
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 10431–10442

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

LCIRC: A Recurrent Compression Approach for Efficient Long-form
Context and Query Dependent Modeling in LLMs

Sumin An1 Junyoung Sung1 Wonpyo Park2

Chanjun Park1,† Paul Hongsuck Seo1,†
1Dept. of CSE, Korea University 2Google

{suminan, jys7451, bcj1210, phseo}@korea.ac.kr
wppark@google.com

Abstract

While large language models (LLMs) excel in
generating coherent and contextually rich out-
puts, their capacity to efficiently handle long-
form contexts is limited by fixed-length posi-
tion embeddings. Additionally, the computa-
tional cost of processing long sequences in-
creases quadratically, making it challenging
to extend context length. To address these
challenges, we propose Long-form Context In-
jection with Recurrent Compression (LCIRC),
a method that enables the efficient process-
ing long-form sequences beyond the model’s
length limit through recurrent compression
without retraining the entire model. We further
introduce query dependent context modeling,
which selectively compresses query-relevant in-
formation, ensuring that the model retains the
most pertinent content. Our empirical results
demonstrate that Query Dependent LCIRC
(QD-LCIRC) significantly improves LLM’s
ability to manage extended contexts, making
it well-suited for tasks that require both com-
prehensive context understanding and query
relevance.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in generating coherent and
contextually rich outputs (Zhao et al., 2023; Wang
et al., 2024). However, a major limitation re-
mains in their ability to handle long-form con-
texts efficiently (Liu et al., 2024; Li et al., 2024).
Transformer-based architectures, which underlie
most LLMs, are constrained by fixed-length posi-
tion embeddings, limiting the number of tokens
they can process in a single pass (Chen et al., 2021;
Lin et al., 2022). Once this limit is exceeded, cru-
cial information from earlier parts of the input is
truncated, leading to reduced performance in tasks

†Co-corresponding authors.

requiring extended context, such as document sum-
marization (Koh et al., 2022) or long-form question
answering (Fan et al., 2019). Also, the computa-
tional cost of processing longer input sequences
grows quadratically with sequence length, making
it impractical to simply increase the context win-
dow (Fournier et al., 2023; Chen et al., 2023).

To address these challenges, we propose Long-
form Context Injection with Recurrent Compres-
sion (LCIRC), a method designed to extend LLM’s
ability to process long-form inputs efficiently.
LCIRC compresses the context beyond the model’s
length limit into compact representations, which
are injected back into the model, allowing it to re-
tain essential information without retraining the
entire model. By recurrently compressing the input
sequence, our approach maintains a balance be-
tween preserving context and minimizing computa-
tional overhead, enabling the model to generate out-
puts grounded in long-span contexts (Valmeekam
et al., 2023; Chen et al., 2024; Lester et al., 2024).

In many real-world applications, LLMs need
to process input in response to specific queries or
instructions (Ouyang et al., 2022; Naveed et al.,
2023). Compressing all available information in-
discriminately can lead to irrelevant data being re-
tained, reducing the model’s effectiveness (Mulc
and Steele, 2024; Franceschelli et al., 2024). To
address this, we introduce query dependent context
modeling, which selectively compresses informa-
tion based on its relevance to the query. This en-
sures that the model focuses on the most pertinent
parts of the input, enhancing its performance in
tasks like multiple choice and long-form question
answering, where query relevance is crucial.

Our results show that LCIRC, combined with
query dependent modeling, significantly improves
the ability of LLMs to handle long-form contexts
in a scalable and efficient manner, making it well-
suited for applications that require both extensive
context understanding and precise query relevance.

10431



In summary, our primary contributions are as
follows: (1) We propose LCIRC, a method that
extends the context window of LLMs through re-
current compression, allowing efficient handling
of long-form inputs without retraining the entire
model. (2) We introduce query dependent con-
text modeling, which selectively compresses query-
relevant information, enhancing performance in
tasks that require the comprehensive understanding
of extended contexts. (3) Our approach signifi-
cantly improves the efficiency of LLMs in long-
form contexts, reducing computational costs while
demonstrating performance improvements quanti-
tatively through various benchmarks.

2 Related Work

Recurrent Transformers Various methods have
been explored to extend the capacity of transformer-
based language models for handling longer input
sequences through the use of recurrence mecha-
nisms. These approaches typically divide the input
into segments and recurrently store and reuse infor-
mation across them. Transformer-XL (Dai, 2019)
and Compressive Transformer (Rae et al., 2019)
employ segment-level recurrence, while models
such as Recurrent Memory Transformer (Bulatov
et al., 2022) and Memformer (Wu et al., 2020)
utilize memory modules to retain past informa-
tion. Additionally, Recurrent Attention Network
(RAN) (Li et al., 2023) and Segmented Recurrent
Transformer (SRformer) (Long et al., 2023) inte-
grate recurrent attention to aggregate information
across segments. Despite these advancements, a
common limitation of these methods is the need for
full model re-pretraining, which is computationally
costly and resource-intensive.

Sparse Attention As input sequence lengths
increase, the computational overhead associated
with full attention mechanisms grows quadratically.
Sparse attention mechanisms have been proposed
as an efficient alternative to mitigate this compu-
tational burden. Notable models such as Sparse
Transformer (Child et al., 2019), Longformer (Belt-
agy et al., 2020), Reformer (Kitaev et al., 2020),
Big Bird (Zaheer et al., 2020), Routing Trans-
former (Roy et al., 2021), and MInference (Jiang
et al., 2024) implement sparse attention to reduce
computational costs for longer contexts. While
these methods improve efficiency, they do so at
the cost of partial information loss, resulting in
performance that often falls short of full attention

mechanisms, and they are still constrained by the
limited context length of LLMs, making it chal-
lenging to process long-form sequences.

