. These
findings provide new insights into the internal
structure of LLMs and open up avenues for further
exploration of parallels between artificial systems
and the human brain.

Limitations

Our analysis focused on models smaller than 13
billion parameters, which may not capture the spe-
cialization that could emerge in larger models,
such as those with 70 billion parameters. Ad-
ditionally, we evaluated Theory of Mind (ToM)
and Multiple Demand (MD) units using just one
benchmark for each: TOMI QA for ToM and a
mathematical reasoning task (MATH) for MD.
While these benchmarks provided initial insights,
they do not offer a comprehensive evaluation of
these cognitive systems since our main focus was
analyzing the language-selective units and their re-
lationship to the human language network. Future
work will involve expanding our study to include
more models and a broader set of benchmarks to
ensure robustness and generalizability. We also
plan to analyze varying numbers of selective units
for the MD and ToM networks, as this study fo-
cused only on the top 1% which might not reflect
the total number of units specialized for cogni-
tively demanding tasks.

Moreover, the localizers we used to identify
specialized units were adapted from neuroscience.
While these methods allowed us to draw mean-
ingful comparisons between LLMs and the brain,
they are constrained by the stimuli sets tradition-
ally used in neuroscience. Future work will con-
sider developing more targeted and robust localiz-
ers that are not restricted by the same limitations,
enabling deeper investigation into the specializa-
tion of LLMs across different tasks and domains.

Ethical Statement

This research focuses on understanding the inter-
nal mechanisms of existing large language models
(LLMs) by drawing parallels to human cognitive
systems. Our work is aimed at advancing scientific
knowledge in the field of AI and neuroscience and
does not involve any human or animal subjects.
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Appendix

A Functional Localizers

Figure 7 shows a pair of examples for each net-
work localizer stimuli. We provide more details of
each stimuli set below.

A.1 Language Localizer

The language localizer uses the same set of 240
sentences and 240 lists of non-words2 as used
by neuroscientists to localize the human language
network. Each sentence consists of 12 words, and
each list of non-words consists of 12 non-words
to control for length. Since we are using a trained
BPE tokenizer that breaks down each word into
a number of tokens, we truncated the tokens to
have a maximum length of 12 to ensure similar
sequence length.

A.2 Multiple Demand Localizer

The arithmetic multiple-demand localizer used in
neuroscience includes a set of “hard” arithmetic
questions alongside a set of “easy” ones. These
stimuli are usually generated by a MATLAB script
that displays a mathematical problem on a screen
for participants to solve, followed by two answer
choices, one of which is correct. “Hard” questions
are defined as addition problems with results ex-
ceeding 20 (e.g., 18+5), while “easy” questions
yield results below 10 (e.g., 4+2). We adapted
this localizer by similarly generating hard and
easy arithmetic questions but slightly increased the
complexity. Specifically, for hard questions, we
sampled two numbers between 100 and 200, with
each problem randomly chosen to be either an ad-
dition or subtraction with equal likelihood. For
easy questions, we sampled two numbers in the
range of 1 to 20. We generated 100 questions for
each stimuli set. Examples are shown in Figure 7.

A.3 Theory of Mind Localizer

We use the same set of stimuli employed in neu-
roscience to localize the theory-of-mind network
in the human brain (Dodell-Feder et al., 2011),
which includes 10 false-belief stories and 10 false-
photograph stories3. The prompt was structured to

2The language localizer stimuli were retrieved from:
https://www.evlab.mit.edu/resources-all/
download-localizer-tasks

3The Theory of Mind localizer stimuli were re-
trieved from https://saxelab.mit.edu/
use-our-efficient-false-belief-localizer/

mirror the instructions given to participants dur-
ing the neuroimaging study, followed by the story,
the question, two answer choices (True or False),
and an answer. Example of the prompt given from
each set are shown in Figure 7. When evaluating
the model on the test-set, we give it the following
instruction: “The following multiple choice ques-
tions is based on the following story. The question
is related to Theory-of-Mind. Read the story and
then answer the questions. Choose the best answer
from the options provided by printing it as is with-
out any modifications.”

B Localized Units Location

B.1 Language Units

Figure 8 shows the distribution of the top 1% lan-
guage selective units for all 18 models tested in
this work. An interesting observation is that the
distribution of language-selective units remains
similar in models both before and after instruction
tuning.

