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Abstract

Generative language models have shown sig-
nificant potential in single-turn Text-to-SQL.
However, their performance does not ex-
tend equivalently to multi-turn Text-to-SQL.
This is primarily due to generative language
models’ inadequacy in handling the com-
plexities of context information and dynamic
schema linking in multi-turn interactions. In
this paper, we propose a framework named
Track-SQL, which enhances generative lan-
guage models with dual-extractive modules
designed to track schema and contextual
changes in multi-turn Text-to-SQL. Specif-
ically, Track-SQL incorporates a Semantic-
enhanced Schema Extractor and a Schema-
aware Context Extractor. Experimental re-
sults demonstrate that Track-SQL achieves
state-of-the-art performance on the SparC and
CoSQL datasets. Furthermore, detailed ab-
lation studies reveal that Track-SQL signifi-
cantly improves execution accuracy in multi-
turn interactions by 7.1% and 9.55% on these
datasets, respectively. Our implementation
will be open-sourced at https://github.
com/DMIRLAB-Group/Track-SQL.

1 Introduction

Text-to-SQL (Zhong et al., 2017) is a critical
semantic parsing task that converts natural lan-
guage queries into corresponding SQL statements
based on a given database schema. While gener-
ative language models have demonstrated signif-
icant potential in single-turn Text-to-SQL tasks,
their performance diminishes in multi-turn scenar-
ios. The challenges in these settings primarily
stem from the models’ difficulties in handling the
complexities of context information and dynamic
schema linking across multiple turns of interac-
tion. However, extractive model to solving these
two challenges—schema linking and context uti-
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lization—have limitations when directly applied to
the generative language model paradigm.

The primary limitation in multi-turn Text-to-
SQL is the ability to maintain effective schema
linking as the dialogue progresses. Although many
studies have confirmed that proper schema linking
significantly enhances SQL generation, existing
approaches struggle to handle the increasing com-
plexity in multi-turn settings. In recent research,
RASAT (Qi et al., 2022) leverages relational self-
attention mechanisms to capture the relationships
between text and schemas. However, in multi-turn
dialogue scenarios, as the number of interactions
between the user and the system increases along
with the expansion of the database schemas, the
scale of the schema linking graph grows, inevitably
leading to the issue of redundant links. CQR-SQL
(Xiao et al., 2022) rewrites multi-turn dialogues
and simplifies schema linking information, which
might also result in the loss of critical schema link-
ing details due to over-simplification. TP-Link (Liu
et al., 2024) integrates schema linking prediction
into multi-task pre-training to reduce redundant
relationships between questions and schemas, but
overlooks the problem of semantic inconsistencies
between questions and schemas. Moreover, ex-
isting schema linking methods are predominantly
static, lacking mechanisms to incorporate linking
results from prior turns. The key idea to overcome
this limitation is to introduce a dynamic updating
mechanism that adapts to the evolving dialogue
contexts in multi-turn interactions.

The secondary limitation in multi-turn Text-to-
SQL is their difficulty in managing continuous in-
teractions where users reference or omit prior infor-
mation, relying on the system to track the evolving
context. In recent research, EditSQL (Zhang et al.,
2019) uses prior turn SQL queries for predicting
current turn queries, but loses effectiveness when
dialogue lacks coherence. STaR (Cai et al., 2022)
and CoE-SQL (Zhang et al., 2024a) track depen-
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dencies via SQL similarity and changes, but lack
source record verification, which can lead to error
buildup. The key idea to overcome this limitation is
to design effective retrieval and verification mecha-
nisms for improving the accuracy and reliability of
multi-turn Text-to-SQL.

To address these issues, we propose a Track-
SQL framework, aimed at solving the problems of
dynamic schema linking and context information
filtering in multi-turn Text-to-SQL dialogues. First,
in the schema extraction phase, we developed a
Semantic-enhanced Schema Extractor (SESE) that
identifies the user’s current focus schemas by com-
bining changes in user interests with previously
extracted signals. At the same time, we introduce
a semantic enhancement module to reduce the se-
mantic gap between user questions and schemas,
thereby improving the precision of schema linking.
Second, in the SQL generation phase, we design a
Schema-aware Context Extractor (SACE) module
to identify key SQLs from historical records. Then,
we combine these with past questions and extracted
schemas as input, and fine-tune the text-to-SQL
generation model in a supervised manner, with the
target output being normalized SQL queries. This
approach reduces the difficulty for the generation
model to learn schema linking and context infor-
mation filtering, thus enhancing the accuracy of
SQL generation. Additionally, the results from the
aforementioned extractors make the basis for the
model’s SQL generation more transparent, increas-
ing the explainability of the system.

Our contributions are summarized as follows:

• We propose the Track-SQL framework, specif-
ically designed for Multi-turn Text-to-SQL
tasks. This framework utilizes a Semantic-
enhanced Schema Extractor to ensure that
the SQL generation model acquires accurate
schema information in each dialogue turn.

• We have devised a Schema-aware Context Ex-
tractor to obtain the most relevant historical
SQL queries that fit the current conversational
context, thereby enhancing the dialogue his-
tory understanding capability and SQL gen-
eration accuracy of the generative language
model.

• We conducted extensive performance evalua-
tions and detailed ablation studies to verify
the effectiveness of each component. The

Track-SQL framework achieved leading re-
sults on the validation sets of two authorita-
tive benchmark datasets, SParC and CoSQL,
demonstrating its superior performance and
broad applicability.

2 Methodology

In the multi-turn Text-to-SQL task, the goal is to
address the problem of mapping a sequence of
multi-turn questions Q≤m and database schemas
S = (ti, ci,ni) to the target SQL query sm, where
ti represents the ith table in the database, and ci,ni

denotes the nth
i column within ti. This section will

provide an overview of the framework designed to
solve this problem and delve into its design details.

2.1 Model Overview
In multi-turn Text-to-SQL tasks, we decompose
two preparatory tasks: Dynamic Schema Linking
and Context Information Filtering. Enhancing the
performance of the generative language model is
achieved through utilizing dual-extractive modules
to identify key schema and contextual information.
Figure 1 illustrates the overall architecture of the
proposed Track-SQL framework, which includes
two history information repositories and their cor-
responding extraction modules, along with a su-
pervised fine-tuned SQL generator. Specifically,
during the mth interaction, we input the first m
questions and all schema information into Schema
Extractor to obtain the probabilities of all schemas
for the current question Qm. Based on these prob-
abilities and using fixed threshold s, we filter and
rank the schemas (Section 2.2). Additionally, by
utilizing the schema probabilities stored in the His-
tory Schema Store, we can resolve the coreference
relationships between Qm and Q<m and select
the base SQL from History Question&SQL Store
which applicable to current question (Section 2.3).
These filtered schemas and base SQL serve together
as prompt information and constraints to facilitate
the generation of SQL at the mth turn.

2.2 Semantic-enhanced Schema Extractor
In the context of multi-turn dialogues involving
databases, redundant schema item information
can significantly interfere with the generation of
SQL queries. To address this issue, we designed
SESE to filter out redundant table column informa-
tion. The extractor consists of three intertwined
sub-elements: Historical Extraction Item Tagging,
Schema Semantic Enhancement and All-Column
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Figure 1: The overall framework of Dual-Extractive Modules for Schema and Context Tracking. The framework
trains a schema item classification model and an SQL generator. Based on the former, we construct a Semantic-
enhanced Schema Extractor and a Schema-aware Context Extractor. The extraction results from these two extractors
are utilized for subsequent training of the SQL generation model. The core idea of Track-SQL is to reduce the gap
between the input and the target SQL before entering the multi-turn SQL generation phase by means of dynamic
schema linking and context information extraction.