Prompt Compression Prompt compression tech-
niques aim to reduce the computational challenges
of processing large prompts by creating more com-
pact representations. Gisting (Mu et al., 2024) com-
presses the entire user instruction into a set of "gist
tokens" in one step, providing a compact repre-
sentation of the prompt. However, this approach is
typically optimized for shorter contexts, limiting its
effectiveness when handling inputs that exceed the
context window of the underlying LLM. Addition-
ally, several studies have explored KV cache com-
pression (Nawrot et al., 2024; Zhang et al., 2024b)
to enhance the efficiency of long-form context in-
ference. While these approaches improve computa-
tional efficiency, they are primarily designed to op-
timize context modeling within the context length
of the underlying LLM and have limited capability
in extending the sequence length. ICAE (Ge et al.,
2023) and AutoCompressor (Chevalier et al., 2023)
address this limitation by segmenting long contexts
into smaller chunks and compressing each individ-
ually. Although these methods represent progress,
they have yet to demonstrate compression capabil-
ities for extremely long sequences, such as those
involving hundreds of thousands of tokens, and still
face limitations in terms of inference costs and con-
text window size due to the simultaneous inference
and compression processes.

3 Efficient Long-form Context Modeling

In this section, we present an efficient approach
to handle long-form inputs in pretrained LLMs.
We introduce a method that enables models to pro-
cess lengthy contexts by compressing and injecting
the relevant information back into the model in
a computationally efficient manner. Additionally,
we outline the training strategy used to optimize
the proposed components while maintaining the
foundational capabilities of the model.

3.1 Preliminaries: Transformer-Based LLMs
Modern LLMs are built on the transformer architec-
ture, where the model autoregressively estimates
the probability of each subsequent token xn+1:N

given the preceding tokens x1:n, as formulated by:

P (xn+1:N |x1:n) =
N∏

i=n+1

P (xi|x1:i−1) (1)

10432



𝐡(") 𝐬$

Cross Attention

𝐡($)

MLP

⊕

⊕
Perceiver
× num_layers

Q KV

𝐡(%&$) 𝐬%

Cross Attention

𝐡(%)

MLP

⊕

⊕
Perceiver
× num_layers

Q KV

𝐡 = [𝐡 $ , … , 𝐡 % ]

⋯

Gated Cross Attention

× num_layers
LLM

Gated MLP

LLM Block

⊕

⊕

𝐞'

Q

KV

Output

🔥

🔥

🔥

🔥🔥

🔥

🔥 𝐡(%&() 𝐬%&$

Cross Attention

𝐡(%&$)

MLP

⊕

⊕
Perceiver
× num_layers

Q KV
🔥

🔥

⋯

Unfolded Process of Recurrent Context Compression Compressed Context Injection

GCA Block

𝐞'𝐞)

⋯
𝐬%&$ 𝐬%𝐬$

Figure 1: The overall process of the proposed Long-form Context Injection with Recurrent Compression
(LCIRC). LCIRC comprises two components: Recurrent Context Compression (left) and Compressed Context
Injection (right). In the i-th step of Recurrent Context Compression, the previously compressed features h(i−1)

and the segment embeddings si are fed into the Perceiver module as query and input features, respectively. The
compressed features h(i) are then generated and reinjected as query features for the subsequent recurrence step. The
initial query features h(0) are learnable parameters. In Compressed Context Injection, the concatenated compressed
features h serve as input to the Gated Cross Attention layer. Layers indicated with a fire symbol represent trained
layers, while layers marked with a snow symbol denote frozen layers.

Here, xj:k refers to a subsequence of tokens
(xj , xj+1, . . . , xk), and x1:N denotes the full token
sequence. During generation, the model samples
one token at a time, appending it to the input to
predict the next token.

Accurately modeling token order is essential in
autoregressive generation because it enables the
model to effectively capture the underlying struc-
ture and meaning of language. Transformer-based
LLMs employ learned positional embeddings to
represent token positions, but these embeddings im-
pose a fixed input length, limiting the model’s abil-
ity to handle sequences longer than the maximum
number of embeddings (M ). Consequently, trans-
formers are constrained in their capacity to process
input sequences exceeding this limit (N > M ).

Incorporating long-form context into LLMs is
critical for generating outputs that remain grounded
in extended input sequences. However, extend-
ing the input length requires full retraining of the
model, and the computational cost scales quadrati-
cally with the context length, making long-form in-
put processing computationally prohibitive in stan-
dard transformer architectures.

3.2 Long-form Context Injection with
Recurrent Compression

To address the limitations of processing lengthy
inputs (N ≫ M ) in pretrained LLMs, we pro-
pose Long-form Context Injection with Recurrent
Compression (LCIRC), an approach that enables
efficient handling of long-form contexts. A sim-

ple truncation of the first N − M tokens would
discard essential contextual information, whereas
our method restores access to this context through
recurrent context compression and compressed con-
text injection, detailed below. An overview of the
proposed method is provided in Figure 1.

