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Abstract

Explaining the decision-making process of ma-
chine learning models is crucial for ensuring
their reliability and transparency for end users.
One popular explanation form highlights key
input features, such as i) tokens (e.g., Shapley
Values and Integrated Gradients), ii) interac-
tions between tokens (e.g., Bivariate Shapley
and Attention-based methods), or iii) interac-
tions between spans of the input (e.g., Louvain
Span Interactions). However, these explana-
tion types have only been studied in isolation,
making it difficult to judge their respective ap-
plicability. To bridge this gap, we develop a
unified framework that facilitates an automated
and direct comparison between highlight and
interactive explanations comprised of four di-
agnostic properties1. We conduct an extensive
analysis across these three types of input fea-
ture explanations–each utilizing three different
explanation techniques–across two datasets and
two models, and reveal that each explanation
has distinct strengths across the different di-
agnostic properties. Nevertheless, interactive
span explanations outperform other types of
input feature explanations across most diagnos-
tic properties. Despite being relatively under-
studied, our analysis underscores the need for
further research to improve methods generat-
ing these explanation types. Additionally, inte-
grating them with other explanation types that
perform better in certain characteristics could
further enhance their overall effectiveness.

1 Introduction

Input feature explanations reveal how a model
makes decisions based on a specific input. Among
these, the most widely used explanation type is
Token Explanations (TokenEx), which for Natu-
ral language Understanding tasks provide impor-
tance scores for the tokens of the input, using
methods such as Shapley Values (Lundberg and

1Our code can be found at https://github.com/copenlu/A-
unified-framework-for-input-feature-explanations

A man playing guitar  on stage.

A man playing banjo   on the floor.

Highlight Token Explanation
Token Interactive Explanation

Span Interactive Explanation

Contradiction

Figure 1: An example of the three types of Input Feature
Explanations on an instance from the SNLI dataset,
with their two most important pieces of explanation
(token for TokenEx, token tuple for TokenIntEx,
span tuple for SpanIntEx, correspondingly).

Lee, 2017) and Integrated Gradients (Sundarara-
jan et al., 2017). However, for complex reasoning
tasks that require reasoning across multiple pieces
of text, e.g., Fact Checking is performed given a
claim and evidence, Natural Language Inference
is performed given a premise and a hypothesis,
TokenEx can be insufficient to capture the rela-
tions employed between the different parts of the
input. To this end, Token Interactive Explanations
(TokenIntEx) are proposed as another explana-
tion type that provides importance scores for in-
teractions between two tokens of the input with
methods such as Bivariate Shapley (Masoomi et al.,
2022) and Layer-wise Attention Attribution (Ye
et al., 2021). Further, to enhance the semantic
coherence of these interactive explanations, Span
Interactive Explanations (SpanIntEx) is an ex-
planation type that provides importance scores for
interactions across tuples of spans, e.g., generated
by Louvain community detection (Ray Choudhury
et al., 2023). Figure 1 showcases these three types
of input feature explanations.

It is crucial to develop automated, rigorous and
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comprehensive evaluation frameworks to ensure
the principled selection of the most suitable expla-
nation in a practical application (Yu et al., 2024)
and systematic progress in the development of dif-
ferent types of explanations (Atanasova et al., 2022;
Jolly et al., 2022). However, these three types
of input feature explanations have typically been
studied in isolation, where explanation methods
of the same type are compared (Atanasova et al.,
2020a; DeYoung et al., 2020; Janizek et al., 2021;
Ray Choudhury et al., 2023). Moreover, evalu-
ations of interactive explanations have been re-
stricted to one property. To address these gaps,
we develop a unified framework that facilitates an
automated and direct comparison between high-
light and interactive input feature explanations on
a suite of four diagnostic properties. The frame-
work allows for a rapid, scalable comparison across
explainability methods, essential for the growing
number of new techniques. Using the framework,
we then perform an extensive empirical analysis
of the properties of existing explanation methods
across all three explanation types.

Unified Evaluation Framework. Our unified
evaluation framework consists of four essential di-
agnostic properties – Faithfulness, Agreement with
Human Annotation, Simulatability, and Complex-
ity. They are the most widely used for TokenEx
(Nauta et al., 2023) and include the only property
used for interactive explanations – Faithfulness.
Faithfulness (Chen et al., 2020, 2021; Ray Choud-
hury et al., 2023) measures the extent to which
explanations accurately reflect the reasons used
by the model in its predictions. Agreement with
Human Annotation (Atanasova et al., 2020a) evalu-
ates whether explanations exhibit an inductive bias
akin to human reasoning, potentially enhancing
their plausibility to end users. Simulatablity (Pruthi
et al., 2022) estimates whether the explanations
are useful to an agent for replicating the model’s
decisions. Finally, Complexity (Bhatt et al., 2021)
evaluates whether the explanations are easy to com-
prehend. In the unified evaluation framework, we
further extend the four properties to facilitate their
application and comparison across all three expla-
nation types (§2).

Extensive Empirical Analysis of Input Fea-
ture Explanations. We conduct an extensive anal-
ysis across two different textual tasks, two language
models, and three explanation techniques for each
input feature explanation type. Our findings indi-

cate that TokenEx exhibit greater Comprehensive-
ness, and SpanIntEx – Sufficiency. Addition-
ally, SpanIntEx and TokenIntEx align more
closely with human annotations at the token level
than TokenEx. Moreover, SpanIntEx demon-
strate the highest interaction overlap with human
annotations. Further, SpanIntEx are found to
be most beneficial for Simulatability. Finally, our
results suggest that SpanIntEx and TokenEx
are easier to comprehend.

Overall, our analysis highlights the strengths
of each explanation type across various diagnos-
tic properties, with SpanIntEx generally outper-
forming others on most measures. However, we ob-
serve a trade-off between Comprehensiveness and
plausibility, particularly with SpanIntEx, under-
scoring the need for methods that enhance both. Fu-
ture research could explore integrated approaches
that combine explanation types to optimize perfor-
mance across all diagnostic properties.

2 A Unified Automated Evaluation
Framework for Highlight Explanations

According to the established taxonomy of evalua-
tion approaches for explainability methods, eval-
uations can be functionally grounded, human-
grounded, or application-grounded (Doshi-Velez
and Kim, 2017). Our work focuses on automated
functionally-grounded evaluation, which serves as
a foundation for the other evaluation types as it en-
ables the rapid, scalable comparison across explain-
ability methods, essential for the growing number
of new techniques. To this end, we present a unified
framework comprised of four widely employed di-
agnostic properties: Faithfulness, Agreement with
Human Annotations, Simulatability, and Complex-
ity. This section formally introduces them and out-
lines the extensions that allow for their application
across different input feature explanation types.

