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Abstract

Defeasible inferences (i.e., inferences that are
highly plausible but can be impacted by new
information) are common in everyday life. We
construct the DEFREASING dataset to evalu-
ate defeasible reasoning about property inheri-
tance (i.e., whether a subtype inherits a property
from its parent type). DEFREASING consists
of ∼95k questions covering five patterns of
reasoning and ∼8k inheritance rules. We use
generics (i.e., generalizations without quanti-
fiers) to represent the inheritance rules because
their semantics includes exceptions. The se-
mantics of generics, along with documented
human reasoning behavior, is used to automat-
ically construct the questions in DEFREAS-
ING. We evaluate 12 instruction-tuned LLMs
on DEFREASING and find that not only does
no model perform well across all pattern types,
the best performing models only achieve ∼0.64
overall F1. Further analysis highlights the chal-
lenges this type of defeasible reasoning poses,
as well as the inconsistencies in model perfor-
mance depending on the type of reasoning in-
volved and the availability of world-knowledge.

1 Introduction

In everyday life, a majority of the inferences we
make (e.g., when making decisions or in argumen-
tation) are defeasible (Chater et al., 2011). That is,
they are highly plausible but are based on incom-
plete information and can therefore be impacted
(e.g., defeated) by new information. Despite in-
creasing studies into language model (LM) behav-
ior (cf. Chang and Bergen, 2024), defeasible rea-
soning remains relatively understudied in LMs.

Defeasible inferences often arise from general-
izations, which are readily captured in language by
generics (i.e., generalizations without quantifiers).
Generics can express general rules (e.g., “birds
fly”) while allowing for exceptions (e.g., “emus
can’t fly”). They also support inferences from only
minimal evidence (Cimpian et al., 2010), making

GENERIC: Seagulls steal food.

CONCLUSION:  
This seagull will steal my salad.

The seagulls 
here avoid  
people.

A seagull  
stole my lunch  
last week.

A seagull 
didn’t steal  
my fries.

Contradicts
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QUESTION: Given the additional information, 
how likely are you to believe the conclusion?

Figure 1: Overview of the defeasible reasoning task.

them a powerful inferential mechanism. Since
generics occur frequently in texts (Herbelot and
Copestake, 2011), and often occur unintentionally
within existing reasoning datasets (e.g., Saparov
and He, 2022), they are crucial to evaluating the
defeasible reasoning abilities of LMs.

In this work, we construct a dataset DEFREAS-
ING (Defeasible Reasoning about Inheritance
from Generics) to evaluate one type of defeasi-
ble reasoning in LMs through inferences drawn
from generics. With defeasible inferences, new
information can overturn a conclusion. However,
new information can also strengthen or weaken our
confidence in a conclusion without changing the
conclusion itself (see Fig. 1). Generics are ideal
for probing this latter type of impact, since their ex-
ceptions (i.e., examples where the generic doesn’t
apply) do not invalidate the generic itself (Allaway
et al., 2023). Therefore, our dataset focuses on
one type of phenomena in defeasible reasoning
that is naturally expressed through generics: prop-
erty inheritance (i.e., whether an subtype inherits a
property from its parent type).

Our DEFREASING dataset consists of ∼95k
questions that probe defeasible reasoning about
property inheritance from generics. We use an ex-
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isting framework for the semantics of generics (All-
away et al., 2024) to automatically construct in-
stances that test whether models recognize the im-
pact of new information on defeasible inferences
based on generics. We use these instances, along
with the results of existing human studies on the
relative strengthens of property arguments (e.g.,
Osherson et al., 1990), to build and label the rea-
soning patterns in our dataset. In total, DEFREAS-
ING includes 5 reasoning patterns for ∼8k prop-
erty inheritance rules (generics). Variations of each
pattern are also included to control for the effect
world-knowledge (e.g., about the generic or its ex-
ceptions) may have on performance.

We evaluate 12 instruction-tuned LLMs on DEF-
REASING. Despite models performing well on a
single type of reasoning in our dataset, no model
performs well across all types; the best perform-
ing models only achieve ∼0.64 overall F1. We
find that models generally perform better on exam-
ples where the additional information strengthens
the conclusion, compared to examples that high-
light the conclusion’s defeasibility by weakening
it. Models also struggle to recognize both diverse
supporting evidence and irrelevant information. Fi-
nally, the design of DEFREASING facilitates analy-
sis that shows that poorer performance often results
from models relying on world-knowledge, rather
than reasoning, for predictions. Our DEFREASING
dataset highlights not only the difficulty of this type
of defeasible reasoning but also the inconsistencies
in model performance depending on the type of
reasoning involved and the availability of world
knowledge.

Our contributions are: (1) we construct the first
dataset to evaluate defeasible reasoning about prop-
erty inheritance1, (2) we leverage semantics of
generics to automatically construct a large-scale
dataset of ∼95k instances covering 5 patterns of
reasoning, (3) we show that models struggle to
perform consistently well across the patterns of
reasoning in our dataset, highlighting the ongoing
challenge of defeasible reasoning for LMs, and (4)
the design of our dataset facilitates analysis into
spurious factors affecting model performance, thus
enabling further improvements in LMs.

2 Related Work

Defeasible and Nonmonotonic Reasoning
Early work in AI on defeasible and nonmonotonic

1https://github.com/emilyallaway/DefReasInG

reasoning focused on formal logics (e.g., Reiter,
1978, 1980; Poole, 1988; Collins and Michalski,
1989) and recent NLP works have built upon these
to construct datasets to evaluate nonmonotonic rea-
soning ability in LMs. Xiu et al. (2022) construct a
dataset of proofs in nonmonotonic logic converted
into natural language and Parmar et al. (2024) use
patterns of nonmonotonic reasoning (Lifschitz,
1989) to build a QA dataset. Both of these works
evaluate what conclusions can and cannot be
drawn from premises. In contrast, our dataset
tests whether models recognize the impact new
information has on the strength of an inference,
even when the conclusions are not changed.

Nonmonotonic reasoning has also been stud-
ied within the context of natural language infer-
ence (NLI) (Cooper et al., 1994; Yanaka et al.,
2019b,a; Gubelmann et al., 2024). However, not
only are instances of nonmonotonicity limited in
these datasets but the task of NLI cannot account
for additional premises. To address this, recent non-
monotonic reasoning tasks have been built on top
of NLI (Bhagavatula et al., 2019; Rudinger et al.,
2020). While we adopt a similar task formulation
in this work, prior task datasets center around de-
feasible reasoning in social situations (Brahman
et al., 2021; Ziems et al., 2023; Pyatkin et al., 2023;
Rao et al., 2023), which conflates reasoning about
commonsense knowledge and defeasibility2. In
contrast, our work removes the influence of com-
monsense knowledge by focusing only on property
inheritance inferences.

Property Inference Recent works have investi-
gated LMs’ reasoning about inheritance over im-
plicit property knowledge (Misra et al., 2022, 2023,
2024) and taxonomic knowledge (Talmor et al.,
2020). However, the implicit knowledge makes it
difficult to disentangle model ignorance and reason-
ing ability. Additionally, although property inheri-
tance has been used to evaluate deductive reasoning
over natural language rules (Saparov and He, 2022;
Tafjord et al., 2021; Tian et al., 2021; Clark et al.,
2021), these studies make use of if-then rules (e.g.,
if A is a cat then A purrs) that are more akin to first-
order logic than to how humans often express rules
in regular language. (i.e., through generalizations
– “cats purr”). In contrast, our work studies prop-
erty inheritance from generics (a specific type of

2“Rob is late for work because he missed the bus” is weak-
ened more by “Rob rides a bike to work” than by “Rob rides
a tricycle to work” because commonsense tells us that adults
don’t ride tricycles and children (who do) don’t go to work.
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linguistic generalization) and explicit knowledge.

Generics and Reasoning Resources for gener-
ics include methods to identify them (Friedrich
and Pinkal, 2015; Friedrich et al., 2015, 2016;
Govindarajan et al., 2019) and datasets of both
generics (Bhakthavatsalam et al., 2020; Bhagavat-
ula et al., 2022) and their exemplars (i.e., cases
where the generic does and does not hold) (Allaway
et al., 2023). Additionally, studies have probed how
LMs model the semantics of generics in relation
to quantification (Ralethe and Buys, 2022; Collac-
ciani et al., 2024). Recent studies have shown that
LMs’ reasoning about generics exemplars appears
to be somewhat nonmonotonic (Allaway et al.,
2024; Leidinger et al., 2024). That is, LMs of-
ten treat exemplars as not impacting their belief in
the generic itself. In contrast to these works, we
do not study quantification or the endorsement of
a generic itself; rather, we focus on how reasoning
operates when generics are used as inference rules.