Intent Detection. These elements respectively facil-
itate dynamic schema linking encoding, semantic
alignment between question entities and schemas,
and all-column intent encoding.

Regarding the specific implementation details,
we first define the original sequence of concate-
nated multi-turn questions and schemas as: X =
Q1 & ... & Qm | t1 : c11, ..., c1n1 | ... | tN :
cN1, ..., cNnN

, where & connects multiple turns of
questions, and | separates different schemas. To en-
hance the semantic expressiveness of the schemas,
we introduce open-domain semantic knowledge,
combining database content with large language
models (LLMs) to enrich the semantic informa-
tion of column names, and further utilize the en-
hanced column names to enrich the semantic in-
formation of table names. Specifically, we sam-
ple some values randomly from each column in
each table, along with the type and name of the
column, as inputs to prompt LLM to generate de-
scriptive comments; then, based on the information
of all columns, generate comments for the tables.
Thus, we obtain a schema annotation sequence:
Ŝ = t̂1 : ĉ11, ..., ĉ1n1 | ... | t̂N : ĉN1, ..., ĉNnN

. In a
multi-turn interactive environment, we retrieve the
columns extracted from the previous turn from the
history schema store and mark these columns using
the symbol [SN] within the current turn’s input X .
Subsequently, X and Ŝ are sequentially input into

RoBERTa (Liu et al., 2019). To integrate and clas-
sify the schemas along with their corresponding
comments as a complete unit, we perform pooling
operations on the output embeddings of each token
after tokenization by RoBERTa for the schemas. To
accomplish this, we used a pooling module com-
posed of two-layer BiLSTM (Zhou et al., 2016) and
a nonlinear fully connected layer. After pooling,
the embedding of each table and its annotation can
be represented as Ti, T̂i ∈ R1×d (i ∈ {1, . . . , N}),
and the embeddings of each column and its annota-
tion can be represented as Ci,k, Ĉi,k ∈ R1×d (i ∈
{1, . . . , N}, k ∈ {1, . . . , ni}), where d denotes the
size of the hidden layer.

Schema Semantic Enhancement Layer The nam-
ing of database schemas can sometimes be am-
biguous, which may lead to a semantic discrep-
ancy between the user’s query intent and the ac-
tual data structure. As shown in Figure 1, parsing
through LLM reveals that the "continent" column
in both the Continents and Countries tables repre-
sents "continent name" and "continent id" respec-
tively. Such abbreviated column names can lead
to misinterpretations, thereby affecting the perfor-
mance of the schema extractor. To address this
issue of semantic inconsistency, we introduce an
attention gating mechanism on top of the column-
enhanced module (Li et al., 2023) to aggregate
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representations of schema names along with their
associated annotations.
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and σ(·) represents the sigmoid function, while
Norm(·) is the row-wise L2 normalization func-
tion. The gating vectors gt

i and gc
i,k represent the

gating vectors for tables and columns, respectively.
By using the probabilities from these gating vectors
to perform a weighted average and normalization
of the embeddings of schemas and their annota-
tions, we obtain the enhanced table embeddings
TG
i ∈ R1×d and column embeddings CG

i,k ∈ R1×d.
After processing through the semantic enhance-

ment layer, we obtain the classification probabili-
ties of all schemas for the current turn. Next, based
on a predefined threshold s, we extract the schemas
that are most relevant to the question. This thresh-
old must be set reasonably to avoid losing impor-
tant schemas due to it being too high. We sort the
selected schemas in descending order of their prob-
ability values and combine them with the serialized
foreign key information, ultimately generating the
serialized database schema representation required
by the SQL generation model.

ALL-Column Intent Detection In question inter-
actions, user intent is not always directly expressed
as seeking information from specific columns but
may implicitly involve retrieving information from
all columns within a specified table. To effectively
capture the implicit "all-columns intent" within
user questions, we designed the schema extractor to
specifically recognize the wildcard "*" in SQL as a
special column identifier. For example, in the ques-
tion "Show ids and names of all continents!", the
user explicitly requests information from specific
columns ("ids" and "names") in the "continents"
table. However, when dealing with broader ques-
tions such as "Which countries do they each have",
the user’s intent implicitly demands retrieving all
relevant data. In response to this, the schema ex-
tractor generates classification probabilities for "*"
across all tables and determines whether and how

to insert "*" into the input sequence based on these
probabilities. This approach guides the SQL gener-
ator to more accurately understand and respond to
the user’s question intent.

2.3 Schema-aware Context Extractor
As the number of dialogue turns increases, the rela-
tionships between each turn become more intricate,
with current questions often bearing inter-turn con-
nections to historical questions. To address this,
we have developed a Schema-aware Context Ex-
tractor that can identify the most relevant past SQL
related to the current question and use the query as
references for generating the current SQL. Since
semantic associations between questions and the
database schema have already been modeled dur-
ing the schema extraction phase, in the subsequent
context extraction process, we can directly utilize
the pre-stored schema item encoding information
in the history schema store, thereby avoiding re-
dundant model training.

In the process of selecting historical question-
SQL pairs, we mainly consider the following two
factors. Firstly, the semantic relevance between
the current question Qm and historical questions
Qh (h ∈ 1, ...,m− 1). Higher semantic similarity
typically indicates similar query intentions. For
example, if Qm is "How many dog pets are raised
by female students?", and the historical question
Qh is "How many of those have dogs?", there is
a clear semantic association between these ques-
tions. We employ the SentenceBERT (Reimers and
Gurevych, 2019) to quantify this similarity, defined
as:

Ssim
h = SentenceBERT (Qh,Qm) (5)

where h ∈ [1, ..,m − 1]. When Qh and Qm

are semantically similar, their corresponding SQL
queries likely share a similar structure.

Secondly, relying solely on semantic similarity
between questions might lead to misjudgment. For
instance, the questions "Who are the female stu-
dents?" and "Of those, who has a pet?" are sequen-
tial inquiries but appear quite different semanti-
cally. Therefore, we also incorporate the schema
item probabilities provided by the History Schema
Store to measure the overlap of entities involved
in the two questions. Let the normalized schema
item extraction probability vectors obtained from
the mth and hth turns be denoted as Ŷm and Ŷh,
respectively. The normalized Jensen-Shannon di-
vergence can then be used to assess the difference
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between these entities:

Psim
h = 1

2 ln 2(DKL(Ŷm||Ȳ) +DKL(Ŷh||Ȳ)) (6)

where Ȳ = 1
2(Ŷm+ Ŷh) is the average distribution

of Ŷm and Ŷh, and DKL represents the Kullback-
Leibler divergence, which can be expressed as:

DKL(Ŷm||Ŷh) =

N∑

i=1

(
ŷhi log

ŷhi
ŷmi

+

ni∑

k=1

ŷhi,k log
ŷhi,k
ŷmi,k

)
(7)

where ŷhi denotes the normalized predicted prob-
ability of the ith table in the hth turn, while ŷhi,k
represents the normalized predicted probability of
the kth column within that table.
Ssim
h and Psim

h are two key scoring metrics used
for retrieving and filtering historical information,
both of which are constrained within the interval
[0,1]. Specifically, Ssim

h represents a maximization
score metric, whereas P sim

h is a minimization score
metric. To unify the direction of the metrics, we ad-
just the form of Psim

h to 1−Psim
h , thereby allowing

both metrics to be optimized towards maximization.
Based on these definitions, we can calculate the
comprehensive relevance score Rh between Qh

and Qm as follows:

Rh = Ssim
h + 1− Psim

h (8)

By selecting historical SQL with the highest Rh

values, we can utilize appropriate historical SQL as
reference inputs during the supervised fine-tuning
of an LLM. This facilitates generating accurate
SQL outputs in response to Qm, effectively reduc-
ing the discrepancy between inputs and outputs.

