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Abstract

The generative large language models (LLMs)
are increasingly being used for data augmen-
tation tasks, where text samples are LLM-
paraphrased and then used for classifier fine-
tuning. Previous studies have compared LLM-
based augmentations with established augmen-
tation techniques, but the results are contradic-
tory: some report the superiority of LLM-based
augmentations, while others only marginal in-
creases (and even decreases) in the perfor-
mance of downstream classifiers. Research that
would confirm a clear cost-benefit advantage
of LLMs over more established augmentation
methods is largely missing. To study if (and
when) LLM-based augmentation is advanta-
geous, we compared the effects of recent LLM
augmentation methods with established ones on
6 datasets, 3 classifiers, and 2 fine-tuning meth-
ods. We also varied the number of seeds and
collected samples to better explore the down-
stream model accuracy space. Finally, we per-
formed a cost-benefit analysis and showed that
LLM-based methods are worthy of deployment
only when a very small number of seeds is used.
Moreover, in many cases, established methods
lead to similar or better model accuracies.

1 Introduction

The emergence of recent large language models
(LLMs) such as GPT-4, Gemini, Llama, and their
wide availability prompted their use in augmenta-
tion of textual datasets (Ubani et al., 2023; Dai
et al., 2023; Piedboeuf and Langlais, 2023; Li
et al., 2023; Ding et al., 2023; Cegin et al., 2023,
2024). In most LLM-based augmentation scenar-
ios, the dataset size is increased through paraphras-
ing of original samples. The extended datasets
are then used for training small downstream clas-
sifiers with small inference costs. LLM augmen-
tation has been used in various domains such as
sentiment analysis (Onan, 2023; Piedboeuf and
Langlais, 2023), intent classification (Cegin et al.,

2023), news classification (Piedboeuf and Langlais,
2023; Cegin et al., 2024) and health symptoms clas-
sification (Dai et al., 2023).

While LLM augmentation improves downstream
classifiers, it is also costly (power consumption,
CO2 emissions), as generative models often fea-
ture parameters in tens of billions. This is mag-
nitudes higher than other established (most used)
augmentation methods, including back translation
paraphrasing, or BERT-based word insertion and
synonym swap. Previous works have measured
classifier performance, comparing LLM-based and
established augmentation methods. The results
have so far been conflicting and mixed with stud-
ies reporting the LLM-based augmentation to be
superior on classifier performance (Ubani et al.,
2023; Dai et al., 2023), while others report only
marginal gains and even the established augmenta-
tion outperforming the LLM-based one (Piedboeuf
and Langlais, 2023). Furthermore, existing stud-
ies were limited in terms of parameters, neglecting
the variety of available LLMs, the potential impact
of the number of seed samples and collected sam-
ples, the cost of these methods, and the variety of
classifiers and their fine-tuning methods.

The goal of this paper is to compare the ac-
curacy and cost-benefits of the most used estab-
lished text augmentation methods with their recent
LLM-based counterparts. Compared with previ-
ous studies, this paper offers a more systematic
and finer-grained comparison over multiple dimen-
sions to specifically identify cases where and how
do LLM-based augmentation methods outperform
established text augmentation methods. We are
the first to consider the CO2 emissions and costs
of these methods to better identify cases where
LLM-based augmentation could be preferable. We
formulate the following research questions:

RQ1: Considering downstream classifier accu-
racy, in which cases do the established tex-
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tual augmentation methods work equally or
better than the LLM-based methods?

RQ2: In which cases does the cost of using LLM-
based textual augmentation methods instead
of established ones outweigh its benefits?

We empirically investigated three techniques
commonly used in textual augmentation: para-
phrasing, word inserts, and word swaps (replace-
ments). All three exist in both established and
LLM-based variants. In the established variant,
paraphrasing is done through back-translation us-
ing an RNN (Sennrich et al., 2016), while inserts
and swaps use a BERT-based approach (Kobayashi,
2018; Kumar et al., 2020). For LLM-based variants,
we prompted 2 LLMs (GPT-3.5 and Llama-31) to
perform all three techniques. We experimented
with 6 different datasets (with tasks of sentiment
analysis, news classification, and intent classifi-
cation), 3 downstream classifier models (BERT,
RoBERTa, DistilBERT), and 2 fine-tuning ap-
proaches (fully fine-tuned, and QLoRA (Dettmers
et al., 2024)). Furthermore, we investigated various
numbers of seeds and collected samples used in the
augmentation. Together, this resulted in a total of
267,300 fine-tunings, from which we identified the
best-performing LLM and established methods (an-
swering Q1). These were then further scrutinized
under cost-benefit analysis (answering Q2).

The most prominent findings are: 1) The best
LLM augmentation methods outperform estab-
lished ones only when a small number of seeds is
used. The advantage of LLM-based augmentation
diminishes with increased seed numbers, making it
less cost-feasible. This hints towards using LLM-
based methods only in scenarios with a small num-
ber of seeds per label (5-20). 2) LLM augmentation
methods have a higher impact on the accuracy of
less robustly pre-trained classifiers such as Distil-
BERT or BERT. 3) LLM augmentation methods
have a higher impact on classifier accuracy for full
fine-tuning when compared to QLoRA fine-tuning.

2 Related Work: Text Augmentation

Text augmentation is a process of increasing the di-
versity of training text data without necessarily col-
lecting more original (or seed) data. Text augmen-
tation was inspired by image augmentation (Feng

1Albeit BERT is often referred to as an early LLM, for the
sake of wording clarity, we do not consider it as such in our
study.

et al., 2021; Zhou et al., 2024) where various tech-
niques such as cropping, rotating, flipping, etc.
were used to build models that are more robust
to image variation and in turn enhance their perfor-
mance. Text and data augmentation have an increas-
ing number of Google weekly trend searchers in
recent years (Anaby-Tavor et al., 2020; Feng et al.,
2021; Zhou et al., 2024), indicating an increasing
interest in these kinds of model performance en-
hancing methods.

One of the most established is character-based
augmentations (Wei and Zou, 2019; Karimi et al.,
2021), where given a seed text, a new sample is
created via character insertion, replacement, or
deletion. Another method is backtranslation (Sen-
nrich et al., 2016), which translates a given text
into one language to then translate it back, essen-
tially creating a paraphrase. Various LLMs such
as GPT-2 (Radford et al., 2019) or BART (Lewis
et al., 2020) have also previously been used to
create paraphrases. Additional extensions used
style transfer to create paraphrases of a certain
linguistic style (Krishna et al., 2020), syntax con-
trol of the generated paraphrases (Goyal and Dur-
rett, 2020; Chen et al., 2020), multi-lingual para-
phrases (Thompson and Post, 2020) and LLM fine-
tuning using QLoRA for specific domains (Chowd-
hury et al., 2022). Another established method
is the usage of pre-trained LLMs to generate new
samples by either word insertion or replacement
of words via masking certain parts of the seed text
and allowing the LLM to find good replacements
for the masked parts of the text (Kobayashi, 2018;
Kumar et al., 2020).