2.1 Preliminaries

We start with a dataset D, and a model M fine-
tuned on D. An instance x ∈ D comprises two
parts, e.g., a claim and an evidence, the first consist-
ing of m tokens, and the second – of n tokens. We
apply an explanation attribution method AE of type
E ∈ {TokenEx,TokenIntEx,SpanIntEx}
to M , and each x ∈ D: AE(M,x) = {exk, axk|k ∈
[0, s− 1]}, where exk is a token/pair of tokens/pair
of token spans from the input and axk denotes its
importance score. k is the importance ranking
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of the corresponding piece of explanation. s is
an upper limit for the number of most important
pieces of explanation for an instance, such that:
s ∈ [1,m + n] for TokenEx, s ∈ [1,m · n] for
TokenIntEx, and for SpanIntEx s varies for
each instance with s ∈ [1, f ], f < m! · n!. De-
pending on the explanation type E, exk can con-
sist of: one token xi for TokenEx, i ∈ [0,m +
n− 1], one token pair (xp, xq) for TokenIntEx,
where p ∈ [0,m − 1] and q ∈ [m,m + n −
1], one span pair ((xs, . . . , xs+l1), (xt, . . . , xt+l2))
for SpanIntEx, where s, s+ l1 ∈ [0,m− 1] and
t, t+ l2 ∈ [m,m+ n− 1].

Considering a particular threshold for the num-
ber of most important explanation pieces s, we
compute the total set of input tokens involved in
the presented explanation for x:

TAE ,M (x, s) = {xi|xi ∈ exk, k ∈ [0, s− 1]} (1)

However, as noted above, the upper bound for s can
vary across input feature explanations. Addition-
ally, the number of tokens included in the top-k im-
portant explanations can differ substantially among
explanation types – in top-1 we can have: 1 token
for TokenIntEx, 2 tokens for TokenIntEx,
and more than 2 tokens for SpanIntEx. This vari-
ability makes it difficult to compare results across
different explanation types. To this end, we propose
extensions for each of the studied diagnostic prop-
erties that result in unified diagnostic properties
applicable for a direct comparison of the different
types of input feature explanations.

2.2 Faithfulness
Faithfulness (DeYoung et al., 2020) assesses
whether explanations accurately reflect the model’s
decision-making process. It involves two aspects –
Sufficiency and Comprehensiveness – measured as
the number of the model’s prediction changes after
keeping (SP) or omitting (CP) k most important
portions of the input (see omission details in §A):

CP (x,AE , k) =

{
0, if f(x− TAE ,M (x, k)) = f(x)
1, otherwise

}

(2)

SP (X,AE , k) =

{
1, if f(TAE ,M (x, k)) = f(x)
0, otherwise

}

(3)

To take different thresholds k, we average over
k ∈ [0, s = m+ n− 1]. We then also average the
results across instances within D to compute the
final Comprehensiveness and Sufficiency scores:

CompAE =

∑|D|
x∈D

∑s
k=0 CP (x,AE , k)

s ∗ |D| (4)

SuffAE =

∑|D|
x∈D

∑s
k=0 SP (x,AE , k)

s ∗ |D| (5)

Unified Faithfulness. To facilitate the compari-
son of faithfulness scores, we introduce a dynamic
threshold θx,k. It represents the number of unique
tokens used for a perturbation on x, same across ex-
planation methods of all explanation types. Since
top-k explanations for AE of type SpanIntEx
typically contain more tokens than for TokenEx
or TokenIntEx, we set θx,k across the explana-
tion methods of all types to:

θx,k =
∣∣TASpanIntEx,M (x, k)

∣∣ (6)

Thus, θx,k becomes a dynamic threshold that adapts
based on each instance’s top-k explanation to-
kens from ASpanIntEx. We then adjust the num-
ber of top-k explanations selected from ATokenEx

and ATokenIntEx, kATokenEx and kATokenIntEx , corre-
spondingly, to result in the same number of per-
turbed tokens θx,k:

∣∣TATokenEx,M (x, kATokenEx(x))
∣∣ = θx,k (7)

∣∣TATokenIntEx,M (x, kATokenIntEx(x))
∣∣ = θx,k (8)

Furthermore, a Random baseline is established,
where the tokens for perturbation are selected ran-
domly to match the average θx,k across D.

2.3 Agreement with Human Annotations

Agreement with Human Annotations has been used
to assess the overlap between generated and human-
annotated explanations, which can indicate the
plausibility of the generated explanations to end
users. For E = TokenEx, the measure is com-
puted by calculating a precision score for the top-k
most important explanations compared to the gold
human annotations (Atanasova et al., 2020a).

For E = TokenEx, axi , i ∈ [1,m + n] is the
attribution score of ith most important explana-
tion for x. s = m + n is the number of expla-
nations extracted from x. Corresponding to each
explanation’s attribution score, s thresholds are set,
forming the threshold list ωAE

(x) = [ax0 , ..., a
x
s ].

By selecting explanations with higher attribution
scores than each threshold in ωAE

(x), s targeted ex-
planation sets are obtained, where CAE

(x, i){exj :

axj <= axi } represents the set for the ith thresh-
old, axj is the attribution score of token exj for
E = TokenEx. Comparing these sets with the
golden explanation set eG, s precision-recall pairs
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Pi/Ri(x, e
G, AE) can be derived. Average Preci-

sion (AP) is then obtained by weighting Pi with
the corresponding Ri increase:

Pi/Ri(x, e
G, AE) = Pre/Rec(CAE (x, i), eG) (9)

APAE (x, eG) =
∑s

i=0(Ri −Ri−1) ∗ Pi (10)

Mean AP (MAP) is calculated for all x∈D:

MAPAE =

∑|D|
x∈D APAE (x, eG)

|D| (11)

Unified Agreement with Human Annotation
Measure. For a fair comparison between the dif-
ferent types of explanations, the thresholds ωAE

(x)
for including the same number of tokens across
the explanation methods follows the procedure
set for the Unified Faithfulness (§2.2). Further-
more, we measure Agreement with Human An-
notations at the interaction level for the gold
SpanIntEx/TokenIntEx explanations and at
the token level for gold TokenEx explanations.

Interaction-level Agreement with Human
Annotations. For a fair comparison between
TokenIntEx and SpanIntEx methods, we
adapt MAPTokenEx to the interaction level. Specif-
ically, we compute the mean average preci-
sion (Eq. 11) w.r.t. the human-annotated
TokenIntEx/SpanIntEx sets.

Token-level Agreement with Human Annota-
tions. For a fair comparison between TokenEx
and TokenIntEx/SpanIntEx methods, we
extract tokens from TokenIntEx/SpanIntEx
and compare them with tokens from golden
TokenIntEx/SpanIntEx sets. To compute
MAP at token level, we follow the similar pro-
cedure set for E = TokenEx (Eq. 11) with
threshold lists ωATokenIntEx/SpanIntEx

(x), but the tar-
geted sets CAEtoken

(x, i) contain tokens extracted
from TokenIntEx/SpanIntEx methods. The
golden set SAEtoken

(x) aggregates tokens from
golden TokenIntEx/SpanIntEx sets.

We also set a Random baseline, where the num-
ber of randomly selected span pairs, token pairs,
or tokens for each instance matches the average
number of tokens per instance extracted with a
SpanIntEx explanation method.

2.4 Simulatability
Simulatability was initially proposed to measure
how accurately humans can predict a model’s out-
puts based on its explanations (Chen et al., 2024;
Hase et al., 2020). Previous studies demonstrated

that Simulatability can be approximated using an
automated agent model as a surrogate for human
understanding (Pruthi et al., 2022). Given the estab-
lished positive correlation between Simulatability
and human evaluation of explanation utility, we
integrate the Simulatability scores obtained from
an agent model with different explanation types to
approximate their utility for humans.

