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Abstract

The success of Transformer-based Language
Models (LMs) stems from their attention mech-
anism. While this mechanism has been exten-
sively studied in explainability research, par-
ticularly through the attention values obtained
during the forward pass of LMs, the back-
ward pass of attention has been largely over-
looked. In this work, we study the mathe-
matics of the backward pass of attention, re-
vealing that it implicitly calculates an atten-
tion matrix we refer to as “Reversed Attention”.
We visualized Reversed Attention and exam-
ine its properties, demonstrating its ability to
elucidate the models’ behavior and edit dynam-
ics. In an experimental setup, we showcase
the ability of Reversed Attention to directly
alter the forward pass of attention, without
modifying the model’s weights, using a novel
method called “attention patching”. In addition
to enhancing the comprehension of how LMs
configure attention layers during backpropa-
gation, Reversed Attention maps contribute
to a more interpretable backward pass. Our
code is available at: https://github.com/
shacharKZ/Reversed-Attention .

1 Introduction

The widespread use of automatic gradient technolo-
gies such as AutoGrad (Maclaurin, 2016; Paszke
et al., 2019) to obtain the gradients may cause
the explicit derivations of these gradients to be
overlooked. In this work we explore the equa-
tions that govern the backpropagation of the pop-
ular Transformer-based (Vaswani et al., 2017)
GPT (Radford et al., 2018) architecture.

This explicit analysis leads to several surpris-
ing discoveries. First, while during the forward
pass the attention mechanism explicitly creates tri-
angular attention matrices, from multiplying the
query and key vectors, during the backward pass
it implicitly creates triangular matrices that deter-
mine the gradients of the queries and keys. Due

Figure 1: In this paper we examine the attention maps
obtained from the backward pass, which we named
“Reversed Attention” (RA). This example present the
forward and backward pass of a single attention head of
GPT2-xl when prompt with “I like Italy and France, I
visited the city of”. After the model answer “Florence”,
a city in Italy, we apply a backward pass with “Florence”
as the target for the loss and produce the RA maps. Be-
tween all the 1200 attention heads this model has, the
presented head has the highest RA map’s norm. Com-
pared to the forward attention map, the RA map is more
sparse and interpretable. This RA demonstrates how the
backpropagation attempts to amplify the information
from the token “Italy” (red) while reducing the influ-
ence of “France” (blue).
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the similarity of these triangular matrices to the
forward attention, we refer to them as the Reversed
Attention (RA) matrices, Figure 1. Secondly, we
study the effect induced by GD and how it tries to
increase or decrease attention scores between the
queries and keys of each attention head.

Based on these discoveries, we explore the use
of RA in LM explainability. While the forward
pass attention, which fails in providing a clear ex-
planation of the model’s behavior (Jain and Wal-
lace, 2019), we demonstrate RA’s ability to achieve
competitive results in concert with methods such
as causal mediation (Vig et al., 2020; Meng et al.,
2022) in perturbation analysis. Furthermore, one
can view the RA as a correction term to the atten-
tion, given the loss of the backward pass. As an
application, we inject the RA scores directly into
the forward pass of attention, in order to modify
the model’s predictions. This novel method, which
we call “attention patching”, does not involve any
parameter updates and offers a new perspective on
how interventions can be performed on LMs.

Our main contributions are as follows: (i) We
provide a mathematical walk-through and interpre-
tation of the gradients and Vector-Jacobian Prod-
ucts (VJPs) governing the backpropagation of GPT.
(ii) We identify the attention-softmax derivative as
an implicit attention map, which we term Reversed
Attention (RA). (iii) We visualize and qualitatively
explore the interpretability of RA. (iv) We conduct
a perturbation test to quantify the explainability of
RA. (v) We demonstrate a novel patching method
that uses RA to edit LM’s predictions.

2 Related Work

All leading deep learning models are trained using
variants of Gradient Descent (GD), an implementa-
tion of the backpropagation algorithm. While much
research examines the impact of GD on GPTs’ per-
formance, the internal computations of this process
often remain a black box (Radford et al., 2018,
2019; Gururangan et al., 2020). Some studies sim-
plify the Transformer architecture to understand
GD, for instance, reducing multi-head attention
to a single head or linear attention in toy mod-
els (Tian et al., 2023; Tarzanagh et al., 2023; Ma-
hankali et al., 2023; Dai et al., 2023). Notably, the
literature on the backward pass of full multi-head
attention is limited. Our work addresses this gap by
examining assumption-free full GPT models, with
a specific emphasis on detailing the mathematical

computation of gradients.
Previous investigations into weight updates via

GD have focused primarily on the MLP layers or
the data it was trained on (Gueta et al., 2023). Re-
cently, Katz et al. (2024) has revealed that gradients
can be interpreted as tokens’ embeddings. Specifi-
cally, the Vector Jacobian Products (VJPs) that are
passed by the residual from the last layer’s loss to
earlier layers can be seen as an intermediate state
toward the model as it adjusts its weights.

Gradients have been leveraged to localize the
source of specific model behavior for a given in-
put (Simonyan et al., 2014; Ancona et al., 2018) or
specific components of the models (Barkan et al.,
2021; Ma et al., 2023). In our study, we explore
the use of RA as a means to quantify the relative
influence of the various components of a model.
We compare our method with the current leading
technique for such localization, Causal Mediation
(CM) (Vig et al., 2020; Meng et al., 2022). CM
involves probing the effect of altering components
during the forward pass, which necessitates sig-
nificantly more computation compared to the RA
approach.

Recent works explore the patching technique,
where one model’s intermediate state is integrated
into the forward pass of another (Zhang and Nanda,
2023; Elhage et al., 2021; Wang et al., 2023; Todd
et al., 2023). While they focus on activation patch-
ing, we propose a novel approach: directly inject-
ing attention scoring maps of each attention head,
without parameter updates.

As far as we can ascertain, we are the first to
identify, visualize, and explore the dynamics of the
backward pass using RA maps.

3 Background

This section provides the necessary background
and establishes the notation used.

Generative Pre-trained Transformer (GPT) is an
auto-regressive architecture of multiple transformer
blocks connected via a residual stream. As input,
a GPT model receives a sequence of n tokens (a
prompt) and predicts a single token. An embedding
matrix at the start of the model embeds the token
into vectors X = [x1, · · · , xn] ∈ Rn×d where d is
an embedding dimension. At the end of the model,
the embedded predictions are projected back into
tokens using a decoding matrix. Each transformer
block consists of two sub-blocks: multi-head atten-
tion (Attn) and a Multi-Layer Perceptron (MLP),
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interconnected by a residual stream.
The attention mechanism is executed using ma-

trices Wq,Wk,Wv,Wo ∈ Rd×d, named query, key,
value, and output, respectively. This calculation
is performed after splitting the matrices vertically
into h non-overlapping parts, called heads. We de-
note the attention matrices for the l head in Ŵ l,
hence Ŵ l

q, Ŵ
l
v, Ŵ

l,⊤
o ∈ Rd× d

h , and for example
Wq = [Ŵ 1

q , · · · , Ŵ h
q ]. The first three matrices are

used to project the input into queries, keys, and
values:

Ql = XŴ l
q, K

l = XŴ l
k, V

l = XŴ l
v ∈ Rd× d

h

(1)

Together, the queries and keys are used to calcu-
late the forward attention scores:

Al = softmax

(
QlK l⊤
√

d/h
+M

)
∈ Rn×n (2)

Mij =

{
0 if i ≥ j

−∞ otherwise
(3)

Where M ∈ Rn×n is a masking matrix that zeroes
all scores but the one representing the connection
of an earlier token to further ones: . The output of
each head is calculated by multiplying the attention
scores with the values and projecting the result back
using the output matrix. The attention block output
is the sum of the output of all heads: Attn(X) =∑h

l=1 headl, where headl = AlV lŴ l
o .

The MLP block is a pair of fully connected ma-
trices FF1, FF⊤

2 ∈ Rd×dm and an activation func-
tion f . The output of this block is: MLP(X) =
f(XFF1)FF T

2 . Lastly, the forward pass of the
i-th transformer block on its input hidden state, Xi,
is: Xi+1 = Xi + Attn(Xi) + MLP(Attn(Xi) +
Xi).

Note that GPT models also include Layer Norms.
For simplicity and due to the relatively low con-
tribution to the gradients and inconsistency when
they are placed within different architectures, we
omit them from this explanation.

Gradient decent, backward pass and VJPs
GD’s backward pass is the execution of Backprop-
agation (Le Cun, 1988), the process of applying
the chain rule to compute a model’s gradients. A
backward pass is initiated after the model executes
a forward pass; it computes a loss score L, compar-
ing the model’s output with a desired target. This
loss score is propagated back through the model’s

layers as an error signal, in the reverse order of
the forward pass. The error signal can be repre-
sented as a vector that is used as an intermediate
state of the backward pass, similar to the hidden
state in the forward pass. Given a model’s parame-
ter W , which is used to compute z = xW , where
x ∈ Rd1 , z ∈ Rd2 , the error signal is the loss with
respect to the layer’s output, δ = ∂L

∂z ∈ Rd2 . This
vector is known as the Vector-Jacobian Product
(VJP) of z. At the last layer of the model, the
VJP is calculated directly by the loss function. For
earlier layers, the VJP is calculated using the back-
ward step, where the VJP of the next layer is used
to compute the VJP of those that precede it. For
instance, the output of a sequential layer l is the
input of l + 1, meaning zl = xl+1. Given those
layers are weight matrices, the VJP of the l layer is
computed by the following step:

δl =
∂L

∂zl
=

∂L

∂xl+1
= δl+1(W l+1)⊤ (4)

Finally, the gradient of each weight matrix W is
the outer product of the layer’s input x and the VJP
δ, which updates the weights using a learning rate
η ∈ R:

∂L

∂W
=

∂z

∂W

∂L

∂z
= x⊤ × δ ∈ Rd2×d1 (5)

W ←W − η
∂L

∂W

⊤
∈ Rd1×d2 (6)

In models such as GPTs, each forward pass in-
cludes a sequence of inputs X = x1, · · · , xn ∈
Rn×d1 . In this case, each input has its own VJP,
δi ∈ Rd2 , and the full matrix’s gradient is the sum
of the outer products of each input and its VJP:

∂L

∂W
=

n∑

i=1

xi⊤ × δi ∈ Rd2×d1 (7)

4 Attention Layers Gradients

In this section, we examine the VJPs and gradient
matrices for each of the attention layer matrices.
The purpose of this examination is to reveal prop-
erties of the gradient matrices, as well as to fill a
missing gap in the literature. In this mathemati-
cal walk-through, we examine the submatrices of
each attention head, Ŵ l

q, Ŵ
l
k, Ŵ

l
v, Ŵ

l
o, dropping

the head index l for brevity. The gradients of the
full matrices are the concatenation of the heads’
gradients (same as the concatenation of weight ma-
trices).
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Throughout this section, we denote the forward
pass input and output vectors of each submatrix
Ŵ ∈ Rd× d

h by x ∈ Rd and z ∈ R
d
h , i.e., z = xW .

The only exception is Wo, where the dimensions
are swapped, Ŵo ∈ R

d
h
×d. Ai,j denotes the for-

ward pass attention score from the i-th token to the
j-th token. Lastly, considering the model’s input as
a sequence of n tokens, instead of explicitly writ-
ing the gradient of every matrix and token, we will
focus on determining the VJP for a single token
j ∈ {1, · · · , n}, annotating its input and VJP with
xj , δj . Given the inputs and VJPs, the gradients
are the outer product of the two Equation 7.

The output projection matrix Ŵo The VJPs of
Ŵo, denoted as δjo, are obtained directly from the
residual stream at the end of the attention block of
Ŵo, denoted by Attn(x) in section 3. Viewing GD
as an application of the chain rule, we consider δjo
as the layer’s intermediate editing target.