Text augmentation methods were adapted with
the rise of new LLMs such as GPT-4 or Llama
to leverage these new powerful models to gener-
ally create paraphrases of given seed texts. A re-
cent study (Piedboeuf and Langlais, 2023) found
that the GPT-3.5 paraphrasing provides an increase
in classifier accuracy. However, it does not out-
perform the previously established text augmenta-
tion methods by a significant margin (also for low-
resource settings). In contrast, two studies reported
better performance in using LLMs as data aug-
menters than using previous state-of-art techniques
in both the paraphrasing of existing texts (Dai et al.,
2023) and in a zero-shot setup of generating new
texts using specific prompts (Ubani et al., 2023)
for low-resource settings. A comparison of these
studies is problematic, as each study varied a large
number of parameters such as different numbers
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of seed samples (from 10 to 1000 per label), dif-
ferent numbers of collected samples per seed used
(from 5 to 20), classifiers used, etc. Regardless
of the mixed results reported, newer LLMs have
been used for a variety of augmentation tasks and
domains such as automated scoring (Fang et al.,
2023), low-resource language generation (Ghosh
et al., 2023), sentiment analysis (Piedboeuf and
Langlais, 2023; Ubani et al., 2023; Onan, 2023),
news classification (Piedboeuf and Langlais, 2023),
content recommendation (Liu et al., 2024) and
health symptoms classifications (Dai et al., 2023).

Given the wide usage of LLM augmentation
methods and the mixed results of studies (Dai et al.,
2023; Piedboeuf and Langlais, 2023; Ubani et al.,
2023) comparing them with established augmenta-
tion methods, a finer analysis of cases where one
of these types of methods is preferable is required.

3 Study Design

To assess the advantages of either established or
newer LLM-based augmentation methods on a finer
scale and to tackle the mixed results reported by
previous works, we performed a comparative study.
At its core was the same basic scenario (see also
figure 1): on a given text classification dataset, a
number of seed samples were selected for each
class. For each seed sample, a given augmentation
method generated a number of additional “aug-
mented” samples. Both original data and the aug-
mented samples were then used to fine-tune a down-
stream classifier. This scenario was repeated for all
examined methods and a variety of parameters (see
below), resulting in a total of 37,125 augmented
samples and 267,300 fine-tunings. Then, the accu-
racy of the resulting classifiers was compared to
answer Q1. To answer Q2, the augmentation costs
in terms of computation time, finances, and CO2

emissions were determined and weighted against
accuracy gains in a cost-benefit analysis. We pub-
lish all of our measurements, the code, and the data
used. 2

The study had the following parameters:

• the augmentation technique (paraphrasing,
contextual word insert, word swap – realized
using either established or LLM-based meth-
ods),

• the number of seed samples per label (5, 10,

2Data and code at https://github.com/kinit-sk/
llms_vs_nlpaug_data_aug

20, 30, 40, 50, 100)3,

• the number of collected samples per seed (1,
2, 5, 10, 15),

• the LLMs used as augmenters in case of LLM-
based methods (GPT-3.5, Llama-3-8B),

• the fine-tuned classifiers (DistilBERT,
RoBERTa, BERT),

• the fine-tuning approach (full, QLoRA),

• and the dataset/task (6 datasets).

3.1 Established Text Augmentation Methods

As the established text augmentation methods, we
chose 3 well-known yet simple and relatively effi-
cient methods as shown by a previous study (Dai
et al., 2023). We went with model-based tech-
niques that leverage some form of trained Seq2Seq
model or contextual embedding methods that use
smaller LLMs (BERT is frequently considered an
early LLM). First among them is the backtransla-
tion (Sennrich et al., 2016) – in the past (before
the advent of LLMs), a popular method used for
paraphrasing. The method translates a sentence
from one language to another and back to create
paraphrases. Another popular and relatively simple
method is the replacing or inserting of words based
on embeddings. In our experiments, we used con-
textual embeddings (Kobayashi, 2018; Wu et al.,
2019; Kumar et al., 2020). We used two contextual
embedding methods: contextual word insertion and
contextual word swap (replacement). As a first step,
the contextual word insertion method randomly in-
serts masks between words in a sentence, while the
contextual word swap method randomly replaces
a set number of words in the sentence for masks.
Next, a model is queried to get the most likely to-
kens for each mask. The details of these methods
and the parameters used for each of these methods
can be found in Appendix I. We used the imple-
mentations provided by the NLPAuglibrary (Ma,
2019).

3.2 LLM-based Text Augmentation Methods

As the LLM-based text augmentation methods,
we implemented the three given techniques using
prompts similar to previous works (Cegin et al.,
2023; Piedboeuf and Langlais, 2023). However,

3For some datasets (ATIS, FB), the maximum seed number
was lower than 100 due to smaller class sizes, for more details
see Appendix H

10478

https://github.com/kinit-sk/llms_vs_nlpaug_data_aug
https://github.com/kinit-sk/llms_vs_nlpaug_data_aug


Figure 1: Overview of our methodology. For each dataset, we randomly sample 100 samples per label, which are
then used to collect up to 15 augmented samples per seed sample. These seeds are then randomly sampled in various
sizes and used for fine-tuning with various numbers of augmented samples to evaluate each method.

as the previous works generally used only para-
phrasing, we devised new prompts explicitly ask-
ing the model to replace words for their synonyms
or change the text by inserting words into it. Thus,
we had 3 different LLM-based text augmentation
methods: paraphrasing, where we asked the model
to produce a paraphrase, word insertion, where
we asked the model to produce a new sample by
inserting words into seed sample, and word swap
where we asked the model to produce a new sample
by replacing words for their synonyms in the seed
sample. We used these 3 methods to gather data
using both GPT-3.5 and Llama-3-8B. We opted
for not including multiple LLMs due to various
versions of LLMs having little effect on classifier
performance (Cegin et al., 2024). The inclusion of
multiple LLMs would make the study more bloated
without much benefit. Details about prompt tem-
plates, model types used, and parameters used dur-
ing inference can be found in Appendix J.

3.3 Datasets

To explore the diversity of augmentation effects,
we used 6 different datasets representing three dis-
tinct text tasks: the classification of sentiment,
intent, and news domains. All datasets were
multi-class and English. We used the News Cate-
gory (Misra, 2022; Misra and Grover, 2021) and
AG news (Zhang et al., 2015) for news classifica-
tion, FB (Schuster et al., 2019) and ATIS (Hemphill
et al., 1990) for intent classification, and SST-
5 (Socher et al., 2013) and Yelp (Zhang et al., 2015)
for sentiment classification. When measuring the
accuracy of downstream classifiers, we used test
splits of each of these datasets. To achieve uni-
form sizes and distributions, we selected a subset
of classes and down-sampled some of them for use
in our experiments. Details about the datasets, la-
bels, and class sizes used for each dataset can be
found in Appendix H.

3.4 Evaluation Process

For each combination of a number of seeds and
datasets, seed samples were randomly selected
from among the dataset’s classes. Then, the se-
lected augmentation method was applied to gener-
ate the additional samples.

We manually checked the validity of a random
subset (10%) of the collected data (i.e., whether the
created samples truly are paraphrases retaining the
labels of their seeds). Previous works have already
shown that the validity with newer LLM augmen-
tation methods is high (Cegin et al., 2023, 2024),
yet we still sought to confirm it and examine the
established methods as well. We found the highest
validity of samples for the LLM-based paraphras-
ing with 100% valid samples. Both LLM-based
and established word insert and word swap meth-
ods achieved 95%-97% validity, struggling mostly
with incorrectly named entities. The established
paraphrasing backtranslation method yields 98%-
99% valid samples but also a very large portion
of duplicates (around 80%). Details on validity
checks can be found in Appendix C.