Following existing work (Hase et al., 2020), we
train an agent model AM , sharing the same ar-
chitecture as the original model M , to simulate
M ’s predictions Y ′ using produced explanations.
During AM ’s training phase, we extract the top-k
explanations and incorporate them in the input. In
comparison, another agent model, AMO, is trained
without explanation guidance as a baseline on the
same training set. During the testing phase, the sim-
ulation accuracy of AM and AMO over the shared
dataset D is calculated.2 The difference between
the accuracies is interpreted as the explanation’s
effect in enhancing the simulatability of M :

Sim = ACC(AM(D), Y ′)−ACC(AMO(D), Y ′) (12)

Unified Simulatability. To compare the simula-
tion utility of different explanation types, we train
a separate agent model AME for each explanation
method AE and calculate the corresponding sim-
ulation performance on the common test set. For
a fair comparison across the different explanation
method types AE , we first ensure top-kE explana-
tions are presented for assisting the agent’s training
for AE , following Section 2.2. This ensures each
model is exposed to the same quantity of unique
tokens from different explanation types.

During the training of AM , we introduce the ex-
planations from AE into the learning of AMAE

; we
supplement x with top-kAE

explanations instead so
that the agent model is trained with the same mech-
anism whether the explanations are provided or not,
and each training instance will contain the input se-
quence xAE

and golden label Y ′ which is predicted
by the original model M . Specifically, we examine
two different ways of presenting the explanations
as part of the original input sequence, ISymbol and
IText (see §B.); all aim to ensure the explanations
of different types are inserted similarly.

At test time, the F1 scores of agent models AME

2While existing work (Hase et al., 2020) notes that incorpo-
rating natural language explanations in the testing phase could
leak the predicted label, we use only input feature explanations
that do not contain additional information.
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and AMO over D are calculated:

SFE = F1(AME(xE), Y
′), x ∈ D (13)

SFO = F1(AMO(x), Y
′), x ∈ D (14)

Note that the explanations from AE are also pro-
vided to the input for the unseen instances for agent
model AME . The final simulation metric then indi-
cates how much this specific type of input feature
explanation enhances the model’s simulatability:

RSFE = SFE − SFO (15)

2.5 Complexity

Feature attribution explanations are designed to aid
human understanding of a model’s reasoning over
specific instances. However, since humans have
a limited capacity to process large amounts of in-
formation simultaneously, these explanations need
to be easy to comprehend. Even if we select only
the top-k attributions with the highest importance
scores, they need to be distinctive as opposed to
the attribution scores having a uniform distribution.
Bhatt et al. (2021) propose to measure the complex-
ity of a produced explanation with entropy (Rényi,
1961) over the attribution scores of all the produced
explanations by ATokenEx method:

P (x, p) =
∣∣ax

p

∣∣ /∑m+n
q=1

∣∣ax
q

∣∣ (16)

CL(x) = −∑m+n
p=1 P (x, p) ln(P (x, p)) (17)

m+n is the total number of generated ATokenEx ex-
planations, and all explanations are considered for
the complexity score computation. Higher entropy
means different features have similar attribution
scores, where the simplest explanation, with low
entropy, would be concentrated on one feature.

Unified Complexity. To ensure a fair compari-
son across different types of explanation methods
AE , we maintain consistency in the size of the cho-
sen explanation lists across all AE for the same
instance, denoted as kx, as the number of gener-
ated ATokenEx/ATokenIntEx/ASpanIntEx explana-
tions originally vary for the same x. The complex-
ity score CLAE

(x, kx) of the top-kx explanation
list under method AE is calculated as:

PAE (x, kx, i) = |ax
i | /

∑kx
j=1

∣∣ax
j

∣∣ (18)

CLAE (x, kx) = −∑kx
i=1 PAE (x, kx, i) ln(PAE (x, kx, i))

(19)

where axi /axj represent the i/jth highest attribution
score from the explanation set for x.

The final complexity score is an average of
CLAE

(x, kx) across all x ∈ D:

CLE =
∑|D|

x∈D CLE(x, kx)/|D| (20)

Notably, kx is calculated from the number of ex-
planations produced by method ASpanIntEx for x,
which varies based on the span interaction extrac-
tion method and is known only after generation.

3 Experimental Setup

3.1 Datasets

We select the natural language inference dataset
SNLI (Bowman et al., 2015), where instances
consist of a premise, hypothesis, and a label
y ∈ {entailment, neutral, contradiction}.
Additionally, we select the fact check-
ing dataset FEVER (Thorne et al., 2018;
Atanasova et al., 2020b), where instances
consist of a claim, evidence, and a label
y ∈ {entailment, neutral, contradiction}.3

We generate input feature explanations by sam-
pling 4,000 instances from each train, dev, and test
set, due to the high computational cost, particularly
for Shapley-based explanations (Atanasova et al.,
2020a). For Agreement with Human Annotations
property, we use existing human explanation
annotations for SNLI and FEVER (see §C).

3.2 Input Feature Explanation Methods

To generate importance scores, we first select three
common TokenEx techniques – Shapley (Lund-
berg and Lee, 2017), Attention (DeYoung et al.,
2020), and Integrated Gradients (IG, Sundarara-
jan et al. (2017)). For TokenIntEx, we employ
Bivariate Shapley (Masoomi et al., 2022), Atten-
tion (Clark et al., 2019), and Layer-wise Atten-
tion Attribution (Ye et al., 2021). Notably, the
TokenIntEx techniques are the bivariate version
of the techniques used for generating TokenEx;
e.g. Layer-wise Attention Attribution uses IG.

Following Ray Choudhury et al. (2023), we ap-
ply the Louvain algorithm (Blondel et al., 2008) for
each of the three selected TokenIntEx to gener-
ate importance scores for SpanIntEx methods,
where the importance score of each span interac-
tion is averaged over the importance scores of the
token interactions within it. We will refer to Shap-
ley, Attention, and IG as the explanation base types

3https://huggingface.co/datasets/cope
nlu/fever_gold_evidence
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used for generating all types of input feature expla-
nations for brevity. See §E for more details.

3.3 Models

We use the BERT-base-uncased model (Devlin
et al., 2019) with 12 encoder layers, and the BART-
base-uncased model (Lewis et al., 2020) with 6
encoder and 6 decoder layers, as common repre-
sentatives of the encoder and the encoder-decoder
Transformer architecture (Vaswani et al., 2017).
Our choice is particularly influenced by the substan-
tial computational requirements of the input feature
explanations, especially pronounced for Shapley
(Atanasova et al., 2020a). Additionally, our choice
is guided by the need to directly access the mod-
els’ internals for generating IG and Attention-based
explanations. Furthermore, while our framework
currently utilizes the said models, it is designed to
be easily adaptable to other models or newly devel-
oped explainability techniques, provided that there
are more robust computational resources available.

We fine-tune the base models on SNLI and
FEVER and use them to generate explanations.
Their performance on the test sets is shown in §D.
For the Simulation property, we follow existing
work (Fernandes et al., 2022; Pruthi et al., 2022)
and train simulator agent models (§2.4) with the
same architectures as the base ones. Following
Fernandes et al. (2022), we split the test set into
train/dev/test for the training of the agent model.