2.4 SQL Generation Fine-tuning
By screening the schemas in multiple turns of data
sets and filtering out irrelevant historical informa-
tion, we obtain a streamlined input sequence that
is highly relevant to the target SQL. Based on
this, we transform the multi-turn dataset into a
single-turn Text-to-SQL corpus. Each entry’s input
sequence consists of the question Q≤m, the ex-
tracted sequence of schemas E(S), and SQLbase,
while the actual SQL serves as the desired out-
put sequence sm. In practice, when converting
multi-turn questions into single-turn questions,
we found that directly rewriting the questions or
other forms of filtering could lead to severe error
propagation. Therefore, we define the problem

Q≤m = Q1&...&Qm, using symbols to concate-
nate the sequences to ensure the semantic integrity
of the multi-turn question series. For the first ques-
tion Q1, due to the lack of a previous SQL as a
reference, we set SQLbase as an empty sequence.
Therefore, the minimization loss function of a set
of interaction samples can be expressed as:

min
ε,M∗

∑

m

L(M∗ε(Q≤m, E(S), SQLbase, sm))

(9)
where ε(·) defines a sequence format and details
can be found in Appendix B.4. Due to the Track-
SQL framework enabling dynamic schema linking
and effective filtering of historical information, the
LLM can focus more on capturing the essential con-
nections between key information and SQL queries
during training, thereby reducing the interference
caused by redundant information in the SQL gener-
ation task.

3 Experiments

3.1 Experimental Setup

Datasets We validated the effectiveness of the pro-
posed method on the SParC (Yu et al., 2019b)
and CoSQL (Yu et al., 2019a) benchmark datasets.
The SParC dataset contains 4,298 multi-turn di-
alogue sequences, covering over 12,000 individ-
ual questions and their corresponding SQL queries.
The CoSQL dataset includes over 10,000 anno-
tated SQL queries, with each dialogue sequence
designed to simulate real-world scenarios where
ordinary users explore databases and interact with
them. In these scenarios, non-expert users ask ques-
tions in natural language, while experts use SQL to
retrieve answers.

Evaluation Metrics To evaluate the performance
of our method in the text-to-SQL task, we adopted
two official metrics: Question Match (QM) and In-
teraction Match (IM), along with three widely rec-
ognized sub-metrics: Exact Match Accuracy (EM),
Execution Accuracy (EX), and Test Suite Accuracy
(TS). QM measures whether the predicted SQL is
accurate for a single question, while IM evaluates
whether all predicted SQL queries meet the QM
standard across multiple turns of a conversation.
Specifically, EM measures the structural accuracy
of the predicted SQL; EX focuses on whether the
execution result of the predicted SQL is correct;
TS not only examines the accuracy of query ex-
ecution but also requires correct results for each
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query executed over multiple database instances
and schemas.

To provide a finer-grained assessment of the
extraction accuracy of database schemas, we in-
troduced a set of strict evaluation metrics: Table
Redundancy Score (TRS@s) and Column Redun-
dancy Score (CRS@s), where s represents the ex-
traction threshold. A schema item is considered for
extraction when its classification probability cal-
culated by the schema extractor is greater than s.
These metrics are formally defined as follows:

V t = {i′ | yi′ = 1}, V̂ t = {i′ | ŷi′ ≥ s} (10)

where V t denotes the set of indices of tables in-
cluded in the ground truth SQL, and V̂ t denotes
the set of indices of tables extracted by the schema
extractor. The score scorej is calculated based on
the ratio of redundant elements to total elements in
V̂ t, defined as:

scorej =





0 if V t = V̂ t

|V̂ t−V t|
|V̂ t| if V t ⊂ V̂ t

1 if V t ̸⊂ V̂ t

(11)

TRS@s =
1

D

D∑

j=1

scorej (12)

where | · | denotes the number of elements in the set.
TRS@s is obtained by averaging scorej , where
D represents the total number of samples. For
CRS@s, we use a similar approach, combining the
set of indices of columns included in the ground
truth SQL with the set of indices of columns ex-
tracted by the schema extractor to compute the
score scorei,j . Here, scorei,j represents the re-
dundancy of the set of extracted columns in the
ith table referred to the jth sample. By summing
these scores, we can obtain the CRS@s for column
name extraction, where Nj denotes the number of
tables contained in the jth sample’s database.

CRS@s =
1

∑D
j=1Nj

D∑

j=1

Nj∑

i=1

scoreij (13)

Implementation Details To generate descriptive
annotations for the database schemas, we utilized
the GPT-3.5-turbo model1 and provided detailed
input prompts in Appendix B.3. During the training
of the schema extraction model, we employed the

1https://openai.com/

AdamW optimizer (Loshchilov and Hutter, 2019).
For the training phase of the SQL generator, we
used the transformers library for LoRA fine-tuning
(Hu et al., 2021). The specific configurations were
as follows: LoRA rank was set to 32, LoRA alpha
was set to 64, and LoRA dropout was set to 0.1.
The batch size for training was set to 6.

In the experimental configuration of the Track-
SQL framework, systematic settings were imple-
mented for three key aspects: schema linking sta-
bility, model input constraints, and context man-
agement. The schema item sequence perturbation
mechanism applies random reshuffling and irrel-
evant item insertion to schema items with prob-
ability 0.15 during training, while employing dy-
namic filtering with an extraction threshold s = 0.1
during inference. To accommodate the 512-token
input limit of the Roberta base model, a column-
level schema segmentation strategy divides large
databases into column-unit-based sub-schema sets
that conform to length constraints. For context
expansion management, we designed:

• A fixed-length sliding window (Lw = 5)

• A queue-based update rule: When context
unit ct arrives, append it if window capacity
permits; otherwise remove the earliest unit
ct−Lw before inserting ct

All experiments were conducted on a high-
performance server configured with an NVIDIA
A800 (80GB) GPU, a Hygon C86 7390 32-core
processor, 2TB of memory, and the Ubuntu 22.04.3
LTS operating system.

3.2 Main Results
During the experimental process involving mul-
tiple turns of SQL generation, we selected three
representative models of 7B scale: CodeLlama2,
DeepSeek3, and Mistral4. We directly utilized the
multi-turn questions and their database schemas
from the SparC and CoSQL datasets as inputs to
train and infer using these 7B-scale models, thereby
obtaining baseline results. Subsequently, we ap-
plied the Track-SQL method to optimize the in-
puts and retrained and inferred with the models.
By comparing the experimental results under the

2https://huggingface.co/codellama/
CodeLlama-7b-Instruct-hf

3https://huggingface.co/deepseek-ai/
deepseek-coder-6.7b-instruct

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3
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Model
SparC CoSQL

QM IM QM IM
EM EX TS EM EX TS EM EX TS EM EX TS

In-Context Learning Approach

ACT-SQL (Zhang et al., 2023) 51.0 63.8 56.9 24.4 38.9 29.6 46.0 63.7 55.2 13.3 30.7 21.5
CoE-SQL (Zhang et al., 2024b) 56.0 70.3 63.3 36.5 50.5 41.9 52.4 69.6 60.6 23.9 39.6 30.4