3.2.1 Recurrent Context Compression

We introduce a recurrent context compression
mechanism that effectively reduces the long-form
context into a compact sequence of embeddings,
which can be efficiently processed by the model.

Given an input sequence x1:N , where x1:N−M

represents the truncated context xC , it is often the
case that N ≫ M , for example, N = 192K in
InfiniteBench (Zhang et al., 2024a) compared to
M = 4K in Llama (Touvron et al., 2023). To
handle this, the recurrent compressor produces a
compact feature sequence (h1, . . . , hK) ∈ h from
xC , where K ≪ N −M .

We employ the Perceiver architecture (Jaegle
et al., 2021b,a) for the compressor, which consists
of stacked Perceiver blocks. Each block includes
a cross-attention layer followed by a two-layer
MLP with residual connections (Figure 1). The
cross-attention mechanism aggregates input fea-
tures based on query features, enabling efficient
compression by using a compact sequence as the
query and the longer context as the input features.

In particular, we use the token embeddings eC of
the truncated context xC as the input features and
a set of learnable query vectors h(0) of length K as

10433



the query features. The compressed features h are
obtained through the Perceiver module as follows:

h = Perceiver(h(0), eC) (2)

where Perceiver(q, x) represents the Perceiver
module with query q and input features x.

However, compressing such an extensive context
in a single step is computationally expensive, thus
we introduce a recurrent compression process. The
long context eC is split into S disjoint segments
s1, . . . , sS , where si = eni−1+1:ni represents the
i-th segment. These segments are sequentially fed
into the Perceiver module, with the compressed
features from the previous segment serving as the
query features for the next segment:

h(i) = Perceiver(h(i−1), si) (3)

Here, h(i) compresses both the current segment
si and the cumulative information from all previ-
ous segments, enabled by the recurrent mechanism.
The initial query vectors h(0) consists of learnable
parameters.

Finally, the compressed representations
h(1), . . . ,h(S) of all segments are concatenated to
form the overall compressed representation of the
long-form context:

h = [h(1), . . . ,h(S)] (4)

where [· · · ] denotes concatenation. This recurrent
approach ensures efficient long-form context rep-
resentation, enabling LLMs to process extended
inputs beyond their native length limitations.

3.2.2 Compressed Context Injection
After obtaining the compressed representation h
for the long-form context, we inject this com-
pressed information into the pretrained transformer
using gated cross-attention layers with residual con-
nections (Alayrac et al., 2022). For the truncated
input sequence xN−M+1:N of length M , denoted
as xI ,we first compute the embedding sequence
e
(l)
I at the l-th transformer block. The embeddings

are then contextualized through Gated Cross Atten-
tion Block (GCA Block in Figure 1) as follows:

ė
(l)
I = α(l) · CA(e(l)I ,h) + e

(l)
I

α(l) = tanh(a(l))

ë
(l)
I = β(l) ·MLP(ė

(l)
I ) + ė

(l)
I

β(l) = tanh(b(l))

(5)

where CA(q, x) denotes the cross-attention layer
with queries q and key-value inputs x. Unlike stan-
dard transformer layers, we pass the modified em-
beddings ë(l)I to the next transformer block instead
of the original embeddings e(l)I . The scalar param-
eters a(l) and b(l) are learnable and initialized to
0, preserving the pretrained LLM’s performance
at the start of training. The compressed context
representation enables efficient context injection,
minimizing computational overhead.

3.2.3 Optimization Strategy
To fully leverage the pretrained LLM’s founda-
tional capabilities, we optimize only the additional
components using a corpus of long-form texts.

Given a long-form training sequence x1:N , the
model is trained by minimizing the negative log-
likelihood (NLL) loss:

L = − 1

N

N∑

i=1

logP (xi|x1:i−1). (6)

The long-form input is randomly segmented, with
each segment limited to a maximum length R. The
probability P (xi|x1:i−1) is estimated within each
segment, and prior segments are processed by the
recurrent context compressor. The input xk:i−1,
where k is the starting index of the current segment,
is treated as the regular input for the LLM.

Although the recurrent architecture enables
memory-efficient inference, the space complexity
during training scales linearly with the input length
N due to backpropagation through time (BPTT).
To mitigate this, we employ truncated BPTT, where
gradient computation is restricted to the last T seg-
ments. Since gradient calculation is unnecessary
for earlier segments beyond the last T , we cache
the compressed features h and reuse them for pre-
dicting subsequent tokens within each segment.

3.2.4 Inference
LLMs perform inference by conditioning on a
given input prompt and generating a coherent and
contextually relevant output sequence. Given an
input token sequence of length N and an output
token sequence of maximum length P , if their com-
bined length remains within the context window M
of the underlying LLM (N + P ≤ M ), the our re-
current compression mechanism is not activated, as
LCIRC is specifically designed for long-form con-
texts. In this case, the model operates in the same
manner as the inference process of the pretrained

10434



LLMs. In contrast, when the total maximum length
of input and output sequences exceeds the context
window of the LLM (N + P > M ), two distinct
cases must be considered. When the maximum
output length remains within the context window
of the LLM (P ≤ M ), the LLM can generate the
entire output sequence in a single pass given the
compressed input sequence by the proposed recur-
rent compression mechanism. Conversely, if the
maximum output length exceeds the context win-
dow (P > M ), our model iteratively compresses
the earlier portions of the generated tokens (e.g.,
the first M/2 tokens) by performing additional re-
current steps using the compression mechanism.
This process removes the compressed tokens from
the context of the underlying LLM, thereby cre-
ating space for generating new next tokens while
preserving coherence and continuity. Notably, this
additional process remains highly efficient, as it
only involves the compression steps while main-
taining the original window size of the underlying
LLM.