Only for this matrix, we will demonstrate that
when we are given its VJPs, we can infer its gradi-
ent and the effect of GD updating. This explanation
holds for all further matrices, too. The gradient up-
dates introduced by only the j-th token (left equa-
tion) or by all n tokens (right equation) are:

Ŵo ← Ŵo − ηδjo × xj⊤o (8)

Ŵo ← Ŵo − η
n∑

i=1

δio × xi⊤o , (9)

where η is the update’s learning rate. In general, if
we simplify the full update and consider only the
change introduced by a single token (left equation)
to examine a future forward pass with the same in-
put xjo, then the original layer’s output zjo = xjoŴo,
is shifted by the direction of δjo with the magnitude
of −η∥xjo∥22 ∈ R:

xjoŴoGD = xjo(Ŵo − ηδjo × xj⊤o ) = (10)

zjo − η∥xjo∥22δjo (11)

The value projection matrix Ŵv In the forward
pass, the value vector associated with the j-th token
is given by vj = xjvŴv ∈ R

d
h . To calculate the

VJP for the j token, we consider, due to causality,
the subsequent tokens l ≥ j. For every such token,
the backward pass propagates its own VJP from
Ŵo by computing the error signal from the l-th
token to token j:

el = δloŴ
⊤
o ∈ R

d
h , (12)

where δlo is the VJP of Ŵo computed for the l-th
forward pass (the l-th token) of the autoregressive
process. The VJP of δjv is a weighted sum of the
error signal and the forward attention scores A:

δjv =
n∑

l=j

Al,je
l ∈ R

d
h (13)

Softmax derivative Although the softmax func-
tion is not a weight parameter of the model, compre-
hending its role in the backward pass is crucial for
understanding the editing dynamics. In the forward
pass, the attention scores for the j-th forward pass,
Aj ∈ R1×n (the j-th row of the forward attention)
are generated by applying the softmax function to
the product of the query and key vectors, with a

scaling factor of
√

d
h . These scores are then mul-

tiplied by the attention values, V ∈ Rn× d
h . The

backward pass performs a reverse operation: each
token’s error signal from Ŵo is multiplied by the
attention values and scaled as follows:

ẽj = δjoŴ
⊤
o V ⊤ = ejV ∈ Rn (14)

rj = Aj ⊙ (ẽj − ẽjAj · 1n)
√

h

d
∈ Rn, (15)

where⊙ is the element-wise product of two vectors
(Hadamard product) and ẽjAj ·1n is the scalar ẽjAj

assigned to an Rn vector.
Rewriting as a batch of all tokens: If we

rewrite Equation 14 for all tokens together, by
concatenating their VJP into a matrix ∆ =
[δ1o , · · · , δno ] ∈ Rn×d we get:

Ẽ = ∆Ŵ⊤
o V ⊤ ∈ Rn×n (16)

R = A⊙
(
Ẽ⊤ − diag(AẼ⊤)

)⊤√h

d
∈ Rn×n,

(17)

hence Rj = rj , Ẽj = ẽj , where j is the j-th row
of each matrix. We further use the derivative R to
compute the subsequent gradients of Ŵq, Ŵk. In
section 5 we investigate what R represents.

The query projection matrix Ŵq During the
j-th forward pass, the j-th query is generated by
computing qj = xjqŴq ∈ R

d
h . The query is then

multiplied by all key vectors, K = [k1, · · · , kn] ∈
Rn× d

h (and masking the ones that followed it), to
obtain the raw attention scores (logits). Therefore,
the backward pass calculates the VJP of the query
by calculating:

δjq = rjK = RjK ∈ R
d
h (18)
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(a) (b) (c)

Figure 2: (a) The norms of the attention maps per head and per layer. (b) Forward and (c) Reversed Attention of the
same head from GPT2-small (layer 11, head index 2). This is the attention head with the second highest Reversed
Attention norm and we can see it focused on editing the query of “of” (row) and the key of “tomato” (column).

(a)

(b)

Figure 3: RA model editing dynamics. (a) The
query matrix Ŵq will be updated with a VJP di-
rected towards the forward pass key of “tomato”,
while the key matrix Ŵk will be updated with a VJP
directed towards the query from the token “of”. (b)
The latent space of the queries and keys. The cir-
cles represent a forward pass query and a key. If
their Reversed Attention score is a relatively low
negative number, the directions they are moving
towards after GD are actually towards one another.

The key projection matrix Ŵk The gradients of
Ŵk are computed similarly to those of Ŵq, except
that for the j-th forward pass, we utilize the queries
Q = [q1, · · · , qn] ∈ Rn× d

h from each subsequent
forward pass after j. The VJP and gradients of Ŵk

are then given by:

δjk =

n∑

l=j

rljx
l
qŴq =

n∑

l=j

rljq
l = R⊤

j Q ∈ R
d
h ,

(19)
where R⊤

j is the j-th column in R, which is the
error signal from the l-forward pass to the j-th one.

5 Reversed Attention

In Equation 16 we defined R as the softmax deriva-
tive. R shares many properties with A, the forward
attention (FA):

• R is computed from the multiplication of the
forward pass values V and the error signal
∆Ŵo. We denote this intermediate result as
Ẽ. The i, j entry in Ẽ is a score between
the i-th error signal and the j-th forward pass
value. This resembles the calculation of raw
attention scores (logits, before softmax) where
we multiply queries and keys to obtain scores
between every pair of tokens.

• After computing Ẽ, we derive R from it by
row-wise normalization, which involves scal-
ing with the FA A, see Equation 14. In the
forward pass, row-wise normalization is ac-
complished by applying the softmax function.

• Since the normalization from Ẽ to R includes
element-wise multiplication with the FA A,
which is a lower triangular matrix, R is also a
lower triangular matrix.

• Just as the FA is used to multiply the attention
values V , we use R to multiply the forward
pass’ queries Q and keys K to obtain the VJPs
of one another.
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These shared properties between the FA and the
softmax derivative suggest that the softmax deriva-
tive serves as an implicit attention matrix. We
called R the “Reversed Attention” (RA). In the
following sections, we delve into some properties
of the RA and explore its potential uses in explain-
ing and controlling GPTs.

5.1 A qualitative examination of Reversed
Attention

We observe the behavior of RA through a single
example, using GPT2-small (Radford et al., 2019).
We prompt the model with the sentence “\Cherry
tomato is a type of’, and using “tomato” as an
editing target. Since this prompt already contains
the token answer, the behavior of the model can be
readily understood.

Figure 2(a) depicts, for each attention head and
each layer, the norm of the FA and the RA. While
RA displays a very sparse pattern, FA (which is nor-
malized by the softmax) displays a larger number
of heads with high values. There does not seem to
be a correlation between the two maps, and this is
further supported by the perturbation experiments
in subsection 5.2.

Our mathematical analysis in Equation 5, sec-
tion 4 implies that close to zero scores in the RA
will produce close to zero VJP vectors and gradi-
ents, hence focusing on the attention heads with the
highest RA norm is informative enough to update
the GD steps.

Next, we consider one of the FA maps with the
highest RA norm, which is provided in Figure 2(b).
The key of the first token, “\n”, receives the high-
est attention scores, which is a well-known phe-
nomenon (Xiao et al., 2023).

On the other hand, the RA in Figure 2(c) is
sparse and shows that the row corresponding to
the last token “of” stands out as much more dom-
inant than the others. We recall that the VJPs of
the query matrix Ŵq are the multiplication of the
RA with the forward pass keys K. Similarly, the
VJPs of the keys matrix Ŵk are the multiplica-
tion of the RA with the forward pass queries Q.
Since GD updates are performed with a negative
learning rate, positive scores in the RA shift the
model’s weights towards the queries/keys that pro-
duced them (and vice versa). Hence, the VJP of
the query for “of” is mostly directed towards the
key of “tomato” while directed away from the key
that belongs to “\n”. Similarly, the main update

is to the key of “tomato”, which attempts to shift
the model’s weights towards the query for “of”.
This dynamic is illustrated in Figure 3. This ex-
ample does not necessarily elucidate the function
served by this attention head, but it demonstrates
how GD attempts to repurpose this head to recall
information from the token “tomato”.

This example demonstrates the potential of
Reversed Attention to provide insights into the
model’s behavior and editing dynamics. Additional
examples are provided in Appendix A.

5.2 Reversed Attention and the importance of
each attention head

In subsection 5.1, we demonstrate how we can in-
terpret the effect of RA on the editing dynamics of
the model’s parameters. This explanation is based
on the assumption that high RA scores correspond
to important components (model parameters) in the
forward computation graphs. Identifying these key
parameters is one of the objectives of mechanis-
tic interpretability research (Sharkey et al., 2025),
which seeks to uncover meaningful sub-networks
by selectively pruning model parameters. This ap-
proach differs from methods that prune models” in-
puts to assess the effect of individual tokens while
leaving the internal mechanisms intact.

To verify RA’s ability to identify the importance
of parameters in attention layers, we conduct a per-
turbation test. This test compares different orders
(rankings) of the attention heads, each produced
by a method that aims to determine the relative im-
portance between heads. This experiment begins
by zeroing out (masking) all heads, resulting in
poor performance. Gradually we unmask the heads
according to a given order. The performances can
be quantified by the Area Under the Curve (AUC)
of the graph that displays the model’s accuracy as
a function of the percentage of unmasked heads.

For RA, we rank the heads according to the RA
norms (from highest to lowest). Additionally, we
use a training set (omitted examples) to perform
separate backward passes and average the norms
of each head. The main method we compare to
is Causal Mediation (CM), due to its extensive us-
age in interpreting LM (Meng et al., 2022; Mueller
et al., 2024). This method examines causal indi-
rect effects by patches the forward pass attention
heads’ outputs and examines the disparity between
the altered and the original model’s outputs. In ad-
dition, we include the forward pass attention (FA).
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1-shots ICL 5-shots ICL

Task Example Random CM FA RA Random CM FA RA

antonym Q: output\nA: [input] 0.02 0.15 0.02 0.07 0.09 0.27 0.05 0.32
alphabetically-first Q: finch, tender, peacock\nA: [finch] 0.12 0.22 0.08 0.2 0.15 0.19 0.08 0.23
choose-middle-of-3 Q: dress, paintbrush, vase\nA: [paintbrush] 0.1 0.35 0.08 0.19 0.17 0.21 0.1 0.3
country-capital Q: Sierra Leone\nA: [Freetown] 0.07 0.22 0.09 0.29 0.19 0.4 0.07 0.42
next-item Q: XV\nA: [XVI] 0.06 0.25 0.04 0.14 0.17 0.31 0.07 0.34
person-sport Q: Scottie Pippen\nA: [basketball] 0.22 0.35 0.1 0.37 0.21 0.34 0.09 0.44

Table 1: GPT2-xl perturbation testing on ICL tasks, measuring the AUC for Reversed Attention (RA), Forward
Attention (FA), Causal Mediation (CM) as well as random ordering of the attention heads. For each example, “[]” is
the token we expect the model to return.

GPT2-xl Llama2-7B

Task Example Rand CM FA RA Rand CM FA RA

country-capital The capital city of Sierra Leone is [Freetown] 0.02 0.61 0.06 0.07 0.31 0.05 0.07 0.43
person-plays-pro-sport Scottie Pippen plays the sport of [basketball] 0.32 0.59 0.09 0.57 0.21 0.39 0.04 0.48
product-by-company Blogger was created by [Google] 0.19 0.46 0.08 0.31 0.15 0.51 0.06 0.31

Table 2: GPT2-xl and Llama2-7B perturbation tests on natural questions, measuring the AUC for Reversed Attention
(RA), Forward Attention (FA), Causal Mediation (CM) and random ordering.

Similar to RA, FA ranks attention heads accord-
ing to the the norm of the attention maps. While
previous works already established that FA is not
sufficient in providing similar models’ explanation
(Serrano and Smith, 2019; Jain and Wallace, 2019),
we include FA for completeness.

