
Can Large Language Models Invent Algorithms to Improve Themselves?:
Algorithm Discovery for Recursive Self-Improvement through

Reinforcement Learning

Yoichi Ishibashi
NEC

yoichi-ishibashi@nec.com

Taro Yano
NEC

taro_yano@nec.com

Masafumi Oyamada
NEC

oyamada@nec.com

Abstract

Large Language Models (LLMs) have shown
remarkable performance improvements and are
rapidly gaining adoption in industry. However,
the methods for improving LLMs are still de-
signed by humans, which restricts the inven-
tion of new model-improving algorithms to hu-
man expertise and imagination. To address
this, we propose the Self-Developing frame-
work, which enables LLMs to autonomously
generate and learn model-improvement algo-
rithms. In this framework, the seed model gen-
erates, applies, and learns model-improving
algorithms, continuously improving both the
seed model and the algorithms themselves.
Among model-improving strategies, we focus
on model merging algorithms. In mathemat-
ical reasoning tasks, Self-Developing discov-
ers novel merging strategies and outperforms
human-designed methods. On GSM8k, the dis-
covered algorithms improve the seed model by
6% and surpass human-designed methods by
4.3%. Moreover, they exhibit strong transfer-
ability, achieving a 7.4% performance gain on
out-of-domain models. These results suggest
that LLMs can autonomously develop effective
model-improvement techniques beyond human
intuition.

1 Introduction

The advancement of Large Language Models
(LLMs) is having a significant impact on soci-
ety (Vaswani et al., 2017; Brown et al., 2020;
Dubey et al., 2024; Guo et al., 2025). LLMs have
been continuously improved by human experts’
knowledge and experience, realizing advanced ca-
pabilities such as mathematical reasoning or code
generation (OpenAI, 2023). Building on these ad-
vanced capabilities, researchers are increasingly
focusing on developing self-improving methods
for LLMs to autonomously improve their perfor-
mance without human intervention, with the goal
of automating the LLM development process it-

self. Research on self-improvement of LLMs in-
cludes approaches such as fine-tuning using self-
generated data (Yuan et al., 2024; Gülçehre et al.,
2023; Zhang et al., 2024; Wang et al., 2023; Xu
et al., 2024a), self-play (Tu et al., 2024; Cheng
et al., 2024), and planning using feedback from
environment (Shinn et al., 2023; Madaan et al.,
2023). However, a fundamental limitation is that
the exploration of the strategies to improve LLMs
(model-improving algorithms) remains constrained
by human knowledge and imagination.

Regarding this, as an extreme form of self-
improvement, one can ask a question: Could we em-
power LLMs to autonomously discover and develop
algorithms to improve themselves? This approach
could potentially uncover novel, high-performance
algorithms beyond human knowledge and imagina-
tion, as exemplified by AlphaGo’s ‘Move 37’ (Sil-
ver et al., 2016), thus expanding the frontiers of
AI capabilities beyond the limitations of human-
designed algorithms.

In this paper, we propose Self-Developing,
an LLM-based framework that invents model-
improving algorithms without the use of human
expertise or feedback from external stronger mod-
els. While our framework can be applied to various
types of model improvement algorithms, in this
study we specifically focus on model merging al-
gorithms (Ilharco et al., 2023) that create a single
improved model from multiple input models, as a
concrete instance of model-improving algorithms.
Our approach iteratively refines two components:
the seed model, which is improved using LLM-
generated algorithms, and the algorithm factory,
which generates these algorithms.

In experiments on mathematical reasoning, Self-
Developing invents new model-improving algo-
rithms, which can be considered novel model
merging strategies. On the GSM8k task, LLM-
discovered algorithms surpass human-designed
methods such as Task Arithmetic (Ilharco et al.,

2023), enhancing the seed model by 6% and outper-
forming human-designed algorithms by 4.3%. Fur-
thermore, the discovered algorithms demonstrate
strong transferability to out-of-domain models not
used in algorithm generation, surpassing the per-
formance of Task Arithmetic optimized for these
models by 7.4%. Notably, our experiments reveal
that the iterative refinement of both the seed model
and the algorithm factory plays a crucial role in
generating increasingly effective algorithms.