4 Query Dependent Context Modeling

LLMs frequently process context based on spe-
cific instructions or queries. To enhance the ability
of LLMs to handle long-form context, we extend
our method to incorporate query dependent context
compression. This allows the model to selectively
focus on the context most relevant to the given
query, thus improving the overall efficiency and
relevance of the model’s responses.

Unlike the vanilla recurrent context compression,
which merges all the information in the current
segment si into the compressed features h(i) as
shown in Eq. (3), query dependent compression
selectively injects information that is most relevant
to the user query. This selective compression is
achieved through the addition of a Gated Cross At-
tention Block to our recurrent context compression
method as shown in Figure 2.

As illustrated in Figure 2, the model integrates
the user query into the compression pipeline. At
each compression step, the learnable query vec-
tors or the previously compressed features h(i−1)

used as the query features for the Perceiver module
are transformed into a query dependent represen-
tation. This is done through the newly introduced
gated cross attention block, which takes h(i−1) as
the query features, and the user query embedding
equery as the input features. The query dependent

𝐡("#$) 𝐬"

Cross Attention

𝐡(")

MLP

⊕

⊕
Perceiver
× num_layers

Q KV Gated Cross Attention

Gated MLP

𝐡("#$)

Cross Attention

𝐡(")

MLP

⊕

⊕
Perceiver
× num_layers

Q

KV

⊕

Q

⊕

𝐞&'()*

KV

𝐬"
GCA Block

Figure 2: Comparison of the recurrent context com-
pression module with and without query dependent
modeling. In addition to the regular context compres-
sion module (left), we add additional cross attention
module (blue box) to inject query information into the
compressed feature h(i−1) (right).

features ḧ(i−1) are computed through the same pro-
cess in Eq. (5) with h(i−1) and equery.

The query dependent compressed feature h(i) is
then produced using the Perceiver module, with the
query dependent feature ḧ(i−1) and the segment
embeddings si through the same process in Eq. (3).
Subsequently, these query dependent compressed
features h are then used during inference as de-
scribed in Eq. (5), enabling the model to focus on
information relevant to the query while handling
long-form inputs.

Training and Efficiency Enhancements Query
Dependent LCIRC (QD-LCIRC) builds upon the
pre-trained LCIRC architecture by adding a gated
cross-attention layer to introduce query depen-
dency. To train QD-LCIRC, we minimize the fol-
lowing negative log-likelihood (NLL) loss:

L = − 1

N

N∑

i=1

logP (xi|x1:i−1, xquery) (7)

This objective ensures that the model learns to pre-
dict each token in the input sequence conditioned
on both the preceding tokens and the query, facili-
tating query dependent context modeling.

As shown in Figure 3, we employ Random Se-
lective BPTT to train the QD-LCIRC efficiently.
Unlike vanilla BPTT, which computes gradients
across all timesteps, or truncated BPTT, which only
computes gradients for the last T timesteps, Ran-
dom Selective BPTT randomly selects a subset of

10435



: Trained

Query Dependent 
Compressor

𝐬!

𝐡(#)

𝐞%&'()

⋯ LLM

𝐞*

𝐡 = [𝐡 ! , … , 𝐡 + ]

(a) Vanilla BPTT

𝐡(!)

Query Dependent 
Compressor

𝐬+,!

𝐡(+,-)

𝐞%&'()

𝐡(+,!)

Query Dependent 
Compressor

𝐬+𝐞%&'()

𝐡(+)
Output ℒQuery Dependent 

Compressor

𝐬-𝐞%&'()

⋯

Query Dependent 
Compressor ⋯ LLM

(b) Truncated BPTT
Query Dependent 

Compressor
Query Dependent 

Compressor Output ℒQuery Dependent 
Compressor

⋯

Query Dependent 
Compressor ⋯ LLM

(c) Selective State BPTT
Query Dependent 

Compressor
Query Dependent 

Compressor Output ℒQuery Dependent 
Compressor

⋯

: Gradient path: Not trained

Figure 3: Comparisons of the proposed Selective State BPTT with vanilla and truncated BPTT. Green boxes
represent timesteps where gradients are computed in BPTT whereas the light green ones indicate the timesteps
without gradient computation. Finally, dotted red lines illustrate the gradient flows. (a) Vanilla BPTT computes
the full gradients through the entire timesteps in recurrence but is computationally infeasible with a large N .
The gradients for h(i) receives upstream gradients both through the recurrent connection and through the direct
connection from h. (b) Truncated BPTT backprobagates gradients to the last T timesteps only significantly reducing
computational costs. However, it does not transfer gradient flows to timesteps further than T (marked with light
green color) and fails to learn long-term QD modeling. (c) Our proposed Selective State BPTT selects several
random timesteps and transfer gradient flows directly through the direct connection from h, which enables efficient
learning of long-term QD modeling capabilities.

timesteps for gradient computation. This allows
the model to efficiently learn long-term query de-
pendent context modeling without excessive com-
putational overhead. Additionally, we cache the
compressed features h from earlier segments, fur-
ther reducing the memory and computational re-
quirements for training.