In terms of the lexical diversity of the collected
samples, the insertion types of methods achieved
the highest number of unique words in the data
and the highest number of unique 4-grams in the
data. This was consistently higher than the para-
phrasing method in all 6 datasets by about 10 to
20%. The higher diversity, in this case, is easily ex-
plainable from the increasing size of the augmented
samples produced: in general, the word insertion
methods insert words into the original sentence,
thus increasing its length by 20-30%, which leads
to higher lexical diversity. This higher diversity
is thus inflated by augmented sentence length and
is achieved for lower validity of the samples, as
mentioned in the paragraph above.

We used BERT-base, DistilBERT-base, and
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RoBERTa-base for fine-tuning. We used the ver-
sions of the models from Huggingface and found
the best working hyperparameters via hyperparam-
eter search. Hyperparameters with the QLoRA
fine-tuning setup can be found in Appendix K. We
trained each model 10 times per random seed and
used 3 different random seeds with differently sam-
pled seed samples and augmented samples for those
seeds to avoid randomness of outcomes. The ran-
dom seeds ensured that across various combina-
tions, the same seeds and augmented samples could
be used. The models were trained separately on the
data collected from GPT-3.5 and Llama-3. As we
aimed to compare the newer and established aug-
mentation methods in a variety of cases, we used
various numbers of seed samples per label and the
number of collected samples per seed sample dur-
ing fine-tuning. We ended up with a total number
of fine-tunings (both full and using QLoRA) at
267,300, as we fine-tuned the models 10 times for
each augmentation method, dataset, number of seed
samples per label, number of collected samples per
seed and random seed combination.

Finally, we computed the accuracy of all fine-
tuned classifiers to allow their comparison.

4 Study Results

Our study has multiple parameter dimensions that
together yield more than 11 thousand combinations.
To keep the result presentation manageable, we
collapse some of these dimensions (each of them
with a different reasoning).

One dimension we could simplify are the aug-
mentation methods themselves. To keep the com-
parison of established and LLM-based methods
simple, we only compared the best-performing
methods from each group (best downstream model
accuracy). While the established method group
contained 3 methods (given by the 3 augmentation
techniques and their established implementations),
the LLM-based method group contained 6 methods
(the same 3 techniques, each implemented by 2 dif-
ferent LLMs4). We performed this comparison for
each parameter combination of number of seeds,
number of augmented samples per seed, classifier,
fine-tuning approach, and dataset.

Among the LLM-based methods, the paraphras-

4The results from Llama-3 and GPT-3.5 augmentation
methods are both labeled as “LLM methods”, as during the
analysis, we found no significantly different model accuracy
for augmentations created from the two LLMs used for train-
ing the classifier.

ing technique performed best in 56% cases, fol-
lowed by word insert, which topped 30% of cases,
and word swap with 14% of cases. Although para-
phrasing performed best overall, the word insert
worked best when the RoBERTa classifier was fine-
tuned. Among the established methods, the con-
textual word insert performed best in 56% cases,
followed by (backtranslation) paraphrasing top-
ping 26% cases, and contextual word swap with
18% cases. Furthermore, the backtranslation had
a stronger effect on classifier accuracy with full
fine-tuning and lesser with QLoRA. Given these
results, we decided to focus on the comparison of
the LLM-based paraphrasing with the established
contextual word insert methods. See appendix E
for other method comparisons.

Another dimension we could collapse was the
number of collected samples per seed, where we
selected only the most accurate classifier for the
same combination of other parameters. However,
full details on how the number of collected samples
per seed influences the classifier accuracy can be
found in Appendix D.

4.1 Classifier Accuracy (RQ1)
To answer the RQ1, we compared the downstream
classifier accuracy of LLM-based paraphrasing
with the established contextual word insert, see
Table 2. We counted the number of cases where
one of these methods performed statistically signif-
icantly better than the other and also the number
of cases where there was no statistically signifi-
cant difference between the two methods, which
we denote as the two methods having similar accu-
racy. For this, we used Mann-Whitney-U tests with
p=0.05.

In most cases, the accuracy of LLM-based para-
phrasing cannot be statistically distinguished from
the contextual insert. However, when differences
are observed, the LLM-based paraphrasing beats
the contextual insert method in more cases. For full
fine-tuning, this can be observed consistently (with
the sole exception of RoBERTa with the News
Category dataset). For QLoRA, the results are
more mixed: while LLM-based paraphrasing gen-
erally yields better results for BERT and Distil-
BERT (with exceptions), for RoBERTa, the contex-
tual insert surpasses the LLM-based paraphrasing
more often. It should also be noted that of the three
classifiers, RoBERTa performed best in ∼80% of
cases, as can be seen in Appendix L.

An investigation of the difference in mean ac-
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curacy between models trained using LLM para-
phrasing and contextual insert can be found in Fig-
ure 2 for various number of seeds per label. Gen-
erally, a lower amount of seeds leads to a higher
accuracy of classifiers trained on augmented data
collected via the LLM paraphrasing than when
contextual insert is used. This difference in ac-
curacy is highest for 5 to 20 samples per label in
cases where paraphrasing is more advantageous
and decreases with more seed samples used.

There are also notable cases where contextual in-
sert (a far cheaper augmentation method) provides
better classifier accuracy than the LLM paraphras-
ing. This can be seen for BERT QLoRA fine-tuning
in the FB dataset and Yelp dataset, and RoBERTa
fine-tuning for the News Category dataset. BERT
QLoRA exhibited results that favor one of the two
methods more strongly than other types of fine-
tuning and model combinations. In terms of in-
creased classifier accuracy, when comparing fine-
tuning with only seed samples themselves, both
methods provide a relatively high increase of ac-
curacy, compared to using only seed samples for
training classifiers when using QLoRA (see visual-
ization of this in Appendix G).

When considering the 3 fine-tuned models used,
RoBERTa achieved the highest accuracy across all
datasets. Considering this and the much more simi-
lar performance of the established and newer LLM-
based methods for RoBERTa as seen in Figure 2,
this could be indicating that even much cheaper es-
tablished methods can achieve competitive model
accuracy when compared to newer LLM-based aug-
mentation methods on the best-performing classi-
fier, with only exceptions for a small number of
seeds per label.

We also did a combination of the contextual in-
sert and backtranslation methods as the two best-
established augmentation methods and compared
it with the LLM-based methods, which did not re-
sult in a considerable increase in model precision
compared to the paraphrasing method. Details of
this comparison can be found in the Appendix E.

We answer RQ1 as follows: in most cases, the
established contextual word insert augmentation
has a better or similar effect on classifier accuracy
than the LLM-based paraphrasing augmentation.
LLM methods perform better only with a small
number of seeds per label. With an increasing
number of seeds per label, the difference between
the two methods for accuracy starts to diminish.

method Time cost kgCO2 emitted Monetary cost

Backtrans. 46m 40s 0.09 ∼$3
Con. swap 36m 40s 0.047 ∼$0.3
Con. insert 40m 0.047 ∼$0.3
Para. LLM 1h 10m 0.13 ∼$5
Swap LLM 1h 10m 0.13 ∼$5
Insert LLM 1h 10m 0.13 ∼$5

Table 1: Approximated kgCO2 emitted, time, and mon-
etary costs for each augmentation method on our hard-
ware setup when collecting 15 samples for 100 seeds
per label. The established methods take considerably
less time and money while emitting far fewer emissions
than newer LLM-based methods.