Closely related to our work is the recent explo-
ration from Allaway et al. (2024) of whether ex-
emplars cause LMs to modify their behavior about
property inheritance. They find that, similar to hu-
man pragmatic reasoning (e.g., Grice, 1975), LMs’
behavior with generics does not align with general
nonmonotonic logic patterns proposed in the AI
literature (i.e., Lifschitz, 1989). Therefore, in this
work we use more nuanced patterns of defeasible
reasoning, proposed around generics (Asher and
Morreau, 1990), to evaluate property inheritance.
Although Allaway et al. (2024) also investigate
property inheritance, their experiments focus on
the affect additional information has on whether
inheritance is inferred from a generic, rather than
on the strength of that inference. Additionally, our
work considers more types of additional informa-
tion, since Allaway et al. (2024) do not include
irrelevant information or diverse support (N-alt ,
N-prop , S-alt ; see §3.3) in their experiments.

3 DEFREASING Dataset

A defeasible inference is a plausible conclusion
drawn from a set of premises. These inferences
can be strengthened or weakened by new infor-
mation. We construct DEFREASING to evaluate
the capability of models to recognize and reason
about defeasible inferences related to property in-
heritance. That is, the instances query whether a
subtype (sparrows) of some concept (birds) inherits
a property from the concept (can fly).

In the following, we first formally define the task
and format for DEFREASING (§3.1). We then de-
fine the premises (§3.2) and additional information
(§3.3) used to evaluate different patterns of reason-
ing. Finally, we describe how we use semantics
of generics (Allaway et al., 2024) to automatically
construct the questions in DEFREASING (§3.4).

3.1 Task Definition
We formulate defeasible reasoning as a task adja-
cent to NLI, following Rudinger et al. (2020). Let
H be a conclusion that is entailed by an initial set
of premises P i. Then, given an additional set of
premises Px, the task is to predict how Px im-
pacts the entailment relation: does Px strengthen,
weaken, or not impact that relation. For simplicity,
we will refer to this impact on the entailment re-
lation as an impact on the conclusion3. Therefore,
each instance is a tuple {P i,Px,H,∆} where ∆
is the impact of Px on H.

The instances in DEFREASING all center around
a pattern of syllogistic reasoning. Specifically,
given a rule about a concept K having a property A
(e.g., birds have wings), it is inferred that a subtype
of that concept (e.g., sparrow) also has the property.
In DEFREASING, the rule is specified as a generic,
making the conclusion defeasible. This is because
the generic is a generalization and leaves room for
unspecified exceptions. In each inference question,
the initial premises P i and conclusion H adhere to
this reasoning pattern and the additional premises
Px are judged in relation to it.

In all instances, the initial premises P i consist
of statements indicating whether one or more con-
cepts (e.g., birds, sparrows) possess a specified
property A (e.g., have wings). Then, the conclu-
sion H is a single statement indicating that KH,
which is a subtype of K, also possess A. Finally,
the additional premises Px provide more informa-
tion about whether or not concepts, either those
already in P i or new ones, have property A.

3.2 Conclusion H and Initial premises P i

The conclusion H is the same across all instances.
In particular, the conclusion has the form

H = {Gen x(KH(x) → A(x))}

where Gen is quantifier (similar to ∀) which makes
the scope of x generic4. In all cases, the subtype

3In reality, it is not the conclusion itself that is impacted
but rather the belief in the conclusion.

4We cannot use ∀ because a generic is not always true.
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KH of K is a nonsense type. This prevents the
model from using world knowledge about KH in
its reasoning.

The initial premises P i consist of statements in-
dicating whether one or more concepts (e.g., birds,
sparrows) possess a specified property A (e.g., can
fly). Specifically, P i contains two elements. The
first is a rule (e.g., birds can fly) that specifies a
base concept K (birds) and a property A (have
wings) that K possesses. Each rule is provided as
a generic. The second element in P i is a set of
statements specifying the taxonomic relationship
between the concept K and one or more subtypes
of K (e.g., “sparrows are birds”).

The instances in DEFREASING consist of either
single or 2-step inheritance. For the single-step
inheritance instances, the initial premise set P i

1

consists of two statements:

P i
1 = {Gen x(K(x) → A(x)),

∀x (KH(x) → K(x))}.

So in P i
1, the first premise is the generic express-

ing a rule and the second premise makes explicit
the taxonomic relationship between K and KH

(i.e., KH ⊂ K). Note that the second premise is
necessary because KH is not a real concept.

For the 2-step instances, we add an intermediate
type C between K and KH (i.e., KH ⊂ C ⊂ K)
so the initial premises are

P i
2 = {Gen x(K(x) → A(x)),

∀x (KH(x) → C(x)) ∧ (C(x) → K(x))}

where C is a subtype of K. We choose C to ei-
ther be K+ (a subtype of K that has property A)
or K− (a subtype of K that does not have prop-
erty A). For example, for K=“birds” and property
A=“have wings”, C can either be a subtype with
wings (e.g., K+ =“sparrows”) or without wings
(e.g., K− =“Kiwi birds”).

3.3 Additional Premises Px

We construct five categories of additional premises
Px which we group by the impact they have on the
the conclusion H: strengthening (§3.3.1), weaken-
ing (§3.3.2), or no impact (§3.3.3). Note, we will
use K=“birds” and A=“have wings” as an illustra-
tive example (additional examples in Table 1).

3.3.1 Strengthening: S-case and S-alt
Given initial premises P i, the conclusion can be
strengthened with two kinds of examples. Firstly,

we have subtypes K+ of K that have property A.
These strengthen the conclusion by providing con-
firmation of the property among subtypes of K
(S-case). In the case of single-step inheritance,
these subtypes provide indirect support for inher-
itance of the property to KH. We construct the
additional premises for these examples

Px
1+ = {∀x (K+(x) → K(x)),

Gen x(K+(x) → A(x))}.

Alternatively, for 2-step inheritance, the additional
premises directly confirm the presence of the prop-
erty in the intermediate type. Notice that the
first statement in Px

1+ is already part of the ini-
tial premises P i

2 for 2-step inheritance if we set
C = K+; this also means that KH is a subtype of
K+ rather than K. The additional premises are

Px
2+ = {Gen x(K+(x) → A(x))}.

In other words, Px
2+ strengthens the conclusion by

ensuring that the property again only needs to be
inherited one step (i.e., from K+ to KH).

The second kind of strengthening example is
based on the phenomena that arguments with more
diverse evidence are stronger (Osherson et al.,
1990). Therefore, these examples use concepts
other than K (i.e., K⊕ ̸⊂ K) that have property
A (S-alt ). For our example K and A, we might
choose K⊕=“bats” since bats are not birds but do
have wings. We only construct these instances for
single-step inheritance and the premises are

Px
1⊕ = {∀x (K⊕(x) → ¬K(x)),

Gen x(K⊕(x) → A(x))}

where K⊕ is the alternate concept to K. We note
that many factors may influence human behavior
(e.g., anatomical similarity between concepts; Heit
and Rubinstein, 1994), including the underlying
concept category (Han et al., 2024). We include
discussion of the implications of this in §5.

3.3.2 Weakening: W-case
Weakening instances follow a similar pattern as de-
scribed above. That is, the conclusion is weakened
by providing examples of K without the property
A (W-case). This nonmonotonicity arises from the
fact that in reasoning with generics, information
about subtypes takes precedence over information
about the super type (Asher and Morreau, 1990).
These counterexamples then provide evidence that
the rule that K possesses A does not always apply.
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For single-step inheritance, the additional
premises that weaken the conclusion have the form

Px
1− = {∀x (K−(x) → K(x)),

Gen x(K−(x) → ¬A(x))}.

This form is analogous to the strengthening S-case
instances and so the first premise of Px

1− is already
part of P i

1 if we set C = K−. Therefore, we analo-
gously omit this premise to construct the additional
premises for 2-step instances

Px
2− = {Gen x(K−(x) → ¬A(x))}.

Note that Px
2− directly contradicts the conclusion H

by stating that the narrowest mentioned supertype
of KH (here K−) does not have property A.