4 Results and Discussion

We now present the results of our unified evalua-
tion framework (§2) illustrated in Fig. 2. They in-
clude explanation methods of types SpanIntEx,
TokenIntEx, and TokenEx (§3.2), two models
(§3.3), two datasets (§3.1), and three base expla-
nation techniques per explanation type (§3.2). For
Simulatability, we select the results of Isym, as this
form avoids repeating the input text and increasing
the input size substantially. For Agreement with
Human Annotations, we select the Token-level re-
sults as they are present for all explanation types.
§F lists detailed results per property.

4.1 Faithfulness

Unified Comprehensiveness. Across both datasets
and models, TokenEx and TokenIntEx are
identified as the most comprehensive explana-
tion types, achieving the highest scores in 7/12 and
5/12 cases, respectively. SpanIntEx, designed

to enhance the semantic coherence of interactive
explanations by including additional context, of-
ten incorporates tokens that do not directly con-
tribute to the model’s prediction, thus explaining
its lower comprehensiveness scores. Compared to
the random baseline, TokenEx and SpanIntEx
always outperform it, while TokenIntEx mostly
underperform it when based on IG. Across the base
explanation techniques, TokenEx performs best
when based on Attention for BERT and on Shapley
for BART, indicating that different base expla-
nation techniques can perform better for dif-
ferent architectures. Both TokenIntEx and
SpanIntEx show optimal performance when
based on Shapley and Attention. Overall, the re-
sults indicate a stronger performance of Attention
and Shapley over IG across all explanation types.

Unified Sufficiency. SpanIntEx ranks as the
most sufficient explanation type in 7/12 cases, sur-
passing TokenEx, which performs well in only
3/12 cases. While contrary to SpanIntEx Com-
prehensiveness performance, we attribute this to
the semantic coherence of the extracted top spans,
which provide more meaningful information. Note
that while Sufficiency is highly desirable, Com-
prehensiveness is not required in all downstream
applications as end-users prefer simpler, more
general explanations with fewer causes (Thagard,
1989). Unlike TokenEx, which consistently out-
performs the random baseline, TokenIntEx and
SpanIntEx struggle to outperform it on FEVER,
likely due to the longer input, posing challenges for
the explanations to accurately unveil the model’s
internal processes. The results from different base
explanation techniques show no clear trends, indi-
cating a significant variability stemming from
the specific dataset and model architecture.

4.2 Agreement with Human Annotation

SpanIntEx and TokenIntEx show higher
agreement scores with human annotations than
TokenEx. Similarly, SpanIntEx consistently
achieve higher agreement with human interaction-
level annotators, especially when based on At-
tention scores (see §F). This indicates that
SpanIntEx are more plausible to humans due
to their enhanced semantic coherence. In con-
trast, TokenEx often score lower than the random
baseline. Moreover, considering SpanIntEx’s
lower performance in Comprehensiveness, there
emerges a distinct trade-off between Compre-
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(a) SNLI dataset, BERT model. (b) SNLI dataset, BART model.

(c) FEVER dataset, BERT model. (d) FEVER dataset, BART model.

Figure 2: Unified evaluation framework (§2) results for all feature attribution methods (§3.2).

hensiveness and Agreement with Human Anno-
tations. Across base explanation techniques, IG
performs best for FEVER; IG and Attention – for
SNLI. In addition, we find that for the interaction-
level agreement, TokenIntEx and SpanIntEx
perform worst when based on Shapley. The lower
agreement results for Shapley compared to its bet-
ter results on Comprehensiveness again indicate an
existing trade-off between the two properties.

4.3 Simulatability

Our results show that SpanIntEx achieve the
highest simulatability in 9/12 cases, helping the
agent model accurately reproduce the original
model’s prediction. This again underscores the crit-
ical role of contextual information and enhanced
semantic coherence provided by SpanIntEx.

Notably, providing SpanIntEx to agents im-
proves their ability to simulate the original model
by up to 7.9 F1 points compared to without expla-
nations. Among base explanation techniques, IG
consistently performs best for SpanIntEx; other
techniques do not exhibit a clear trend.

4.4 Complexity

SpanIntEx and TokenEx generally achieve
similar complexity, which consistently remains
lower than those of TokenIntEx. This suggests
that TokenEx and SpanIntEx generate more
distinctive attribution scores, potentially mak-
ing them easier for humans to understand. Re-
garding the base explanation techniques, Attention
consistently yields the best complexity scores for
BERT across all explanation types. There is no
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clear trend for BART. Additionally, TokenIntEx
frequently underperform the random baseline, high-
lighting its complexity (see §F).

4.5 Overall

In summary, we find that while TokenEx and
TokenIntEx generally provide more comprehen-
sive insights, SpanIntEx performs better in Suf-
ficiency due to its enhanced semantic coherence
(§4.1). This calls for better methods for gener-
ating SpanIntEx that are both comprehensive
and sufficient. Additionally, there is a trade-off
between Comprehensiveness and Agreement with
Human Annotations (§4.2), suggesting that the
most faithful explanations might be less plausi-
ble to end users. This highlights the need for
advanced methods to boost both the Comprehen-
siveness and plausibility of SpanIntEx possibly
leveraging the advantage of TokenEx. Further-
more, SpanIntEx significantly improves simu-
latability by allowing agents to accurately replicate
model decisions (§4.3), which is crucial in practice.
Finally, the complexity analysis (§4.4) shows that
SpanIntEx and TokenEx are potentially easier
to comprehend than TokenIntEx when consid-
ering the importance score distribution.

Overall, our results highlight the differences be-
tween the different types of input feature explana-
tions, with SpanIntEx outperforming others on
most measures. As no one type performs best on
all properties, we call for the development of com-
bined methods that can leverage the strength of the
different explanation types and potentially lead to
an overall improvement of the explanation utility.

5 Related Work

Input Feature Explanations. Considerable re-
search exists on extracting explanations for in-
put data. Methods like perturbation-based attri-
bution (e.g., Shapley (Lundberg and Lee, 2017)),
attention-based methods (e.g., Attention (Jain and
Wallace, 2019; Serrano and Smith, 2019)), and
gradient-based methods (e.g., Integrated Gradi-
ents (Sundararajan et al., 2017; Serrano and Smith,
2019)) are prevalent for highlighting individual to-
kens (Atanasova et al., 2020a). As individual to-
kens might be insufficient to explain the model,
many attribution methods have been extended to bi-
variate forms (Masoomi et al., 2022; Janizek et al.,
2021; Sundararajan et al., 2017; Ye et al., 2021)
to capture input token interactions. More recent

work has explored how interactions between groups
of tokens collectively contribute to model reason-
ing (Ray Choudhury et al., 2023; Chen et al., 2021).
Unlike other work where token groups might con-
sist of tokens from arbitrary positions, Ray Choud-
hury et al. (2023) explicitly capture span interac-
tions, enhancing the comprehensiveness of expla-
nations by containing the entire spans.