4.2 Analysis of Augmentation Costs and
Benefits for Classifier Accuracy (RQ2)

To answer the RQ2, we first performed an approxi-
mate cost calculation for each of the used augmen-
tation methods in terms of time needed to collect
samples, monetary costs needed and emissions. We
then identified cases where the higher cost of LLM-
based methods is worth the increased accuracy of
classifiers.

We measured the time needed to collect the given
number of samples on the hardware that we used
for the experiments. We measured the time needed
for collecting 15 augmented samples per 100 seed
samples per label. The newer LLM-based methods
have the same estimated time needed for data aug-
mentation for each of the methods, as we did not
measure any significant differences in time needed
between them. The results are displayed in Table 1.

Considering time only, the established augmen-
tation methods run approximately 33%-47% faster
than the newer LLM-based methods, and when
considering also the CO2 emissions, the contextual
swap and contextual insert methods emit approx-
imately 64% less kgCO2 emissions for the same
number of seed samples per label and number of
collected samples. The details of how the emis-
sions approximation calculation was done can be
found in Appendix B. In terms of monetary costs,
the context swap and context insert methods are ap-
proximately 16 times cheaper than the LLM-based
methods. As such, the established text augmenta-
tion methods are considerably more efficient both
in the time needed per collected sample, monetary
cost, and in kgCO2 emissions.

When considering the results in Figure 2, we
observed increases in relative model classifier accu-
racy on small (5-20) number of seed samples when
using the paraphrasing method compared to the
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Figure 2: The difference in mean accuracy for classifiers trained on the paraphrasing augmentation method and the
contextual insert augmentation method for 6 different datasets. The paraphrasing method generally works better for
a small (5-20) number of seeds per label, and this benefit deteriorates with an increased number of seeds per label.

contextual insert method is 3%-17% better accu-
racy for classifiers when fine-tuning using QLoRA
and 2%-11% when using full fine-tuning. However,
for larger (30+) number of seed samples per label,
the positive relative increase range decreases for
QLoRA to 1.5%-6% and 0.5%-4% for full fine-
tuning with a general increase of cases where the
contextual insert method performed better for clas-
sifier accuracy. Although the differences in the
relative increase in model performance when us-
ing paraphrasing method instead of context insert
method decrease for a higher number of seeds, the
difference in costs and emissions increases. This is
most evident for RoBERTa, which had the smallest
relative increase in accuracy out of all of the fine-
tuned models, with some benefits only for a small
number of seed samples per label used.

We answer RQ2 as follows: Considering the
results of increased classifier accuracy trained on
the paraphrasing method augmentations for 5-20
seeds per label against those trained on the contex-
tual insert method augmentations, the decreasing
difference in accuracy between the methods with
increasing number of seed samples per label and
the augmentation methods cost approximation, the
difference in accuracy seems to be worth the in-
creased costs only for a small number of seeds.
This is true for both full and QLoRA fine-tuning of
models, while the difference in accuracy between
the methods decreases significantly when using 30
seeds per label and more. Additionally, the cases

where the contextual insert method is better for
model accuracy increase with more seeds used.

5 Discussion

The results of our experiments lead to the following
observations: First, the paraphrasing method was
the best within the newer LLM-based augmenta-
tion methods, considering classifier accuracy. This
could be due to the demonstrated ability (Cegin
et al., 2023) of the newer LLMs to create very di-
verse paraphrases, being less constrained by seed
samples. The contextual insert method worked
best within the established augmentation methods.
This may be caused by the backtranslation method
creating a lot of duplicated samples and the contex-
tual swap method introducing less variety than the
contextual insert method.

Second, the number of cases in which the para-
phrasing method (an LLM-based method) signifi-
cantly outperforms the established contextual insert
method decreases with more seed samples per label.
This is similar to previous studies (Dai et al., 2023;
Ubani et al., 2023), as we observed this in nearly
all the cases for a small number of seeds and differs
from the results of the previous study (Piedboeuf
and Langlais, 2023), where such increase was ob-
served less often. A different number of collected
samples, classifiers used, and other factors might
be the reason for this disparity. The LLM-based
methods achieve better classifier accuracy than
established methods in the cases of very small
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CLASSIFIER→ ROBERTA BERT DISTILBERT
Dataset↓ Full QLoRA Full QLoRA Full QLoRA

AG News 7 | 68 | 1 13 | 50 | 4 14 | 54 | 1 24 | 36 | 0 7 | 70 | 0 17 | 44 | 3
News Category 2 | 58 | 11 1 | 12 | 35 19 | 44 | 1 19 | 38 | 4 15 | 52 | 1 3 | 18 | 30
ATIS 4 | 36 | 2 7 | 22 | 6 9 | 24 | 3 9 | 30 | 0 9 | 16 | 7 10 | 20 | 4
FB 20 | 28 | 2 5 | 42 | 10 25 | 22 | 0 3 | 28 | 19 25 | 20 | 1 20 | 16 | 8
SST-5 7 | 58 | 6 8 | 46 | 11 15 | 52 | 1 15 | 50 | 2 17 | 50 | 0 19 | 36 | 5
Yelp 11 | 56 | 3 15 | 42 | 6 19 | 42 | 2 0 | 8 | 38 17 | 48 | 1 31 | 12 | 5

Table 2: Comparison of the number of cases where models trained using data from either paraphrasing or contextual
insert methods worked statistically (p=0.05) better or had similar accuracy when compared between each other. The
numbers represent the result of one statistical test between 10 fine-tunings of the given model on data collected via
the paraphrasing or the contextual insert using a specific random seed for a given number of seed samples per label.
The cells are formatted in this way: [# paraphrasing was better] | [# similar accuracy] | [# contextual
insert was better]. In most cases, the paraphrasing method works better for BERT and DistilBERT in both full
fine-tuning and QLoRA fine-tuning.

seed numbers, which points to their potential
benefits in low-resource settings.

Third, furthermore, when we increased the num-
ber of seeds, we observed a decrease of accuracy
differences between models trained on data from
paraphrasing and models trained with contextual
insert, similar to (Piedboeuf and Langlais, 2023).
The highest relative increase in model accuracy
with paraphrasing instead of contextual insert ap-
pears with 5 to 20 seeds per label. After 30 or
more seeds were used, the relative difference be-
tween methods decreased. Additionally, the dif-
ference between the LLM-based and established
methods in terms of monetary costs, time costs,
and emissions is quite significant (see section 4.2).
Therefore, it seems beneficial, from the perspec-
tive of both cost and model accuracy, to use the
newer LLM-based augmentation methods only
in low-resource settings.