3.3.3 No Impact: N-alt and N-prop
Finally, we construct instances where the addi-
tional premises Px have no impact on the conclu-
sion. Such instances contain information that is
irrelevant to the conclusion. Firstly, as irrelevant
information we use concepts other than K (i.e.,
K⊖ ̸⊂ K) that do not have property A (e.g., “cats”
for our illustrative example) (N-alt ). We denote
these concepts K⊖ and the additional premises
with them are

Px
1⊖ = {∀x (K⊖(x) → ¬K(x)),

Gen x(K⊖(x) → ¬A(x))}.

Secondly, irrelevant information can be other
properties that K possess (e.g., “have beaks” for
K =“birds”) (N-prop). These have the form

Px
1⋄ = {Gen x(K(x) → A⋄(x))}

where A⋄ is a property other than A that K possess.

3.4 Dataset Construction
We construct the 5 categories (S-case , S-alt , W-
case , N-alt , N-prop) of instances in DEFREAS-
ING automatically. This is possible because we use
generics to specify the rule in each instance, allow-
ing us to exploit the semantic relationships between
generics and their exemplars (i.e., examples where
the generic does and does not hold) to obtain the
subtypes necessary for each category of additional
premises (§3.3). Specifically, we know that there
exist not only subtypes where the generic holds
but also subtypes where it does not. We extract
and use these subtypes to construct the examples
in our dataset. We use the semantic relationships

between generics and exemplars defined by All-
away et al. (2024) to identify appropriate subtypes
(K+,K−,K⊕,K⊖) and relevant properties (A⋄)
for the additional premises (§3.3). For a more de-
tailed discussion of the semantics from Allaway
et al. (2024), see Appendix B.

3.4.1 Type Extraction
Subtypes: K+ and K− For both S-case and W-
case examples we need subtypes of the base con-
cept K. In particular, for strengthening instances
we need subtypes K+ that also have the property A.
Since our base rule is expressed by a generic, these
supporting subtypes will occur in instantiations of
the generic. In contrast, the weakening instances
require subtypes K− that do not have the property
A; these will occur in exceptions to the generic5.
In 2-step inheritance, we use the same subtypes for
the corresponding single-step instances.

Alternates: K⊕,K⊖, and A⋄ For S-alt in-
stances, we need K⊕ that are concepts distinct
from K that also have property A. For a generic,
the concept-alternate examples from Allaway et al.
(2024) have this specific type of concept. Since
these exemplars also require that their alternate con-
cepts are relevant to the generic (e.g., “airplanes
have wings” is not relevant to “birds have wings”
but “bats have wings” is), we can use these to ob-
tain K⊕ that strengthen inheritance conclusions.

Similar to the concept alternates, Allaway et al.
(2024) define property-alternate exemplars that
specify other properties possessed by the concept
K. We use these property-alternate exemplars to
obtain A⋄ for the N-prop examples.

Finally, K⊖ in N-alt examples should be a con-
cept that does not have property A. However, state-
ments with such K⊖ are not relevant to the generic
“K have A” and therefore cannot be obtained from
exemplars (e.g., “cats don’t have wings” is not an
exemplar for “birds have wings”). Furthermore, we
still want K⊖ to be related to K so that it is not ob-
viously irrelevant (e.g., “cats” are related to “birds”
whereas “boats” are not). Therefore, to obtain K⊖,
we first categorize the concept in a generic (e.g.,
“bird” has the category “animal”). Then, we ran-
domly select a related second category (e.g., “fish”)
from which we sample candidate K⊖. Finally, to
ensure that K⊖ does not have property A, we pass
the candidates through a truth filter.

5For clarity, we use our own names for exemplar types.
See Appendix B for the mapping to Allaway et al. (2024).
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Initial Premises P i Additional Premises Px Name

P i
1: Cats sleep in trees. A Wumox is a cat.

Px
1+: Leopards are cats. Leopards sleep in trees. S-case

Px
1⊕: Koalas are not cats. Koalas sleep in trees. S-alt

Px
1−: Cheetahs are cats. Cheetahs do not sleep in trees. W-case

Px
1⊖: Dogs are not cats. Dogs do not sleep in trees. N-alt

Px
1⋄: Cats sleep in beds. N-prop

P i
2: Cats sleep in trees. Leopards are cats.

A Wumox is a leopard.
Px
2+: Leopards sleep in trees. S-case

P i
2: Cats sleep in trees. Cheetahs are cats.

A Wumox is a cheetah.
Px
2−: Cheetahs do not sleep in trees. W-case

H: Wumoxes sleep in trees.

Table 1: Examples of the initial (Pi) and additional (Px) premises for the patterns in DEFREASING. Examples are
based on the generic “cats sleep in trees”. The hypothesis H is the same for all tuples ⟨Pi,Px,H, ·⟩ represented.

3.4.2 Real vs. Nonsense Type Variations
In order to account for the impact of world-
knowledge about the various types included in the
additional premises, we construct two kinds of ad-
ditional premises Px for each of the five categories
described in §3.3. One kind uses a real type while
the other uses a nonsense type. For example, for
Px
1+ we construct instances using a real subtype

of K for K+ (e.g., K+=sparrows for K=bird) and
using a nonsense type for K+ (e.g., a Wumox).
Note that because the Px for N-prop examples do
not contain a subtype or alternate type to K (see
§3.3), we do not create two kinds of instances for
this category. Overall, DEFREASING includes 13
kinds of instances with real and nonsense types for
4 of the 5 categories, 2 of which also have single
and 2-step inheritance questions.

3.4.3 Implementation Details
As a source of generics and exemplars we use a
subset of 8726 generics and accompanying exem-
plars (AnimalG-Ex) from Allaway et al. (2024).
Specifically, we use generics concerning animals
which have valid exceptions. For each generic, we
take the top ranked exemplar for each relevant type
(§3.4.1) in constructing our examples. Namely, we
use the top-ranked concept instantiation for K+,
exception for K−, concept-alternate exemplar for
K⊕, and property-alternate exemplar for A⋄.

To obtain K⊖, we use the categories and prop-
erty annotations from the XCSLB dataset (Dev-
ereux et al., 2014; Misra et al., 2022), a dataset of
human-annotated property norms for 521 concepts.
Specifically, we categorize each concept K and
randomly select a second category to sample K⊖

from. Then, we compute the similarity between the
concept K and each concept in the second category
and sample the five most similar concepts from this

second category as candidate K⊖. We pass the re-
sulting property statements (i.e., “K⊖ do not have
A”) to a truth filter and the final K⊖ is the most
similar candidate that the truth filter validates does
not have property A.

For a pair of concepts, we follow Misra et al.
(2023) and measure similarity as the Jaccard index
between two feature vectors that represent the prop-
erties each concept in the pair does and does not
have. The properties considered are those in XC-
SLB. The feature values combine the XCSLB an-
notations with concept-property information from
the generics in AnimalG-Ex. For the truth filter, we
construct a property statement for each candidate
K⊖ of the form “Sometimes K⊖ [have-property]”
(e.g., “Sometimes cats have wings”). Following
Allaway et al. (2024), we prompt GPT-3.5 to label
each statement as true or false and discard candi-
dates labeled true, since K⊖ should not have the
property. See Appendix A for full data details.

3.4.4 Dataset Statistics

DEFREASING contains 94671 instances covering
8726 generics (see Table 1 for examples). Note that
due to the small size of XCSLB, we only obtained
viable K⊖, and N-alt examples, for 200 generics
(we denote this subset DEFREASING∗N-alt ).

4 Experiments

We describe the models (§4.1) and prompting set-
up (§4.2) used to evaluate models on DEFREAS-
ING (full implementation details in Appendix C).

4.1 Models

We evaluate 12 instruction-tuned LLMs on our DE-
FREASING dataset. The models include LLMs
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Please answer with only “more likely”, “less likely”,
or “it has no impact”.
Consider the following information: [P i]
From this information we can draw a conclusion
about [KH].
Conclusion: [H].
Now suppose we are given additional information.
Additional information: [Px]
Given the additional information,
how likely are you to believe the conclusion?

Table 2: Example prompt format. The system instruc-
tion is in italics above the dashed line.

both from the top of evaluation leaderboards6 and
from prior studies on nonmonotonic reasoning (Lei-
dinger et al., 2024). We use 9 open-source or
open-weight models: Mistral (Jiang et al., 2023),
Mixtral (Jiang et al., 2024), Hermes (NousRe-
search, 2023), Starling (Zhu et al.), Zephyr (Tun-
stall et al., 2023) Llama2 (Touvron et al., 2023),
Llama3 (Meta, 2024b), Llama3.1 (Meta, 2024a),
and Wizard (Xu et al., 2023). We also evaluate
GPT-3.5 (Ouyang et al., 2022), GPT-4 (Achiam
et al., 2023), and GPT-4o (OpenAi, 2024).