Fine-tuned Model

HIE-SQL + GraPPA (Zheng et al., 2022) 64.7 - - 45.0 - - 56.4 - - 28.7 - -
RASAT + PICARD (Qi et al., 2022) 67.7 73.3 - 49.1 54.0 - 58.8 67.0 - 27.0 39.6 -

QDA-SQL (Sun et al., 2024) 61.3 - - 44.1 - - 57.3 - - 30.0 - -

Ours

SFT Codellama 7B 59.18 67.99 61.51 36.96 46.68 39.33 50.54 60.17 54.51 17.74 28.66 23.54
+ Track-SQL 61.26 70.07 63.75 43.36 52.13 45.73 53.82 66.73 59.18 24.57 37.88 29.01

SFT Deepseek 7B 64.33 71.40 65.08 43.36 50.71 43.36 54.71 66.03 58.88 23.20 34.12 26.96
+ Track-SQL 65.17 75.39 69.16 46.44 57.81 50.71 58.19 70.60 62.26 28.67 43.67 32.76

SFT Mistral 7B 64.17 70.82 65.58 43.60 52.13 45.49 56.20 64.94 59.68 24.57 34.81 29.01
+ Track-SQL 65.41 73.23 67.83 46.91 54.73 48.57 57.69 71.10 65.54 27.30 45.05 36.17

Table 1: Performance of Track-SQL and previous works on the SparC and CoSQL dev set.

Track-SQL framework with the baseline results, we
obtained the detailed comparative data presented
in Table 1.

In terms of single-turn and multi-turn evaluation
metrics, the 7B-scale models under the Track-SQL
framework significantly outperformed the base-
line models, validating the effectiveness of our in-
put optimization method. Specifically, under the
DeepSeek 7B base model, Track-SQL improved
the single-turn EX metric by 3.99% and the TS met-
ric by 4.08% on the SparC development set; it also
improved the multi-turn EX metric by 7.1% and the
TS metric by 7.35%. Similar improvements were
confirmed within the CoSQL dataset. These results
indicate that the Track-SQL method is highly ef-
fective in handling multi-turn interactive question
answering tasks.

We also categorized other multi-turn Text-to-
SQL research efforts according to different infer-
ence methodologies into two classes: In-context
learning methods and fine-tuning methods. Com-
pared to these methods, Track-SQL achieved the
best performance on the SparC and CoSQL devel-
opment sets, surpassing previous In-context learn-
ing and fine-tuning techniques under both single-
turn and multi-turn evaluation metrics. Specifi-
cally, compared to In-context learning methods,
such as ACT-SQL and CoE-SQL which rely on
GPT 3.5, the fine-tuning experimental results under
the Track-SQL framework with 7B-scale models
were superior. Unlike In-context learning methods
which can be influenced by historical questions,

QM IM
EX TS EX TS

Track-SQL 75.39 69.16 57.81 50.71
w/o SESE 68.57(↓ 6.82) 62.42(↓ 6.74) 51.42(↓ 6.39) 45.26(↓ 5.45)

w/o ACID 74.56(↓ 0.83) 67.91(↓ 1.25) 56.39(↓ 1.42) 48.57(↓ 2.14)

w/o SACE 72.73(↓ 2.66) 67.16(↓ 2) 51.89(↓ 5.92) 44.78(↓ 5.93)

w/o SACE & SESE 71.40(↓ 3.99) 65.08(↓ 4.08) 50.71(↓ 7.10) 43.36(↓ 7.35)

Table 2: Ablation result on SparC dev set.

QM IM
EX TS EX TS

Track-SQL 70.60 62.26 43.67 32.76
w/o SESE 64.94(↓ 5.66) 58.98(↓ 3.28) 36.86(↓ 6.81) 31.74(↓ 1.02)

w/o ACID 68.22(↓ 2.38) 61.37(↓ 0.89) 39.24(↓ 4.43) 32.42(↓ 0.34)

w/o SACE 68.81(↓ 1.79) 61.46(↓ 0.8) 37.88(↓ 5.79) 29.01(↓ 3.75)

w/o SACE & SESE 66.03(↓ 4.57) 58.88(↓ 3.38) 34.12(↓ 9.55) 26.96(↓ 5.8)

Table 3: Ablation result on CoSQL dev set.

fine-tuning methods are better at focusing on the
core of the current turn’s question. Moreover, even
though RASAT+PICARD combines beam search
strategies for SQL correction, Track-SQL achieved
notably higher multi-turn inference accuracies on
the SparC and CoSQL development sets without
employing any SQL post-processing techniques.

3.3 Ablation Studies

To further validate the effectiveness of the proposed
method, we conducted detailed ablation studies on
the development sets of Sparc and CoSQL to eval-
uate the importance of each module. Tables 2 and
3 present the experimental results based on the
Deepseek 7B model. Additionally, in Appendix
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A.1.3, we provide the results of extra ablation ex-
periments conducted using models of different 7B
parameter scales, thereby confirming that the per-
formance improvements attributed to each module
are not due to the randomness associated with any
particular 7B model. To further analyze how each
module enhances model performance, we catego-
rized the datasets according to the complexity of
the SQL statements and the number of dialogue
interactions, and conducted targeted ablation exper-
iments accordingly. The detailed results are shown
in the appendix A.1.1 and A.1.2. By labeling the
table columns included in the ground truth SQLs of
the multi-turn conversation datasets, we performed
ablation experiments on the schema extractor. The
results are shown in Table 4, confirming the ef-
fectiveness of this module in reducing redundancy
during the schema item extraction process.

Effect of Semantic-enhanced Schema Extractor
We employ a two-phase evaluation metric to as-
sess the effectiveness of SESE. As shown in Table
4, the introduction of the semantic enhancement
module in the extractor significantly reduces redun-
dancy rates in table and column extraction. This
improvement is particularly pronounced on the
CoSQL dataset, which contains a higher proportion
of multi-turn ambiguous dialogue samples com-
pared to the SparC dataset, posing more stringent
challenges for schema understanding mechanisms.
Through LLM-based contextual semantic expan-
sion and annotation embedding mechanisms, this
module effectively mitigates schema comprehen-
sion biases in complex dialogue turns. Specifically,
on CoSQL dev set, TRS@0.5 and CRS@0.5 de-
crease by approximately 0.88% and 4.03% re-
spectively, demonstrating substantial progress in
schema item localization accuracy. Additional ab-
lation study results under alternative classification
metrics are provided in Appendix A.2, further vali-
dating the critical role of the semantic enhancement
module.

During SQL generation, when removing SESE
module, QM-TS and IM-TS metrics decline by
6.74% and 5.45% respectively. This not only con-
firms the strong task coupling between schema
extraction and SQL generation, but also verifies
our core hypothesis: optimizing the precision-
redundancy balance in schema extraction can effec-
tively enhance multi-turn SQL generation perfor-
mance, thereby establishing the theoretical feasibil-
ity of our proposed approach.

SparC CoSQL
TRS@0.5 CRS@0.5 TRS@0.5 CRS@0.5

Track-SQL 8.50 21.46 12.74 25.90
w/o com-enh 9.57 21.05 13.62 29.93

w/o com&col-enh 9.44 28.18 13.38 27.42

Table 4: Ablation results of SESE. com-enh repre-
sents comment-enhanced layer, and col-enh represents
column-enhanced layer used in RESDSQL.