Automated Explanation Evaluation. For evalu-
ating TokenEx, DeYoung et al. (2020); Atanasova
et al. (2020a) propose metrics to measure how faith-
ful explanations are to the model’s inner reason-
ing. They also assess the plausibility of expla-
nations to humans by measuring the agreement
of TokenIntEx with human annotations. To as-
sess the utility of explanations to humans, Pruthi
et al. (2022) propose to use an agent model as
a proxy for humans and evaluate whether expla-
nations aid in model simulatability. Complex-
ity Bhatt et al. (2021) measures the distribution
of attribution scores of TokenEx and assesses
whether the key tokens in token explanations
are easily comprehensible to humans. To evalu-
ate TokenIntEx most works adopt the faithful-
ness or axiomatic/theoretical path (Tsang et al.,
2020; Sundararajan et al., 2020; Janizek et al.,
2021). Current work on evaluating SpanIntEx
has primarily focused on faithfulness (Ray Choud-
hury et al., 2023). However, since SpanIntEx,
TokenIntEx, and TokenEx contain varying
amounts of tokens, which, e.g., affects the faithful-
ness test, this makes direct comparisons between
different explanation types using existing metrics
challenging. To our knowledge, no prior paper
has involved all types of input feature explanations
within a unified evaluation framework.

6 Conclusion

We introduced a unified evaluation framework
for input feature attribution analysis to guide
the principled selection of the most suitable ex-
plainability technique in practical applications.
Our analysis outlines the diverse strengths and
trade-offs among TokenEx, TokenIntEx, and
SpanIntEx. Our findings particularly under-
score SpanIntEx’s superior performance in Suf-
ficiency, agreement with human inductive biases,
its enhancement of Simulatability, and Complexity,
compared to TokenEx and TokenIntEx. Fu-
ture efforts should focus on developing combined
methods that enhance all explanation properties.
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Limitations

Our work introduces a unified framework to evalu-
ate input feature explanations across four key prop-
erties. We generated three types of explanations
using three attribution methods on two Transformer
models (BERT-base and BART-base) for two NLU
tasks (NLI and fact-checking). Thereby, we can as-
sess and compare the properties of each explanation
type. Due to computational resource limitations,
we did not include larger decoder-only models in
our evaluation. Future research could explore other
models to provide additional insights.

We note that our work considered the FEVER
and SNLI datasets as they are the only available
datasets with annotations of human interactive ex-
planations, required for the Agreement with Hu-
man Annotations property. In future work, given
the availability of other datasets, examining the
properties of different explanations in various tasks
beyond NLI and fact checking would be valuable,
especially for simpler tasks that consist of only one
input part or more complex tasks that consist of
more than two parts with possible relationships be-
tween them. Additionally, tasks with longer textual
inputs, which are known to pose greater challenges
for current explainability techniques (Atanasova
et al., 2020a), could also be analyzed.

Furthermore, while we consider four widely
used explanation properties in this automatic eval-
uation framework, future works should consider
verifying, potentially with supplementary human
studies, that the properties are well aligned with
the downstream utility of the explanations in dif-
ferent application tasks (Miller, 2019). We note
that manual evaluation, while valuable, is time-
consuming and costly. Automated evaluation, with
our proposed framework, allows for quicker in-
sights, helping prioritize methods that may benefit
from human-centered evaluation. Additionally, the
properties we evaluate demonstrate why human
evaluation is not necessarily required at this stage.
Faithfulness measures whether explanations reflect
the model’s internal reasoning, a task humans can-
not assess (see Faithfulness evaluation guidelines in
Jacovi and Goldberg (2020)). Explanations that fail
this test should not be considered for further human
evaluation as they can be harmful, e.g. by hiding
a model’s flaws and biases. Agreement with Hu-
man Annotation already captures alignment with
human reasoning, ensuring explanations are plausi-
ble. Automated Simulatability correlates strongly

with human studies, providing a reliable proxy for
replicating the model’s behaviour without the need
for expensive human experiments (Pruthi et al.,
2022). Finally, automated methods ensure consis-
tency and objectivity, while human annotations can
introduce subjectivity and variability. Studies have
even shown conflicting results from human eval-
uations (Poursabzi-Sangdeh et al., 2021; Ribeiro
et al., 2016). Automated evaluation provides an
objective, reproducible baseline, which can later be
supplemented by human evaluations where needed.

We have also employed three base representative
explainability methods for each of the three types
of input feature explanations. However, more ex-
isting and newly emerged base explainability meth-
ods could be explored in future work. Additionally,
our study focuses solely on post-hoc explainability
techniques, while other supervised feature extrac-
tion methods could also be investigated (Yu et al.,
2021; Liu et al., 2024a). These methods typically
treat human-annotated important fragments within
the input as gold causal features, akin to our Agree-
ment with Human Annotation measurement. The
broader set of properties introduced in our frame-
work could be leveraged to evaluate such expla-
nations more comprehensively. Apart from that,
future work could adapt and extend our framework
to other forms of explanations such as free-text
explanations produced by self-rationalization mod-
els (Liu et al., 2022, 2023b,a, 2024c,b). All said
potential future studies are well facilitated by the
efficient automated evaluation proposed with our
framework.

Our findings indicate that span interactive expla-
nations (SpanIntEx) have a notable advantage
over other explanation types in terms of Agree-
ment with Human Annotation, Simulatability, and
Complexity, suggesting they are easier for hu-
mans to understand. This insight could inspire
future work to leverage SpanIntEx as the in-
put feature explanation in HCI models. How-
ever, SpanIntEx shows low comprehensiveness
in faithfulness evaluations. The Louvain algorithm,
used for SpanIntEx generation, may limit its
comprehensiveness despite using different attri-
bution methods for TokenIntEx. Future work
should explore better methods for capturing span in-
teractions and possibly combine SpanIntEx and
TokenEx for higher faithfulness, as TokenEx
demonstrates a stable advantage in comprehensive-
ness.
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Another core finding is that the attribution
method significantly affects most diagnostic prop-
erties of all explanation types, such as sufficiency.
No single attribution method consistently excels
across all properties, highlighting the need for con-
tinuous evaluation and improvement in attribution
methods, particularly for SpanIntEx.

To ensure a fair comparison, our unified evalua-
tion framework currently considers only the token
count differences among various input feature ex-
planations, with interactive explanations flattened.
Future work could involve a human-in-the-loop ap-
proach to account for the effects of interactive ex-
planations beyond just token count differences. For
example, a display system could visually present
highlighted tokens and interactions to gauge human
preferences. Our work provides a starting point for
comparing input feature explanations from an auto-
mated evaluation perspective, and future research
could explore additional factors, such as psycho-
logical elements and visual aspects, from a human
perspective, which would benefit more non-expert
users.

Another limitation of this work is that we focus
solely on the automatic evaluation of input fea-
ture explanations without examining the potential
biases they may exhibit. For instance, these expla-
nations might favor certain words or phrases from
the input sequence, for example, sometimes em-
phasizing some prepositions that might bear less
meaning, raising questions about whether such bi-
ases stem from the models themselves or from the
explainability techniques used. Also, it is worth
checking, especially in sensitive domains such as
healthcare and law, how contradictory explanations
for different model decisions differed, which might
sway the decision-making.
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A Unified Faithfulness Evaluation:
Explanation Masking Details

As discussed in Section §2.2, we introduce the dy-
namic threshold θx,k to ensure an identical number
of tokens from different types of top input feature
explanations for the same instance in Unified Faith-
fulness evaluation.