4.2 Prompt Format

We format the examples in DEFREASING using a
chat set-up which includes a system prompt (see
Fig. 1). Although the exact format of the chat tem-
plate is dependent on the model (see Appendix C),
the instruction wording is the same across models.
For models that do not support a system prompt,
we append the system instructions to the beginning
of the user input. To convert the model output into
labels, we check whether the response contains the
label phrases from the system prompt (e.g., “more
likely” or “less likely”).

Since LLM behavior can vary depending on the
wording in the prompt (Webson and Pavlick, 2022;
Leidinger et al., 2023), we experiment with three
different prompts. The first uses more natural and
colloquial language (see Table 2). The third uses
Chain-of-Thought (Wei et al., 2022) prompting by
adding “Lets think step by step” to the first type of
prompt. Our results are averaged across prompts
(see Appendix D for per-prompt results).

5 Results and Analysis

We report the overall accuracy and macro-averaged
F1, along with the accuracy for each question, for

6AlpacaEval and ChatBot Arena.

each model on DEFREASING in Table 3. Note
that due to computational costs we only evaluate
GPT-3.5/4/4o on DEFREASING∗N-alt .

Overall, the best performing models only
achieve ∼0.64 F1 across all question categories,
leaving substantial room for improvement. Further-
more, there is large variation in the performance
per category, suggesting that models may correctly
recognize only certain types of reasoning. We dis-
cuss the results in more detail below.

We observe that while models may perform very
well on one type of example (e.g., identifying
strengthening evidence in S-case examples), no
model performs well across all categories of ex-
amples. For example, while Starling and Llama3
both perform close to perfect on S-case instances,
both models perform very poorly (close to 0 F1)
at identifying information that does not impact the
conclusion (N-alt and N-prop instances).

Generally, the best performing models are those
that exhibit the least variation in performance
across categories. In particular, Mixtral and Zephyr
have the highest overall F1 scores, although their
performance is not the highest for any individ-
ual question type. It should be noted that low
cross-category variation can also be due to con-
sistently low performance (e.g., Llama2); likewise,
high overall F1 can result from near perfect per-
formance on several types (e.g., Llama3). How-
ever, the latter indicates that in order for models to
achieve better results on DEFREASING they must
demonstrate some grasp of each of the three ways
(strengthen, weaken, no impact) that new evidence
can affect reasoning.

Monotonicitiy is easier than nonmonotonicity
Model performance is generally higher on the
strengthening evidence examples (S-case and S-
alt), which have a monotonic impact on the conclu-
sion, than on the weakening evidence examples (W-
case), which have a nonmonotonic impact7. Note
that Llama3.1 (in addition to Zephyr, GPT-4/4o) is
an exception to this; in fact, it achieves the high-
est performance on the weakening examples while
having some of the lowest performance on strength-
ening examples, emphasizing the large variations
in performance across categories.

Models struggle to recognize diverse support
Models generally perform much better on the S-

7Only the 2-step W-case’s formally result in a nonmono-
tonic inference (i.e., the conclusion should be withdrawn); the
single-step W-case’s indicate a potential nonmonotonicity.
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S-case S-alt W-case N-alt N-prop Overall
1step 2step 1step 2step Acc. F1

Mistral 0.8665 0.9317 0.0375 0.2758 0.4929 0.9883 0.7943 0.5501 0.4940
Mixtral 0.9523 0.9547 0.2577 0.5092 0.6890 0.6642 0.5000 0.6788 0.5912
Starling 0.9987 0.9990 0.4904 0.6663 0.6743 0.0001 0.0420 0.7045 0.4687
Zephyr 0.7168 0.7468 0.1130 0.8658 0.9887 0.4875 0.4993 0.6737 0.5894
Hermes 0.9873 0.9913 0.5880 0.9712 0.9826 0.0 0.0110 0.8327 0.5885
Llama2 0.6291 0.5998 0.4643 0.2317 0.4102 0.3475 0.3509 0.4575 0.3216
Llama3 0.9986 0.9986 0.9357 0.9423 0.9997 0.0001 0.0210 0.8904 0.6353
Llama3.1 0.6280 0.6573 0.3883 0.9886 0.9998 0.0617 0.0420 0.6747 0.4678
Wizard 0.8063 0.6927 0.3322 0.7950 0.8892 0.0808 0.1667 0.6589 0.5256
GPT-3.5∗ 0.9908 0.9867 0.6299 0.8342 0.9517 0.1992 0.1296 0.7207 0.6023
GPT-4∗ 0.0100 0.1308 0.0 0.7750 0.9725 1.0 0.9983 0.4415 0.4214
GPT-4o∗ 0.0075 0.1083 0.0 0.9858 0.9942 1.0 0.9427 0.4135 0.3959

Table 3: Accuracy on DEFREASING across reasoning types (§3.3) and macro-F1. Results are averaged across
prompts (§4.2) and across real and nonsense types (§3.4.2). Best model is bolded, worst model is underlined. ∗

indicates the evaluation is done only on DEFREASING∗N-alt . 1step and 2step indicate single and 2-step inheritance.

case examples compared to the S-alt examples. Re-
call that the S-case examples include a subtype of
the concept where the property is inherited while
the S-alt examples include an alternate concept
that has the property. These latter cases support
the conclusion by providing diverse supporting ex-
amples. While a preference for diverse property
inheritance arguments has been documented in hu-
mans (Osherson et al., 1990), recent studies have
also found that humans are not consistent in this
behavior (Han et al., 2024). Therefore, we conduct
additional analysis into the S-alt examples and their
labeling in Appendix D.1.

Shallow heuristics may also be impacting how
models perform on S-alt examples. For example,
recall that both S-case and S-alt examples explic-
itly state the taxonomic link (or lack thereof) to the
concept. For the S-alt examples, this link includes a
negation (e.g., “Cows are not sheep”). We observe
a statistically significant positive correlation (Pear-
son’s r)8 for most models between the presence of
“not” in the additional premises and more predic-
tions of the “weakens” label. We note that although
inclusion of the taxonomic statement may impact
the performance on these cases negation cannot be
simply avoided when studying LLMs; this is espe-
cially true in defeasible reasoning, where weaken-
ing evidence often explicitly contradicts a premise
using negation. Therefore, the performance on
these alternate cases serves both to further docu-
ment the struggles of LMs at handling negation (cf.
Chang and Bergen, 2024) and to underscore the
limitations in LM ability that arise as a result.

8Using a two-sided t-test with p < 0.0001.

Irrelevant evidence is not irrelevant It has been
previously documented that models struggle to han-
dle irrelevant information (Shi et al., 2023). Our
results show that, for most models, this is also
the case in reasoning about property inheritance.
That is, model performance on the “no impact” (N-
alt and N-prop) examples is substantially lower
than performance on the strengthening and weak-
ening examples. We note that although both GPT-4
and GPT-4o perform at or close to 100% accuracy
on the “no impact” examples, they have a strong
bias towards predicting “no impact” (predicted on
∼60% of examples). This leads to poor perfor-
mance for S-case and S-alt examples. Interestingly
this bias does not appear for the W-case examples,
potentially as a result of the previously mentioned
reliance on negation for those instances. This bias
towards “no impact” may also explain the differ-
ence in behavior between GPT-4/GPT-4o and GPT-
3.5, the latter of which only predicts “no impact”
on 7% of instances. Furthermore, we observe that
although Mistral performs relatively well on the
N-alt and N-prop examples, its performance on
W-case and S-alt instances is very poor. Therefore,
models that appear to recognize irrelevant infor-
mation have substantial limitations in their general
defeasible reasoning ability.