Effect of All-Column Intent Detection When the
All-Column Intent Detection (ACID) strategy is
eliminated, all metrics for Tables 2 and 3 exhibit
slight performance degradation. Combined with
the case study in Appendix A.3, this verifies that
the ACID strategy possesses limited yet discernible
capability in enhancing the model’s recognition
of user all-column intentions. In the inference ex-
periments on the COSQL dev set, removing this
module resulted in decreases of 0.89% and 0.34%
in QM-TS and IM-TS respectively, while more sig-
nificant drops of 2.38% and 4.43% were observed
in QM-EX and IM-EX. This phenomenon suggests
that the EX evaluation metrics contain a higher
proportion of false positive samples during their
calculation process. The optimization effect of this
strategy on the overall performance of the Track-
SQL framework demonstrates metric sensitivity
characteristics. Final experimental data confirm
that this module yields only limited performance
gains in real-world application scenarios.

Effect of Schema-aware Context Extractor The
strategy of employing historical SQL as prompt
generation exhibits inherent limitations: when
structural errors exist in historically generated state-
ments, erroneous prompts may trigger cascading
error propagation. To mitigate this, SACE incorpo-
rates syntactic error detection in historical SQL gen-
eration to reduce error transmission. Ablation ex-
periments demonstrate that removing SACE mod-
ule resulted in performance degradation of 5.92%
and 5.93% on IM-EX and IM-TS metrics respec-
tively in the SparC validation set, exhibiting more
pronounced degradation compared to QM metrics.
This phenomenon indicates that under relatively
high model accuracy conditions, the SACE module
significantly enhances the completeness of multi-
turn SQL generation. Notably, the marginal effects
revealed in Appendix A.1.1 demonstrate that when
query difficulty escalates to EXTRA levels, SACE
inadvertently induces error propagation. This rev-
elation exposes the module’s limitations, thereby
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SESE SQL Generator
Train Inference Train Inference

SparC 30.9±2.8(h) 0.20(s) 1.5±0.2(h) 1.15(s)

CoSQL 27.5±2.4(h) 0.21(s) 1.6±0.3(h) 1.15(s)

Table 5: Time performance of the Track-SQL frame-
work, Train employs the number of hours required to
achieve the optimal model as the performance metric,
while Inference bases its evaluation on the time con-
sumed to perform inference on a single batch.

suggesting that achieving more robust multi-turn
SQL generation systems requires the implementa-
tion of systematic validation strategies.

3.4 Execution Time Analysis

To evaluate the practical performance of the Track-
SQL framework, we conducted latency analysis
and training efficiency validation on its core com-
ponents. As shown in Table 5, experimental re-
sults indicate that under typical multi-turn database
query scenarios, the system achieves an end-to-
end response time of 1.35 seconds (0.20 seconds
for SESE and 1.15 seconds for SQL Generator),
satisfying the latency requirements for real-time
interactive systems.Regarding training efficiency,
under standard experimental configurations on the
SparC dataset, the schema extractor achieves opti-
mal performance after 30.9 hours of training, while
the SQL generator converges to its optimal state
in approximately 1.5 hours. This demonstrates the
framework’s significant efficiency advantages in
computational resource utilization.

4 Related Work

Schema Linking Schema linking effectively re-
duces errors caused by schema misinterpretation,
thereby enhancing the performance of text-to-SQL
conversion. Currently, various methods focus on
improving schema linking. For instance, DIN-SQL
(Li et al., 2024b) utilizes GPT to identify relevant
database elements, while DTS-SQL (Pourreza and
Rafiei, 2024) employs a specialized model for ef-
ficient schema extraction. RESDSQL (Li et al.,
2023) and CodeS (Li et al., 2024a) adopt strate-
gies that assess the relevance between schemas and
queries for sorting and filtering. Other methods,
such as C3 (Dong et al., 2023), CHESS (Talaei
et al., 2024), and MCS-SQL (Lee et al., 2024),
adopt a step-by-step linking approach, first filter-
ing out relevant tables and then selecting match-

ing columns. Existing methods perform well in
single-turn Text-to-SQL tasks, but they are inade-
quate in handling multi-turn dialogues and schema
name ambiguities. This paper focuses on dynamic
schema linking in multi-turn Text-to-SQL, with a
particular emphasis on resolving schema name am-
biguities. Our proposed method reduces redundant
links and improves system performance.

Multi-turn Text-to-SQL Multi-turn text-to-SQL
tasks more closely resemble real-world applica-
tions, allowing users to progressively refine their
questions and adjust their requirements through di-
alogue. Research in this field includes ISTSQL
(Wang et al., 2021), which improves accuracy by
tracking the states of database schemas and SQL
keywords; MIGA (Fu et al., 2023) utilizes multi-
task learning to integrate information on refer-
ence relationships and schema links; CoE-SQL
(Zhang et al., 2024b) tracks user intent by seri-
alizing changes in SQL queries. Inspired by copy-
ing mechanisms, methods like EditSQL (Zhang
et al., 2019), refer to previous-turn SQL infor-
mation. R2SQL (Hui et al., 2021) introduces a
memory decay mechanism to simulate changes in
the database schema. TP-Link (Liu et al., 2024)
models word-level coreference to resolve complex
coreference and ellipsis issues. These studies aim
to support the Track-SQL framework by capturing
dependencies between multi-turn text-to-SQL in-
teractions. The framework improves the handling
of multi-turn co-reference issues and enhances sys-
tem performance and adaptability by integrating
dynamic schema element awareness with question
semantic information.

5 Conclusion

In this paper, we proposed the Track-SQL frame-
work to address the challenges of multi-turn Text-
to-SQL tasks, focusing on dynamic schema linking
and effective utilization of historical context. Track-
SQL integrates a Semantic-enhanced Schema Ex-
tractor and a Schema-aware Context Extractor to
precisely capture schema and contextual changes,
improving the system’s ability to adapt to evolving
user interactions. The core idea lies in establishing
the association model between user intent, schemas,
and contextual information in advance, thereby re-
ducing the difficulty of recognizing changing in-
tents during the SQL generation process. Exper-
imental results indicate that the Track-SQL pos-
sesses significant advantages and effectiveness.
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Limitations

In the schema extraction phase, using RoBERTa
as the base model limits the maximum window
length to 512, which increases the training time for
handling large volumes of text data; even with an
A800 (80G) GPU-equipped machine, training on
the SparC dataset takes two days. We attempted
to replace RoBERTa with a decoder-only model
that supports a larger window size for classifier
training, but the results were unsatisfactory. While
the Track-SOL framework has advanced dynamic
schema linking and context information extraction,
its efficacy in extremely complex multi-turn dia-
logues and highly dynamic database schemas re-
mains to be validated. Future efforts will focus
on enhancing the framework’s robustness to en-
sure high-performance and stability across diverse
application scenarios.
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A Appendix A

This section provides additional experimental data
regarding the proposed Track-SQL framework, de-
tailing the ablation study results categorized by
different large language models, SQL complexity,
and number of dialogue turns. These results fur-
ther confirm the effectiveness and performance of
the designed schema extractor and SQL generator.
Specifically, in section A.1.1, we present the ab-
lation study results of Track-SQL across different
levels of SQL difficulty. Section A.1.2 evaluates
the framework’s performance under varying num-
bers of dialogue turns. In Section A.1.3, we se-
lected three mainstream open-source LLM models
and conducted ablation experiments on the SparC
and CoSQL datasets. Section A.2 reports the per-
formance of the Schema Extractor across multiple
classification metrics. Section A.3, we conduct an
in-depth analysis of specific ablation study cases.
Finally, Section A.4 reports the performance of
Track-SQL in terms of time and cost metrics.