B.2 Multiple Demand Units

Figure 9 shows the distribution of the top 1% Mul-
tiple Demand (MD) selective units for the 10 mod-
els tested for MD in this work.

B.3 Theory of Mind Units

Figure 10 shows the distribution of the top 1%
Theory of Mind (ToM) selective units for the 10
models tested for ToM in this work. The ToM se-
lective units are more distributed across the model
layers rather than being more clustered as in MD
and the language-selective units. This might be
due to the small number of stimuli samples used
for the ToM localizer.

C Models

Table 2 lists all 18 models analyzed in this study
and indicates which models were used in which
experiment. We kept 10 models for each experi-
ment as shown in the last row. Table 11 shows the
number of units corresponding to each percentage
level for all models.

D Finegrained Results

D.1 Language Results

Tables 6 and 7 display results for the 10
models tested on three language benchmarks—
SyntaxGym, BLiMP, and GLUE—along with the
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Model Lang MD/ToM

GPT2-Large ✓ ✗

GPT2-XL ✓ ✗

Gemma-2B ✓ ✗

Gemma-7B ✓ ✗

Gemma-1.1-7B-Instruct ✗ ✓

Phi-3.5-Mini-Instruct ✓ ✓

Mistral-7B-v0.3 ✓ ✗

Mistral-7B-Instruct-v0.3 ✗ ✓

LLaMA-2-7B ✓ ✗

LLaMA-2-7B-Chat ✗ ✓

LLaMA-2-13B ✓ ✗

LLaMA-2-13B-Chat ✗ ✓

LLaMA-3.1-8B-Instruct ✓ ✓

LLaMA-3.2-3B-Instruct ✗ ✓

Falcon-7B ✓ ✗

Falcon-7B-Instruct ✗ ✓

Qwen2.5-3B-Instruct ✗ ✓

Qwen2.5-7B-Instruct ✗ ✓

# 18 10 10

Table 2: Models Used in This Work Overview of
the 18 models analyzed, with an indication of the spe-
cific experiments in which each model was used. Lang
referes to the language experiments, MD refers to the
Multiple Demand experiments, and ToM refers to the
Theory of Mind experiments.

average performance across these benchmarks.
Each model’s performance is shown initially with-
out ablation, followed by ablations of the top-
0.125, 0.25, 0.5, 1% language-selective units, and
then with randomly sampled units at the same per-
centages. The performance changes in Figure 3
can be reproduced by subtracting post-ablation re-
sults from the baseline (0%) for both language-
selective and random unit ablations. Results with
random units are averaged across three random
seeds.

D.2 Multiple Demand Results

Table 8 presents the results for the 10 models
tested on the MATH benchmark, organized by dif-
ficulty level and including the overall macro aver-
age across levels. Each model’s performance is
shown under three conditions: without ablation,
after ablating the top 1% of Multiple Demand-
selective units, and with an equivalent number of
randomly sampled units.

D.3 Theory of Mind Results
Table 9 similarly shows the results for the 10 mod-
els tested on the TOMI benchmark, organized by
question type, whether it involves a false-belief
scenario (n=231) or true-belief scenarios (n=389),
and including the macro average across both types.
Each model’s performance is shown under three
conditions: without ablation, after ablating the top
1% of theory-of-mind-selective units, and with an
equivalent number of randomly sampled units. Ta-
ble 10 shows the same but when ablating the top-
2% of units.

E More Brain Alignment Statistical Tests

In Section 7, we performed Welch’s t-test to
demonstrate that units from the language network
are significantly more brain-aligned than three sets
of randomly sampled units from the model, par-
ticularly when sampling a small number of units.
Here, we conduct the Shapiro-Wilk test to verify
that each distribution follows a normal distribu-
tion, as Welch’s t-test assumes normality in the
compared distributions. Tables 3 and 4 present
the test statistics and p-values for the brain align-
ment results across models, comparing both lan-
guage and random units at each percentage and
for each dataset. These results confirm that the
distributions are indeed normal. A p-value greater
than 0.05 indicates normality, while values be-
low this threshold suggest deviation from normal-
ity. Notably, the only cases where the p-value
falls below 0.05—indicating non-normal distribu-
tions—are for the 0.5% and 1% conditions in the
Tuckute2024 dataset, where no significant differ-
ence was observed.