Our tests are conducted on 21 tasks by Hernan-
dez et al. (2024); Todd et al. (2023), each consisting
of pairs of sentences that follow some relation. For
instance, one task involves pairs of countries and
their capital cities. In 6 of these tasks, the model
is prompted with natural language templates such
as “The capital city of <country name> is”. In the
other 15 tasks, in-context-learning (ICL) templates
are employed. In this scenario, instead of explicitly
stating the relation between the pair (e.g., “the cap-
ital city is”), the model must infer it from n-shots
of labeled pairs, such as “\n Q: Spain A: Madrid \n
Q: Italy A: Rome \n <country name> A:”.

The results are shown for the ICL tasks and the
natural questions, respectively, in Table 1 for GPT2-
xl and Table 2 for both GPT2-xl and Llama2-7B
(Touvron et al., 2023). To illustrate how the AUC
scores are calculated, Figure 4 displays graphs for
a single task that measures GPT2-xl’s accuracy as
a function of the percentage of pruned attention
heads. The full implementation details and results,
including ones for GPT-j (Wang and Komatsuzaki,
2021) and OPT (Zhang et al., 2022), can be found
in Appendix B.

As can be seen, RA is competitive with CM

Figure 4: The accuracy results of GPT2-xl, as a function
of the amount of pruned attention heads, on the antonym
task with 5-shot ICL.

when the examined LM can successfully address
the task. In the natural language tasks, we observed
that RA outperforms CM with larger models that
originally had high accuracy. In the ICL tasks, we
found that CM achieves good results with a very
low number of shots when the LM fails to provide
the correct answer. However, when we prompt
these failed tasks with a few shots, we see that RA
achieves better results. Overally, even when RA
falls behind CM, it still achieves non-trivial results.
Hence, we find RA to reflect the importance of
each attention head in producing a given prediction.
We note that RA is much faster, as it only requires
a forward and a backward pass for each example,
while CM requires a forward pass for each head.

In conclusion, these results demonstrate that RA
produces more interpretable attention maps com-
pared to FA. The comparison with CM shows that
RA can achieve comparable results on specific
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tasks and models while serving as a complementary
method to CM, given RA’s ease of visualization and
lower computational requirements.

5.3 Attention patching using Reversed
Attention

Modifying the forward attention maps of LM to im-
prove them, while doing so in an explainable man-
ner, is one of the goals of interpretability research.
After demonstrating that RA produces more inter-
pretable attention maps compared to the forward
attention subsection 5.2, this section shows how
RA can be used to modify attention maps and alter
the predictions of the models.

Table 3: GPT2-xl and OPT-1.3B accuracy on ICL tasks
of the original models and with forward attention (FA)
and Reversed Attention (RA) patching. N = the number
of ICL samples.

GPT2-xl OPT-1.3B

Task N original FA RA original FA RA

antonym

0 0.00 0.01 0.08 0.02 0.01 0.24
1 0.18 0.43 0.56 0.20 0.26 0.57
5 0.53 0.57 0.62 0.42 0.44 0.59
10 0.57 0.57 0.62 0.42 0.43 0.54

capitalize

0 0.00 0.00 0.94 0.01 0.00 0.78
1 0.44 0.50 1.00 0.01 0.01 0.90
5 0.98 1.00 1.00 1.00 0.99 1.00
10 0.99 1.00 1.00 1.00 0.99 1.00

choose-
middle-
of-3

0 0.46 0.30 1.00 0.11 0.03 1.00
1 0.81 0.76 1.00 0.57 0.54 0.76
5 0.92 0.68 1.00 0.95 0.84 1.00
10 0.97 0.00 1.00 0.86 0.65 1.00

next-
item

0 0.03 0.00 0.16 0.09 0.00 0.53
1 0.28 0.66 0.72 0.50 0.47 0.84
5 0.69 0.84 0.88 0.69 0.66 0.88
10 0.88 0.88 0.91 0.75 0.81 0.84

Since LMs can have thousands of attention
heads, each depicting different relationships, a so-
lution that directly edits the attention maps has not
been studied extensively. Recent efforts in inter-
pretability research have explored activation patch-
ing, demonstrating how injecting different hidden
states from one model into another affects its per-
formance. In this section, we explore both the idea
of directly modifying attention maps and activation
patching through a novel method termed “attention
patching”. This approach is based on the observa-
tion that RA produces attention maps that can be
seen as the desired relationships the model attempts
to maintain in order to perform a given task.

Given a GPT model and a predefined set of train-
ing and test examples, all with the same length and

format, attention patching performs the following
steps: (i) calculate the RA of each training example
(applying forward and backward passes with each
example but without modifying the model’s param-
eters). (ii) average the RA scores for each attention
head. (iii) For each test example and for each at-
tention head, we add (inject) the RA map to the
forward pass attention map, using a learning rate
as a scaling factor, Figure 5 illustrates this process.
Additionally, to establish a baseline, we applied the
same process with the forward attention, averag-
ing and injecting the attention maps collected from
forward passes.

The requirement for examples to have the same
length and format simplifies the injection process,
ensuring that all attention score matrices are of
consistent size. This makes tasks such as ICL and
short trivia-like questions ideal candidates for this
method, as they are templated and easily framed
by their length. Additionally, the ability of LMs
to answer ICL tasks is usually associated with the
attention layer (Dong et al., 2022), which serves
as another reason to examine attention patching in
this context.

We evaluate attention patching on the datasets of
(Todd et al., 2023; Hernandez et al., 2024), compar-
ing its performance to ICL prompting. The results
are displayed in Table 3, with additional details
provided in Appendix C. Our findings indicate
that attention patching achieves similar results to
ICL prompting and outperforms the average of the
forward pass attention scores, which does not con-
sistently improve the original model performances.
Note that similarly to other patching methods, this
test is not meant to demonstrate the robustness
of the approach, as the current implementation is
frame-specific and full GD outperforms it. Instead,
it serves to validate that Reversed Attention indeed
reflects the model’s desired attention.

6 Conclusions

The self-attention component of transformers is
perhaps the most distinctive part of this architec-
ture. Its role when performing inference has been
extensively studied and shown to provide insights
into the inner workings of transformers. Here, we
explore a dual entity we call Reversed Attention
(RA), which plays a role when transformers learn.
We present qualitative samples of the way learn-
ing occurs and show that RA can help identify the
most influential heads at inference time. Finally,

1132



Figure 5: Attention patching using Reversed Attention (RA): first we collect the RA maps of the model without
applying any model editing (without changing its weights). Later, for each attention head, we add its corresponding
RA map to the forward pass attention.

we show how plugging an average RA value can
direct the model toward performing a specific task.

The focus of this work was to introduce RA and
prove that it is interpretable rather than merely an
artifact of the backward pass. Beyond enriching
our understanding of how LMs work, we hope our
conclusions will serve future research on dynami-
cally editing attention layers as well as explaining
how information is stored in them.

7 Limitations

In this work, we provide a detailed mathematical
exposition of the derivative of the attention mech-
anism in GPTs. To keep this explanation clear,
we focus on decoder-only models with Multi-Head
Attention mechanisms and without additional com-
ponents such as RoPE (Su et al., 2024) or sparse
attention (Brown et al., 2020). LLMs come in vari-
ous sizes and configurations, and a general mathe-
matical explanation that fits all is not feasible. Our
choice to demonstrate RA using GPT2 and OPT
aligns with previous work that examines the in-
terpretability of Transformers through the lens of
these models (Geva et al., 2022; Meng et al., 2022;
Voita et al., 2023; Katz and Belinkov, 2023). Our
use of Llama2 and GPT-j, although they use RoPE,
comes to show how our use of RA can be applied
to a wide variety of LM.

The 21 tasks we sourced from Todd et al. (2023);
Hernandez et al. (2024) consist of relatively simple
and limited tasks. Therefore, our results in sub-
section 5.2 and subsection 5.3 serve as a proof of
concept rather than as a definitive assessment of
RA’s robustness in its ability to identify critical
components of models or to be used for editing
using patching.

Causal Mediation (CM) can come in variety of
implementations, each patch the activation differ-
ently. In 5.2 we examined a basic implementation
of CM. In Appendix B we include additional imple-
mentation provided by Todd et al. (2023) to make

our comparison to RA comprehensive.
The perturbation experiments compare RA with

a small number of alternative methods. We ac-
knowledge that other methods might achieve simi-
lar or even better results, particularly those based
on gradients. The purpose of these experiments
is not to discover a new component-localization
method but rather to provide a proof that RA maps
correspond to existing LM explainability methods.
Therefore, we focused on comparing RA to CM, a
widely used method in similar works.

Ethics Statement

This paper aims to advance our understanding of
how language models learn and the dynamics be-
hind the backward pass. Future work might lever-
age our findings to edit or train language models ef-
fectively. However, we are concerned about the po-
tential dangers associated with manipulating these
systems. For instance, editing LMs could amplify
existing biases or be exploited for unethical pur-
poses. Our primary commitment is to advance
research that prioritizes safety and fairness. We
hope that future studies will use our findings to
further contribute to the creation of better and more
aligned models, rather than facilitating the produc-
tion of harmful content or exploiting the knowledge
stored within these models.
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Figure 6: The forward and Reversed Attention (RA)
maps of an attention head from GPT2-small (layer 11,
head index 2), given the editing target “cherry” with the
prompt “Cherry tomato is a type of”. The pattern pre-
sented by the RA map attempts to increase the forward
pass attention between the query belonging to “of” and
the key of “Cherry”, encouraging the model to answer
“cherry”.

A Additional Reversed Attention
Examples

In this section, we extend the qualitative examina-
tion of the Reversed Attention (RA) discussed in
subsection 5.1. We provide examples for GPT2-
small, GPT2-xl and OPT-350m. RA offers simple-
to-read insights into how the attention matrices are
modified by GD, revealing which attention queries
Q and keys K are adjusted to bring specific tokens
closer in the embedding space. However, while
this explanation sheds light on the changes made
by GD, it does not necessarily elucidate the func-
tion served by each attention head. In this section,
we aim to establish how we interpret (read) the
patterns observed in RA maps. Further investiga-
tion into the functional roles of individual attention
heads is left for future work.

GPT2-small The qualitative example in subsec-
tion 5.1 presents GPT2-small RA while using the
prompt “The cherry tomato is a type of” with the
editing target “tomato”. The pattern given by one
of the highest RA norms shows that GD focuses
on editing the query belonging to the token “of”
and the key of the token “tomato”. The following
example examines what happens if we change the
editing target to “cherry”, which, like “tomato”,
could refer to the prompt itself. Similarly to the
previous example, this head is still one of the heads
with highest RA norms, but unlike the previous ex-
ample, GD focuses on editing the key of the token
“cherry”, as presented in Figure 6. This pattern,
identifies the token most similar to the editing tar-
get and comes to illustrate RA’s ability to localize
relevant information in the input tokens regarding
the editing target (“tomato” or “cherry”), through
the attention heads.

GPT2-xl We prompt the model with the follow-
ing sentence: “I like Italy and France. I visited
the city of”, expecting the model to complete it
with a city from either Italy or France. In the case
of GPT2-xl, it returns “Florence”. We extract RA
when given “Paris” as the editing target and exam-
ine the top by norm RA heads, head 8 at layer 30.
The forward attention of this head assigns relatively
high attention to “Italy” and “France”.

Note that this is the same example from Figure 1.
Thus, these examples also examined how different
targets affect the produced RA maps.

Looking at the RA, the last row, corresponding
to the last (“of”) token’s Wq VJP, we see it assigns
a positive score to “Italy” and a negative score to
“France”. According to section 4, subsection 5.1,
this pattern suggests that GD tries to bridge the
query of the last token with the key of “France”,
while doing the opposite with “Italy”. Hence, if we
isolate the possible outcomes of editing other heads
and only editing this one, its output would be more
correlated with the attention value from the token
“Paris”. We assume this behavior arises from GD’s
attempt to enhance connection to information that
is more relevant to the editing target, “Paris”.