A.1 Further Ablation Studies

A.1.1 Ablation by difficulty
In the Spider (Yu et al., 2018) dataset, SQL queries
are categorized into four levels: Easy, Medium,
Hard, and Extra. The difficulty level is determined
by the number of SQL components, selections, and
conditions. Queries containing more SQL key-
words (such as GROUP BY, ORDER BY, INTER-
SECT, nested subqueries, multi-column selections,
and aggregation operations) are considered to be
of higher difficulty. Specifically, if a query includes
more than two SELECT columns, more than two
WHERE conditions, uses GROUP BY on two or
more columns, or contains EXCEPT keywords or
nested queries, it is classified as Hard. Queries that
further increase complexity beyond this are clas-
sified as Extra. The SparC and CoSQL dev sets
also follow this standard for categorizing sample
difficulty.

We present the ablation results of Track-SQL
on SparC and CoSQL dev sets in Tables 6 and 7,
categorized by difficulty. The results indicate:

1. As the complexity of SQL reasoning in-
creases, the SACE method—using histori-

cal base SQL to infer the SQL for the cur-
rent problem—shows limitations, particularly
when handling high-difficulty samples in the
CoSQL dev set, where the base SQL might
mislead large language models (LLMs). How-
ever, for medium-difficulty SQL, this method
positively impacts SQL generation.

2. Overall, the ACID module provides a minor
improvement in SQL generation performance
across all difficulty levels. Combined with
case analysis (A.3), this demonstrates that
the ACID module successfully enhances the
recognition of all columns involved in user
intent, regardless of sample difficulty.

3. The SESE module significantly improves SQL
generation performance across different diffi-
culty levels in both datasets. This is attributed
to the critical role of schema linking in vari-
ous types of SQL queries. Accurate schema
information is fundamental to achieving high-
precision SQL generation.

A.1.2 Ablation by turn
Table 8 and Table 9 present the ablation study re-
sults of Track-SQL under different numbers of
interaction turns. A comprehensive analysis of
the experimental results on the SparC and CoSQL
datasets indicates that the SACE module continues
to perform well in multi-turn interaction scenarios.
Specifically, in the CoSQL dataset, when the num-
ber of interaction turns exceeds four, the SACE
module achieves a performance gain of 2.8%. In
the SparC dataset, when the number of interaction
turns reaches four, there is a 2.3% improvement.
Additionally, the effectiveness of the ACID module
and the SESE module is not affected by the number
of interaction turns, and they consistently enhance
the performance of the SQL generator across vari-
ous samples.

A.1.3 Ablation experiment performance
under diverse language models

Figures 2, 3 and 4 present the ablation study re-
sults of the Track-SQL framework’s modules on the
Codellama, Mistral, and DeepSeek models. The
data on the left and right sides of the charts corre-
spond to the test results from the SparC and CoSQL
development sets, respectively. The evaluation met-
ric used is the TS score under the IM environment.
The results show that on various 7B benchmark
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Easy (483) Medium (441) Hard (145) Extra (134)

EM EX TS EM EX TS EM EX TS EM EX TS

Track-SQL 81.8 84.9 83.0 64.6 72.8 66.4 44.8 64.8 53.8 35.1 54.5 38.8

w/o SESE 77.6 78.7 77.6 56.5 68.0 59.4 42.8 59.3 46.2 30.6 44.0 35.1

w/o ACID 79.3 85.5 82.8 62.8 72.8 65.8 44.8 63.4 49.7 39.6 53.0 41.0

w/o SACE 79.5 84.1 81.8 63.9 71.9 66.4 39.3 60.0 48.3 32.8 48.5 37.3

w/o SACE & SESE 79.1 80.7 78.5 63.3 71.7 64.2 43.4 59.3 46.9 37.3 50.0 39.6

Table 6: Ablation results of Track-SQL on SparC validation set by difficulty. The numbers in brackets () indicate
the number of samples.

Easy (417) Medium (320) Hard (163) Extra (107)

EM EX TS EM EX TS EM EX TS EM EX TS

Track-SQL 80.6 85.4 82.5 51.6 67.5 55.6 36.2 59.5 46.0 24.3 39.3 28.0

w/o SESE 75.1 79.4 76.7 50.0 60.9 51.6 36.2 53.4 46.0 25.2 38.3 31.8

w/o ACID 78.2 83.5 81.1 52.8 65.0 56.2 31.3 55.8 44.2 22.4 37.4 26.2

w/o SACE 78.2 83.5 80.3 50.0 61.6 51.9 35.6 62.0 48.5 29.0 43.9 36.4

w/o SACE & SESE 75.8 77.7 75.8 48.4 60.9 51.6 38.0 66.3 52.8 16.8 35.5 24.3

Table 7: Ablation results of Track-SQL on CoSQL validation set by difficulty. The numbers in brackets () indicate
the number of samples.

Turn 1 (422) Turn 2 (422) Turn 3 (270) Turn 4 (88) Turn > 4 (1)
EM EX TS EM EX TS EM EX TS EM EX TS EM EX TS

Track-SQL 74.2 79.6 76.5 65.9 75.6 67.8 57.8 67.4 59.6 51.1 68.2 60.2 0 100 100
w/o SESE 70.1 75.6 71.8 60.9 69.2 61.4 51.1 60.4 53.0 40.9 58.0 52.3 0 0 0
w/o ACID 72.5 80.6 77.3 64.2 75.1 66.6 56.7 67.8 59.3 54.5 64.8 56.8 0 0 0
w/o SACE 72.3 79.1 75.8 63.0 72.3 64.9 55.9 65.9 59.6 51.1 65.9 60.2 0 0 0

w/o SACE & SESE 71.3 77.0 72.7 63.7 70.9 64.0 58.9 67.0 58.5 51.1 61.4 54.5 0 0 0

Table 8: Ablation results of Track-SQL on SparC validation set by turn. The numbers in brackets () indicate the
number of samples.

Turn 1(293) Turn 2 (285) Turn 3 (244) Turn 4 (114) Turn > 4 (71)
EM EX TS EM EX TS EM EX TS EM EX TS EM EX TS

Track-SQL 64.8 76.5 70.3 58.2 72.3 63.9 56.6 68.0 58.2 55.3 64.9 55.3 40.8 57.7 47.9
w/o SESE 61.4 70.0 64.5 57.9 67.4 62.8 50.8 64.3 54.5 52.6 56.1 51.8 42.3 50.7 47.9
w/o ACID 65.2 73.4 68.6 55.1 69.1 62.8 54.5 66.8 58.6 51.8 62.3 53.5 42.3 57.7 47.9
w/o SACE 66.2 75.8 69.3 52.6 66.7 59.6 57.8 69.3 59.4 52.6 64.0 58.8 42.3 54.9 47.9

w/o SACE & SESE 62.8 71.0 65.2 55.1 68.1 62.5 52.5 65.2 55.7 50.0 58.8 50.0 35.2 52.1 43.7

Table 9: Ablation results of Track-SQL on CoSQL validation set by turn. The numbers in brackets () indicate the
number of samples.
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models, the components of the Track-SQL frame-
work consistently demonstrate significant effective-
ness, particularly the SESE and SACE modules,
whose outstanding performance is especially note-
worthy.
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Figure 2: The results of the ablation study on the Codel-
lama 7B+Track-SQL model on the SparC and CoSQL
dev sets (calculated using the multi-turn TS metrics).
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Figure 3: The results of the ablation study on the
DeepSeek 7B+Track-SQL model on the SparC and
CoSQL dev sets (calculated using the multi-turn TS
metrics).
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Figure 4: The results of the ablation study on the Mistral
7B+Track-SQL model on the SparC and CoSQL dev
sets (calculated using the multi-turn TS metrics).