Reliance on World-Knowledge Spurious associ-
ations are well documented in models for reasoning
in natural language (Poliak et al., 2018; McKenna
et al., 2023). Therefore, DEFREASING has ex-
amples using both real and nonsense types in the
additional premises (§3.4.2). In this way we can
observe whether predictions are impacted by world-
knowledge about the real types.
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S-case S-alt W-case N-alt
1step 2step 1step 2step

Mistral +.049 -.009 +.042 -.111 -.084 +.007
Mixtral -.052 -.028 -.108 -.018 +.274 +.202
Starling -.003 +.001 -.004 <.001 +.011 +.002
Zephyr +.162 -.019 +.025 -.137 -.014 -.068
Hermes -.003 +.001 -.055 -.021 -.018 0.0
Llama2 -.024 +.020 -.009 -.004 -.009 -.005
Llama3 -.003 <.001 -.031 +.045 <.001 -.002
Llama3.1 +.011 -.011 +.119 +.011 <.001 +.027
Wizard +.017 +.145 +.105 -.088 +.005 +.015
GPT-3.5 +.005 -.003 +.045 -.165 -.020 +.052
GPT-4 +.020 +.162 0.0 -.343 -.005 0.0
GPT-4o +.008 +.067 0.0 -.028 +.005 0.0
AVG +.016 +.027 +.011 -.081 +.012 +.019

Table 4: Difference between accuracy on real and non-
sense types (§3.4.2) for each category. 1step and 2step
indicate single and 2-step inheritance respectively.

We observe (Table 4) that generally the perfor-
mance differences between the real and nonsense
types are quite small. However, some models do
exhibit discrepancies that indicate that they may be
relying on world-knowledge to make predictions.
For example, Zephyr’s performance on S-case in-
stances drops ∼16 points with the nonsense types
and for W-case instances it increases ∼14 points
with the nonsense types. Additionally, we observe
that models with mediocre performance (e.g., Mis-
tral) are more sensitive to the nonsense types. This
shows the importance of considering world knowl-
edge when evaluating defeasible reasoning.

Comparison to Human Tendencies We ex-
amine how model behavior compares to human
tendencies on a subset of DEFREASING∗N-alt .
Specifically, we have humans annotate a subset of
390 examples, following the instructions in the nat-
uralistic version of the prompt (see Table 2). See
Appendix D.1 for full details.

We find that the inter-annotator agreement is
82%, with an average alignment (i.e., agreement
between the human annotators and the DEFREAS-
ING∗N-alt labels) of 79%. We observe that most
disagreements between annotators, as well as in-
stances of misalignment, arise from the W-case
examples with real types and from the S-alt ex-
amples (40% and 50% inter-annotator agreement
respectively). In fact, the average alignment for the
other instance types, excluding S-alt and W-case,
is 96% (with an average inter-annotator agreement
of 93%). This indicates that for most types in DE-
FREASING, human tendencies closely align with
the labels.

Looking at the sources of disagreement, we first
observe that for the S-alt examples, disagreements
are partly due to the relevance of the alternate con-
cept (K⊕) used in the premises (see Appendix D.1
for additional analyses). For example, for the
generic “hawks eat rabbits”, additional premises
with K⊕ =“weasels” are not strengthening be-
cause K⊕ is not a relevant alternative to K. Future
work should investigate the role of conceptual sim-
ilarity in reasoning about the S-alt examples.

Secondly, for W-case examples, the disagree-
ments and misalignment often arise when a sub-
type contains a description that directly counters
the generic. For example, the subtype “moose that
have lost their teeth” directly counters the generic
“moose have teeth”. While examples with this kind
of subtype are labeled as weakening in DEFREAS-
ING, human tendencies may differ. For one, hu-
mans may consider these subtypes a special cir-
cumstance and therefore irrelevant to inheritance
(e.g., losing teeth is a special circumstance that
doesn’t impact moose in general), thus affecting
the single-step W-case examples. Alternatively,
these subtypes may lead to redundant information
being provided in the additional premises. This is
because in the 2-step W-case examples, the sub-
type is part of the initial premises (e.g., “moose
that have lost their teeth are moose”; §3.2) and so
the additional premise (e.g., “moose that have lost
their teeth do not have teeth”) is unnecessary. Fu-
ture work should investigate how to better account
for human behavior on these kinds of examples.

6 Conclusion

We present the DEFREASING dataset to evaluate
defeasible reasoning in LLMs. It consists of ∼95k
questions that probe how models reason about prop-
erty inheritance from generics and covers five pat-
terns of reasoning for ∼8k inheritance rules. The
questions in DEFREASING are constructed auto-
matically based on documented human property-
reasoning behavior and semantics of generics. We
evaluate 12 instruction-tuned LLMs on DEFREAS-
ING and find that no model performs well across
all reasoning types. Our analysis highlights incon-
sistencies in performance depending on the type of
reasoning and the availability of world-knowledge.
These results indicate that there is more work to
be done in order for LMs to handle defeasible rea-
soning. We hope that DEFREASING will stimulate
progress in this area.
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7 Limitations

Due to computational limitations, we run Mixtral
quantized. Note that there is evidence that quantiza-
tion does not substantially impact Mistral models’
performance on numerous tasks (Badshah and Saj-
jad, 2024).

Additionally, the dataset of generics and exem-
plars from Allaway et al. (2024) used to create DE-
FREASING is synthetic. Although Allaway et al.
(2024) conduct human evaluation on a portion, and
find very high precision, they also note that it is
likely that the generics appeared in some way in
the training data of LMs. Since our DEFREASING
dataset uses this data, it is likely that the training
data for LMs includes the generics (i.e., inheritance
rules) included in DEFREASING. However, the ac-
tual reasoning questions in DEFREASING have
been newly constructed and should therefore not
be part of any LM training dataset. Note also that
our dataset only contains English examples.

We construct the labels for DEFREASING based
on documented behavior in how humans reason
about property inheritance arguments. Many stud-
ies have been done on such behavior and there are
numerous factors that affect behavior. For example,
whether or not a property is anatomical or behav-
ioral can impact the strength of inferences (Heit
and Rubinstein, 1994). Further work should be
done to examine the impact that these factors have
on the reasoning examples in our dataset. We also
note that human studies were done with English-
speaking participants and it is possible that biases
(e.g., cultural or linguistic) may have impacted their
results.

Finally, we note that DEFREASING focuses on
only a single semantic phenomena in defeasible
reasoning. This phenomena has relatively simple
syntax, making it an ideal starting point for in-
vestigating defeasible reasoning abilities in LMs.
However, there are many other types of defeasible
reasoning. For example, inferring that it rained be-
cause the grass is wet is a defeasible inference; the
grass may actually be wet because a sprinkler was
turned on nearby. These other types of defeasible
inferences should be studied in order to obtain a
more robust understanding of how LMs behave on
defeasible reasoning tasks.
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A DEFREASING Details

All preprocessing code and relevant data files will
be made publicly available under a CC-BY license.

A.1 Data Resources Used

AnimalG-Ex: Generics Exemplars Data To
construct DEFREASING, we use a subset of the
dataset of generics and exemplars from Allaway
et al. (2024). The license for this data was not spec-
ified by the authors but the paper is made available
under a CC-BY license. Specifically, we use the An-
imalG subset, which consists of generics about an-
imals and the corresponding exemplars generated
from their ExempliFI system. This subset contains
15028 generics and 325635 generated exemplars.
We further filter this subset, keeping only generics
that have valid exceptions. Note that Allaway et al.
(2024) call these “default exceptions” (see §B for
a discussion of this terminology). This filtering
leaves a subset 8726 generics, along with their ex-
emplars. We denote this subset AnimalG-Ex. Note
that each generic (exemplar) consists of three com-
ponents: concept, verb, and property. The datafiles
include both parses (which indicate the text spans
for the three components for item) and word forms
(the plural and singular of the concept and verb, as
well as the negation of the verb).

XCSLB Data We also use the XCSLB
dataset (Devereux et al., 2014; Misra et al., 2022)
in constructing DEFREASING. This data is
licensed by Misra et al. (2023) under an Apache
2.0 License. XCSLB (Misra et al., 2022) is
an expanded version of the CLSB (Centre for
Speech, Language, and the Brain) dataset of
concept-property norms (Devereux et al., 2014)
used in Misra et al. (2023). The expanded dataset
includes 521 concepts and 3927 properties. Note
that these properties contain a verb, unlike in
AnimalG-Ex.