We repeat the same experiment with the editing
target “Rome”. This time, the RA of the same head
assigns a negative score to the token that follows
“Paris” and a positive score to the token “Rome”.
Using the same analogy, given the target that is
more related to Italy, the model tries to amplify the
connection between the last token’s query and the
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key of “Italy”. This suggests that the RA method
dynamically adjusts attention scores to strengthen
the associations relevant to the given editing target.

OPT We use OPT-350m with the prompt “I like
Italy and France. I visited the city of”. This model
responds with “Rome”. We keep the target token
“Paris” and compute the loss to obtain the RA maps,
presented in Figure 9.

This model has 384 attention heads. We sort
the heads according to their RA maps’ norms and
present the one with the highest norm in Figure 10,
revealing a pattern similar to that of GPT2-xl in
Figure 8. To emphasize that heads with low RA
norm are barely updated, we maintain the same
coloring scale from the head with the highest norm
and present the 11-th highest by norm head. This
head’s RA map appears empty, indicating all scores
are close to zero. It is also evident that the forward
pass attention map of this head only attends to the
first token of the sentence, a phenomenon known
as “attention sink” (Xiao et al., 2023). This seems
to be a default pattern when the function that the
head describes is not activated.

A.1 Additional Prompts

We present selected examples in which we used
RA to better understand the editing dynamics of
prompts from previous works in the area of mecha-
nistic interpretability. The following two examples
offer qualitative hypotheses on how backpropaga-
tion attempts to correct specific attention heads.

Indirect Object Identification Wang et al.
(2023) identify circuits, subgraphs of a model’s
parameters, in GPT2-small by examining its re-
sponse to the prompt “When Mary and John went
to the store, John gave a drink to”, which the model
is expected to complete with “Mary”. They pin-
point key attention heads that contribute to the cor-
rect response and classify the roles of each head
in that process. For instance, they distinguish be-
tween heads that support the correct prediction and
those that decrease the final probability of predict-
ing “Mary”.

We use the same prompt with GPT2-small, using
“Mary” as the target token to create RA maps. The
top three attention heads, ranked by the norm of
their RA, are presented in Figure Figure 11. The
first head, head 2 in layer 11, has the highest RA
norm and produces a negative RA score for “Mary”,
suggesting that backpropagation is working to ad-

just this head to allocate more attention to that
token, as its forward pass barely attends to “Mary”.

In contrast, the other two heads, head 7 in layer
10 and head 10 in layer 11, exhibit a positive RA
score for “Mary”, meaning they tend to reduce the
attention given to this token. According toWang
et al. (2023), these two heads negatively impact the
final prediction, and ablating them increases the
probability of “Mary”. Consequently, it may be
possible that when editing the model using back-
propagation, these attention layers could be mod-
ified to neutralize their effect on this particular
prompt. In this context, RA offers complementary
insights and provides simple visualizations that can
contribute to further research.

Entity Tracking Kim and Schuster (2023) study
the ability of LMs to track the states of entities. In
their work, they examine whether language models
can correctly answer prompts such as “The orange
is in Box X, the book is in Box A, the apple is in
Box S ,the game is in Box E, the bill is in Box M,
the cross is in Box K, the map is in Box D. Box
A contains the” (with the correct answer “book”).
The work of Prakash et al. (2024) examine how
such task can be used to study the roles of different
attention heads of LMs before and after fine-tuning.

We used GPT2-xl with selected prompts in the
format of items in boxes and produced their RA.
Figure 12 illustrate two examples: one is the
prompt from the previous example, and the sec-
ond is “The magnet is in Box B, the pot is in Box
K, the document is in Box M, the apple is in Box
H, the bill is in Box C, the cross is in Box S, the
orange is in Box A. Box C contains the”. In both
examples, we found that one of the top 10 heads
according to RA norm is head 14 from layer 26.
Examining its forward pass attention does not re-
veal a clear pattern to explain why this head ranks
so highly by RA. However, both of the RA maps
show highly sparse patterns, with only the target
token of each prompt, “book” and “bill”, are given
attention. This pattern suggests that, in order to
improve the model’s probability to answer these
prompts, the model need to suppress its forward
attention to those tokens.

In the context of Prakash et al. (2024), RA helps
visualize attention patterns and demonstrates how
backpropagation tries to alter such patterns. Future
research can leverage RA to investigate editing
methods for specific attention layers that exhibit
different RA patterns.
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Figure 7: The forward and Reversed Attention maps of GPT2-xl, given the editing target “Paris” and the prompt “I
like Italy and France. I visited the city of”.

(a) Forward - Florence, Paris and Rome

(b) Reversed - Paris (c) Reversed - Rome

Figure 8: Attention maps for the prompt “I like Italy and France. I visited the city of” (head 8, layer 30). While the
forward attention is the same for both cases (a), the changes of the editing target produce two different Reversed
Attention maps. Each reversed map shows that GD tries to change the attention block’s matrices in order to amplify
the attention scores of the tokens that are more correlated to the editing target: by amplifying “France” for the target
“Paris” (b), or by enhancing “Italy” when the target is “Rome” (c).
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(a) Attention heads by norm

(b) Sorted by attention heads norm values

Figure 9: The forward and Reversed Attention (RA) of OPT-350m, given the editing target “Paris” and the prompt
“I like Italy and France. I visited the city of”. The head with the highest RA norm is highlighted in red as well as the
11-th highest.

(a) L22H5 - Forward (b) L22H5 - Reversed

(c) L20H1 - Forward (d) L20H1 - Reversed

Figure 10: Attention maps of OPT-350m for the prompt “I like Italy and France. I visited the city of”. The head with
the highest Reversed Attention (RA) norm is head 5 at layer 22 (L22H5). Its RA map (b) shows how it amplifies the
attention score for “France” while reducing that of “Italy”. Head 1 at layer 20 is the 11-th highest head by RA norm.
We present its RA map (d) using the same color bar scale as that of L22H5, which highlights that this head barely
undergoes any update.

1139



(a) L11H2 - Forward (b) L11H2 - Reversed

(c) L10H7 - Forward (d) L10H7 - Reversed

(e) L11H10 - Forward (f) L11H10 - Reversed

Figure 11: The GPT2-small attention maps for the prompt “When Mary and John went to the store, John gave a
drink to” with the target token “Mary”. The displayed heads are the top three ranked by the norm of their Reversed
Attention (RA). The first by its RA norm, head 2 at layer 11, exhibits an RA pattern (b) that directs the editing
process to increase the attention given to the input token “Mary”. In contrast, the other two heads, (d) and (f), show
patterns that decrease the attention score for “Mary”, suggesting that these heads have a negative direct effect on
predicting the token “Mary”.
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(a) “the book is in Box A” - Forward (b) “the book is in Box A” - Reversed

(c) “the bill is in Box C” - Forward (d) “the bill is in Box C” - Reversed

Figure 12: Attention maps of GPT2-xl are shown for two entity tracking prompts. The first prompt in (a) and (b)
is “The orange is in Box X, the book is in Box A... Box A contains the”. The second prompt in (c) and (d) is
“The magnet is in Box B... the bill is in Box C... Box C contains the”. The editing targets are “book” for the first
prompt and “bill” for the second. In both cases, attention head 14 in layer 26 was among the heads with the highest
Reversed Attention norm. The patterns presented in (b) and (d) suggest that this head should pay less attention to
the target tokens.
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B Perturbation Test

In this section, we present the full results of the per-
turbation analysis outlined in subsection 5.2. This
analysis can be viewed as a sparsity test, wherein
we mask (zero-out) all attention heads and gradu-
ally unmask them according to different methods.

Throughout this section, we examine the order-
ing provided by Reversed Attention (RA) norms
and by Causal Mediation (CM). As a baseline, we
also consider the ordering provided by the norm
of the average forward pass attention scores (“For-
ward”), random order (“Random”), and the order
of the attention heads in the model (“Index”). Ad-
ditionally, we evaluate each method by the order it
provides and by the reverse order, denoted by the
suffix “[←]”. For example, RA orders the heads
from ones with the largest norm to the one with
the smallest, while “RA[←]” orders them from the
smallest to the largest. This reversal in orders rep-
resents a negative perturbation test, whereas the
original order represents a positive test. A success-
ful order in such a case should yield high Area
Under the Curve (AUC) in the positive test and
low AUC in the negative test, for the graph that
measures the model’s accuracy as we unmask the
heads in the order of the method.

Causal Mediation implementation CM is ap-
plied separately for each task, returning the average
indirect effect (AIE) for each attention head. For
all tasks, we exclude the AIE when applying CM
on the prompts’ last tokens (the target token), as
it is the token that the model should edit. One im-
plementation we use (CM1) zeros out each head
separately.

Another implementation we examined (CM2) is
the implementation provided by Todd et al. (2023).
This implementation instead of zeroing-out the
heads, uses the average activation of each head,
as collected from a few left-out examples. An ex-
ample for the CM2 we produced, compare to the
RA norms, is shown in Figure 13.

Datasets The ICL tasks we used are sourced
from (Todd et al., 2023). Each task consists of
a set of pairs with a common relation in the for-
mat “<question>,<answer>”, where the model is
tasked with completing the answer given the ques-
tion. For constructing the prompt for each task and
pair, we used the following format: “Q: <question>
\A: <answer> \\”. For example, a 2-shot prompt
is in the form of: “Q: <question1> \A: <answer1>

(a) Causal mediation (AIE) implementation by Todd et al.
(2023)

(b) Reversed Attention (norm)

Figure 13: GPT2-xl causal mediation and Reversed
Attention maps for the ICL capitalize task with 5-shots.

\\Q: <question2> \A: <answer2> \\Q: <question>
\A:”.

The natural language questions we utilized are
from (Hernandez et al., 2024). This dataset com-
prises tasks, each with a set of pairs in the for-
mat “<question>,<answer>”, along with a natural
language format for constructing the prompt. For
instance, in the task concerning the relationship
between persons that plays pro sports, the format is
“<question> plays the sport of <answer>”. We ob-
served that two tasks, country-capital and present-
past, had too few examples but shared the same
relation as tasks in the ICL dataset by (Todd et al.,
2023).1 We employed the format from (Hernandez
et al., 2024) along with the pairs from (Todd et al.,
2023).

In practice, we additionally examined the natu-
ral language tasks by prompting the tasks’ ques-
tion with few-shots labeled example. Hence, the 0-
shots represent the original tasks, while the n-shots
results are provided for comprehensive examina-
tion. We adopt this practice from NLP benchmark
like HuggingFace leaderborad.2 For example, a

1The Antonym and Synonym tasks used by (Todd et al.,
2023) are from (Nguyen et al., 2017) and the English-French
task is from (Lample et al., 2018).

2https://huggingface.co/spaces/
open-llm-leaderboard-old/open_llm_leaderboard
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common practice is to evaluate HellaSwag (Zellers
et al., 2019) with 10-shots and MMLU (Hendrycks
et al., 2021) with 5-shots.

The full list of tasks is provided in Table 4. To
summarize, we have ICL tasks with a uniform for-
mat of prompt, where the model is required to infer
the relation between the question and the answer
from given examples. Additionally, we have nat-
ural language questions (with and without given
examples) where the relation between the question
and the answer is explicitly stated in the prompt.
In all experiments, and for each task separately, we
used a split of 1/3 from all available examples to
extract the test set. This set of examples is used to
report our results and is not included in the creation
of any method (i.e. RA, CM).

B.1 Perturbation results
We conducted the perturbation test on GPT2-xl
(Radford et al., 2019), OPT-1.3B (Zhang et al.,
2022), GPT-j (Wang and Komatsuzaki, 2021) and
Llama2-7B (Touvron et al., 2023) models. For each
task and method, we provided 25 examples to ex-
tract the order of the attention heads. We quantified
the performance of each method by the AUC of the
graph that measures the model’s accuracy as we
unmask the heads. Figure 14 provides an example
of such a graph and the AUC results extracted from
it.