Fourth, we observed some exceptions to the
trends reviewed above. The fine-tuned RoBERTa
models (which provided the best classification
accuracy among the fine-tuned models) gener-
ally benefited more from augmentation methods
that used insertion of words. This might be due
to a more robust pretraining of RoBERTa, where
augmentations that introduce more noise are less
beneficial for training. Another case was the fine-
tuning of BERT using QLoRA, where, for some
cases, the paraphrasing method was either consid-
erably better or worse than the contextual insert
method for classifier accuracy. This might be due
to differences in the pre-training data and processes
used for BERT in comparison with DistilBERT or
RoBERTa, making it far more sensible to text aug-
mentation methods when using QLoRA.

Fifth, the difference between the paraphrasing
and the contextual insert method on model accu-
racy had much more variance for QLoRA than for
full fine-tuning. When the paraphrasing method is
used for QLoRA on classifiers, the increased accu-
racy (compared to contextual insert) is generally
smaller than with full fine-tuning. LLM para-
phrasing’s sample variability might be provid-
ing more benefits when the model can leverage
it through full fine-tuning.

Sixth, the combination of the best-established
methods does not improve their overall accuracy
of the downstream model compared to using
contextual insert. This might be due to the combi-
nation of methods leading to a possible distribution
shift or models overfitting on the augmented data.

To summarize, as the costs of using established
augmentation methods are considerably lower than
the newer LLM-based methods and the increase in
model accuracy decreases quickly with more seeds
used, it appears to be beneficial to use them instead
of newer LLM methods for a higher number of
seeds per label when targeting model accuracy and
use LLM-methods in cases of low-resource setting
where the relative gain in accuracy is highest.

6 Conclusion

We compared the effects of newer LLM-based and
established textual augmentation methods on down-
stream classifier accuracy for combinations of 6
datasets, 3 classifiers, 2 fine-tuning approaches, 2
augmenting LLMs, various numbers of seed sam-
ples per label and numbers of augmented samples
per seed. In total, we analyzed a total of 267,300
fine-tunings. We aimed to identify cases where
LLM-based augmentation outperforms established
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approaches in order to shed light on contrary results
from previous studies. We identified the paraphras-
ing method as the best-performing LLM-based and
the contextual insert as the best-performing estab-
lished augmentation method. The comparison of
these two best methods indicates that the use of
LLM-based methods for data augmentation, in-
stead of established methods, is only warranted
for a small number of seed samples per label (5
to 20). There, we observed a statistically signifi-
cant increase in cases where LLM-based methods
are better and observed higher relative increases in
model accuracy compared to established methods.
However, with an increasing number of seeds per
label, this effect decreased, and the number of cases
of established methods having a higher influence
on the accuracy of classifiers increased. As newer
LLM methods are considerably more costly than
established methods, their use is justified only for
low-resource settings, where differences between
the method’s costs are smaller.

Limitations

We note several limitations to our work.
First, we only used datasets, augmentation meth-

ods, and LLMs for the English language and did
not investigate cases of multi-lingual text augmen-
tation.

Second, we did not use various patterns of
prompts and followed those used in previous stud-
ies (Cegin et al., 2023; Larson et al., 2020). Dif-
ferent prompts could have effects on the quality of
text augmentations, but they would also radically
increase the size of this study, and thus, we decided
to leave this for future work.

Third, we did not use newer LLMs for classi-
fication fine-tuning via PEFT methods (e.g., fine-
tuning of Llama-3 or Mistral using QLoRA). While
such inclusion would strengthen our findings, we
decided not to use these models for classification
fine-tuning due to two main reasons. First, the eval-
uation of these models is very costly and takes a
long time due to their size, which results in them
being mostly used with a small subset of the test-
ing data (Chang and Jia, 2023; Li and Qiu, 2023;
Gao et al., 2021; Köksal et al., 2023). This, in
return, can lead to unintentionally cherry-picked re-
sults. Second, to do an analysis of this size for the
combinations of parameters that influence one fine-
tuning of models, we had to do a total of 44,500
fine-tuning for one model and fine-tuning method

combination. Fine-tuning 44,500 times of a smaller
generative LLM with 7B parameters and then eval-
uating it on a substantial split of the test data was
infeasible to us time- and cost-wise. It would also
radically increase the energy consumption of this
study and, in turn, emissions emitted.

Fourth, from the family of PEFT methods we
used only QLoRA and not multiple different PEFT
methods. We opted for QLoRA due to its popular-
ity and good performance. While including more
fine-tuning methods in the paper would increase
the strength of the findings and provide an even
finer analysis of cases, it would also, similar to
the case of not fine-tuning LLMs for classification
from the previous limitation, lead to a significantly
higher number of fine-tunings needed for a proper
analysis of the new fine-tuning method added.

Fifth, for the LLM augmentation methods we
used only Llama-3-8B and GPT-3.5. The results
of data augmentation via LLama3 and GPT-3.5
yielded the same results on model accuracy. The
inclusion of other LLMs in this type of study would
considerably increase the number of fine-tunings of
classifiers. It would likely provide no clear benefit
for this study as previous works (Cegin et al., 2024)
show little effect of various LLM on model perfor-
mance. Additionally, we did not use larger models
(e.g. 70B or GPT-4) as their increased performance
in text augmentation for model accuracy has been
shown (Cegin et al., 2024) to be not that significant
when compared to variants of LLMs with fewer
parameters.

Sixth, we only used 3 established methods com-
pared to previous studies (Piedboeuf and Langlais,
2023; Dai et al., 2023; Ubani et al., 2023), which
used more established methods for their compar-
isons. In our case, we used different types of meth-
ods, which had a good performance in previous
studies (Dai et al., 2023; Piedboeuf and Langlais,
2023). While the inclusion of multiple other estab-
lished methods would increase the strength of our
findings, it would also require a lot of additional
fine-tuning and evaluation to be done in order to
get results for our detailed analysis.

Seventh, we did not enhance the LLM-based
methods of word insertion or word swap with
heuristics to select locations in seed texts where
words should be replaced or added. We opted
against this to let the LLMs decide internally (as
a black box) which words to replace or add and
where providing these methods with simplicity and
without additional potential costs. A potential ex-
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tension of these LLM methods with heuristics of
where to replace or add words could possibly im-
prove the performance of these methods for aug-
mentation, and we see this as a natural extension
of our work.

Eight, the backtranslation method could be im-
proved by adding multiple languages into the trans-
lation process, which would possibly increase the
lexical diversity of and number of created para-
phrases. However, this would also increase the cost
of using this method, which is already the most
costly of all of the established augmentation meth-
ods.

Ninth, we only focus on classification tasks and
make no claims about the effects of established and
LLM-based text augmentation on other NLP tasks.
However, as seen by the related work, classification
constitutes an important task group, and even more
so in low-resource settings.

Tenth, we do not know if any of the 6 datasets
used in this study have been used for training the
LLMs we used for data collection and if this had
any effect on our results and findings. As such, we
do not know how much would be the comparison
of established and newer LLM augmentation meth-
ods different on new, unpublished datasets. This
limitation is part of the recently recognized possi-
ble “LLM validation crisis”, as described by (Li
and Flanigan, 2023).
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B Details of CO2 Emission calculation
and emissions related to experiments

For the estimations, we used the MachineLearn-
ing Impact calculator presented in (Lacoste et al.,
2019). For estimations of GPU emissions, we used
hardware of type A100 PCIe 40/80GB (TDP of
250W), and for estimation of CPU emissions, we
used hardware of type Intel Xeon Gold 6148.