Percentage Language Units Random Units

0.03125% (0.902, 0.233) (0.971, 0.565)
0.0625% (0.957, 0.755) (0.939, 0.085)
0.125% (0.955, 0.722) (0.981, 0.853)
0.25% (0.933, 0.475) (0.962, 0.345)
0.5% (0.945, 0.609) (0.974, 0.658)
1% (0.945, 0.612) (0.970, 0.551)

Table 3: Shapiro-Wilk test (statistics and p-values) for
brain alignment distributions across models. The test
is conducted separately for language units and ran-
domly sampled units at each percentage level for the
PEREIRA2018 dataset.

We also conducted a permutation test, a non-
parametric statistical method that does not re-
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Percentage Language Units Random Units

0.03125% (0.948, 0.641) (0.9511, 0.181)
0.0625% (0.962, 0.802) (0.9507, 0.176)
0.125% (0.973, 0.915) (0.9810, 0.852)
0.25% (0.914, 0.309) (0.9592, 0.296)
0.5% (0.829, 0.032) (0.9693, 0.519)
1% (0.825, 0.029) (0.9725, 0.608)

Table 4: Shapiro-Wilk test (statistics and p-values) for
brain alignment distributions across models. The test
is conducted separately for language units and ran-
domly sampled units at each percentage level for the
TUCKUTE2024 dataset.

quire the assumption of normality. This method
involves randomly shuffling data labels across
10,000 permutations to generate a null distribution
of the test statistic. By comparing the observed
test statistic to this null distribution, we evaluated
the statistical significance of our results. The find-
ings from the permutation test confirmed the sig-
nificance of our results, as shown in Table 5.

Percentage PEREIRA2018 TUCKUTE2024

0.03125% 0.001 0.004
0.0625% 0.004 0.013
0.125% 0.138 0.000
0.25% 0.548 0.013
0.5% 0.195 0.169
1% 0.084 0.458

Table 5: Permutation test p-values assessing the sta-
tistical significance of brain alignment differences on
both datasets. The test was conducted by randomly
shuffling data labels across 10,000 permutations to gen-
erate a null distribution of the test statistic. The ob-
served test statistic was then compared to this null dis-
tribution to compute the p-values. Lower p-values indi-
cate stronger evidence against the null hypothesis, con-
firming the robustness of our findings.

F Brain-Score Datasets

Tuckute2024 This dataset consists of 5 partic-
ipants reading 1000 6-word sentences presented
one sentence at a time for 2s. BOLD responses
from voxels in the language network were av-
eraged within each participant and then across
participants to yield an overall average language
network response to each sentence. The stim-
uli used span a large part of the linguistic space,
enabling model-brain comparisons across a wide

range of single sentences. Sentence presenta-
tion order was randomized across participants.
The averaging of sentences across participants ef-
fectively minimizes the effect of temporal au-
tocorrelation/context in this dataset. In combi-
nation with the diversity in linguistic materials,
this dataset presents a particularly challenging
dataset for model evaluation. The noise ceiling for
TUCKUTE2024 is r = 0.56, see Tuckute et al.
(2024b) for more details.

Pereira2018 This dataset consists of fMRI ac-
tivations (blood-oxygen-level-dependent; BOLD
responses) recorded as participants read short pas-
sages presented one sentence at a time for 4 s. The
dataset is composed of two distinct experiments:
one with 9 subjects presented with 384 sentences,
and another with 6 subjects presented with 243
sentences each. The passages in each experiment
spanned 24 different topics. The results reported
for this dataset are the average alignment across
both experiments (Pereira et al., 2018). The re-
ported results for this dataset use an unshuffled
cross-validation scheme, ensuring that sentences
from the same passage appear exclusively in either
the training or testing set.
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to the directors the problem appeared a
matter of intrigue or diplomacy

ot momp vo detlerence frot mogs elibonce
polved ro op ummosite comblision

Language Localizer 

Question: Solve 151 + 192?
Answer: 343

Question: Solve 7 + 15?
Answer: 22

Multiple Demand Localizer

In this experiment, you will read a series of
sentences and then answer True/False
questions about them. Press button 1 to
answer 'true' and button 2 to answer 'false'.