The full ICL results are displayed in Table 5 6 7
and 8. We notice that for all models, RA achieves
the best results in the majority of the tasks when
prompted with 5 or 10 shots, only falling behind
CM without any shots. It is also evident that RA
shows more dominance across tasks with relatively
larger models, like LLaMA2-7B.

The natural language task results are provided
in Table 9 10 11 and 12. When considering the
0-shot setting, which is equivalent to examining the
perturbation task on the original natural language
tasks, we find that when the models’ original ability
to answer the asked question is high, RA achieves
better results compare to CM. In all other cases CM
is better only under the 0-shot setup. With few-shot
prompting, RA is the preferred method.

In summary, the perturbation test reveals that RA
has the potential to localize the model’s behavior
similar to existing methods and in particular in ICL
tasks.
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Table 4: List of tasks

Task Task source and type Examples

adjective-v-verb-3

ICL (Todd et al., 2023)

Q: uplifting, approve, decide A: [uplifting]
alphabetically-first-3 Q: blissful, rat, dingo A: [blissful]

animal-v-object-3 Q: bicycle, skunk, egg A: [skunk]
antonym Q: expire A: [renew]
capitalize Q: cow A: [Cow]

capitalize-first-letter Q: bunny A: [B]
choose-middle-of-3 Q: white, house, wallet A: [house]

country-capital Q: Cabo Verde A: [Praia]
english-french Q: careful A: [prudent]

next-item Q: 12 A: [13]
person-sport Q: Lou Gehrig A: [baseball]
present-past Q: justify A: [justified]
prev-item Q: 13 A: [12]

singular-plural Q: glue A: [glues]
synonym Q: missing A: [lost]

company-hq

Natural question
(Hernandez et al., 2024)

EMI is headquartered in the city of [London]
landmark-in-country route 75 is in the country of [Australia]

person-plays-pro-sport Lou Gehrig plays the sport of [baseball]
product-by-company Digital Negative was created by [Adobe]

country-capital Natural questoin
(Hernandez et al., 2024),
(Todd et al., 2023)

The capital city of Cabo Verde is [Praia]
present-past The past tense of justify is [justified]

(a) 0-shots
(b) 10-shots

Figure 14: Perturbation test results visualized for Llama2-7B on the capitalize ICL task. With no shots, when the
original model achieves only 0.4 accuracy, causal mediation (CM) achieve the highest AUC score. With few-shots
prompting, Reversed Attention (RA) outperforms all other methods.
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Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

adjective-
v-verb-
3

0 0.03 0.04 0.05 0.09 0.01 0.44 0.01 0.03 0.03 0.01 0.05
1 0.21 0.18 0.09 0.27 0.03 0.63 0.02 0.1 0.12 0.03 0.3
5 0.23 0.22 0.08 0.21 0.05 0.15 0.03 0.18 0.14 0.03 0.35
10 0.25 0.24 0.09 0.12 0.1 0.4 0.04 0.2 0.11 0.03 0.36

alphabetic-
ally-
first-3

0 0.02 0.03 0.05 0.15 0.01 0.28 0.01 0.02 0.04 0.02 0.04
1 0.12 0.13 0.06 0.07 0.11 0.22 0.02 0.07 0.08 0.02 0.2
5 0.15 0.15 0.05 0.08 0.11 0.19 0.05 0.1 0.08 0.02 0.23
10 0.14 0.13 0.05 0.11 0.13 0.23 0.05 0.1 0.06 0.02 0.22

animal-
v-
object-
3

0 0.09 0.03 0.06 0.11 0.01 0.28 0.01 0.03 0.04 0.02 0.08
1 0.2 0.16 0.08 0.3 0.04 0.39 0.03 0.13 0.11 0.02 0.29
5 0.28 0.27 0.1 0.18 0.13 0.44 0.04 0.24 0.16 0.04 0.42
10 0.3 0.29 0.1 0.23 0.1 0.3 0.05 0.27 0.15 0.05 0.49

antonym

0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0
1 0.02 0.07 0.02 0.01 0.01 0.15 0.01 0.02 0.02 0.01 0.07
5 0.09 0.24 0.06 0.03 0.03 0.27 0.03 0.15 0.05 0.02 0.32
10 0.11 0.26 0.07 0.03 0.03 0.3 0.03 0.17 0.05 0.03 0.34

capitalize

0 0.01 0.0 0.0 0.08 0.0 0.23 0.0 0.0 0.0 0.03 0.0
1 0.08 0.19 0.05 0.12 0.05 0.64 0.01 0.03 0.07 0.03 0.1
5 0.31 0.43 0.14 0.1 0.27 0.52 0.05 0.26 0.17 0.05 0.5
10 0.36 0.45 0.14 0.08 0.27 0.59 0.05 0.32 0.16 0.05 0.59

choose-
middle-
of-3

0 0.02 0.02 0.02 0.05 0.01 0.24 0.01 0.01 0.02 0.01 0.02
1 0.1 0.16 0.06 0.1 0.05 0.35 0.03 0.05 0.08 0.02 0.19
5 0.17 0.23 0.07 0.04 0.11 0.21 0.05 0.13 0.1 0.03 0.3
10 0.2 0.25 0.07 0.05 0.25 0.2 0.05 0.14 0.08 0.04 0.35

country-
capital

0 0.0 0.0 0.01 0.02 0.0 0.04 0.0 0.0 0.02 0.0 0.0
1 0.07 0.18 0.08 0.08 0.02 0.22 0.02 0.08 0.09 0.03 0.29
5 0.19 0.3 0.1 0.05 0.05 0.4 0.04 0.24 0.07 0.04 0.42
10 0.19 0.29 0.1 0.07 0.08 0.55 0.03 0.24 0.07 0.04 0.4

english-
french

0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0
1 0.01 0.03 0.01 0.01 0.01 0.02 0.0 0.02 0.01 0.01 0.04
5 0.06 0.08 0.02 0.02 0.03 0.08 0.01 0.06 0.03 0.01 0.12
10 0.07 0.09 0.03 0.02 0.04 0.06 0.02 0.07 0.03 0.01 0.13

lowercase-
last-
letter

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.02 0.03 0.01 0.03 0.02 0.08 0.0 0.01 0.02 0.01 0.06
5 0.05 0.06 0.02 0.06 0.04 0.14 0.01 0.04 0.02 0.01 0.1
10 0.06 0.08 0.02 0.07 0.04 0.11 0.03 0.05 0.03 0.01 0.1

next-
item

0 0.02 0.01 0.03 0.06 0.0 0.22 0.0 0.02 0.01 0.01 0.03
1 0.06 0.1 0.04 0.07 0.02 0.25 0.01 0.05 0.04 0.03 0.14
5 0.17 0.26 0.08 0.1 0.05 0.31 0.03 0.2 0.07 0.03 0.34
10 0.22 0.27 0.09 0.12 0.09 0.3 0.04 0.21 0.08 0.04 0.4

person-
sport

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.22 0.33 0.09 0.18 0.13 0.35 0.03 0.11 0.1 0.06 0.37
5 0.21 0.34 0.09 0.18 0.16 0.34 0.07 0.24 0.09 0.09 0.44
10 0.22 0.33 0.09 0.23 0.19 0.31 0.11 0.31 0.11 0.09 0.45

present-
past

0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0
1 0.05 0.19 0.05 0.1 0.05 0.45 0.02 0.07 0.05 0.02 0.13
5 0.34 0.49 0.15 0.07 0.27 0.68 0.06 0.34 0.19 0.05 0.65
10 0.36 0.49 0.15 0.06 0.27 0.77 0.05 0.41 0.19 0.05 0.69

prev-
item

0 0.01 0.01 0.03 0.06 0.0 0.12 0.0 0.01 0.02 0.01 0.03
1 0.04 0.07 0.02 0.06 0.02 0.26 0.01 0.03 0.02 0.02 0.09
5 0.08 0.17 0.05 0.08 0.04 0.24 0.02 0.12 0.05 0.02 0.25
10 0.1 0.17 0.07 0.07 0.03 0.23 0.02 0.14 0.05 0.03 0.25

singular-
plural

0 0.01 0.02 0.02 0.02 0.01 0.2 0.0 0.0 0.02 0.03 0.01
1 0.17 0.21 0.07 0.13 0.07 0.48 0.02 0.1 0.09 0.06 0.24
5 0.38 0.43 0.14 0.14 0.38 0.51 0.09 0.35 0.2 0.06 0.64
10 0.4 0.45 0.13 0.13 0.36 0.44 0.11 0.41 0.18 0.06 0.58

synonym

0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0
1 0.01 0.01 0.0 0.0 0.0 0.04 0.0 0.01 0.0 0.0 0.02
5 0.01 0.01 0.0 0.01 0.0 0.04 0.0 0.01 0.0 0.0 0.03
10 0.01 0.01 0.0 0.0 0.0 0.03 0.0 0.01 0.0 0.0 0.03

Table 5: GPT2-xl perturbation test on ICL tasks. Each score represents the AUC with respect to n-shot and a method
that orders all the attention heads. The methods include random ordering, Index (from the first layer to the last),
Causal Mediation (CM, two variations of implementation), forward attention norm (FA), and Reversed Attention
norm (RA). For each ordering method, we also examine the reversed order, annotated by [←].
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Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

adjective-
v-verb-
3

0 0.01 0.01 0.03 0.03 0.0 0.29 0.0 0.01 0.06 0.01 0.02
1 0.18 0.1 0.04 0.24 0.02 0.42 0.02 0.12 0.15 0.02 0.39
5 0.24 0.11 0.05 0.08 0.08 0.11 0.03 0.2 0.13 0.02 0.45
10 0.24 0.11 0.03 0.02 0.11 0.03 0.06 0.17 0.11 0.02 0.34

alphabetic-
ally-
first-3

0 0.01 0.01 0.03 0.1 0.01 0.23 0.01 0.02 0.06 0.01 0.05
1 0.09 0.08 0.03 0.04 0.07 0.16 0.02 0.09 0.1 0.02 0.24
5 0.12 0.08 0.03 0.05 0.12 0.06 0.07 0.13 0.08 0.02 0.25
10 0.12 0.08 0.02 0.03 0.09 0.22 0.01 0.11 0.06 0.02 0.2

animal-
v-
object-
3

0 0.02 0.01 0.03 0.01 0.01 0.31 0.01 0.03 0.06 0.01 0.06
1 0.16 0.06 0.04 0.1 0.06 0.55 0.02 0.11 0.11 0.02 0.29
5 0.21 0.1 0.04 0.06 0.07 0.39 0.03 0.18 0.14 0.03 0.36
10 0.19 0.1 0.02 0.06 0.1 0.09 0.07 0.18 0.12 0.03 0.31

antonym

0 0.0 0.0 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.0 0.01
1 0.03 0.04 0.01 0.02 0.01 0.19 0.01 0.05 0.02 0.01 0.09
5 0.07 0.09 0.02 0.03 0.02 0.1 0.02 0.12 0.07 0.02 0.21
10 0.08 0.1 0.02 0.02 0.02 0.05 0.02 0.12 0.06 0.02 0.2

capitalize

0 0.02 0.0 0.0 0.04 0.0 0.29 0.0 0.02 0.01 0.01 0.02
1 0.03 0.02 0.01 0.01 0.0 0.19 0.0 0.01 0.01 0.0 0.05
5 0.35 0.24 0.09 0.08 0.23 0.52 0.05 0.38 0.19 0.05 0.67
10 0.36 0.24 0.06 0.07 0.23 0.47 0.05 0.39 0.18 0.05 0.6