For the Unified Comprehensiveness evaluation,
we conduct a similar process for all three expla-
nation types separately. Using TokenEx as an
example, we first calculate the maximum num-
ber of top TokenEx for disturbing each instance
x as kTokenEx(x) following Eq. 7. To omit the
TokenEx tokens from the original input, we re-
place them with [MASK] tokens, while keeping
the rest unchanged. The specific [MASK] token
used depends on the model architecture. We then
gradually increase the number of TokenEx to-
kens masked out until it reaches kTokenEx(x) and
record the corresponding changes in model pre-
dictions. The average prediction change across
the dynamic threshold and all instances gives the
Unified Comprehensiveness score for TokenEx.
For TokenIntEx and SpanIntEx, the only
difference is that we mask out token pairs for
TokenIntEx and span pairs for SpanIntEx,
with the maximum explanations masked out as
kTokenIntEx(x) and kSpanIntEx(x) for each in-
stance x, calculated using Eq. 6 and Eq. 8 re-
spectively.

For the Unified Sufficiency evaluation, we con-
duct experiments for the three explanation types
separately. Unlike Unified Comprehensiveness, we
retain only the tokens/token pairs/span pairs for
the input while masking out all other tokens with
[MASK] tokens for each instance, depending on
the model architecture used. We first calculate the
maximum number of top explanations involved
in disturbance for each explanation type for in-
stance x using Eq. 6, Eq. 7, and Eq. 8. Then,
we keep the token/token pairs/span pairs in the
model input by masking out all other tokens, start-
ing with one explanation and adding one more ex-
planation for each subsequent disturbance until the
total number of explanations reaches kTokenEx(x),
kTokenIntEx(x), or kSpanIntEx(x). Meanwhile,
we record the model predictions for each distur-
bance. The Unified Sufficiency score for each ex-
planation type is then calculated by averaging the
prediction changes across the dynamic threshold
for that explanation type, considering all instances.

B Detailed Explanation Insertion Method

To enable a fair comparison among different in-
put feature explanations in terms of simulatabil-
ity (§2.4), we applied consistent insertion formats
to combine the explanations with the original in-
put for training the agent models. This design
aims to minimize noise from insertion format dif-
ferences. We tested two ways, each applicable
to all types of input feature explanations, to con-
struct input sequences with inserted explanations
of type E. These input sequences are denoted xE
in §2.4, omitting specific insertion format details
for brevity.

For Symbol-Insertion ISymbol, we preserve the
original input sequence but insert special symbols
< and > to quote the tokens (for TokenEx and
TokenIntEx) or spans (for SpanIntEx) within
the input. Additionally, for TokenEx, we append
a ranking mark after each quoted token based on
their attribution scores, ranked in descending order.
For TokenEx and SpanIntEx, each quoted to-
ken/span is also assigned a ranking mark indicating
the rank of their respective interactions by attribu-
tion score, ensuring tokens/spans from the same
interaction share the same mark. This method al-
lows us to generate input sequences combined with
different input feature explanations in a consistent
symbol insertion format.

For Text-Insertion IText, we append tokens, to-
ken tuples, or span tuples to the end of the original
input sequence for each explanation type. They are
added in the order ranked by descending attribu-
tion score. Specifically, for TokenEx, tokens from
different TokenExexplanations are separated by
semicolons. For TokenIntEx and SpanIntEx,
tokens/spans within each interaction are connected
by a comma, and different interactions are sep-
arated by semicolons. This approach constructs
input sequences combined with each type of input
feature explanation in a consistent text insertion
format.

C Agreement Dataset Details

To assess how different types of input feature ex-
planations overlap with human annotations, we col-
lected golden explanations of various types from
e-SNLI and SpanEx for instances within SNLI and
FEVER, respectively. Detailed information about
the annotated explanation types and the number
of instances with labeled explanations for these
datasets is shown in Table 1. For the SNLI dataset,
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D E Size

SNLI -
549367 Train

9842 Dev
9824 Test

e-SNLI TokenEx
549367 Train

9842 Dev
9824 Test

SpanEx-SNLI SpanIntEx
TokenIntEx

3865 Test

FEVER -
145449 Train

9999 Dev
9999 Test

SpanEx-FEVER SpanIntEx
TokenIntEx

3206 Test

Table 1: Overview of datasets SNLI (Bowman
et al., 2015), FEVER (Thorne et al., 2018),
SpanEx (Ray Choudhury et al., 2023) and e-SNLI (Cam-
buru et al., 2018). SpanEx contains instances from SNLI
and FEVER, annotated with SpanIntEx explanations
including token-level explanations (TokenIntEx ex-
planations). e-SNLI contains instances from SNLI
dataset, annotated with TokenEx explanations.

e-SNLI provides TokenEx explanations, while
SpanEx-SNLI includes SpanIntEx explanations
and token-level interactions (TokenIntEx expla-
nations). We selected 3,865 overlapping instances
and evaluated the human agreement score for dif-
ferent types of input feature explanations. For
FEVER, SpanEx-FEVER includes SpanIntEx
and token-level interactions (TokenIntEx expla-
nations). Since no TokenEx explanations are
provided, we extracted tokens from the golden
TokenIntEx explanations in SpanEx-FEVER as
an approximation. These selected instances are
also used when evaluating other properties of input
feature explanations.

D Base Model Performance.

As shown in Table 2, we report the performance
of fine-tuned BERT-base and BART-base models
on SNLI and FEVER, respectively. These mod-
els, fine-tuned for their specific tasks, are used to
generate various input feature explanations through
different explainability techniques. Importantly,
these are the original models that the agent models,
as described in §2.4, learn to simulate.

E Explainability Techniques

In this section, we detail the explainability tech-
niques employed to generate various types of input
feature explanations. As outlined in §3.2, we cate-
gorize these techniques based on the method used

Model
F1 score

Dev Test

BERT-SNLI 87.21 88.43
BART-SNLI 86.81 85.40

BERT-FEVER 86.21 89.49
BART-FEVER 85.19 84.88

Table 2: The performance of our BERT-base and BART-
base models fine-tuned on SNLI and FEVER, respec-
tively, regarding F1 score(%).

for generating TokenEx, while TokenIntEx ex-
planations stem from their bivariate variants, form-
ing the basis for SpanIntEx explanations.

As denoted in Section §2.1, xi represents the ith
token with instance x. To better illustrate the ex-
plainability techniques below, we use F as the set
of all tokens within this instance and S as the sub-
set of F . All explanations are obtained using model
M , which is omitted in the following notions for
brevity. We use ATokenEx(xi) to denote the attribu-
tion score generated by explainability technique
A for the ith token xi, ATokenIntEx(xi, xj) as
the attribution score for token interaction (xi, xj),
ATokenIntEx(xi | xj) as the importance score
of token xi conditioned on xj is present when
the directed importance between tokens within
(xi, xj) is considered in some attribution tech-
niques, ASpanIntEx(span

0
i , span

1
i ) as the attri-

bution score for corresponding span interaction,
where span0

i = (xs, ..., xs+l1) is a span from part1
and span1

i = (xt, ..., xt+l2) is a span from part2 of
the input. Note that in Section §2.1, we use axk to
denote the importance score of the kth most impor-
tant explanation of instance x; here, we only focus
on the attribution scores of explanations without
ranking them.

Shapley. For TokenEx, we employ the SHAP
method to assign importance scores to each token
within the input by removing each token separately
and computing its removal effect on the model
prediction with different subsets of other tokens
presented to the model, following Lundberg and
Lee (2017).

ShapTokenEx(xi) =
∑

S⊆F\{xi}

|S|!(|F | − |S| − 1)!

|F |!