The feature matrix (FeatM), indicating which
concepts have which properties is very sparse.
Therefore, we use the generics in AnimalG-Ex to
somewhat decrease this sparsity. Specifically, we
first match the concepts in AnimalG-Ex with the
concepts in XCSLB. Then, for each generic we
combine the verb and property to obtain a property
span that can match with XCSLB. If the concept
and property-span combination exists in XCSLB,
we update FeatM accordingly. In total we make
updates for 54 concepts with a median of 3 added
feature values. We denote the updated FeatM as
FeatM+AG and the portion of AnimalG-Ex that
overlaps with XCSLB as AnimalG-Ex-XCLSB
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A.2 Implementation Details
In order to extra K⊖ for the N-alt examples,
we use XCSLB and the updated feature matrix
FeatM+AG. The XCSLB data includes a catego-
rization of concepts in 9 categories (bird, animal,
sea creature, flower, invertebrate, vegetable, fish,
food, fruit) which we use to categorize the concepts
in AnimalG-Ex-XCSLB.

We now describe the process of obtaining K⊖

for a single generic with concept K. First, we
randomly sample a category using a uniform dis-
tribution across categories, excluding the category
that K belongs to. Next, having obtained this sec-
ond category, we remove from its list of members
any concept that has the property in the generic.
Then we compute the similarity between K and
each concept in the second category. To do this,
we compute the Jaccard index between the feature
vectors (obtained from FeatM+AG) for the two con-
cepts. Finally, we select as candidate K⊖, the 5
concepts from the second category that are most
similar to K. If there are fewer than 5 concepts, we
take them all.

The FeatM+AC matrix is not complete in that
the absence of a feature value (i.e., a concept is
not annotated has having some property) does not
guarantee that the concept does not have the prop-
erty. Therefore, we construct a property statement
for each candidate K⊖ of the form “Sometimes
K⊖ [property-span]” (e.g., “Sometimes cats have
wings”) where [property-span] is the property as
it appears in FeatM+AG. We then pass these state-
ments to a truth filter. In particular, we give GPT-
3.5-Turbo the following instruction

Is the following statement true? Please
answer only with “yes” or “no”.

We keep candidates where the responses is “no”. If
multiple candidates pass the filter, we take the one
that is most similar to the base concept K. We use
the same hyperparameters for this filter and for the
experiments with GPT-3.5 (see Appendix C.1).

For the examples in our dataset that use non-
sense types, we randomly choose one of 6 possible
nonsense types for each generic and use the same
type for all questions based on that generic. These
types are taken from Allaway et al. (2024) and are:
Dofik, Yeb, Wumox, Bafu, and Goq.

A.3 Complete Statistics
We show complete dataset statistics for DEFREAS-
ING and DEFREASING∗N-alt in Table 5. Recall

DEFREASING DEFREASING∗N-alt

S-case
1step

R 8726 200
X 8726 200

2step
R 8726 200
X 8726 200

S-alt
R 8217 194
X 8217 194

W-case
1step

R 8726 200
X 8726 200

2step
R 8726 200
X 8726 200

N-alt
R 200 200
X 200 200

N-prop 8029 198

Table 5: Number of instances per question type DEF-
REASING and the DEFREASING∗N-alt subset. 1step
and 2step indicate single and 2-step inheritance. R and
X indicate real and nonsense types (see §3.4.2).

that DEFREASING small is a subset of DEFREAS-
ING.

A.4 Risks and Intended Use

The intended use of DEFREASING is to evaluate
LM and facilitate improvements in LM reasoning.
The data is not intended for fine-tuning models in
its current state. This is because it is synthetically
created and therefore likely contains spurious ar-
tifacts that a LM could learn during fine-tuning.
Although fine-tuning is not the intended use, it is
possible that developers may still use it for that pur-
pose, thereby achieving high performance on the
task. Additionally, once the data is made publicly
available, it may be included at some point in the
training data of future LMs. Therefore, in future
caution should be used when evaluating LMs for
which the training data includes data from 2024
onwards. Finally, we note that our dataset does not
contain any information related to people, includ-
ing personally identifying information.

B Semantics of Generics

We use semantics of generics and exemplars from
Allaway et al. (2024) to extract the types used in the
examples in DEFREASING. As noted in §3.4, we
refer to exemplars using our own names for them
for clarity. In the following, we briefly summarize
the main idea of Allaway et al. (2024) and then
describe how the names we use for exemplars line
up with those in their original paper.

The semantic framework from Allaway et al.
(2024) uses ideas about information structure to
relate generics (e.g., “cats are cute”) and exemplars
to an implicit discourse question (e.g., “what is

10553



cute?”). Depending on the focus of that question,
different types of exemplars are valid. In partic-
ular, they define five types of exemplars, four of
which we use in constructing our dataset. We detail
our name and the original term, along with a brief
definition, below

• Instantiations (originally: concept-focused
instantiations). These are subtypes of the con-
cept that have the property from the generic.
For example, for the generic “birds have
wings”, these are examples of birds that do
have wings (e.g., seagulls, owls).

• Exceptions (originally: default exceptions).
These are examples where the generic does
not hold. For example, for the generic “birds
can fly” these would be examples of birds that
cannot fly (e.g., ostriches, emus).

• Concept-alternate examples (originally:
concept-focused exceptions). These are ex-
amples of alternate relevant concepts that also
have the property specified in the generic. For
example, for “birds can fly”, these might be
concepts like “bats” or “flying squirrels”.

• Property-alternate examples (originally:
property-focused exceptions). These are ex-
amples of other properties that the concept
from the generic possesses. For example, for
“birds can fly” properties might include “sing”
and “build nests”.

We note that the full semantics as defined by All-
away et al. (2024) is quite complicated, drawing on
multiple linguistic concepts, and we therefore refer
the interested reader to their original paper for full
details.

C Experiment Details

C.1 Hyperparamters
We use Huggingface9 to run models for our ex-
periments. The specific checkpoints used are
shown in Table 6. For Mistral, we use the
mistral-inference and mistral-common pack-
ages to run inference. All experiments are run on an
NVIDIA RTX A6000 GPU. For generation, we set
the maximum generation length to 10 new tokens,
and we use temperature 0.0. For OpenAI models,
we set both the frequency penalty and presence
penalty to 0.0.

9huggingface.co

Mistral mistralai/Mistral-7B-Instruct-v0.2
Mixtral mistralai/Mixtral-8x7B-Instruct-v0.1
Hermes teknium/OpenHermes-2.5-Mistral-7B
Starling berkeley-nest/Starling-LM-7B-alpha
Zephyr HuggingfaceH4/zephyr-7b-beta
Llama2 meta-llama/Llama-2-13b-chat-hf
Llama3 meta-llama/Meta-Llama-3-8B-Instruct
Llama3.1 meta-llama/Meta-Llama-3.1-8B-Instruct
Wizard WizardLMTeam/WizardLM-13B-V1.2
GPT-3.5 gpt-3.5-turbo-0613
GPT-4 gpt-4-turbo-2024-04-09
GPT-4o gpt-4o-2024-05-13

Table 6: Specific checkpoints of models used in our
experiments.

A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user’s questions.
[Instructions]
USER: [Prompt]
ASSISTANT:

Table 7: Chat template for generating model output
from Wizard. [Square brackets] indicate placeholders
for the system instructions and prompt.

As noted in the limitations, we run Mixtral quan-
tized due to computational constraints. For this,
we use the BitsAndBytes package10. Additionally,
the following models are loaded in 16-bit floats
since they were trained that way: Llama2, Llama3,
Llama3.1, and Wizard.

C.2 Prompts

For all models except Wizard we use Huggingface
to automatically construct model input using the
model-specific chat template format. Since this
format is not implemented for Wizard, we automat-
ically construct the input with the format shown in
Table 7.

As discussed in §4.2, we average our results
over three prompts (see Table 8). The first prompt
(see (a)) uses natural and colloquial language while
the second (see (b)) uses logic terms. The third
prompt uses chain-of-thought prompting with the
more natural language from the first prompt (see
(c)).

D Supplementary Results

We show in Table 9 the full results across the 13
types of instances for each model and prompt.

10https://huggingface.co/docs/bitsandbytes/
main/en/index
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(a) Please answer with only “more likely”, “less likely”,
or “it has no impact”.
Consider the following information: [P i]
From this information we can draw a conclusion
about [KH].
Conclusion: [H].
Now suppose we are given additional information.
Additional information: [Px]
Given the additional information,
how likely are you to believe the conclusion?

(b) Please answer with only “strengthens”, “weakens”
or “it has no impact”.
Consider the following premises: [P i]
This entails the conclusion that [H].
Additional information: [Px]
How does the given additional information
impact the conclusion??

(c) Please answer with only “more likely”, “less likely”,
or “it has no impact”.
Let’s think step by step.
First, consider the following information: [P i]
From this information we can draw a conclusion
about [KH].
Conclusion: [H].
Now suppose we are given additional information.
Additional information: [Px]
Given the additional information,
how likely are you to believe the conclusion?