choose-
middle-
of-3

0 0.01 0.0 0.0 0.02 0.0 0.14 0.0 0.01 0.02 0.0 0.01
1 0.05 0.05 0.02 0.02 0.04 0.14 0.01 0.07 0.07 0.01 0.18
5 0.13 0.12 0.04 0.04 0.13 0.08 0.04 0.19 0.11 0.03 0.31
10 0.14 0.11 0.03 0.03 0.1 0.11 0.04 0.16 0.07 0.03 0.25

country-
capital

0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.01 0.0 0.0 0.02
1 0.15 0.14 0.05 0.04 0.12 0.52 0.04 0.22 0.11 0.03 0.43
5 0.22 0.19 0.07 0.06 0.05 0.55 0.05 0.28 0.19 0.04 0.56
10 0.2 0.17 0.04 0.06 0.08 0.38 0.05 0.28 0.13 0.04 0.46

english-
french

0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0
1 0.02 0.03 0.01 0.01 0.01 0.03 0.01 0.03 0.01 0.0 0.07
5 0.1 0.08 0.02 0.02 0.04 0.16 0.02 0.1 0.05 0.02 0.19
10 0.11 0.08 0.02 0.02 0.05 0.08 0.02 0.11 0.05 0.02 0.18

lowercase-
last-
letter

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.02 0.02 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.0 0.07
5 0.04 0.03 0.01 0.06 0.04 0.02 0.02 0.04 0.02 0.01 0.08
10 0.04 0.03 0.01 0.08 0.03 0.02 0.04 0.05 0.03 0.01 0.08

next-
item

0 0.01 0.02 0.01 0.1 0.01 0.27 0.01 0.04 0.04 0.01 0.07
1 0.08 0.08 0.02 0.09 0.02 0.35 0.02 0.09 0.08 0.02 0.25
5 0.15 0.12 0.03 0.05 0.03 0.34 0.03 0.18 0.11 0.03 0.41
10 0.14 0.14 0.03 0.06 0.04 0.2 0.03 0.2 0.1 0.03 0.39

person-
sport

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.18 0.17 0.05 0.07 0.12 0.46 0.03 0.17 0.11 0.04 0.46
5 0.27 0.2 0.06 0.09 0.2 0.5 0.06 0.34 0.16 0.04 0.49
10 0.23 0.22 0.04 0.21 0.18 0.25 0.09 0.36 0.12 0.06 0.38

present-
past

0 0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.01 0.01 0.0 0.01
1 0.07 0.04 0.01 0.03 0.02 0.07 0.0 0.05 0.04 0.01 0.09
5 0.25 0.23 0.06 0.05 0.25 0.27 0.04 0.37 0.19 0.04 0.48
10 0.3 0.27 0.07 0.13 0.24 0.44 0.05 0.41 0.2 0.05 0.61

prev-
item

0 0.01 0.01 0.01 0.02 0.0 0.16 0.0 0.02 0.03 0.0 0.05
1 0.04 0.04 0.01 0.07 0.01 0.17 0.01 0.04 0.03 0.01 0.1
5 0.09 0.07 0.02 0.07 0.03 0.17 0.01 0.1 0.07 0.02 0.2
10 0.11 0.1 0.02 0.02 0.03 0.09 0.02 0.13 0.07 0.02 0.24

singular-
plural

0 0.03 0.02 0.02 0.02 0.01 0.2 0.01 0.04 0.06 0.01 0.06
1 0.23 0.13 0.04 0.11 0.07 0.19 0.02 0.18 0.16 0.04 0.34
5 0.36 0.24 0.07 0.16 0.16 0.35 0.05 0.38 0.23 0.05 0.67
10 0.37 0.25 0.06 0.09 0.28 0.36 0.06 0.39 0.17 0.05 0.56

synonym

0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0
1 0.01 0.01 0.0 0.0 0.0 0.07 0.0 0.01 0.01 0.0 0.03
5 0.01 0.02 0.0 0.01 0.0 0.05 0.0 0.03 0.01 0.0 0.06
10 0.01 0.02 0.0 0.01 0.01 0.09 0.0 0.03 0.01 0.0 0.06

Table 6: OPT-1.3B perturbation test on ICL tasks
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Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

adjective-
v-verb-
3

0 0.06 0.03 0.03 0.15 0.01 0.32 0.01 0.03 0.05 0.01 0.17
1 0.07 0.13 0.03 0.2 0.02 0.47 0.02 0.06 0.09 0.02 0.31
5 0.11 0.2 0.03 0.07 0.07 0.48 0.04 0.22 0.12 0.03 0.45
10 0.12 0.24 0.03 0.06 0.08 0.24 0.03 0.27 0.14 0.03 0.51

alphabetic-
ally-
first-3

0 0.2 0.04 0.04 0.25 0.01 0.32 0.01 0.04 0.05 0.02 0.18
1 0.11 0.12 0.02 0.09 0.08 0.24 0.02 0.07 0.07 0.02 0.23
5 0.17 0.14 0.02 0.05 0.07 0.1 0.04 0.14 0.1 0.03 0.25
10 0.16 0.14 0.02 0.05 0.08 0.22 0.02 0.16 0.08 0.03 0.25

animal-
v-
object-
3

0 0.1 0.04 0.04 0.26 0.01 0.32 0.01 0.04 0.05 0.01 0.24
1 0.23 0.12 0.03 0.27 0.02 0.46 0.02 0.09 0.07 0.03 0.3
5 0.27 0.15 0.02 0.14 0.07 0.28 0.03 0.21 0.13 0.03 0.41
10 0.27 0.19 0.03 0.1 0.08 0.36 0.04 0.27 0.13 0.04 0.46

antonym

0 0.01 0.0 0.0 0.03 0.0 0.07 0.0 0.0 0.0 0.0 0.02
1 0.08 0.1 0.04 0.03 0.02 0.25 0.01 0.06 0.05 0.01 0.19
5 0.14 0.26 0.03 0.04 0.04 0.21 0.03 0.26 0.1 0.03 0.43
10 0.15 0.28 0.03 0.04 0.04 0.41 0.03 0.26 0.1 0.03 0.46

capitalize

0 0.0 0.0 0.0 0.13 0.0 0.17 0.0 0.0 0.0 0.0 0.0
1 0.07 0.23 0.04 0.03 0.02 0.34 0.02 0.08 0.07 0.02 0.28
5 0.2 0.46 0.06 0.08 0.3 0.77 0.05 0.45 0.19 0.05 0.68
10 0.21 0.46 0.05 0.07 0.29 0.74 0.05 0.47 0.18 0.05 0.7

choose-
middle-
of-3

0 0.01 0.01 0.0 0.14 0.0 0.12 0.0 0.01 0.0 0.0 0.02
1 0.09 0.16 0.02 0.03 0.07 0.53 0.02 0.05 0.06 0.02 0.29
5 0.13 0.25 0.03 0.04 0.12 0.38 0.03 0.21 0.12 0.04 0.36
10 0.15 0.31 0.04 0.05 0.11 0.51 0.04 0.32 0.13 0.06 0.47

country-
capital

0 0.01 0.01 0.01 0.05 0.0 0.05 0.0 0.01 0.01 0.0 0.03
1 0.2 0.3 0.06 0.05 0.1 0.19 0.04 0.27 0.1 0.04 0.48
5 0.28 0.42 0.07 0.05 0.15 0.33 0.05 0.4 0.13 0.06 0.68
10 0.27 0.44 0.06 0.06 0.11 0.1 0.05 0.44 0.14 0.07 0.68

english-
french

0 0.0 0.0 0.0 0.01 0.0 0.02 0.0 0.0 0.0 0.0 0.0
1 0.11 0.23 0.03 0.03 0.06 0.13 0.03 0.13 0.05 0.03 0.27
5 0.19 0.37 0.04 0.06 0.11 0.44 0.04 0.33 0.09 0.04 0.52
10 0.2 0.38 0.04 0.08 0.11 0.28 0.04 0.37 0.09 0.04 0.55

lowercase-
last-
letter

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.03 0.05 0.01 0.04 0.01 0.11 0.01 0.04 0.03 0.01 0.1
5 0.05 0.1 0.01 0.02 0.09 0.13 0.02 0.08 0.04 0.01 0.16
10 0.05 0.09 0.01 0.12 0.04 0.04 0.08 0.13 0.04 0.01 0.15

next-
item

0 0.05 0.06 0.02 0.12 0.01 0.17 0.01 0.06 0.01 0.02 0.13
1 0.09 0.25 0.03 0.08 0.03 0.42 0.02 0.16 0.07 0.02 0.38
5 0.19 0.38 0.04 0.09 0.05 0.42 0.03 0.33 0.13 0.04 0.58
10 0.24 0.41 0.04 0.05 0.09 0.32 0.04 0.34 0.13 0.04 0.62

person-
sport

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.18 0.38 0.05 0.11 0.19 0.34 0.04 0.21 0.11 0.05 0.59
5 0.27 0.47 0.07 0.08 0.2 0.39 0.05 0.46 0.13 0.07 0.66
10 0.28 0.5 0.08 0.16 0.2 0.37 0.08 0.53 0.12 0.07 0.62

present-
past

0 0.01 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.01
1 0.04 0.16 0.06 0.04 0.03 0.55 0.02 0.13 0.09 0.02 0.29
5 0.17 0.48 0.08 0.06 0.3 0.8 0.05 0.42 0.22 0.05 0.76
10 0.26 0.5 0.06 0.06 0.34 0.82 0.05 0.51 0.22 0.05 0.69

prev-
item

0 0.03 0.04 0.01 0.08 0.01 0.11 0.01 0.04 0.01 0.01 0.07
1 0.04 0.14 0.02 0.05 0.02 0.1 0.01 0.09 0.04 0.01 0.21
5 0.06 0.25 0.03 0.06 0.04 0.2 0.02 0.22 0.08 0.03 0.41
10 0.07 0.3 0.03 0.04 0.08 0.14 0.04 0.29 0.08 0.03 0.45

singular-
plural

0 0.11 0.05 0.02 0.17 0.01 0.23 0.01 0.05 0.03 0.04 0.12
1 0.2 0.31 0.07 0.12 0.08 0.48 0.04 0.23 0.15 0.04 0.52
5 0.33 0.45 0.07 0.1 0.31 0.76 0.06 0.48 0.21 0.05 0.76
10 0.37 0.49 0.06 0.09 0.27 0.72 0.05 0.49 0.19 0.05 0.78

synonym

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.01 0.03 0.01 0.01 0.0 0.04 0.0 0.02 0.01 0.0 0.05
5 0.02 0.06 0.01 0.01 0.02 0.06 0.01 0.08 0.02 0.01 0.11
10 0.02 0.06 0.01 0.01 0.03 0.02 0.01 0.07 0.03 0.01 0.11