We conducted the data collection and fine-tuning
on a custom private infrastructure with 16 core
CPUs, 64 GB RAM, and 4xA100 GPUs. For the
LLM-based augmentation methods and backtrans-
lation method, we used the GPU to collect data,
while for the context insert and context swap meth-
ods, we used CPUs only.

Data collection via Llama-3 was conducted us-
ing a private infrastructure, which has a carbon
efficiency of 0.432 kg CO2/kWh. A cumulative
20 GPU hours of computation was performed on
hardware of type A100 PCIe 40/80GB (TDP of
250W) for data collection.

Model fine-tuning for all of the fine-tuned mod-
els using either full fine-tuning or QLoRA fine-
tuning was conducted using a private infrastruc-
ture, which has a carbon efficiency of 0.432 kg
CO2/kWh. Approximately a cumulative of 1100
GPU hours of computation was performed on hard-
ware of type A100 PCIe 40/80GB (TDP of 250W)
for data collection.

Total emissions together are estimated to be
120.96 kgCO2, of which 0 percent were directly
offset. We tried to reduce the generated emissions
by using 4-bit quantization for Llama-3 data col-
lection and QLoRA training.

C Augmented samples validity: checking
process and results

For the process of checking the validity of the cre-
ated augmented samples, we used our very own
web app developed for this process. The users,
who were the authors that also developed the app,
were shown the seed samples, their labels, and one
particular sample to validate. The authors/users all
gave consent to the data collection process and had
knowledge of how the data would be used. The
instructions were "Please decide if the augmented
sample has the same meaning as the seed sentence
and if it adheres to the label of the seed sentence."
The user was then able to either mark the sample
as valid or not, with an additional optional check-
box to label the samples as ‘borderline case’ for

possible revisions. As the seed sentence changed
only once in a while (we first showed all the para-
phrases from one seed sentence), this significantly
reduced the cognitive load on the annotator. The
users/authors then discussed together the ‘border-
line cases’ where the users were not sure about the
validity of created paraphrases.

Before evaluating the validity of each augmen-
tation method and the samples it produces, we fil-
tered for malformed augmented samples, empty
samples, or duplicated samples as per (Cegin et al.,
2023). There were no such samples detected for the
newer LLM-based methods. We detected around
0.05%-0.5% of all augmented samples to be dupli-
cated for the contextual word insertion and contex-
tual word replacement. The worst number of dupli-
cates was detected for the backtranslation method,
with 80% of all collected augmented samples to
be duplicated. This still meant that we collected
at least 2 to 3 augmented samples per seed, and as
such, we did not eliminate this method from fur-
ther evaluation. For fine-tuning cases using the
backtranslation method where more number of
collected samples per seed than 3 were needed,
we used all of the available collected unique aug-
mented samples. This high number of duplicates
might be due to the translation model limitations
with repeating patterns, as well as using only one
intermediary language as per the original paper.

D Effects of number of collected
augmented samples from augmentation
methods on model accuracy

In this section, we compare the effects of a number
of collected augmented samples per seed sample
on model accuracy. We noticed that QLoRA fine-
tuning benefited from more collected augmented
samples per seed sample than full fine-tuning of
classifiers for all of the methods. RoBERTa and
DistilBERT full fine-tuning generally needed only
a few (less than 5) augmented samples per seed
sample to achieve the best classifier accuracy across
different augmentation methods. This might be due
to the more robust pretraining process in the case
of RoBERTa and the distillation training of Distil-
BERT, where pretrained weights of the models ben-
efit less from more added noise to the dataset via
an increased number of collected augmented sam-
ples. Bert’s full fine-tuning had a similar trend as
RoBERTa and DistilBERT, with the exception of in-
serting words-based methods. This might indicate
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that while a lot of noise might degrade the accuracy
of fine-tuned Bert (as is the case for the paraphras-
ing method), the augmented samples from word
insertion add just enough noise for the model to
benefit from it. Additionally, with an increased
number of seed samples, we observed that fewer
augmented samples per seed sample were needed
for the fine-tuned models to achieve the best accu-
racy, indicating that a lot of augmented examples
in the training data could lead to a distribution shift.
Visualization of these results can be found in Fig-
ure 3.

E Combination of best established
augmentation methods for classifier
accuracy

Given that the established augmentation methods
are cheaper when compared to newer LLM-based
augmentation methods, we can combine the es-
tablished augmentation methods together and then
compare them with newer LLM-based methods,
specifically the paraphrasing method, to determine
if such combination increases the accuracy of mod-
els for classification.

To do so, we combine the backtranslation and
contextual insert method in this way: for each num-
ber of collected samples per seed sample, we use
from both methods augmented samples, e.g. for 2
number of collected samples used per seed sample
from the paraphrasing method we include 2 from
the backtranslation method and 2 from the contex-
tual insert method. As mentioned in Appendix C,
the backtranslation method produces a lot of du-
plicate samples, meaning that for cases where not
enough unique augmented samples are collected,
we used all of the available augmented samples.

The comparison of the combination of the estab-
lished methods and the paraphrasing method for
classifier accuracy can be seen in Table 3. Com-
pared to the results from Section 4.1 where we
compared the paraphrasing method against only
the contextual insert method, the combination of
the two best-established methods yields more cases
where the paraphrasing method is better for all
the fine-tuning methods and dataset combinations.
This might be due to such a combination of two
augmentation methods introducing a potential dis-
tribution shift in the data, overfitting on augmented
data, or possible inconsistencies in the augmented
data. To conclude, the combination of the estab-
lished methods increases the cost of augmentation

while providing worse results compared to only
using the contextual insert method for classifier
accuracy.

F Results for other combinations of
LLM-based and established methods
on model accuracy

We also compared other methods with the best-
performing LLM-based method (paraphrasing)
and the best-established method (contextual in-
sert method). When comparing the paraphrasing
method and contextual swap method, we can see
based on Table 5 and Figure 5 that the paraphras-
ing method is in nearly all cases better than the
contextual swap method, but the increased model
accuracy decreases with number of seeds per label.
A similar comparison can be seen for the para-
phrasing method and the backtranslation method
in Table 4 and Figure 4.

When comparing the best-established method
contextual insert with the insert word LLM-based
method, we can see that it performs better for
RoBERTa finetuning in Table 6, but the increase
in model accuracy is not high as seen in Figure 6.
When comparing the contextual insert method and
the swap word LLM-based method, the differ-
ence is even more in favor of the contextual insert
method as seen in Table 7 and Figure 7.

In general, the swap word methods performed
the worst, while the insert words methods per-
formed the best in cases of finetuning robustly pre-
trained models (RoBERTa) or for noisy datasets
(SST-5, Yelp).

G Comparison of augmentation methods
increase for models accuracy against
training only with seed samples

We compared the best LLM-based augmentation
method paraphrasing and the best-established aug-
mentation method contextual insert and their ef-
fects on model accuracy when compared to mod-
els trained only using the seed samples. The re-
sults can be seen in Figures 8 and 9. The LoRA
fine-tuning methods have the highest relative and
absolute increase for model accuracy, even when
considering increasing the number of seed samples
per label. Even though this increased accuracy de-
creases with the number of seed samples used, this
is most prominent for full fine-tuning, where cases
of negative difference of mean accuracy exist. For
LoRA finetuning, the increased accuracy is still
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Figure 3: The number of cases per number of collected augmented samples per seed sample where each augmentation
method achieved the best accuracy for 6 different combinations of models and fine-tuning methods. Except for
RoBERTa and DistilBERT full fine-tuning, the methods worked best for model accuracy when more augmented
samples were provided.