Table 8: The three prompts used in our experiments.
The system instruction is in italics about the dashed
line.

In Table 10 we show the Pearson’s r correlation
between the presence of “not” in the additional
premises and the prediction of “weakens” by a
model. Note that correlation is computed across
examples where “weakens” is not the correct label.
The p-values for significance are computed using
a two-sided t-test. The correlation and p-values
computed using Scipy11 and therefore p-values of
0.0 are indicative of numerical underflow. Addi-
tionally, GPT-4o does not predict any “weakens”
label for the subset considered for prompts (b) and
(c). Therefore, the correlation (and p-value) are
undefined (NaN) in these cases.

D.1 Human Annotation Study

We conduct an annotation study by randomly se-
lecting 30 generics from DEFREASING∗N-alt and
collecting annotations for all 13 different examples
for each generic (390 examples total). Annota-
tions are done by two annotators who are NLP
researchers familiar with generics. Each annotator
was asked to annotate the examples for 20 generics.

11https://docs.scipy.org/doc/scipy/reference/
stats.html

The generics were split such that the examples for
10 generics were annotated by both annotators.

We show complete agreement measures in Ta-
ble 11. As noted in §5, the majority of disagree-
ments and misalignments arise from the W-case
and S-alt examples. We discuss here in more detail
the S-alt cases, see §5 for discussion of the W-case
examples.

First, we observe that for the S-alt examples
with real types, disagreements arise partly from the
relevance of the alternate concept (K⊕) used in the
premises. For example, for the generic “hawks eat
rabbits” the alternate concept K⊕ =“weasels” is
not relevant to the concept “hawks”, and so does
not provide strengthening evidence. In contrast,
K⊕ =“seagulls” is a valid and relevant alternative
to the concept in the generic “hawks have wings”.
These results suggest that similarity is necessary
for determining whether diverse support is actually
strengthening.

Our second observation builds off of this: for
the S-alt examples with nonsense types there is
0% alignment between either annotator and DE-
FREASING, and 100% agreement between anno-
tators. This suggests that in the absence of any
inferable similarity information about concepts, al-
ternative concepts are treated as irrelevant. Since
this is a departure from the labeling of DEFREAS-
ING, we conduct additional analysis into how re-
labeling the S-alt examples with nonsense types
affects model results. Specifically, we construct a
modified version of DEFREASING where the la-
bels for S-alt examples with nonsense types are
changed from “strengthening” to “no impact”. We
denote this dataset δS-alt . We show the accuracy
on DEFREASING compared to δS-alt in Table 12.
We observe that for some models (e.g., GPT-4 and
GPT-4o) there is a clear improvement on the S-alt
instances with nonsense types in δS-alt . However,
for other models (e.g., Llama3 and Llama3.1) there
is a degradation in performance. This suggests that
models do not consistently behave like either the
humans from Osherson et al. (1990) (on which our
DEFREASING labeling is based) or our human an-
notators. Further work is needed to investigate this
phenomenon.

We note that on δS-alt , the best performing
model (Zephyr) still only achieves 0.697 overall
F1. In comparison, on DEFREASING the best
performing model (Llama3) achieves 0.635 overall
F1; on δS-alt the performance of Llama3 drops to
0.603 F1. Therefore, modifying the labeling does
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S-case S-alt W-case N-alt N-prop Overall
1step 2step 1step 2step

R X R X R X R X R X R X Acc. F1

Mistral
0.957 0.985 0.986 0.989 0.127 0.027 0.052 0.085 0.234 0.495 0.975 0.955 0.749 0.522 0.458 (a)
0.794 0.568 0.844 0.827 0.012 0.001 0.562 0.798 0.984 0.899 1.0 1.0 0.777 0.650 0.613 (b)
0.922 0.973 0.952 0.992 0.016 0.001 0.047 0.111 0.135 0.211 1.0 1.0 0.857 0.479 0.411 (c)

Mixtral
0.949 0.990 0.956 0.988 0.398 0.545 0.582 0.730 0.961 0.893 0.535 0.335 0.376 0.766 0.647 (a)
0.905 0.970 0.977 0.981 0.046 0.154 0.446 0.276 0.616 0.423 0.990 0.695 0.734 0.599 0.547 (b)
0.925 0.975 0.889 0.937 0.329 0.398 0.472 0.549 0.901 0.340 0.770 0.670 0.390 0.672 0.580 (c)

Starling
0.996 1.0 0.999 0.998 0.231 0.233 0.985 0.998 0.999 0.999 0.0 0.0 0.001 0.775 0.542 (a)

1.0 1.0 1.0 1.0 0.967 0.997 0.029 0.003 0.041 0.009 0.005 0.0 0.125 0.557 0.319 (b)
0.996 1.0 0.999 0.998 0.273 0.254 0.984 0.999 0.999 0.999 0.0 0.0 0.0 0.781 0.546 (c)

Zephyr
0.903 0.897 0.862 0.973 0.216 0.179 0.860 0.985 0.990 0.998 0.160 0.230 0.311 0.750 0.627 (a)
0.573 0.070 0.445 0.316 0.009 0.0 0.726 0.829 0.974 0.990 0.975 0.760 0.849 0.529 0.514 (b)
0.917 0.941 0.905 0.980 0.134 0.085 0.806 0.989 0.981 0.999 0.225 0.575 0.338 0.742 0.628 (c)

Hermes
0.981 0.987 0.989 0.989 0.541 0.630 0.985 0.998 0.998 0.999 0.0 0.0 0.0 0.832 0.581 (a)
0.999 0.999 0.998 0.997 0.879 0.974 0.900 0.948 0.924 0.976 0.0 0.0 0.033 0.877 0.634 (b)
0.978 0.980 0.988 0.987 0.324 0.315 0.997 0.999 0.999 1.0 0.0 0.0 0.0 0.789 0.550 (c)

Llama2
0.30 0.967 0.947 0.971 0.845 0.874 0.193 0.138 0.369 0.399 0.015 0.015 0.021 0.604 0.398 (a)

0.002 0.0 0.005 0.004 0.001 0.0 0.011 0.0 0.141 0.015 1.0 1.0 1.0 0.105 0.083 (b)
0.920 0.956 0.877 0.795 0.547 0.545 0.486 0.563 0.707 0.830 0.020 0.035 0.032 0.663 0.484 (c)

Llama3 0.997 1.0 0.999 1.0 0.938 0.986 0.886 0.988 0.999 1.0 0.0 0.0 0.0 0.892 0.625 (a)
0.998 1.0 0.998 0.996 0.886 0.886 0.931 0.914 1.0 1.0 0.005 0.0 0.063 0.882 0.653 (b)
0.997 1.0 0.999 1.0 0.936 0.982 0.942 0.993 1.0 1.0 0.0 0.0 0.0 0.897 0.629 (c)

Llama3.1 0.946 0.910 0.973 0.980 0.652 0.427 0.981 0.993 0.999 1.0 0.0 0.0 0.005 0.811 0.569 (a)
0.001 0.0 0.030 0.036 0.0 0.0 1.0 1.0 1.0 1.0 0.220 0.145 0.115 0.385 0.253 (b)
0.954 0.957 0.953 0.972 0.692 0.559 0.968 0.990 1.0 1.0 0.005 0.0 0.006 0.828 0.581 (c)

Wizard
0.834 0.866 0.733 0.472 0.220 0.241 0.709 0.956 0.925 0.983 0.005 0.005 0.108 0.646 0.500 (a)
0.861 0.733 0.959 0.978 0.751 0.472 0.774 0.634 0.905 0.769 0.240 0.210 0.193 0.733 0.592 (b)
0.750 0.794 0.603 0.411 0.184 0.126 0.770 0.927 0.845 0.908 0.020 0.005 0.199 0.598 0.485 (c)

GPT-3.5∗
0.995 1.0 0.990 1.0 0.892 0.849 0.650 0.860 0.895 0.900 0.010 0.025 0.030 0.699 0.546 (a)
0.985 0.965 0.985 0.985 0.144 0.083 0.915 0.905 0.990 0.985 0.650 0.490 0.354 0.729 0.699 (b)

1.0 1.0 0.980 0.980 0.990 0.959 0.690 0.985 0.940 1.0 0.015 0.005 0.005 0.734 0.562 (c)
GPT-4∗ 0.020 0.0 0.430 0.145 0.0 0.0 0.760 0.960 0.970 0.980 1.0 1.0 0.995 0.561 0.550 (a)