Table 7: GPT-j perturbation test on ICL tasks
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Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

adjective-
v-verb-
3

0 0.1 0.04 0.03 0.17 0.01 0.35 0.01 0.14 0.04 0.01 0.15
1 0.16 0.2 0.04 0.17 0.03 0.4 0.03 0.28 0.05 0.03 0.37
5 0.25 0.21 0.04 0.08 0.06 0.11 0.03 0.35 0.07 0.03 0.45
10 0.29 0.26 0.04 0.09 0.09 0.12 0.04 0.36 0.05 0.04 0.48

alphabetic-
ally-
first-3

0 0.03 0.04 0.03 0.14 0.01 0.17 0.01 0.12 0.04 0.01 0.11
1 0.08 0.14 0.03 0.1 0.06 0.13 0.02 0.19 0.04 0.02 0.22
5 0.08 0.14 0.03 0.08 0.04 0.08 0.02 0.19 0.04 0.02 0.24
10 0.07 0.13 0.02 0.06 0.06 0.07 0.02 0.19 0.02 0.02 0.26

animal-
v-
object-
3

0 0.08 0.07 0.03 0.12 0.02 0.09 0.01 0.15 0.04 0.02 0.15
1 0.12 0.13 0.03 0.16 0.05 0.17 0.03 0.22 0.05 0.02 0.27
5 0.22 0.18 0.03 0.09 0.04 0.11 0.03 0.28 0.06 0.03 0.39
10 0.27 0.22 0.04 0.08 0.06 0.04 0.06 0.34 0.05 0.03 0.43

antonym

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01
1 0.07 0.1 0.02 0.06 0.02 0.12 0.02 0.15 0.02 0.02 0.21
5 0.17 0.25 0.04 0.07 0.05 0.08 0.03 0.29 0.04 0.03 0.34
10 0.19 0.28 0.04 0.05 0.07 0.1 0.03 0.19 0.04 0.03 0.33

capitalize

0 0.05 0.08 0.02 0.08 0.02 0.52 0.02 0.14 0.02 0.02 0.16
1 0.19 0.36 0.04 0.07 0.03 0.07 0.03 0.41 0.05 0.03 0.58
5 0.35 0.45 0.05 0.07 0.15 0.14 0.05 0.65 0.06 0.05 0.76
10 0.36 0.46 0.05 0.1 0.14 0.33 0.05 0.61 0.05 0.05 0.76

choose-
middle-
of-3

0 0.01 0.01 0.0 0.05 0.0 0.16 0.0 0.02 0.0 0.01 0.02
1 0.09 0.19 0.03 0.05 0.1 0.38 0.03 0.22 0.04 0.03 0.3
5 0.16 0.17 0.03 0.04 0.03 0.22 0.02 0.21 0.05 0.03 0.36
10 0.14 0.2 0.03 0.07 0.05 0.06 0.03 0.24 0.04 0.03 0.43

country-
capital

0 0.02 0.0 0.0 0.0 0.02 0.0 0.0 0.04 0.01 0.0 0.02
1 0.17 0.39 0.04 0.21 0.09 0.17 0.04 0.5 0.05 0.05 0.52
5 0.22 0.43 0.05 0.15 0.08 0.15 0.05 0.58 0.07 0.05 0.56
10 0.24 0.42 0.05 0.12 0.22 0.14 0.05 0.48 0.05 0.05 0.57

english-
french

0 0.02 0.0 0.0 0.02 0.0 0.02 0.0 0.01 0.0 0.0 0.01
1 0.08 0.24 0.03 0.05 0.07 0.06 0.03 0.31 0.03 0.03 0.31
5 0.13 0.36 0.04 0.07 0.1 0.14 0.04 0.44 0.04 0.04 0.47
10 0.14 0.37 0.04 0.07 0.06 0.17 0.04 0.38 0.04 0.04 0.45

lowercase-
last-
letter

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.02 0.06 0.01 0.01 0.01 0.03 0.01 0.09 0.01 0.01 0.09
5 0.05 0.11 0.02 0.02 0.06 0.02 0.02 0.15 0.02 0.01 0.16
10 0.05 0.11 0.02 0.07 0.03 0.09 0.02 0.12 0.02 0.01 0.16

next-
item

0 0.11 0.08 0.06 0.11 0.05 0.14 0.01 0.1 0.07 0.04 0.15
1 0.1 0.19 0.06 0.12 0.07 0.12 0.07 0.26 0.07 0.05 0.35
5 0.19 0.39 0.08 0.13 0.1 0.18 0.05 0.47 0.09 0.09 0.66
10 0.2 0.44 0.07 0.09 0.07 0.23 0.07 0.39 0.06 0.08 0.62

person-
sport

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.18 0.48 0.05 0.13 0.07 0.14 0.04 0.48 0.06 0.05 0.58
5 0.25 0.52 0.07 0.06 0.16 0.55 0.06 0.55 0.08 0.05 0.64
10 0.28 0.53 0.07 0.07 0.12 0.19 0.05 0.53 0.07 0.05 0.63

present-
past

0 0.02 0.02 0.01 0.06 0.0 0.0 0.0 0.05 0.01 0.01 0.04
1 0.14 0.36 0.05 0.06 0.11 0.18 0.04 0.46 0.05 0.04 0.56
5 0.26 0.44 0.05 0.06 0.14 0.34 0.05 0.55 0.06 0.05 0.7
10 0.19 0.44 0.05 0.07 0.14 0.36 0.05 0.6 0.05 0.05 0.75

prev-
item

0 0.08 0.08 0.05 0.12 0.05 0.12 0.01 0.1 0.04 0.04 0.11
1 0.07 0.16 0.06 0.07 0.07 0.05 0.06 0.16 0.05 0.06 0.18
5 0.08 0.29 0.04 0.06 0.07 0.19 0.05 0.29 0.06 0.07 0.44
10 0.1 0.35 0.06 0.12 0.07 0.25 0.06 0.32 0.06 0.08 0.53

singular-
plural

0 0.09 0.0 0.01 0.06 0.01 0.0 0.0 0.08 0.05 0.01 0.05
1 0.19 0.43 0.06 0.29 0.06 0.19 0.05 0.53 0.09 0.05 0.68
5 0.24 0.45 0.05 0.12 0.14 0.37 0.05 0.64 0.09 0.05 0.76
10 0.23 0.45 0.05 0.12 0.11 0.44 0.05 0.61 0.05 0.05 0.75

synonym

0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0
1 0.03 0.06 0.02 0.03 0.02 0.04 0.01 0.12 0.02 0.01 0.13
5 0.08 0.12 0.02 0.03 0.04 0.03 0.02 0.19 0.03 0.02 0.25
10 0.09 0.12 0.02 0.03 0.04 0.04 0.02 0.17 0.02 0.02 0.25

Table 8: Llama2-7B perturbation test on ICL tasks
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Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

company-
hq

0 0.15 0.09 0.05 0.13 0.09 0.19 0.05 0.15 0.06 0.04 0.18
1 0.07 0.09 0.04 0.12 0.04 0.19 0.03 0.12 0.05 0.02 0.16
5 0.14 0.14 0.05 0.11 0.04 0.21 0.03 0.14 0.07 0.03 0.2
10 0.14 0.13 0.05 0.12 0.03 0.19 0.05 0.13 0.08 0.04 0.2

country-
capital

0 0.02 0.03 0.05 0.36 0.01 0.61 0.01 0.08 0.06 0.01 0.07
1 0.27 0.31 0.13 0.21 0.13 0.58 0.04 0.32 0.14 0.04 0.57
5 0.43 0.34 0.12 0.19 0.15 0.52 0.1 0.32 0.13 0.07 0.57
10 0.41 0.33 0.12 0.24 0.1 0.36 0.07 0.28 0.17 0.07 0.51

landmark-
in-
country

0 0.06 0.05 0.03 0.08 0.01 0.35 0.01 0.12 0.05 0.01 0.18
1 0.14 0.14 0.06 0.11 0.04 0.29 0.04 0.11 0.08 0.03 0.28
5 0.18 0.17 0.07 0.07 0.07 0.23 0.02 0.2 0.09 0.04 0.33
10 0.2 0.18 0.07 0.1 0.08 0.2 0.02 0.2 0.1 0.03 0.33

person-
plays-
pro-
sport

0 0.32 0.24 0.08 0.36 0.05 0.59 0.03 0.48 0.09 0.07 0.57
1 0.32 0.27 0.1 0.24 0.25 0.42 0.07 0.32 0.12 0.1 0.49
5 0.3 0.25 0.1 0.3 0.15 0.41 0.13 0.33 0.12 0.1 0.46
10 0.28 0.31 0.12 0.27 0.16 0.36 0.04 0.33 0.13 0.09 0.49

present-
past

0 0.0 0.0 0.0 0.01 0.0 0.04 0.0 0.0 0.01 0.0 0.0
1 0.18 0.38 0.13 0.06 0.08 0.58 0.04 0.1 0.15 0.04 0.35
5 0.38 0.46 0.15 0.12 0.23 0.56 0.05 0.34 0.23 0.05 0.61
10 0.42 0.46 0.14 0.1 0.27 0.67 0.08 0.41 0.22 0.08 0.63

product-
by-
company

0 0.19 0.14 0.06 0.2 0.08 0.46 0.02 0.24 0.08 0.02 0.31
1 0.25 0.25 0.12 0.33 0.09 0.34 0.03 0.24 0.18 0.07 0.44
5 0.33 0.29 0.17 0.32 0.18 0.49 0.07 0.33 0.21 0.1 0.55
10 0.32 0.29 0.15 0.36 0.15 0.46 0.08 0.35 0.2 0.08 0.53

Table 9: GPT2-xl perturbation test on tasks of natural questions. We also provide results where we prompt the
models with ICL-like prompting, where a few labeled example proceed the actual prompt the model answer. Hence,
the 0-shot is the basic natural question task, and the other n-shots are provided for comprehensive examination.

Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

company-
hq

0 0.16 0.05 0.04 0.18 0.02 0.27 0.02 0.2 0.05 0.03 0.23
1 0.11 0.08 0.04 0.19 0.04 0.27 0.02 0.17 0.07 0.02 0.23
5 0.15 0.12 0.04 0.16 0.02 0.21 0.04 0.2 0.07 0.03 0.25
10 0.16 0.14 0.03 0.08 0.06 0.21 0.04 0.2 0.08 0.04 0.25

country-
capital

0 0.04 0.01 0.03 0.03 0.01 0.56 0.01 0.15 0.04 0.01 0.2
1 0.33 0.16 0.12 0.1 0.34 0.67 0.05 0.34 0.22 0.05 0.62
5 0.34 0.17 0.12 0.15 0.3 0.44 0.12 0.31 0.22 0.05 0.56
10 0.31 0.17 0.11 0.11 0.28 0.26 0.17 0.29 0.19 0.05 0.5

landmark-
in-
country

0 0.2 0.07 0.04 0.22 0.02 0.32 0.02 0.26 0.05 0.02 0.29
1 0.2 0.11 0.06 0.17 0.06 0.21 0.05 0.21 0.1 0.04 0.37
5 0.21 0.11 0.06 0.17 0.06 0.26 0.04 0.28 0.11 0.04 0.37
10 0.21 0.11 0.04 0.1 0.07 0.19 0.05 0.26 0.1 0.03 0.35

person-
plays-
pro-
sport

0 0.33 0.22 0.08 0.32 0.04 0.47 0.04 0.44 0.1 0.07 0.51
1 0.3 0.23 0.11 0.22 0.24 0.42 0.15 0.34 0.17 0.11 0.45
5 0.34 0.26 0.08 0.32 0.13 0.39 0.09 0.39 0.13 0.08 0.44
10 0.35 0.25 0.07 0.29 0.15 0.47 0.12 0.38 0.13 0.09 0.46

present-
past

0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0
1 0.1 0.15 0.06 0.02 0.05 0.64 0.02 0.1 0.1 0.02 0.27
5 0.28 0.23 0.12 0.06 0.19 0.62 0.04 0.4 0.26 0.04 0.57
10 0.3 0.24 0.13 0.06 0.23 0.44 0.05 0.4 0.22 0.05 0.61

product-
by-
company

0 0.26 0.1 0.09 0.09 0.3 0.46 0.02 0.3 0.1 0.03 0.41
1 0.32 0.17 0.08 0.22 0.11 0.52 0.06 0.32 0.16 0.1 0.46
5 0.31 0.19 0.08 0.21 0.18 0.48 0.08 0.41 0.16 0.08 0.53
10 0.29 0.2 0.08 0.23 0.16 0.29 0.11 0.38 0.14 0.07 0.48