Story: Expecting the game to be postponed
because of the rain, the Garcia family took
the subway home. The score was tied, 3-3.
During their commute the rain stopped and
the game soon ended with a score of 5-3.

Question: The Garcia family arrives home
believing the score is 5-3.

Options:
- True
- False

Answer: False

Theory of Mind Localizer

Examples of Localizers Stimuli

In this experiment, you will read a series of
sentences and then answer True/False
questions about them. Press button 1 to
answer 'true' and button 2 to answer 'false'.

Story: Accounts of the country's bustling
economic success were recorded in both
fiction and non-fiction books from the early
1900s. Soon after, a horrible plague hit the
country and the country was sent into an
economic depression.

Question: Early 1900s novels portray the
country as experiencing economic wealth.

Options:
- True
- False

Answer: True

False-Belief Story False-Photograph Story

Hard Arithmetic Question Easy Arithmetic Question

Sentence List of non-words

Figure 7: Examples of Localizers Stimuli. Language stimuli consists of 240 sentences and 240 lists of non-words.
Multiple Demand stimuli consists of 100 hard arithmetic problems and 100 easy ones. Theory of Mind consists of
10 false-belief stories and 10 false-photograph stories. The instruction given in the Theory of Mind stimuli is the
same given to participants during the neuroimaging study. See Appendix A for more details about each localizer.
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Figure 8: Distribution of Language Units Across Layers. The distribution of the top 1% most language-selective
units across layers in all 18 models tested in this work. The models are displayed from top to bottom, with each
layer labeled by the percentage of units identified as belonging to the top 1%.
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Figure 9: Distribution of Multiple Demand Units Across Layers. The distribution of the top 1% most Multiple
Demand (MD) selective units across layers in the 10 models tested for MD in this work. The models are displayed
from top to bottom, with each layer labeled by the percentage of units identified as belonging to the top 1%.

Figure 10: Distribution of Theory of Mind Units Across Layers. The distribution of the top 1% most theory of
mind (ToM) selective units across layers in the 10 models tested for ToM in this work. The models are displayed
from top to bottom, with each layer labeled by the percentage of units identified as belonging to the top 1%.

10905



Model Ablation Units Percentage SyntaxGym BLiMP GLUE Average

GPT2-Large

- 0% 78.50 83.55 45.42 69.16

Language 0.125% 61.87 76.79 44.23 60.96
Language 0.25% 50.03 72.69 43.13 55.28
Language 0.5% 46.99 69.37 38.55 51.64
Language 1% 41.07 66.09 39.96 49.04

Random 0.125% 78.02 83.50 45.39 68.97
Random 0.25% 78.28 83.33 45.49 69.03
Random 0.5% 77.95 82.89 44.48 68.44
Random 1% 76.87 82.70 43.97 67.85

GPT2-XL

- 0% 82.70 83.38 46.85 70.98

Language 0.125% 80.20 81.64 44.78 68.88
Language 0.25% 70.73 78.06 46.24 65.01
Language 0.5% 66.54 77.19 44.75 62.82
Language 1% 56.02 74.86 43.12 58.00

Random 0.125% 82.26 83.16 46.40 70.61
Random 0.25% 80.76 83.07 46.38 70.07
Random 0.5% 79.93 82.68 45.53 69.38
Random 1% 79.44 81.64 45.19 68.76

Gemma-2B

- 0% 80.15 81.14 47.81 69.70

Language 0.125% 38.16 56.34 41.79 45.43
Language 0.25% 36.59 54.52 39.82 43.64
Language 0.5% 26.02 52.54 37.38 38.64
Language 1% 25.46 51.60 37.56 38.21

Random 0.125% 80.18 81.10 47.35 69.54
Random 0.25% 79.49 80.88 48.42 69.60
Random 0.5% 79.51 80.93 46.25 68.90
Random 1% 65.89 72.20 42.65 60.25