Inference The only distinction between QD-
LCIRC and LCIRC lies in the incorporation of
query dependent compression, facilitated by the
GCA block, within the recurrent compression step.
Consequently, the inference process of QD-LCIRC
differs from that of LCIRC only by the addition of
query dependent modeling through an extra GCA
block in the recurrent compression step, as demon-
strated in Section 3.2.4 and Figure 2.

5 Experiments

5.1 Datasets and Metrics

FineWeb-Edu FineWeb-Edu (Lozhkov et al.,
2024) comprises 1.3T tokens, filtered from the
FineWeb dataset, which contains 15T tokens. To
facilitate long-form context modeling, we selected
texts with a minimum length of 4K tokens, result-
ing in a dataset that includes texts up to 339K to-
kens in length. The statistics of the training data
are provided in the Table 1. For evaluation, we
curated 1,000 texts of 128K tokens each to assess

Token Length # of Samples Proportion (%)

6K ≤ Data < 8K 410,876 36.64
8K ≤ Data < 16K 418,332 37.30

16K ≤ Data < 32K 207,503 18.50
32K ≤ Data < 64K 69,396 6.19

64K ≤ Data < 128K 13,659 1.22
128K ≤ Data 1,679 0.15

Total 1,121,445 100.00

Table 1: Data distribution of the training set ex-
tracted from FineWeb-Edu. Our training set is con-
structed focusing on long-context modeling.

perplexity.

FineWeb-LQA FineWeb-LQA, a long-form
QA dataset, was automatically generated from
FineWeb-Edu to support the training of our query-
dependent model, following a data construction
process similar to An et al. (2024). We extract
random 128-token text segments and utilize the
Llama-3.1-70B-Instruct-FP8 model to generate cor-
responding QA pairs. The extracted segments are
then reintegrated into the original long-form con-
text, which serves as the basis for evaluating long-
form QA tasks.

InfiniteBench InfiniteBench (Zhang et al.,
2024a) is a benchmark suite designed to assess
the capability of LLMs in handling ultra-long
contexts, exceeding 100K tokens. We focus on

10436



two tasks: LongBook QA (En.QA) and LongBook
Multiple Choice (En.MC), both of which test
the model’s ability to answer identical questions
in open-ended and multiple-choice formats,
respectively. Evaluation is conducted using the F1
score for En.QA and accuracy for En.MC.

LongBench LongBench (Bai et al., 2023) evalu-
ates long-form context modeling through a suite of
tasks across real-world and synthetic categories. In
this study, we focus on six English tasks, consisting
of both single-document and multi-document QA
tasks. The average context length is 18K tokens,
with a maximum of 82K tokens. Performance is
measured using the F1 score.

L-Eval L-Eval (An et al., 2023) includes a
dataset of 508 long documents spanning various do-
mains, divided into 20 subtasks. It comprises over
2K human-annotated query-response pairs, with
context lengths ranging from 3K to 200K tokens.
We evaluate the models on four open-ended QA
tasks using the F1 score and four multiple-choice
QA tasks using accuracy.

5.2 Models
We build upon Llama2-7B (Touvron et al., 2023) as
our baseline model, augmenting its long-form con-
text modeling capabilities. In line with (Chevalier
et al., 2023), we implement an extended version
of Llama2 that supports full attention over longer
contexts (ExtendedFA), extending the token length
limit to 8K by modifying the RoPE θ (Su et al.,
2024). Due to the quadratic complexity of full at-
tention, ExtendedFA is restricted to a maximum
of 8K tokens. We compare this approach against
AutoCompressor (Chevalier et al., 2023), a state-of-
the-art method that models context through prompt
compression by recurrently feeding segmented in-
puts to the model while leveraging compressed
tokens for subsequent segments. Additionally, we
evaluate our proposed method with and without
query dependent modeling.

All models are trained on FineWeb-Edu to en-
sure fair comparisons in language modeling. For
QD-LCIRC, we initialize the model with the pre-
trained weights of LCIRC on FineWeb-Edu and
fine-tune it on FineWeb-LQA for query dependent
modeling. Note that FineWeb-LQA is automat-
ically generated from FineWeb-Edu for this pur-
pose.

For baseline models, context exceeding the to-
ken length limit is truncated. Llama2 and Extend-

Total Token Length (N )

Models 4k 8k 64k 128k

Llama-2-7B 5.472 - - -
ExtendedFA 5.442 5.319 - -
AutoCompressor 6.127 6.010 6.188 -
LCIRC (Ours) 5.472 5.313 5.312 5.312
QD-LCIRC (Ours) 5.472 5.299 5.298 5.298

Table 2: Perplexity scores on the FineWeb-Edu test
set. Each long-form text is truncated from the beginning
to adhere to the total token length, which encompasses
both the context and the last 2K target tokens used for
measuring perplexity.

Total Token Length (N )

Models 4k 8k 64k 128k

ExtendedFA 63 143 3,118 10,739
AutoCompressor 61 125 1,350 -
LCIRC (Ours) 63 77 97 120
QD-LCIRC (Ours) 63 77 98 122

Table 3: Computational complexities for different
models in TeraFLOPs. We compute the TFLOPs of
ExtendedFA under the assumption that the model is
extended to process input tokens of the specified length.
AutoCompressor is unable to process inputs with 128K
tokens.

edFA handle up to 4K and 8K tokens, respectively,
while AutoCompressor supports up to 84K tokens,
based on the experimental setup from Chevalier
et al. (2023). In contrast, our method imposes no
explicit length limit, as the compressed context is
injected via cross-attention, allowing us to process
sequences up to 815K tokens in length.