CLASSIFIER→ ROBERTA BERT DISTILBERT
Dataset↓ Full QLoRA Full QLoRA Full QLoRA

AG News 7 | 70 | 0 16 | 46 | 3 12 | 54 | 3 30 | 24 | 0 8 | 62 | 3 25 | 30 | 2
News Category 3 | 60 | 9 1 | 12 | 35 19 | 44 | 1 30 | 24 | 0 10 | 62 | 1 3 | 26 | 26
ATIS 12 | 18 | 3 14 | 12 | 4 10 | 26 | 1 12 | 22 | 1 12 | 16 | 4 12 | 22 | 1
FB 11 | 42 | 4 11 | 32 | 9 21 | 22 | 4 36 | 0 | 0 16 | 32 | 4 19 | 14 | 10
SST-5 5 | 72 | 1 5 | 48 | 13 9 | 64 | 1 21 | 42 | 0 14 | 54 | 1 20 | 26 | 9
YELP 7 | 58 | 6 9 | 46 | 10 16 | 52 | 0 40 | 4 | 0 11 | 58 | 2 26 | 20 | 6

Table 3: Comparison of the number of cases where models trained using data from either paraphrasing or a
combination of contextual insert and backtranslation methods worked statistically (p=0.05) better or had similar
accuracy when compared between each other. The numbers represent the result of one statistical test between
10 fine-tunings of the given model on data collected via the paraphrasing or the combination of two methods
using a specific random seed for a given number of seed samples per label. The cells are formatted in this way:
[# paraphrasing was better] | [# similar accuracy] | [# combination was better]. In most cases, the
paraphrasing method works better for BERT and DistilBERT in both full fine-tuning and QLoRA fine-tuning, with
a decrease of such cases when fine-tuning RoBERTa.
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CLASSIFIER→ ROBERTA BERT DISTILBERT
Dataset↓ Full QLoRA Full QLoRA Full QLoRA

AG News 6 | 72 | 0 17 | 44 | 3 19 | 46 | 0 42 | 0 | 0 8 | 64 | 2 37 | 10 | 0
News Category 4 | 58 | 9 6 | 4 | 34 27 | 30 | 0 42 | 0 | 0 7 | 60 | 5 33 | 6 | 6
ATIS 14 | 16 | 2 16 | 10 | 3 16 | 16 | 0 20 | 8 | 0 13 | 20 | 1 20 | 6 | 1
FB 24 | 22 | 1 36 | 0 | 0 32 | 8 | 0 36 | 0 | 0 28 | 16 | 0 36 | 0 | 0
SST-5 11 | 52 | 5 37 | 8 | 1 22 | 38 | 1 41 | 2 | 0 4 | 76 | 0 42 | 0 | 0
YELP 4 | 52 | 12 16 | 32 | 10 22 | 36 | 2 6 | 6 | 33 10 | 62 | 1 37 | 2 | 4

Table 4: Comparison of the number of cases where models trained using data from either paraphrasing or
backtranslation method worked statistically (p=0.05) better or had similar accuracy when compared between each
other. The numbers represent the result of one statistical test between 10 fine-tunings of the given model on data
collected via the paraphrasing or the backtranslation using a specific random seed for a given number of seed
samples per label. The cells are formatted in this way: [# paraphrasing was better] | [# similar accuracy] |
[# backtranslation was better]. In nearly all cases the paraphrasing method works better for model accuracy,
except for the Yelp dataset, where smaller changes from the backtranslation might be more beneficial.

CLASSIFIER→ ROBERTA BERT DISTILBERT
Dataset↓ Full QLoRA Full QLoRA Full QLoRA

AG News 4 | 70 | 3 13 | 42 | 8 5 | 54 | 10 22 | 38 | 1 9 | 52 | 7 17 | 36 | 7
News Category 11 | 52 | 5 5 | 8 | 33 32 | 18 | 1 33 | 14 | 2 29 | 26 | 0 5 | 22 | 26
ATIS 15 | 14 | 2 15 | 14 | 2 22 | 4 | 0 20 | 8 | 0 18 | 12 | 0 20 | 6 | 1
FB 36 | 0 | 0 36 | 0 | 0 35 | 2 | 0 33 | 6 | 0 36 | 0 | 0 36 | 0 | 0
SST-5 19 | 44 | 1 22 | 26 | 7 29 | 26 | 0 31 | 22 | 0 32 | 20 | 0 39 | 6 | 0
YELP 23 | 38 | 0 26 | 26 | 3 33 | 18 | 0 40 | 4 | 0 26 | 30 | 1 37 | 10 | 0

Table 5: Comparison of the number of cases where models trained using data from either paraphrasing or contextual
swap method worked statistically (p=0.05) better or had similar accuracy when compared between each other. The
numbers represent the result of one statistical test between 10 fine-tunings of the given model on data collected via
the paraphrasing or the contextual swap using a specific random seed for a given number of seed samples per label.
The cells are formatted in this way: [# paraphrasing was better] | [# similar accuracy] | [# contextual
swap was better]. In most cases, the paraphrasing method works better for model accuracy in nearly all cases,
with a higher accuracy of the contextual swap method on news classification datasets.

CLASSIFIER→ ROBERTA BERT DISTILBERT
Dataset↓ Full QLoRA Full QLoRA Full QLoRA

AG News 5 | 74 | 0 13 | 54 | 2 5 | 72 | 1 21 | 40 | 1 6 | 68 | 2 16 | 36 | 8
News Category 8 | 52 | 8 1 | 12 | 35 4 | 58 | 9 3 | 54 | 12 6 | 64 | 4 1 | 6 | 38
ATIS 9 | 28 | 1 10 | 20 | 4 2 | 38 | 3 4 | 24 | 8 4 | 34 | 3 3 | 2 | 20
FB 18 | 34 | 1 20 | 18 | 7 12 | 36 | 6 12 | 6 | 21 19 | 30 | 2 26 | 6 | 7
SST-5 4 | 74 | 1 6 | 54 | 9 3 | 74 | 2 7 | 64 | 3 2 | 70 | 5 15 | 38 | 8
YELP 4 | 74 | 1 5 | 64 | 5 6 | 62 | 5 0 | 4 | 40 0 | 76 | 4 5 | 30 | 22

Table 6: Comparison of the number of cases where models trained using data from either insert words LLM-based
method or contextual insert method worked statistically (p=0.05) better or had similar accuracy when compared
between each other. The numbers represent the result of one statistical test between 10 fine-tunings of the given
model on data collected via the insert words or the contextual insert using a specific random seed for a given number
of seed samples per label. The cells are formatted in this way: [# insert words was better] | [# similar
accuracy] | [# contextual insert was better]. The swap word method works well for RoBERTa full
fine-tuning, but other than that, the cases where it outperforms the contextual insert method are equal to the cases
where it is outperformed.

relatively high, no matter the number of seeds per
label.