Gemma-7B

- 0% 80.37 81.75 62.29 74.80

Language 0.125% 54.99 64.30 43.34 54.21
Language 0.25% 52.91 61.17 44.38 52.82
Language 0.5% 25.67 63.75 41.15 43.52
Language 1% 29.61 48.97 45.90 41.50

Random 0.125% 80.15 80.48 61.96 74.20
Random 0.25% 80.44 81.24 60.59 74.09
Random 0.5% 80.55 81.25 63.05 74.95
Random 1% 79.65 79.98 58.36 72.66

Phi-3.5-Mini-Instruct

- 0% 81.86 80.63 70.73 77.74

Language 0.125% 45.42 58.62 60.60 54.88
Language 0.25% 34.81 55.72 49.65 46.72
Language 0.5% 25.37 53.56 33.40 37.44
Language 1% 22.90 53.79 46.26 40.98

Random 0.125% 80.16 80.95 70.80 77.30
Random 0.25% 81.83 81.64 69.64 77.70
Random 0.5% 78.79 80.35 68.61 75.92
Random 1% 79.80 79.05 69.19 76.01

Table 6: Language Benchmarks Results 1 Results for the 5 models on the language benchmarks tested in this
work. Random for each percentage is averaged across 3 seeds. The results when ablating random units is almost
the same as ablating no units, while ablating language units lead to a sharp drop in performance. See Table 7 for
the results of the other models.
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Model Ablation Units Percentage SyntaxGym BLiMP GLUE Average

LLaMA-2-7b

- 0% 81.07 85.63 50.60 72.43

Language 0.125% 46.07 66.85 41.91 51.61
Language 0.25% 39.51 64.24 40.91 48.22
Language 0.5% 28.86 57.07 32.57 39.50
Language 1% 26.82 56.01 38.33 40.39

Random 0.125% 81.09 85.57 50.74 72.47
Random 0.25% 81.26 85.03 50.25 72.18
Random 0.5% 80.23 84.68 51.15 72.02
Random 1% 80.63 84.53 47.44 70.87

LLaMA-2-13b

- 0% 82.91 84.82 59.53 75.76

Language 0.125% 78.57 81.38 48.05 69.33
Language 0.25% 62.12 74.84 42.47 59.81
Language 0.5% 23.85 51.23 29.16 34.75
Language 1% 29.13 51.42 30.03 36.86

Random 0.125% 82.43 84.79 58.76 75.33
Random 0.25% 82.13 84.66 55.18 73.99
Random 0.5% 82.06 83.77 57.52 74.45
Random 1% 81.21 83.55 53.94 72.90

LLaMA-3.1-8B-Instruct

- 0% 80.05 81.90 69.20 77.05

Language 0.125% 80.25 79.60 66.44 75.43
Language 0.25% 78.22 76.96 61.43 72.20
Language 0.5% 73.12 77.60 55.77 68.83
Language 1% 54.12 67.17 46.36 55.88

Random 0.125% 79.93 81.89 68.98 76.93
Random 0.25% 79.99 81.88 68.71 76.86
Random 0.5% 79.92 81.10 69.51 76.85
Random 1% 79.14 81.73 67.41 76.09

Mistral-7B

- 0% 80.39 83.44 64.03 75.95

Language 0.125% 70.08 75.38 47.33 64.26
Language 0.25% 44.11 66.73 44.91 51.91
Language 0.5% 37.60 66.39 43.74 49.24
Language 1% 33.05 61.85 40.34 45.08

Random 0.125% 80.28 83.34 63.54 75.72
Random 0.25% 80.46 83.13 63.91 75.84
Random 0.5% 80.34 82.62 62.75 75.24
Random 1% 79.22 82.51 63.00 74.91

Falcon-7B

- 0% 80.05 80.35 48.36 69.59

Language 0.125% 72.17 75.83 46.86 64.95
Language 0.25% 69.99 71.67 47.23 62.97
Language 0.5% 51.36 60.23 44.17 51.92
Language 1% 25.79 55.42 45.11 42.10

Random 0.125% 79.59 80.26 48.44 69.43
Random 0.25% 79.89 80.35 48.83 69.69
Random 0.5% 78.62 79.96 48.40 69.00
Random 1% 78.32 79.99 48.85 69.05