5.3 Implementation Details

All models are based on Llama2-7B and trained
using a batch size of 64 with the Adam optimizer
(Kingma, 2014). QD-LCIRC is trained with a learn-
ing rate of 2e-5 and 300 warmup steps, utilizing
Selective State BPTT with 8 random selections.
Other models are trained with a learning rate of 5e-
5. The length (K) of the initial learnable queries
h(0), which also corresponds to the length of each
compressed features h(i), is set to 64 based on our
preliminary experiments with a smaller model OPT-
2.7B. In these experiments, we observed no signifi-
cant performance difference between K = 64 and
K = 256, leading us to adopt the more efficient
setting of K = 64. All training procedures are con-
ducted using eight NVIDIA H100 80GB GPUs.

10437



InfiniteBench LongBench

FW-LQA QD En.MC En.QA Avg NQA Qasper MFQA HQA 2WQA MSQ Avg

Llama-2-7B ✗ ✗ 6.99 3.95 5.47 13.04 12.08 14.68 16.27 7.10 4.41 11.26
ExtendedFA ✗ ✗ 15.72 3.88 9.80 12.21 18.23 18.23 17.81 14.18 8.25 14.82
AutoCompressor ✗ ✗ 18.34 4.46 11.40 12.60 16.89 19.93 19.00 16.36 8.84 15.60
LCIRC (Ours) ✗ ✗ 21.40 5.26 13.33 10.67 18.32 21.71 21.66 16.55 9.09 16.33

ExtendedFA ✓ ✗ 28.38 4.55 16.47 18.96 13.73 23.48 20.78 17.24 8.29 17.08
AutoCompressor ✓ ✗ 31.00 5.35 18.18 13.69 18.63 33.55 15.01 14.13 8.98 17.33
QD-LCIRC (Ours) ✓ ✓ 38.86 5.80 22.33 15.31 20.57 33.25 28.19 19.00 12.39 21.45

Table 4: Per-task performance on InfiniteBench and LongBench. The following abbreviations are used: NQA
denotes NarrativeQA, MFQA represents MultiFieldQA-en, HQA refers to HotpotQA, 2WQA to 2WikiMQA, and
MSQ to MuSiQue. Avg indicates the average score across all subtasks within respective benchmarks. FW-LQA
indicates whether the model is fine-tuned on FineWeb-LQA. Our QD-LCIRC consistently outperforms competing
methods, achieving the highest average score by incorporating query dependent modeling, as indicated in the QD
column.

FW-LQA QD CS QALIT TOEFL SF LFQA NQA NQ Qasper Avg

Llama-2-7B ✗ ✗ 10.47 25.74 0.00 29.69 22.30 8.66 22.64 2.29 15.22
ExtendedFA ✗ ✗ 16.86 33.66 17.10 22.66 13.89 10.76 33.24 10.96 19.89
AutoCompressor ✗ ✗ 18.60 31.68 17.47 22.66 11.73 4.82 26.42 6.64 17.50
LCIRC (Ours) ✗ ✗ 22.09 27.23 10.04 27.34 14.66 9.89 26.40 9.44 18.39

ExtendedFA ✓ ✗ 15.70 34.16 13.75 20.31 28.27 16.91 35.68 8.51 21.66
AutoCompressor ✓ ✗ 20.35 32.18 26.39 16.41 29.33 19.08 28.67 15.38 23.47
QD-LCIRC (Ours) ✓ ✓ 25.58 30.20 12.27 37.50 31.63 20.92 34.37 16.92 26.17

Table 5: Per-task performance on L-Eval. The following abbreviations are used: CS denotes Coursera, QALIT
refers to QuALITY, SF represents SFiction, LFQA refers to LongFQA, and NQA to NarrativeQA. Avg indicates
the mean performance score across all subtasks within the respective benchmark. FW-LQA indicates whether the
model has been fine-tuned on FineWeb-LQA, while QD denotes whether query dependent modeling.

InfBench LongBench L-Eval

Truncated BPTT 21.26 20.73 25.45
Selective State BPTT 22.33 21.45 26.17

Table 6: Impact of different BPTT variations on
benchmark performance. This table presents the per-
formance of the model trained with Truncated BPTT,
and Selective State BPTT (T = 8) across three bench-
marks: InfiniteBench, LongBench, and L-Eval. The
results highlight the differences in benchmark scores for
each method, demonstrating the effectiveness of Selec-
tive State BPTT.

5.4 Results on Language Modeling

Following Chevalier et al. (2023), we first measure
the perplexity of the last 2K tokens given its con-
text while varying the total token length between
4K and 128K, which refers to the combined length
of both the context and target tokens. To ensure
that the same tokens are used for perplexity mea-
surement for comparisons, we truncate the inputs
from the beginning based on the total context length
(N ), retaining the last N tokens, of which the final
2K tokens are used for the perplexity computation.

Note that all the models except ours impose limits
on context lengths.

Table 2 presents the perplexity results of the mod-
els on the FineWeb-Edu test set. We first observe
that all the methods, except for AutoCompressor,
perform similarly when N = 4K. AutoCompressor
significantly alters Llama’s generation mechanism
resulting in a notable drop in perplexity. This find-
ing aligns with the observations from experiments
conducted with Llama in Chevalier et al. (2023). In
contrast, our method preserves the original strong
capabilities of Llama with short contexts, as the
frozen LLM remains unchanged.