[f(S ∪ {xi})− f(S)]

(21)

ShapTokenEx(xi) denotes the importance score of
token xi. As the calculation of ShapTokenEx(xi)
is computationally expensive, we utilize Kernel
SHAP to approximate these Shapley values.
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For TokenIntEx, we first apply Bivariate
Shapley (Masoomi et al., 2022) to assess the mu-
tual importance scores between two tokens, which
are from different parts of the input, within a to-
ken interaction, and then average these two mutual
importance scores as importance score of this to-
ken interaction. Specifically, to compute the im-
portance score of a token xi conditioned on the
presence of token xj , the sets of tokens S con-
sidered are limited to those containing token xj ,
while the impact of other sets of tokens influences
the importance of xi is ignored in this case. Thus,
ShapTokenIntEx(xi | xj) can be calculated by:

ShapTokenIntEx(xi | xj) =
∑

xj∈S⊆F\{xi}

|S|!(|F | − |S| − 1)!

|F |!

[f(S ∪ {xi}) − f(S)]

(22)

The importance score ShapTokenIntEx(xi, xj)
for token interaction (xi, xj) are calculated
by averaging ShapTokenIntEx(xi | xj) and
ShapTokenIntEx(xj | xi). We also use Kernel
Shapley to approximate the calculation of Bivariate
Shapley value.

For SpanIntEx, we first apply the Louvain
Community Detection algorithm (Blondel et al.,
2008) to extract span interactions and then average
the importance scores of token interactions com-
prised in each span interaction as its importance
score, following Ray Choudhury et al. (2023).

To extract span interactions, we first construct a
directed bipartite graph for instance x, by taking
each token xi from the input as node i and the mu-
tual importance scores between each two tokens
from different parts obtained above as the weights
of directed edges connecting them. Louvain Com-
munity Detection algorithm is then applied to
search for communities of nodes with dense intra-
cluster and sparse inter-cluster relationships. With
each community of nodes(tokens) Sp obtained,
we can get one span interaction (span0

p, span
1
p),

where the two spans consist of neighboring tokens
from the part1 subset of this community S0

p , and
the part2 subset of it S1

p respectively.

Then we calculate the importance score of this
span interaction by averaging the importance scores

of all token interactions it comprises.

ShapSpanIntEx(span
0
p, span

1
p) =

xi∈S0
p

xj∈S1
p∑

i,j
ShapTokenIntEx(xi, xj)

|S0
p ∪ S1

p|
(23)

Note that in the following, no matter which
explainability techniques to assign importance
score to TokenIntEx, we apply the same
method as stated above to extract span inter-
actions and compute their importance scores,
ASpanIntEx(span

0
p, span

1
p), based on corre-

sponding token interaction importance score,
ATokenIntEx(xi, xj).

Attention. For each token within the input se-
quence, we use the self-attention weights between
this token and the first token as an indicator of its
importance score (Jain and Wallace, 2019). We
follow Ray Choudhury et al. (2023) to select the
most important attention head in the last layer of
the model to obtain these attention weights. For
each possible token interaction, we use the method
by Clark et al. (2019) to extract and average the at-
tention weights between token pairs from different
parts of the input to derive their importance scores,
also from the most important head of the last layer.
To obtain span interactions and assign them impor-
tance scores, we apply the same method to these
token interaction scores as described above.

Integrated Gradients. To calculate the impor-
tance score for each token in the input sequence,
we integrate the gradients of the model’s output
with respect to each token embedding, following
Sundararajan et al. (2017). For generating the im-
portance scores of token interactions, we use Layer-
wise Attention Attribution (Ye et al., 2021), which
attributes attention links between pairs of tokens
within attention maps with a mechanism similar
to Integrated Gradients. These attribution maps
are created for each model layer and then aggre-
gated across layers to form a final attribution map.
The importance score for each token interaction
is calculated as the average value from this final
attribution map between the involved tokens. For
span interactions, we generate and assign impor-
tance scores using the same approach based on the
importance scores of the token interactions.
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(a) Comprehensiveness on SNLI dataset, the higher the better. (b) Comprehensiveness on FEVER dataset, the higher the better.

(c) Sufficiency on SNLI dataset, the lower the better. (d) Sufficiency on FEVER dataset, the lower the better.

Figure 3: Unified Comprehensiveness and Sufficiency of three types of feature attribution explanations on SNLI and
FEVER datasets using the BERT model. Subfigures (a) and (c) show Unified Comprehensiveness results, while
(b) and (d) show Unified Sufficiency results. Explanations are generated by Shapley (Shap), Attention (Att), and
Integrated Gradients (IG). Randomly selected span pairs, token pairs, and tokens are baselines corresponding to
explanation type SpanIntEx, TokenIntEx, and TokenEx and form the group Random baseline (Rand). We
set k = 3 for top span interactions and adjust token counts as per §2.2, also ensuring the random baseline matches
the average token count of the top k span interactions.

F Detailed Experiment Results

F.1 Faithfulness

F.2 Agreement with Human Annotation

There is a notable gap between interaction-level
and token-level agreement scores. For example, in
Table 3, the highest interaction-level agreement
score for SpanIntEx explanations is 57.40%,
while the highest token-level agreement score for
SpanIntEx is 78.26%. A similar pattern is ob-
served for TokenIntEx. This suggests that al-
though SpanIntEx and TokenIntEx expla-
nations align more with human reasoning than
TokenEx explanations, pairing important tokens
or spans into interactions that are plausible to hu-
mans remains challenging.

F.3 Simulatability

Regarding insertion formats, for BERT models,
text insertion (IText), which adds explanation text
to the end of the input sequence, consistently out-
performs symbol insertion (ISym), where symbols
are added to the original input sequence, as shown

E Shap Att IG Rand

Interaction level agreement
SpanIntEx 30.18 57.40 39.40 33.82
TokenIntEx 29.02 37.02 35.06 23.42
TokenEx - - - -

Token level agreement
SpanIntEx 75.63 78.26 76.52 76.96
TokenIntEx 74.89 79.60 73.19 74.96
TokenEx 75.54 77.62 70.74 76.33

Table 3: Human Annotation Agreement Results (see
§2.3) on SNLI dataset when explanations are gen-
erated based on BERT. Interaction-level and Token-
level agreement scores, Average Precision(%), com-
pared to human annotations for explanation types
SpanIntEx, TokenIntEx, TokenEx generated
by Shapley(Shap), Attention(Att), Integradiant Gra-
dients(IG) respectively. Using the same attribution
method, the highest alignment score for each category
is highlighted in bold. Rand indicates the random base-
line as described in §2.3.
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(a) Comprehensiveness on SNLI dataset, the higher the better. (b) Comprehensiveness on FEVER dataset, the higher the better.

(c) Sufficiency on SNLI dataset, the lower the better. (d) Sufficiency on FEVER dataset, the lower the better.

Figure 4: Unified Comprehensiveness and Sufficiency of three types of feature attribution explanations on SNLI
and FEVER datasets using the BART model. Subfigures (a) and (c) show Unified Comprehensiveness results,
while (b) and (d) show Unified Sufficiency results. Explanations are generated by Shapley (Shap), Attention (Att),
and Integrated Gradients (IG). Randomly selected span pairs, token pairs, and tokens are baselines corresponding
to explanation type SpanIntEx TokenIntEx and TokenEx and form the group Random baseline (Rand).
We set k = 3 for top span interactions and adjust token counts as per section §2.2, ensuring the random baseline
matches the average token count of the top k span interactions.