Table 7: Language Benchmarks Results 2 Results for 5 models on the language benchmarks tested in this work.
Random for each percentage is averaged across 3 seeds. The results when ablating random units is almost the same
as ablating no units, while ablating language units lead to a sharp drop in performance. See Table 6 for the results
of the other models.
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Model Ablation Level 1 Level 2 Level 3 Level 4 Level 5 Average

Phi-3.5-Mini-Instruct
- 52.33 41.50 40.45 35.11 31.91 40.26

MD 38.37 32.31 33.90 28.44 27.33 32.07
Random 49.92 43.50 41.52 37.31 35.71 41.59

LLaMA-3.1-8B-Instruct
- 40.00 37.41 36.23 36.36 39.21 37.84

MD 37.21 34.13 33.18 33.61 40.45 35.72
Random 36.20 35.15 33.96 35.95 38.59 35.97

Mistral-7B-Instruct
- 39.07 35.71 37.31 35.61 34.01 36.34

MD 36.28 33.90 32.65 32.03 30.51 33.07
Random 35.35 33.07 34.05 34.03 33.23 33.95

LLaMA-2-7b-Instruct
- 24.42 28.57 29.24 28.69 29.04 27.99

MD 24.65 29.71 29.42 29.44 29.11 28.47
Random 23.41 28.46 27.50 26.94 28.39 26.94

LLaMA-2-13b-Instruct
- 25.35 33.11 29.78 29.19 29.35 29.35

MD 28.14 25.74 24.48 25.27 23.84 25.49
Random 26.51 31.18 28.34 28.86 28.73 28.72

LLaMA-3.2-3B-Instruct
- 35.35 32.77 33.99 33.69 35.56 34.27

MD 31.63 32.20 33.90 33.11 34.70 33.11
Random 34.19 32.77 32.56 34.50 35.74 33.95

Gemma-1.1-7B-Instruct
- 40.00 37.41 35.96 34.28 35.87 36.71

MD 35.58 34.81 30.49 31.28 32.53 32.94
Random 37.21 36.28 35.19 33.75 35.12 35.51

Falcon-7B-Instruct
- 23.49 26.64 23.86 25.85 23.91 24.75

MD 27.91 26.30 25.20 25.19 24.15 25.75
Random 26.98 25.21 24.48 25.05 23.96 25.14

Qwen2.5-7B-Instruct
- 59.53 60.43 59.37 56.46 56.91 58.54

MD 59.07 56.12 56.59 55.55 54.66 56.40
Random 57.75 57.60 56.53 54.05 53.73 55.93

Qwen2.5-3B-Instruct
- 53.49 49.55 49.33 44.37 47.28 48.80

MD 43.72 40.14 40.54 36.03 38.66 39.82
Random 42.95 40.36 39.13 36.86 37.50 39.36

Table 8: MATH Benchmark Results Results for the 10 models tested on the MATH benchmark, showing per-
formance in the following conditions for each model: without ablation, with ablation of the top 1% most MD-
selective, and with randomly sampled. The results for Random is averaged across 3 seeds. MD stands for multiple
demand.
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Model Ablation Units False Belief True Belief Average