Table 10: OPT-1.3B perturbation test on tasks of natural questions.
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Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

company-
hq

0 0.15 0.13 0.05 0.12 0.02 0.25 0.02 0.24 0.04 0.03 0.3
1 0.11 0.13 0.04 0.16 0.02 0.26 0.02 0.2 0.03 0.02 0.2
5 0.18 0.23 0.05 0.15 0.05 0.23 0.03 0.32 0.06 0.04 0.38
10 0.21 0.25 0.05 0.13 0.05 0.23 0.03 0.33 0.06 0.04 0.36

country-
capital

0 0.31 0.28 0.07 0.48 0.04 0.72 0.04 0.48 0.13 0.05 0.53
1 0.44 0.44 0.1 0.35 0.19 0.67 0.05 0.53 0.16 0.12 0.67
5 0.43 0.43 0.09 0.13 0.23 0.31 0.06 0.51 0.18 0.14 0.67
10 0.43 0.44 0.09 0.13 0.25 0.47 0.07 0.47 0.16 0.14 0.68

landmark-
in-
country

0 0.21 0.19 0.02 0.28 0.02 0.43 0.02 0.26 0.02 0.02 0.35
1 0.23 0.33 0.04 0.19 0.06 0.51 0.03 0.42 0.06 0.04 0.45
5 0.26 0.35 0.05 0.12 0.06 0.5 0.04 0.45 0.09 0.04 0.51
10 0.26 0.37 0.05 0.21 0.06 0.5 0.04 0.49 0.09 0.04 0.53

person-
plays-
pro-
sport

0 0.22 0.25 0.03 0.27 0.03 0.54 0.03 0.39 0.03 0.03 0.43
1 0.31 0.36 0.08 0.39 0.09 0.37 0.07 0.49 0.09 0.08 0.49
5 0.32 0.41 0.09 0.25 0.18 0.63 0.05 0.52 0.12 0.1 0.57
10 0.34 0.45 0.08 0.35 0.22 0.56 0.07 0.62 0.14 0.1 0.61

present-
past

0 0.06 0.23 0.03 0.12 0.04 0.61 0.03 0.3 0.03 0.03 0.35
1 0.27 0.41 0.05 0.1 0.15 0.74 0.05 0.34 0.18 0.05 0.56
5 0.41 0.46 0.05 0.1 0.39 0.69 0.05 0.48 0.23 0.05 0.61
10 0.42 0.47 0.05 0.07 0.39 0.65 0.05 0.51 0.15 0.05 0.67

product-
by-
company

0 0.29 0.23 0.1 0.43 0.02 0.42 0.02 0.37 0.1 0.05 0.42
1 0.3 0.33 0.12 0.35 0.13 0.46 0.04 0.44 0.1 0.09 0.5
5 0.34 0.36 0.15 0.38 0.12 0.47 0.08 0.49 0.15 0.1 0.56
10 0.35 0.38 0.15 0.41 0.12 0.55 0.08 0.49 0.17 0.08 0.54

Table 11: GPT-j perturbation test on tasks of natural questions.

Task n-shots Random Index [←] Index CM2 [←] CM2 CM1 [←] CM1 FA [←] FA RA [←] RA

company-
hq

0 0.17 0.23 0.04 0.2 0.08 0.03 0.03 0.3 0.05 0.03 0.32
1 0.11 0.26 0.04 0.19 0.05 0.24 0.03 0.28 0.04 0.03 0.3
5 0.2 0.3 0.05 0.24 0.04 0.12 0.03 0.31 0.04 0.04 0.37
10 0.19 0.32 0.05 0.26 0.05 0.11 0.04 0.3 0.04 0.04 0.39

country-
capital

0 0.31 0.23 0.05 0.22 0.05 0.05 0.05 0.58 0.07 0.08 0.43
1 0.39 0.42 0.08 0.34 0.1 0.71 0.05 0.62 0.11 0.08 0.52
5 0.41 0.43 0.07 0.32 0.1 0.33 0.06 0.61 0.11 0.07 0.57
10 0.41 0.43 0.06 0.28 0.23 0.34 0.05 0.53 0.09 0.07 0.57

landmark-
in-
country

0 0.12 0.33 0.04 0.19 0.05 0.44 0.04 0.48 0.06 0.05 0.51
1 0.13 0.38 0.05 0.19 0.06 0.33 0.04 0.48 0.07 0.04 0.54
5 0.15 0.42 0.06 0.24 0.06 0.12 0.05 0.5 0.08 0.05 0.6
10 0.16 0.44 0.06 0.22 0.09 0.34 0.05 0.43 0.06 0.05 0.57

person-
plays-
pro-
sport

0 0.21 0.33 0.04 0.27 0.04 0.39 0.04 0.43 0.04 0.04 0.48
1 0.28 0.37 0.09 0.24 0.1 0.25 0.04 0.43 0.09 0.08 0.57
5 0.28 0.44 0.1 0.32 0.16 0.21 0.09 0.54 0.08 0.06 0.6
10 0.31 0.49 0.09 0.4 0.17 0.28 0.05 0.54 0.09 0.06 0.64

present-
past

0 0.15 0.31 0.04 0.11 0.04 0.1 0.04 0.42 0.04 0.04 0.39
1 0.22 0.4 0.05 0.16 0.21 0.22 0.05 0.52 0.05 0.05 0.6
5 0.23 0.41 0.05 0.13 0.15 0.25 0.05 0.59 0.14 0.05 0.62
10 0.23 0.41 0.05 0.15 0.2 0.49 0.05 0.52 0.14 0.05 0.66

product-
by-
company

0 0.15 0.23 0.07 0.21 0.03 0.51 0.03 0.32 0.06 0.07 0.31
1 0.22 0.35 0.07 0.15 0.09 0.16 0.05 0.43 0.08 0.08 0.41
5 0.27 0.41 0.1 0.33 0.1 0.16 0.05 0.48 0.1 0.1 0.49
10 0.28 0.42 0.1 0.29 0.12 0.19 0.05 0.43 0.1 0.1 0.51

Table 12: Llama2-7B perturbation test on tasks of natural questions.
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C Attention Patching

In this section, we provide additional information
about the implementation of attention patching.

Learning rate Attention patching involves
adding (injecting) attention maps into the forward
pass of a given model. The attention maps that
are injected can be taken from the forward pass or
from the RA, each time after being multiplied by
a learning rate. Figure 15 demonstrates the effect
of different learning rates on the success of atten-
tion patching. If we inject forward pass maps, a
successful learning rate is a positive number. For
reversed attention, a negative learning rate would
improve the model. In our experiments, we used
a learning rate of 1 for the forward pass attention,
and for the reversed attention, we used a learning
rate of−30 for all models. Although we found that
different learning rates might affect the models’
performances, we decided not to tune the learning
rate per task or model since our goal is to show
proof of concept rather than optimizing the model
accuracy in our experiments.

Tasks The bottleneck of attention patching is the
need to have the same length and format of ex-
amples. We use the ICL tasks from section B to
construct sets of examples with the same length.
For each task, we randomly pick one of those sets
and use it in our experiments. Following the per-
turbation test Appendix B, we used 25 examples to
average the forward or reversed attention maps for
each attention head.

Additional results and discussion The full
patching results are presented in Table 13 .

The results show that RA patching can achieve
similar results to ICL prompting, without the need
to provide examples for the model to learn from.
Surprisingly, forward attention also shows improve-
ment over the model’s original accuracy, but not a
consistent one across all tasks. One possible rea-
son for this is the ICL setup, in which the model
does not identify the task it needs to perform, and
hence returns irrelevant answers. When averaging
the forward pass attention scores, it might aggre-
gate multiple different forward passes, amplifying
common patterns and reducing noise attribute to
the lack of context in the model’s prompt. In this
sense, forward attention patching can be seen as a
form of regularization or a compression of multiple
examples’ attention scores into one.

To the best of our knowledge, intervention on
the attention maps has yet to be explored directly
as our implementation. We used RA as a method to
inject the attention maps we suspect would improve
the model’s performance. The injection of the for-
ward pass, despite its surprisingly partial success,
was added as a baseline to the RA patching. Future
work might explore more complex methods of in-
jecting attention maps, potentially overcoming the
need for a constant size of attention maps during
the patching process.

D Additional Implementation Details

Compute: All experiments were conducted on
standard Nvidia-A40 series GPU.

Models: All LM models were accessed via Hug-
gingFace transformers stack (Wolf et al., 2019).
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Figure 15: Forward and Reversed attention patching results are presented as a function of the learning rate, a
scalar used in the injection of attention maps. The provided results are for GPT2-xl and the capitalized ICL task,
demonstrating that Reversed patching can achieve the same results as prompting the model with 10-shots, even with
a 0-shot prompt.

GPT2-xl OPT-1.3B GPT2-xl OPT-1.3B

Task N original FA RA original FA RA Task N original FA RA original FA RA

adjective-
v-verb-3

0 0.47 0.51 1.00 0.22 0.61 0.96 animal-
v-object-
3

0 0.36 0.39 1.00 0.18 0.21 1.00
1 0.94 1.00 1.00 0.94 0.80 1.00 1 0.96 1.00 1.00 0.82 0.96 1.00
5 1.00 0.90 1.00 1.00 1.00 1.00 5 1.00 0.21 1.00 1.00 1.00 1.00
10 1.00 0.00 1.00 1.00 1.00 1.00 10 0.96 0.00 1.00 1.00 1.00 1.00

antonym

0 0.00 0.01 0.08 0.02 0.01 0.24

capitalize

0 0.00 0.00 0.94 0.01 0.00 0.78
1 0.18 0.43 0.56 0.20 0.26 0.57 1 0.44 0.50 1.00 0.01 0.01 0.90
5 0.53 0.57 0.62 0.42 0.44 0.59 5 0.98 1.00 1.00 1.00 0.99 1.00
10 0.57 0.57 0.62 0.42 0.43 0.54 10 0.99 1.00 1.00 1.00 0.99 1.00

choose-
middle-
of-3

0 0.46 0.30 1.00 0.11 0.03 1.00
english-
french

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.81 0.76 1.00 0.57 0.54 0.76 1 0.00 0.00 0.00 0.00 0.00 0.01
5 0.92 0.68 1.00 0.95 0.84 1.00 5 0.01 0.01 0.03 0.00 0.00 0.04
10 0.97 0.00 1.00 0.86 0.65 1.00 10 0.01 0.01 0.03 0.03 0.00 0.03

landmark-
country

0 0.00 0.00 0.00 0.00 0.00 0.00 next-
capital-
letter

0 0.01 0.01 0.01 0.01 0.00 0.01
1 0.31 0.22 0.39 0.25 0.33 0.47 1 0.03 0.03 0.05 0.05 0.02 0.02
5 0.47 0.39 0.44 0.53 0.42 0.47 5 0.05 0.02 0.06 0.03 0.03 0.01
10 0.44 0.47 0.44 0.50 0.33 0.42 10 0.04 0.06 0.06 0.04 0.03 0.08

next-
item

0 0.03 0.00 0.16 0.09 0.00 0.53
present-
past

0 0.03 0.05 0.05 0.05 0.05 0.07
1 0.28 0.66 0.72 0.50 0.47 0.84 1 0.37 0.72 0.88 0.13 0.13 0.13
5 0.69 0.84 0.88 0.69 0.66 0.88 5 0.95 0.97 0.98 0.80 0.58 0.97
10 0.88 0.88 0.91 0.75 0.81 0.84 10 0.92 0.97 0.93 0.98 0.67 0.95

prev-
item

0 0.03 0.06 0.19 0.03 0.03 0.06
singular-
plural

0 0.00 0.09 0.09 0.09 0.09 0.09
1 0.25 0.34 0.25 0.09 0.06 0.09 1 0.52 0.70 0.91 0.43 0.78 0.96
5 0.50 0.41 0.47 0.44 0.31 0.53 5 1.00 1.00 0.91 0.87 1.00 0.96
10 0.50 0.59 0.50 0.47 0.38 0.66 10 1.00 1.00 1.00 0.96 1.00 0.96

synonym

0 0.01 0.01 0.02 0.01 0.01 0.02
1 0.03 0.04 0.05 0.04 0.05 0.13
5 0.04 0.06 0.10 0.06 0.02 0.18
10 0.03 0.06 0.10 0.06 0.02 0.23

Table 13: GPT2-xl and OPT-1.3B accuracy on ICL tasks with forward attention (FA) and Reversed Attention (RA)
patching.
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