With N > 4K, Llama is unable to process the
full context. In contrast, all other models exhibit im-
proved perplexity scores by utilizing additional con-
text compared to their scores with N = 4K. Note,
however, that both ExtendedFA and AutoCompres-
sor still impose strict limits on the total context
length. Moreover, the perplexity of AutoCompres-
sor increases at N = 64K, indicating challenging
optimization for long-form context modeling. In
contrast, the proposed LCIRC model consistently
improves perplexity and maintains this improved

10438



performance even as the context further lengthens.
We evaluate the computational complexities of

the models for processing long-term contexts with
varying total token lengths at inference, as shown in
Table 3. As the token length increases, the results
show a prohibitively large increase in complex-
ity with ExtendedFA, which requires full attention
across all tokens. In contrast, AutoCompressor ef-
fectively reduces complexity compared to Extend-
edFA; a reduction rate increases with the number
of tokens and showing 66% reduction with 64K
tokens. However, AutoCompressor cannot process
tokens longer than 64K with segments of 2K to-
ken length. In contrast, LCIRC can handle 128K
tokens, while achieving a 99% complexity reduc-
tion compared to ExtendedFA. Note that LCIRC
improved perplexity while maintaining this signifi-
cant reduction in complexity. Finally, QD-LCIRC
introduces some additional complexities, but they
are marginal compared to the overall reduction rate.

5.5 Results on Long Context Benchmarks
We also evaluate the methods on multiple QA
benchmarks that require long-form context under-
standing. In these benchmarks, models are asked
to answer a question, requiring to understand the
input text under the context of the question. For
QD-LCIRC, we use the input question as the query.

Table 4 presents performances on InfiniteBench
and LongBench. Since the QA instances in these
benchmarks require an understanding of long-form
context documents, Llama exhibits poor perfor-
mance across all tasks. ExtendedFA improves
this by leveraging additional context, but it is
still limited to 8K tokens, sharing the same un-
derlying issue as Llama. Both AutoCompressor
and LCIRC further enhance performance over Ex-
tendedFA by enabling access to much longer con-
texts, with LCIRC achieving much greater improve-
ments. When LCIRC is combined with our query-
dependent modeling technique (QD-LCIRC), it
leads to significant performance gains, yielding
approximately 308% and 90% relative improve-
ments in average scores over the base Llama model
on InfiniteBench and LongBench, respectively. To
ensure fair comparisons, we further fine-tuned Ex-
tendedFA and AutoCompressor on FineWeb-LQA.
Despite this, our QD-LCIRC still achieves signifi-
cant improvements over these models, consistently
delivering the best performance on most tasks and
resulting in the highest average score. This fur-
ther underscores the effectiveness of incorporating

query dependent modeling.
We also evaluate the models on L-Eval in Ta-

ble 5. Note that, although L-Eval is a benchmark
designed to assess long-form context understand-
ing capabilities, its context lengths are relatively
shorter, with an average length of 19K compared
to 218K in InfiniteBench. Based on this, Llama,
which can process up to 4K tokens, demonstrates
strong performance on several tasks. When ex-
tended to capture longer contexts using various
methods—namely ExtendedFA, AutoCompressor,
and LCIRC—all models show improved average
performance compared to the base model. Finally,
our QD-LCIRC achieves the highest average perfor-
mance on L-Eval as well, demonstrating significant
gains through query dependent modeling, with a
relative improvement of approximately 11.5% com-
pared to the best-performing baseline, ExtendedFA
finetuned on FineWeb-LQA.

In Table 6, we compare the proposed selective
state BPTT with truncated BPTT for QD-LCIRC
on InfiniteBench, LongBench and L-Eval. The
results show that our selective state BPTT allows
higher scores compared to truncated BPTT across
all three benchmarks. Note that truncated BPTT
only backpropagates gradients to a limited number
of timesteps in recurrence, restricting optimization
for long-term context modeling. In contrast, our
selective state BPTT enables the model to receive
gradients from any timesteps and in consequence,
the trained model better models long inputs.

6 Conclusion

We propose Long-form Context Injection with Re-
current Compression (LCIRC) to address chal-
lenges LLMs face with extended inputs. LCIRC
efficiently compresses long-form contexts, expand-
ing context length while reducing computational
overhead. By incorporating query dependent con-
text modeling, it selectively retains relevant infor-
mation, improving performance in tasks requiring
long-context comprehension and query relevance.
Our experiments demonstrate significant advance-
ments in both areas. Future work will focus on
extending LCIRC to multilingual settings to inte-
grate context across diverse languages and cultures.

Limitations

Although our proposed method, LCIRC, demon-
strates notable improvements in handling long-
form contexts, several limitations remain. First, the

10439



training and evaluation of query dependent context
modeling were restricted to question-answering
tasks, leaving its generalizability to other query-
driven applications, such as information retrieval
and dialogue systems, unexplored. Future work
is needed to assess its broader applicability. Fur-
thermore, despite the reduction in computational
complexity during inference, LCIRC incurs sub-
stantial training costs due to the introduction of
cross-attention layers, which increases both the
computational load and the amount of training data
required. This constraint may limit the method’s
deployment in resource-constrained environments.
Lastly, the experimental evaluation was primarily
conducted on English-language datasets, limiting
the conclusions that can be drawn about LCIRC
performance in multilingual or non-English con-
texts. Further experimentation on diverse linguistic
datasets is necessary to evaluate the model’s cross-
lingual capabilities.