E Shap Att IG Rand

Interaction level agreement
SpanIntEx 19.92 28.12 27.45 19.33
TokenIntEx 3.96 10.27 21.30 10.23
TokenEx - - - -

Token level agreement
SpanIntEx 66.95 68.71 72.24 67.5
TokenIntEx 66.90 67.29 70.50 65.86
TokenEx 58.07 56.88 61.07 63.10

Table 4: Human Annotation Agreement Results (see
§2.3) on the FEVER dataset when explanations are gen-
erated based on BERT. The rest of the settings are the
same as Table 3.

E Shap Att IG Rand

Interaction level agreement
SpanIntEx 37.36 47.33 34.18 28.25
TokenIntEx 32.36 35.17 33.06 13.80
TokenEx - - - -

Token level agreement
SpanIntEx 80.16 76.28 82.76 70.04
TokenIntEx 84.9 75.92 86.06 75.32
TokenEx 65.74 73.71 70.44 73.34

Table 5: Human Annotation Agreement Results (see
§2.3) on SNLI dataset when explanations are generated
based on BART. The rest settings are the same as Table
3.
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E Shap Att IG Rand

Interaction level agreement
SpanIntEx 22.86 20.66 18.72 16.76
TokenIntEx 4.71 2.64 10.54 8.64
TokenEx - - - -

Token level agreement
SpanIntEx 68.77 65.33 70.22 69.51
TokenIntEx 67.01 63.40 70.98 68.11
TokenEx 59.43 52.15 57.56 60.93

Table 6: Human Annotation Agreement Results (see
§2.3) on FEVER dataset when explanations are gener-
ated based on BART. The rest settings are the same as
Table 3.

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 87.9 3.2 86.7 2.0 88.9 4.2
TokenIntEx 86.6 1.9 85.3 0.6 85.8 1.1
TokenEx 87.4 2.7 85.7 1.0 86.0 1.3

FEVER SpanIntEx 83.9 3.8 85.3 5.2 85.2 5.1
TokenIntEx 82.7 2.6 84.0 3.9 84.4 4.3
TokenEx 84.0 3.9 82.3 2.2 81.8 1.7

Table 7: Simulatability results on SNLI and FEVER
with BERT as the model used for all explanations
E ∈ SpanIntEx,TokenIntEx,TokenEx genera-
tion with attribution method Shapley, Attention, and
Integrated Gradients respectively. Note that insertion
form ISym is adopted for combining the explanations
and the original input sequence for agent model AME ,
as depicted in §2.4. The agent models used for baseline
AMO, trained without explanations, have simulation F1
scores, as denoted in §2.4, of 84.7% and 80.0% on test
set shared with other agent models AME , as denoted
in §2.4. We set k = 1 for top SpanIntEx and calcu-
lated the number of top TokenIntEx and TokenEx
accordingly as stated in §2.2. The largest increases are
highlighted in bold for each dataset with the identical
attribution method.

in Tables 7 and 8. However, the opposite effect is
observed for BART models, as shown in Tables 9
and 10. This indicates that simulatability results are
sensitive to the explanation insertion form, high-
lighting the need for consistency in insertion form
when comparing different explanation types.

F.4 Complexity

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 87.8 3.1 87.1 2.4 88.2 3.5
TokenIntEx 86.5 1.8 87.8 3.1 86.4 1.7
TokenEx 87.0 2.3 86.3 1.6 88.4 3.7

FEVER SpanIntEx 85.7 5.6 85.1 5.0 86.0 5.9
TokenIntEx 81.9 1.8 85.6 5.5 84.3 4.2
TokenEx 85.8 5.7 84.5 4.4 82.0 1.9

Table 8: Simulatability results on SNLI and FEVER
with BERT as the model used for all input feature ex-
planation generation. Note that insertion form IText is
adopted for combining the explanations and the original
input sequence for agent model AME , as depicted in
§2.4. The agent models used for baseline AMO, which
are trained without explanations, have simulation F1
scores of 84.7% and 80.0% on the test sets shared with
agent model AME . The other setting is the same as
Table 7

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 87.8 7.9 87.3 7.4 86.5 6.6
TokenIntEx 83.5 3.6 84.2 4.3 84.6 4.7
TokenEx 88.2 8.3 81.4 1.5 85.8 5.9

FEVER SpanIntEx 80.6 7.2 76.1 2.7 75.2 1.8
TokenIntEx 78.9 5.5 75.9 2.5 74.7 1.3
TokenEx 80.1 6.7 75.0 1.6 74.1 0.7

Table 9: Simulatability results on SNLI and FEVER
with BART as the model used for all input feature ex-
planation generation. Note that insertion form ISym is
adopted for combining the explanations and the original
input sequence for agent model AME , as depicted in
§2.4. The base agent models AMO trained without ex-
planations have the simulation f1 scores of 79.9% and
73.4%, respectively on the test sets sharing with other
agent models AME . The other setting is the same as
Table 7

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 86.8 6.9 85.0 5.1 84.3 4.4
TokenIntEx 81.2 1.3 82.6 2.7 81.6 1.7
TokenEx 83.3 3.4 83.8 3.9 82.2 2.3

FEVER SpanIntEx 78.2 4.8 75.3 1.9 74.6 1.2
TokenIntEx 74.8 1.4 74.1 0.7 73.9 0.5
TokenEx 77.6 4.2 74.9 1.5 73.6 0.3

Table 10: Simulatability results on SNLI and FEVER
with BART as the model used for all input feature expla-
nation generation respectively. Note that insertion form
IText is adopted for combining the explanations and
the original input sequence for agent model AME , as
depicted in §2.4. The base agent models AMO trained
without explanations have the simulation f1 scores of
79.9% and 73.4%, respectively. The other setting is the
same as Table 7
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Dataset E Shapley Attention IG R U

SNLI SpanIntEx 2.05 1.11 2.10 2.19 2.62
TokenIntEx 1.72 1.43 2.30 - -
TokenEx 2.08 1.64 1.91 - -

FEVER SpanIntEx 2.78 2.22 2.90 2.98 3.18
TokenIntEx 3.12 3.07 3.15 - -
TokenEx 2.76 2.22 2.57 - -

Table 11: Complexity results on SNLI and FEVER
datasets for three types of explanations generated by
different attribution methods based on BERT model.
The Random baseline represents the complexity score
obtained by randomly generated scores in the range
[0,1], ensuring the same number of scores as the number
of explanations used. The Upperbound is calculated
by setting all the attribution scores to the same value
while ensuring the same number of scores as the number
of explanations used. The lowest complexity score for
each specific explanation type compared is highlighted
in bold when the explanations are generated by each
attribution method.

Dataset E Shapley Attention IG R U

SNLI SpanIntEx 1.90 1.93 1.63 2.36 2.76
TokenIntEx 2.50 2.53 2.13 - -
TokenEx 1.86 1.95 1.94 - -

FEVER SpanIntEx 2.73 3.03 2.38 3.13 3.38
TokenIntEx 3.30 3.36 2.93 - -
TokenEx 2.82 3.07 3.19 - -

Table 12: Complexity results on SNLI and FEVER
datasets for three types of explanations generated by
different attribution methods based on BART model.
The other settings are the same as Table 11.
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