H Dataset details

As we did not use all of the dataset labels and
samples in each of the datasets, we list our setup

here. We mostly used labels that were in the
datasets with similar quantities to deal with the
imbalanced datasets issue. All used datasets
are in English language. For the News Cate-
gory dataset, we used samples with labels pol-
itics, wellness, entertainment, travel, style and
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CLASSIFIER→ ROBERTA BERT DISTILBERT
Dataset↓ Full QLoRA Full QLoRA Full QLoRA

AG News 1 | 80 | 1 9 | 52 | 7 4 | 76 | 0 0 | 70 | 7 7 | 68 | 1 17 | 40 | 5
News Category 1 | 42 | 20 0 | 8 | 38 0 | 46 | 19 0 | 38 | 23 0 | 54 | 15 0 | 2 | 41
ATIS 0 | 20 | 14 3 | 14 | 14 0 | 12 | 18 0 | 14 | 17 1 | 14 | 16 0 | 2 | 23
FB 0 | 18 | 27 0 | 4 | 34 0 | 12 | 30 0 | 4 | 34 0 | 20 | 26 1 | 0 | 35
SST-5 3 | 70 | 4 9 | 52 | 7 2 | 78 | 1 3 | 72 | 3 5 | 60 | 7 15 | 32 | 11
YELP 0 | 68 | 8 2 | 38 | 21 1 | 54 | 14 4 | 30 | 23 0 | 54 | 15 4 | 14 | 31

Table 7: Comparison of the number of cases where models trained using data from either swap words LLM-based
method or contextual insert method worked statistically (p=0.05) better or had similar accuracy when compared
between each other. The numbers represent the result of one statistical test between 10 fine-tunings of the given
model on data collected via the swap words or the contextual insert using a specific random seed for a given number
of seed samples per label. The cells are formatted in this way: [# swap words was better] | [# similar
accuracy] | [# contextual insert was better]. The swap words method is generally worse than the contextual
insert method for model accuracy.

Figure 4: The difference in mean accuracy for classifiers trained on the paraphrasing augmentation method and the
backtranslation augmentation method for 6 different datasets. The paraphrasing method works generally better in
all cases.

beauty, and parenting. For the AG News, SST-
5, and Yelp datasets, we used all the samples.
For the ATIS dataset we used samples with la-
bels atis_abbreviation, atis_aircraft, atis_airfare
and atis_flight_time. For the FB dataset we used
samples with labels get_directions, get_distance,
get_estimated_arrival, get_estimated_departure,
get_estimated_duration, get_info_road_condition
and get_info_traffic. For the ATIS dataset, we used
values for a number of seed samples per label [5,
10, 20, 25], and for the FB dataset, we used values
[5, 10, 20, 30, 40, 50] as both of these datasets had
classes with fewer number of samples.

I Established augmentation methods
parameters used

For the backtransaltion method, we used the
facebook/wmt19-de-en and facebook/wmt19-en-de
models models and set the maximum length of the
produced translations to 300.

For the contextual insert and contextual swap
methods same parameters were used: we consid-
ered 100 tokens for augmentation, with 30% of the
input text being changed with a minimum of 1 word
and maximum of 10 words being either swapped
or added and used BERT-large-uncased 5 for our
experiments.

5https://huggingface.co/google-bert/bert-base-uncased
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Figure 5: The difference in mean accuracy for classifiers trained on the paraphrasing augmentation method and the
contextual swap augmentation method for 6 different datasets. The paraphrasing method works generally better in
all cases with a decreasing effect with an increased number of seeds per label.

Figure 6: The difference in mean accuracy for classifiers trained on the insert words LLM-based augmentation
method and the contextual insert augmentation method for 6 different datasets. The cost of using the insert words
LLM-based method outweighs the benefits, as the contextual insert method works in many cases slightly worse or
outright better for model accuracy.

J LLM-based augmentation methods
parameters and templates used

For GPT-3.5 data collection, we used the gpt-3.5-
turbo-0125 version of the model with temperature
of 1, top p of 1 and presence penalty at 0. For
Llama3-8B, we used the instruct version 6, 4-bit
quantization, max new tokens set at 1024, tempera-

6https://huggingface.co/meta-Llama/Meta-Llama-3-8B-
Instruct

ture of 0.1 and top p of 1. We collected 1 response
for each seed sentence as we asked for 15 differ-
ent augmentations in our prompts, which are listed
below. Both LLMs used the same prompts.

Paraphrasing prompt: Please provide 15 differ-
ent changes of the Text by paraphrasing it. Output
the full sentences. Output in format "1. sentence 1,
2. sentence 2, ..., 15. sentence 15". Text: "seed text
placeholder".

Insert words prompt: Please provide 15 different
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Figure 7: The difference in mean accuracy for classifiers trained on the swap words LLM-based augmentation
method and the contextual insert augmentation method for 6 different datasets. The cost of using the swap words
LLM-based method outweighs the benefits, as the contextual insert method works in many cases better for model
accuracy.

Figure 8: The difference in mean accuracy for classifiers trained on the contextual insert established augmentation
method and using only the seed samples for fine-tuning for 6 different datasets. The cost of using the swap words
LLM-based method outweighs the benefits, as the accuracy insert method works in many cases better for model
performance.

changes of the Text by inserting words into the
Text. Output the full sentences. Output in format
"1. sentence 1, 2. sentence 2, ..., 15. sentence 15".
Text: "seed text placeholder".

Swap words prompt: ’Please provide 15 differ-
ent changes of the Text by swapping words for their
synonyms. Output the full sentences. Output in for-
mat "1. sentence 1, 2. sentence 2, ..., 15. sentence
15". Text: "seed text placeholder".

K Classifier fine-tuning details

We selected the best hyperparameters after using
a hyperparameter search across models and classi-
fiers. For both full-finetuning and LoRA finetuning,
we used the same batch size across classifiers based
on the number of seed samples per label: we used
16 batch sizes for 5 to 20 seeds per label, 32 batch
sizes for 20 to 30 seeds per label and 64 for 40 and
more seeds per label. We used the same learning
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Figure 9: The difference in mean accuracy for classifiers trained on the paraphrasing LLM-based augmentation
method and using only seed samples for fine-tuning for 6 different datasets. The cost of using the swap words
LLM-based method outweighs the benefits, as the contextual insert method works in many cases better for model
accuracy.

rate across classifiers set at 1e-4. We used AdamW
optimizer in all cases.

For LoRA finetuning, we used r=16, alpha=16,
dropout=0.1 and trained the model for 80 epochs.
For full-finetuning, we performed the fine-tuning
for 30 epochs.

L Best classifier model results

We investigated which classifier performed best for
both full fine-tuning and LoRA fine-tuning. We
performed this analysis when comparing the para-
phrasing LLM-based method and contextual insert
method. We compared the cases with the same
dataset, number of seed samples per label, and
random seeds used. In the majority of cases (ap-
proximately 80% of the time), fine-tuned RoBERTa
had the highest accuracy in all cases of fine-tuning,
followed by DistilBERT and then BERT. The visu-
alization of the results can be seen in Figure 10.
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Figure 10: No. cases where each model achieved the highest accuracy for a particular combination of number
of seeds, collected seeds, and dataset when using full fine-tuning (left) and LoRA fine-tuning (right). These
cases were gathered from the comparison of paraphrasing LLM-based augmentation method and contextual insert
augmentation method.
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