A.2 Detailed evaluation of the
Semantic-Enhanced Schema Extractor

A more comprehensive evaluation of the extrac-
tor is shown in Table 10 and 11. Tables 10 and
11 present the ablation study results of our pro-
posed semantic-enhanced schema extractor on the

SparC and CoSQL datasets, using overall classi-
fication accuracy as the evaluation metric. This
evaluation method treats the classification proba-
bilities of all columns as a unified whole, without
distinguishing columns based on the table structure,
nor imposing penalties for missing or redundant
schemas. Therefore, while this measure of classi-
fication accuracy is somewhat rough, it still holds
some reference value. The data from both tables
indicate that the classification accuracy decreases
to varying degrees when the semantic enhancement
module is removed; further removal of the column
enhancement components used in RESDSQL leads
to an additional drop in accuracy. This suggests
that the semantic enhancement module has a signif-
icant improvement effect on the base classifier and
supports dynamic schema linking functionality.

A.3 Case Study
In ablation experiments conducted on the SparC
dataset, we randomly selected several results gener-
ated by the model and will provide a detailed anal-
ysis of these samples in this section. All selected
samples are listed in Table 12, and all examples are
based on the deepseek-coder-6.7b model.
w/o SACE Case Analysis In the first case, there is
a notable correlation between question#2 and ques-
tion#3; with the support of SQLbase, Track-SQL is
able to generate valid SQL statements that include
correct foreign key joins. Specifically, during the
second turn of reasoning, the model successfully
generates SQLbase, which simplifies the task of
generating the foreign key join SQL statement in
the third turn. However, when the SACE module
is removed, this cumulative effect no longer exists,
leading to generated SQL statements that fail to
execute the correct foreign key join operations. In
the second case, when Track-SQL enters the rea-
soning phase for the third question, it leverages
the SQLbase generated from the first question to
achieve precise predictions of schemas.
w/o ACID Case Analysis From the third and
fourth examples, it can be observed that removing
the ACID module diminishes the model’s ability
to identify whether the user needs to display all
columns of a table, resulting in errors in the gener-
ation of SQL statements.
w/o SESE Case Analysis The fifth and sixth ex-
amples demonstrate that the removal of the SESE
module leads to a decrease in accuracy when gen-
erating schemas. Specifically, in the fifth example,
the model-generated result lacks the "Continent"
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Table-Weighted Avg Table-Macro Avg Column-Weighted Avg Column-Macro Avg

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

SESE 96.48 96.43 96.45 95.74 96.42 96.07 97.09 96.93 96.99 90.95 94.34 92.55

w/o com-enh 96.18 96.11 96.12 95.32 96.16 95.72 96.91 96.68 96.76 90.11 94.24 92.03

w/o com-enh & col-enh 96.58 96.57 96.57 96.09 96.31 96.20 96.70 96.67 96.69 91.31 92.05 91.68

Table 10: The general precision index score of the semantic-enhanced schema extractor under the SparC dataset

Table-Weighted Avg Table-Macro Avg Column-Weighted Avg Column-Macro Avg

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

SESE 95.33 95.28 95.30 94.29 94.87 94.57 96.85 96.71 96.77 89.70 92.65 91.11

w/o com-enh 95.32 95.30 95.31 94.47 94.66 94.57 96.81 96.79 96.80 90.90 91.24 91.07

w/o com-enh & col-enh 94.65 94.39 94.45 92.83 94.64 93.64 96.40 95.98 96.13 86.97 92.78 89.59

Table 11: The general precision index score of the semantic-enhanced schema extractor under the CoSQL dataset

column; whereas in the sixth example, the model
incorrectly generates the "tv_channel.series_name"
column. In contrast, the SQLbase model reduces
instances of erroneous generation and missing
columns.

A.4 Resource overhead experiment

A.4.1 Quantitative analysis of time overhead
In this section, we conducted detailed experiments
on Track-SQL in the time dimension. As shown in
Table 13. This includes the average inference time
and training time of the schema extractor and the
SQL generator, and all experiments were carried
out on the same hardware specified in the main
text.

Specifically, the average inference time for pro-
cessing each sample using the Track-SQL frame-
work is 1.352 seconds, which is significantly faster
than context learning-based methods like CoE-
SQL, which requires an average of 3.544 seconds.
This highlights the obvious efficiency advantage of
Track-SQL inference. In addition, when the batch
size is 6, the schema extractor and the SQL genera-
tor reach the best model state within a reasonable
training duration, as shown in Table 6. It is worth
noting that the inference time was measured on the
validation set, while the training time was based on
the SparC and CoSQL training sets, which include
9,025 and 7,343 entries respectively.

A.4.2 Memory Costs of Training and
Inference

As shown in Table 14, the Track-SQL framework
is fully capable of performing inference on a 24G
graphics card, demonstrating its characteristic of

maintaining low cost while maintaining high accu-
racy. In terms of model training, by reducing the
batch size, Track-SQL can also perform training
tasks on low-capacity graphics cards.

B Appendix B

In this section, we provide additional details about
the methods described in the paper.
- In Section B.1, we described the strategy proposed
by Track-SQL for the input window limitation of
Schema Extractor.
- In Section B.2, we describe the loss function used
for the Semantic-enhanced Schema Extractor. We
adopted the focal loss used by REDSQL.
- In Section B.3, we describe the prompts used to
generate annotations for database schemas, which
serve as input to the GPT3.5-turbo model.
- In Section B.4, we detail the input and output
formats used for supervised fine-tuning of the SQL
expert model.

B.1 How does Track-SQL solve the window
limitation problem of the schema item
extractor?

Track-SQL incorporates two effective strategies to
address this challenge:

1. Schema Segmentation: The schema extrac-
tor performs column-level segmentation, en-
suring that even large-scale databases are pro-
cessed efficiently within RoBERTa’s token
limit. This strategy allows our framework to
handle schemas with up to 83 columns with
only a marginal increase in inference time (see
Table 15 for details).

10704



Case#1

Question#1
Question#2
Question#3

What is every student’s id?
Of those ids, which correspond to those who own cats as pets?
List all the other ids.

Gold
SELECT stuid FROM student EXCEPT SELECT T1.stuid FROM student AS T1 JOIN
has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T3.petid = T2.petid WHERE
T3.pettype = ’cat’

w/o SACE SELECT stuid FROM has_pet except SELECT stuid FROM has_pet JOIN pets ON has_pet.petid
= pets.petid WHERE pettype = ’cat’

Track-SQL SELECT stuid FROM student except SELECT student.stuid FROM student JOIN has_pet ON
student.stuid = has_pet.stuid JOIN pets ON has_pet.petid = pets.petid WHERE pets.pettype = ’cat’

SQLbase
SELECT student.stuid FROM student JOIN has_pet ON student.stuid = has_pet.stuid JOIN pets
ON has_pet.petid = pets.petid WHERE pets.pettype = ’cat’

Case#2

Question#1
Question#2
Question#3

How many car models are produced in total?
How many in Germany?
How about in Japan?

Gold
SELECT count(*) FROM MODEL_LIST AS T1 JOIN CAR_MAKERS AS T2 ON
T1.Maker = T2.Id JOIN COUNTRIES AS T3 ON T2.Country = T3.CountryId WHERE
T3.CountryName = ’japan’

w/o SACE
SELECT COUNT( model_list.model ) FROM model_list JOIN car_names ON model_list.model =
car_names.model JOIN countries ON car_names.makeid = countries.countryid WHERE
countries.countryname = ’japan’

Track-SQL
SELECT COUNT( * ) FROM model_list JOIN car_makers ON model_list.maker = car_makers.id
JOIN countries ON car_makers.country = countries.countryid WHERE countries.countryname =
’japan’

SQLbase SELECT COUNT( * ) FROM model_list

Case#3

Question What are all the nations?