Phi-3.5-Mini-Instruct
- 50.65 86.38 68.51

ToM 17.75 98.46 58.10
Random 17.75 96.92 57.33

LLaMA-3.1-8B-Instruct
- 80.95 75.32 78.14

ToM 64.50 75.32 69.91
Random 76.62 68.47 72.54

Mistral-7B-Instruct
- 79.22 65.81 72.52

ToM 64.07 61.95 63.01
Random 69.55 68.47 69.01

LLaMA-2-7b-Instruct
- 23.81 79.69 51.75

ToM 20.78 79.95 50.36
Random 32.47 68.38 50.42

LLaMA-2-13b-Instruct
- 63.64 68.38 66.01

ToM 49.35 69.92 59.64
Random 59.88 58.01 58.95

LLaMA-3.2-3B-Instruct
- 9.96 92.80 51.38

ToM 9.52 91.77 50.65
Random 16.88 85.52 51.20

Gemma-1.1-7B-Instruct
- 78.79 65.55 72.17

ToM 62.77 66.07 64.42
Random 72.87 63.58 68.23

Falcon-7B-Instruct
- 50.22 46.02 48.12

ToM 49.78 45.50 47.64
Random 52.67 48.41 50.54

Qwen2.5-7B-Instruct
- 97.84 41.65 69.74

ToM 93.51 44.73 69.12
Random 92.35 46.62 69.48

Qwen2.5-3B-Instruct
- 81.82 59.38 70.60

ToM 77.06 56.56 66.81
Random 46.90 60.07 53.48

Table 9: TOMi Benchmark Results (1% Lesion) Results for the 10 models tested on the TOMi benchmark,
showing performance in the following conditions for each model: without ablation, with ablation of the top 1%
most ToM-selective, and with randomly sampled. The results for Random is averaged across 3 seeds. ToM stands
for theory of mind.
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Model Ablation Units False Belief True Belief Average

Phi-3.5-Mini-Instruct
- 50.65 86.38 68.51

ToM 7.36 97.69 52.52
Random 27.71 92.03 59.87

LLaMA-3.1-8B-Instruct
- 80.95 75.32 78.14

ToM 49.35 64.52 56.94
Random 61.62 56.56 59.09

Mistral-7B-Instruct
- 79.22 65.81 72.52

ToM 40.26 71.98 56.12
Random 66.67 66.50 66.58

LLaMA-2-7b-Instruct
- 23.81 79.69 51.75

ToM 19.05 77.63 48.34
Random 35.93 63.75 49.84

LLaMA-2-13b-Instruct
- 63.64 68.38 66.01

ToM 42.42 60.15 51.29
Random 52.53 54.07 53.30

LLaMA-3.2-3B-Instruct
- 9.96 92.80 51.38

ToM 19.48 82.01 50.74
Random 25.83 76.86 51.35

Gemma-1.1-7B-Instruct
- 78.79 65.55 72.17

ToM 61.04 67.87 64.45
Random 71.57 64.27 67.92

Falcon-7B-Instruct
- 50.22 46.02 48.12

ToM 52.81 46.27 49.54
Random 50.07 50.64 50.36

Qwen2.5-7B-Instruct
- 97.84 41.65 69.74

ToM 89.61 50.13 69.87
Random 60.03 59.13 59.58

Qwen2.5-3B-Instruct
- 81.82 59.38 70.60

ToM 87.45 37.28 62.36
Random 64.07 46.02 55.04

Table 10: TOMi Benchmark Results (2% Lesion) Results for the 10 models tested on the TOMi benchmark,
showing performance in the following conditions for each model: without ablation, with ablation of the top 2%
most ToM-selective, and with randomly sampled. The results for Random is averaged across 3 seeds. ToM stands
for theory of mind.
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Model 0.03125% 0.0625% 0.125% 0.25% 0.5% 1% 2%

Falcon-7B 45 90 181 363 727 1454 2908
Falcon-7B-Instruct 45 90 181 363 727 1454 2908
GPT2-Large 14 28 57 115 230 460 921
GPT2-XL 24 48 96 192 384 768 1536
Gemma-1.1-7B-Instruct 26 53 107 215 430 860 1720
Gemma-2B 11 23 46 92 184 368 737
Gemma-7B 26 53 107 215 430 860 1720
LLaMA-2-13b 64 128 256 512 1024 2048 4096
LLaMA-2-13b-Instruct 64 128 256 512 1024 2048 4096
LLaMA-2-7b 40 81 163 327 655 1310 2621
LLaMA-2-7b-Instruct 40 81 163 327 655 1310 2621
LLaMA-3.1-8B-Instruct 40 81 163 327 655 1310 2621
LLaMA-3.2-3B-Instruct 26 53 107 215 430 860 1720
Mistral-7B 40 81 163 327 655 1310 2621
Mistral-7B-Instruct 40 81 163 327 655 1310 2621
Phi-3.5-Mini-Instruct 30 61 122 245 491 983 1966
Qwen2.5-3B-Instruct 23 46 92 184 368 737 1474
Qwen2.5-7B-Instruct 31 62 125 250 501 1003 2007

Table 11: Number of Units at Specified Percentage Levels for Each Model The table shows the number of
units corresponding to each percentage level (x%) for each model. These values are calculated by multiplying the
number of layers, by the hidden dimension, and the specified percentage.
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