Ethics Statement

All experiments conducted in this study were per-
formed with fairness and transparency in mind. The
datasets used were sourced from publicly available
data, and no personally identifiable information
(PII) was involved. Our experimental design en-
sured that all models were trained and evaluated
under consistent conditions, allowing for fair com-
parisons. We commit to maintaining high ethical
standards in the use and development of our mod-
els, promoting responsible research practices.

Acknowledgments

This research was supported by the IITP
grants (RS-2020-II201819, RS-2024-00436857,
RS-2024-00398115), the NRF grants (NRF-
2021R1A6A1A03045425, RS-2023-00280034)
and the KOCCA grant (RS-2024-00345025)
funded by the Korea government (MSIT, MOE and
MSCT).

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,

Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716–23736.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and

Xipeng Qiu. 2023. L-eval: Instituting standardized
evaluation for long context language models. arXiv
preprint arXiv:2307.11088.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
and Jian-Guang Lou. 2024. Make your llm fully
utilize the context. arXiv preprint arXiv:2404.16811.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079–
11091.

Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli,
Hyung Won Chung, Yin-Wen Chang, and Chun-
Sung Ferng. 2021. A simple and effective posi-
tional encoding for transformers. arXiv preprint
arXiv:2104.08698.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Yinpeng Chen, DeLesley Hutchins, Aren Jansen, An-
drey Zhmoginov, David Racz, and Jesper Andersen.
2024. Melodi: Exploring memory compression for
long contexts. arXiv preprint arXiv:2410.03156.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Danqi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Zihang Dai. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. Eli5:
Long form question answering. arXiv preprint
arXiv:1907.09190.

Quentin Fournier, Gaétan Marceau Caron, and Daniel
Aloise. 2023. A practical survey on faster and lighter
transformers. ACM Computing Surveys, 55(14s):1–
40.

Giorgio Franceschelli, Claudia Cevenini, and Mirco
Musolesi. 2024. Training foundation models as data
compression: On information, model weights and
copyright law. arXiv preprint arXiv:2407.13493.

10440



Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2023. In-context autoencoder for con-
text compression in a large language model. arXiv
preprint arXiv:2307.06945.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste
Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan
Shelhamer, et al. 2021a. Perceiver io: A general
architecture for structured inputs & outputs. arXiv
preprint arXiv:2107.14795.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira.
2021b. Perceiver: General perception with iterative
attention. In International conference on machine
learning, pages 4651–4664. PMLR.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-
ating pre-filling for long-context llms via dynamic
sparse attention. arXiv preprint arXiv:2407.02490.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan.
2022. An empirical survey on long document sum-
marization: Datasets, models, and metrics. ACM
computing surveys, 55(8):1–35.

Brian Lester, Jaehoon Lee, Alex Alemi, Jeffrey Pen-
nington, Adam Roberts, Jascha Sohl-Dickstein, and
Noah Constant. 2024. Training llms over neurally
compressed text. arXiv preprint arXiv:2404.03626.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024. Long-context llms strug-
gle with long in-context learning. arXiv preprint
arXiv:2404.02060.

Xianming Li, Zongxi Li, Xiaotian Luo, Haoran Xie,
Xing Lee, Yingbin Zhao, Fu Lee Wang, and Qing
Li. 2023. Recurrent attention networks for long-text
modeling. arXiv preprint arXiv:2306.06843.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng
Qiu. 2022. A survey of transformers. AI open, 3:111–
132.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Yinghan Long, Sayeed Shafayet Chowdhury, and
Kaushik Roy. 2023. Segmented recurrent trans-
former: An efficient sequence-to-sequence model.
arXiv preprint arXiv:2305.16340.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024. Fineweb-edu.

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36.

Thomas Mulc and Jennifer L Steele. 2024. Compress-
ing search with language models. arXiv preprint
arXiv:2407.00085.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,
David Tarjan, and Edoardo Ponti. 2024. Dynamic
memory compression: Retrofitting LLMs for accel-
erated inference. In Proceedings of the 41st Inter-
national Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research,
pages 37396–37412. PMLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53–
68.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Chandra Shekhara Kaushik Valmeekam, Krishna
Narayanan, Dileep Kalathil, Jean-Francois Chamber-
land, and Srinivas Shakkottai. 2023. Llmzip: Loss-
less text compression using large language models.
arXiv preprint arXiv:2306.04050.

Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu
Ren, Mehdi Rezagholizadeh, and Armaghan Eshaghi.
2024. Beyond the limits: A survey of techniques to
extend the context length in large language models.
arXiv preprint arXiv:2402.02244.

10441

https://doi.org/10.57967/hf/2497


Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Al-
borz Geramifard, and Zhou Yu. 2020. Memformer:
A memory-augmented transformer for sequence mod-
eling. arXiv preprint arXiv:2010.06891.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, et al. 2024a. ∞bench: Ex-
tending long context evaluation beyond 100k tokens.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 15262–15277.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu,
Wayne Xiong, Yue Dong, Baobao Chang, Junjie Hu,
Wen Xiao, et al. 2024b. Pyramidkv: Dynamic kv
cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

10442