0.010 0.0 0.145 0.0 0.0 0.0 0.52 0.96 1.0 0.99 1.0 1.0. 1.0 0.512 0.489 (b)
0.030 0.0 0.060 0.005 0.0 0.0 0.53 0.92 0.940 0.955. 1.0 1.0 1.0 0.497 0.474 (c)

GPT-4o∗ 0.005 0.0 0.185 0.165 0.0 0.0 0.995 1.0. 1.0 1.0 1.0 1.0 0.944 0.563 0.540 (a)
0.025 0.005 0.185 0.045 0.0 0.0 0.960 1.0 0.990 0.975 1.0 1.0 0.995 0.555 0.527 (b)
0.005 0.005 0.055 0.015 0.0 0.0 0.960 1.0 1.0 1.0 1.0 1.0 0.889 0.535 0.503 (c)

Table 9: Accuracy on DEFREASING across reasoning types (§3.3) and macro-F1. ∗ indicates the evaluation is
done only on DEFREASING∗N-alt . 1step and 2step indicate single and 2-step inheritance respectively. R and X
indicate real and nonsense types respectively, as used in the additional premises. (a), (b), and (c) indicate the three
different prompts used (see Table 8 for examples).

not change the conclusion that defeasible reasoning
about property inheritance remains a challenging
task for LMs.
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Model Prompt r p-value

Mistral
(a) -0.0203 6.55× 10−7

(b) 0.00446 0.2758
(c) -0.01383 0.0007

Mixtral
(a) 0.20015 0.0
(b) 0.00493 0.2277
(c) 0.10161 6.66× 10−137

Starling
(a) 0.76711 0.0
(b) -0.00363 0.3755
(c) 0.76647 0.0

Zephyr
(a) 0.17775 0.0
(b) 0.03781 2.30−20

(c) 0.19970 0.0

Hermes
(a) 0.41424 0.0
(b) 0.11259 7.79× 10−168

(c) 0.62790 0.0

Llama2
(a) 0.16859 0.0
(b) 0.01053 0.0100
(c) 0.34940 0.0

Llama3
(a) -0.00822 0.0444
(b) 0.16597 0.0
(c) 0.01328 0.0012

Llama3.1
(a) 0.38990 0.0
(b) 0.01775 1.42× 10−5

(c) 0.33312 0.0

Wizard
(a) 0.41731 0.0
(b) 0.31695 0.0
(c) 0.44461 0.0

GPT-3.5∗
(a) 0.24811 1.84× 10−26

(b) 0.36812 1.98× 10−58

(c) 0.24427 1.12× 10−25

GPT-4∗
(a) -0.02103 0.3747
(b) NaN NaN
(c) NaN NaN

GPT-4o∗
(a) -0.02574 0.2769
(b) 0.00396 0.8670
(b) -0.04210 0.0753

Table 10: Pearson’s r correlation and corresponding
p-values for each model and prompt combination. Cor-
relation is computed between the presence of “not” in
the additional premises Px and the prediction of “weak-
ens” as the label. ∗ indicates the computation is done on
DEFREASING∗N-alt .
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S-case S-alt W-case N-alt N-prop All
1step 2step 1step 2step

R X R X R X R X R X R X
A1 v. A2 0.80 1.0 0.90 1.0 0.50 1.0 0.20 1.0 0.60 1.0 1.0 1.0 0.70 0.823
A1 v. D∗N-alt 0.95 1.0 0.95 1.0 0.60 0.0 1.0 1.0 0.45 1.0 1.0 1.0 0.75 0.823
A2 v. D∗N-alt 0.80 1.0 0.95 1.0 0.0 0.0 0.25 1.0 0.95 1.0 1.0 1.0 0.95 0.758

Table 11: Percentage agreement between annotators A1 and A2 and between each annotator and the labels in
DEFREASING∗N-alt (D∗N-alt). 1step and 2step indicate single and 2-step inheritance respectively. R and X
indicate real and nonsense types respectively, as used in the additional premises.

DEFREASING δS-alt
S-alt Overall S-alt Overall

R X Acc. F1 R X Acc. F1

Mistral
0.127 0.027 0.522 0.458 0.127 0.973↑ 0.604 0.555 (a)
0.012 0.001 0.650 0.613 0.012 0.973↑ 0.734 0.723 (b)
0.016 0.001 0.479 0.411 0.016 0.999↑ 0.565 0.506 (c)

Mixtral
0.398 0.545 0.766 0.647 0.398 0.355↓ 0.749 0.677 (a)
0.046 0.154 0.599 0.547 0.046 0.839↑ 0.658 0.631 (b)
0.329 0.398 0.672 0.580 0.329 0.552↑ 0.685 0.638 (c)

Starling
0.231 0.233 0.775 0.542 0.231 0.0↓ 0.755 0.552 (a)
0.967 0.997 0.557 0.319 0.967 0.003↓ 0.471 0.262 (b)
0.273 0.254 0.781 0.546 0.273 0.0↓ 0.759 0.555 (c)

Zephyr
0.216 0.179 0.750 0.627 0.216 0.676↑ 0.793 0.736 (a)
0.009 0.0 0.529 0.514 0.009 0.976↑ 0.614 0.603 (b)
0.134 0.085 0.742 0.628 0.134 0.757↑ 0.801 0.751 (c)

Hermes
0.541 0.630 0.832 0.581 0.541 0.0↓ 0.778 0.569 (a)
0.879 0.974 0.877 0.634 0.879 0.002↓ 0.793 0.598 (b)
0.324 0.315 0.789 0.550 0.344 0.0↓ 0.761 0.556 (c)

Llama2
0.845 0.874 0.604 0.398 0.845 0.041↓ 0.532 0.381 (a)
0.001 0.0 0.105 0.083 0.001 1.0↑ 0.192 0.129 (b)
0.547 0.545 0.663 0.484 0.547 0.031↓ 0.618 0.478 (c)

Llama3 0.938 0.986 0.892 0.625 0.938 0.0↓ 0.807 0.596 (a)
0.886 0.886 0.882 0.653 0.886 0.002↓ 0.805 0.612 (b)
0.936 0.982 0.897 0.629 0.936 0.0↓ 0.812 0.601 (c)

Llama3.1 0.652 0.427 0.811 0.569 0.652 0.0↓ 0.774 0.567 (a)
0.0 0.0 0.385 0.253 0.0 0.016↓ 0.387 0.232 (b)

0.692 0.559 0.828 0.581 0.692 0.0↓ 0.779 0.572 (c)

Wizard
0.220 0.241 0.646 0.500 0.220 0.045↓ 0.629 0.504 (a)
0.751 0.472 0.733 0.592 0.751 0.278↓ 0.716 0.625 (b)
0.184 0.126 0.598 0.485 0.184 0.084↓ 0.594 0.501 (c)

GPT-3.5∗
0.892 0.849 0.699 0.546 0.892 0.052↓ 0.640 0.530 (a)
0.144 0.083 0.729 0.699 0.144 0.588↑ 0.767 0.751 (b)
0.990 0.959 0.734 0.562 0.990 0.016↓ 0.663 0.536 (c)

GPT-4∗ 0.0 0.0 0.561 0.550 0.0 1.0↑ 0.636 0.599 (a)
0.0 0.0 0.512 0.489 0.0 1.0↑ 0.587 0.529 (b)
0.0 0.0 0.497 0.474 0.0 1.0↑ 0.610 0.543 (c)

GPT-4o∗ 0.0 0.0 0.563 0.540 0.0 0.995↑ 0.638 0.585 (a)
0.0 0.0 0.555 0.527 0.0 0.995↑ 0.629 0.570 (b)
0.0 0.0 0.535 0.503 0.0 1.0↑ 0.572 0.512 (c)

Table 12: Accuracy on S-alt examples, along with overall accuracy and F1. δS-alt indicates the DEFREASING
dataset where the S-alt examples with nonsense types have been changed to “no impact” instances. ∗ indicates the
evaluation is done only on DEFREASING∗N-alt (and the modified version analogous to δS-alt). R and X indicate
real and nonsense types respectively, as used in the additional premises. (a), (b), and (c) indicate the three different
prompts used (see Table 8 for examples). Arrows indicate either an increase (↑) or decrease (↓) on δS-alt compared
to DEFREASING.
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