Gold SELECT * FROM country

w/o ACID SELECT name FROM country

Track-SQL SELECT * FROM country

Case#4

Question Show all the available features.

Gold SELECT * FROM Other_Available_Features

w/o ACID SELECT feature_name FROM other_available_features

Track-SQL SELECT * FROM other_available_features

Case#5

Question Which continents have an average life expectancy less than age 72?

Gold SELECT sum(Population) , avg(LifeExpectancy), Continent FROM country GROUP BY
Continent HAVING avg(LifeExpectancy) < 72

w/o SESE SELECT avg(lifeexpectancy), sum(population) FROM country GROUP BY continent HAVING
avg(lifeexpectancy) < 72

Track-SQL SELECT avg(lifeexpectancy), sum(population), continent FROM country GROUP BY continent
HAVING avg(lifeexpectancy) < 72

Case#6

Question#1
Question#2

Tell me the director of the cartoon named "Day of the Dark Knight!".
What is the channel of this cartoon?

Gold SELECT Channel FROM Cartoon WHERE Title = "Day of the Dark Knight!"

w/o SESE SELECT tv_channel.series_name FROM cartoon JOIN tv_channel ON cartoon.channel =
tv_channel.id WHERE cartoon.title = ’Day of the Dark Knight!’

Track-SQL SELECT channel FROM cartoon WHERE Title = ’Day of the Dark Knight!’

Table 12: Case analysis of ablation experiments on the SParC dataset
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SESE(Inference) SQL Generator(Inference) SESE(Train) SQL Generator(Train)

Total time(s) Avg Time(s) Total time(s) Avg Time(s) Total time(h) Avg Time(s) Total time(h) Avg Time(s)

SparC 240.348±1.45 0.20±0.00013 1386.98±2.13 1.152±0.025 30.93h±2.78 3.88±0.43 1.45±0.21 11.23±2.31

CoSQL 214.456±2.56 0.21±0.0012 1170.41±1.56 1.15±0.012 27.49h±2.43 3.92±0.29 1.61±0.33 11.43±2.51

Table 13: Inference time performance of the Track-SQL framework. Avg Time(s) in terms of training represents the
time consumption of a single batch, and Total time(h) represents the time required to obtain the best model. The
SQL generator is based on Deepseek 7B

SESE(Inference) SQL Generator(Inference) SESE(Train) SQL Generator(Train)

Graphics Memory(GB) 2.235 16.477 20.997 62.194

Table 14: Memory Costs of Training and Inference in the Track-SQL Framework. In the training stage, the batch
size is set to 6, and in the inference stage, the batch size is set to 1.The SQL generator is based on Deepseek 7B

2. Sliding Window Context Management: To
address the expanding context in multi-turn in-
teractions, we adopt a sliding window strategy
with a length of 5. This approach effectively
manages historical Question & SQL context,
ensuring stable performance without compro-
mising on multi-turn interaction accuracy.

These strategies demonstrate that our framework
is specifically designed to handle the challenges
posed by larger schemas and extensive multi-turn
contexts, providing both scalability and efficiency.

B.2 Loss Function
Since an SQL query typically involves only a few
tables and columns from the database, the label
distribution in the training set is highly imbalanced.
As a result, the number of negative samples is often
several times greater than the number of positive
samples, which can lead to significant training bias.
To alleviate this issue, we adopt focal loss (Ross
and Dollár, 2017) as our classification loss. Then,
we formulate the loss function for the multi-turn
schema extractor using a multi-task learning ap-
proach, where the loss function consists of table
classification loss and column classification loss:

L1 =
1

N

N∑

i=1

FL(yi, ŷi)+

1

M

N∑

i=1

ni∑

k=1

FL(yi,k, ŷi,k)

(14)

where the focal loss function is denoted by FL
and yi represents the true label of the ith table.
yi = 1 indicates that the table is referenced by the
SQL, otherwise, it is 0. yi,k represents the true

label of the kth column in the ith table. Similarly,
yi,k = 1 indicates that the column is referenced by
an SQL, otherwise it is 0. ŷi and ŷi,k are predicted
probabilities, which are estimated based on the
table embeddings and column embeddings Ti and
Ci,k through two different MLP modules:

ŷi = σ((T̂iU
t
1 + bt1)U

t
2 + bt2) (15)

ŷi,k = σ((Ci,kU
c
i + bc1)U

c
2 + bc2) (16)

among them, U t
1, U

c
1 ∈ Rd×ω, bt1, b

c
1 ∈ Rω,

U t
2, U

c
2 ∈ R2×ω, bt2, b

c
2 ∈ R2 are trainable parame-

ters, and σ(·) denotes the Softmax function.

B.3 Database schema annotation generation

Table 16 above displays the LLM input sequences
used for generating annotations for database
columns. These sequences include prompt state-
ments, corresponding table names, column names,
column data types, and several example values
randomly drawn from the database. Additionally,
Table 16 below lists the LLM input format used
for generating annotations for entire database ta-
bles, which includes prompt statements, target table
names, and their respective column names.

B.4 Format for fine-tuning SQL generation

Table 17 shows the input and output formats used
for supervised fine-tuning of the SQL genera-
tion model. Here, E(S) represents the refined
schema term sequence obtained through Semantic-
enhanced Schema Extractor, SQLbase is the his-
torical reasoning SQL selected by Schema-aware
Context Extractor, and Q≤m is the combined se-
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Number of Columns 13 21 30 47 57 67 83
Avg Time(s) 0.1504 0.2209 0.2441 0.3001 0.3885 0.3932 0.5201

Table 15: Inference Time of the Schema Extractor under Different Numbers of Database Columns

Input for generating annotated descriptions of database columns
You are a database schema designer who specializes in generating concise descriptions for table columns
based on the provided column names, types, and sample values. The descriptions should be brief,
adjective-noun phrases that reflect the nature of the data in the column.

Table Name: {table_name}
Column: {column_name}
Type: {column_type}
Sample Values: {values}

Input for generating annotated descriptions of database tables
You are a database schema expert who is skilled at generating concise descriptions for database tables
based on their names and column details. Your job is to create a brief, adjective-noun form description
that captures the essence of the table. The description should be short and to the point, not exceeding a
few words.
You will be given the table name, column names, types, and sample values.
Generate a descriptive phrase using this information. The table name is ‘{table_name}’. It has the
following columns: {column_strs}

Based on this information, please generate a concise description for the table.

Table 16: This table lists LLM input sequences used for generating annotations for database columns and tables

quence of historical questions and the current ques-
tion. The output sm is the target SQL.
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Format for fine-tuning SQL generation
Input:
You are a SQL query generator that converts multi-turn questions along with associated database schema
information into corresponding SQL statements. The multi-turn questions will be concatenated using
the ‘&’ symbol, and you should generate the SQL statement that answers the current turn of the question
based on the provided database schema.

Each database schema is provided in the following format:
Table name : Column name1, Column name2 Different tables are separated by the ‘|’ symbol, and the
order of table names and column names is relevant to the current question; those appearing earlier are
more closely related.
Base SQL: {SQLbase}
database schema: {E(S)}
question: {Q≤m}

Output:
“‘
{sm} ;
”’
< | end_of_sentence | >

Table 17: Format for fine-tuning SQL generation
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