2 Self-Developing: Learning to Generate
Model-Improvement Algorithms

The main objective of this research is to enable
LLMs to autonomously generate and apply model-
improvement algorithms. Specifically, we address
the following challenge: Given a seed model M0,
our aim fit to generate models that exceeds M0

without guidance from superior teacher models
(e.g., GPT-4 (OpenAI, 2023)) or human inter-
vention. This challenging task requires the seed
model to devise and implement self-improvement
strategies using only its inherent capabilities and
knowledge. Success in this endeavor is defined
by the generated model demonstrating higher per-
formance on specified tasks compared to the seed
model. To achieve this goal, we propose a frame-
work that iterates through an improvement cycle,
as illustrated in Figure 1. The cycle consists of the
following steps:

1. Algorithm Factory Initialization: We ini-
tialize an algorithm factory πg

1 by cloning the
seed model M0 (i.e., πg

1 = M0). Both the
seed model M0 and the algorithm factory πg

1

are iteratively enhanced.

2. Algorithm Generation (§2.1): In the t-th it-
eration, algorithm factoryπg

t generates model
improving algorithms (a(1)t , a

(2)
t , . . . , a

(N)
t).

3. Algorithm Evaluation (§ 2.2): We apply
the generated algorithms to M0 to create new
models (M (1)

t ,M
(2)
t , . . . ,M

(N)
t). By evaluat-

ing these on target tasks, we can measure the
effectiveness of the algorithms.

4. Algorithm Factory Refinement (§ 2.3):
Based on the evaluation results of the models
created by applying the generated algorithms,
we refine algorithm factory πg

t . We create
preference data from effective and ineffective
algorithms and train using DPO. This enables

the algorithm factory to acquire the ability to
generate superior algorithms.

5. Iterative Improvement (§2.4): By repeating
this process, we simultaneously improve the
quality of the algorithms and the performance
of the generated models.

2.1 Algorithm Generation

The algorithm factory is a language model that
generates model-improving algorithms in the form
of programming code, which enhance the perfor-
mance of the seed model. Formally, the algorithm
factory πg

t used at iteration t ≥ 1 takes a prompt x
that encourages algorithm generation as input and
outputs an algorithm a: at ∼ πg

t (a | x).
A model-improving algorithm a can be arbitrary

(Python) code that receives a model M and returns
a model M ′, which is expected to surpass the per-
formance of the original model M . For example,
a model-improving algorithm might be code that
receives a model and adds some random vectors
to its weights. Alternatively, a model-improving
algorithm might receive multiple models rather
than a single seed model and compute the aver-
age of those models to generate a robust model.
Previously, a lot of work has human-designed such
model-improving algorithms, such as Task Arith-
metic (Ilharco et al., 2023), TIES merging (Yadav
et al., 2023), and Model Stock (Jang et al., 2024).
In this paper, the proposed algorithm factory aims
to generate such model-improving algorithms.

In our method, we use seed model M0 as the
base model for merging the task vectors (Ilharco
et al., 2023) of merge candidate models {Cj}Kj=1,
which are fine-tuned on different datasets. The task
vector τCj is defined as the weight difference be-
tween the seed model M0 and the merge candidate
model Cj : τCj = Cj − M0. Figure 2 illustrates
an example of a model-improving algorithm. This
simple algorithm implements a merge strategy us-
ing a weighted sum of task vectors in Python. For-
mally, given the set of task vectors {τCj}Kj=1, the
model-improving algorithm at outputs a merged
task vector τt:

τt = at(τC1 , . . . , τCK
). (1)

We obtain a merged model by adding τt to the seed
model:

Mt = M0 + τt. (2)

1234 Oak Street
✔

9876 Main Street
I don’t know.

✗

1

Apply algorithms to
create improved models

Algorithm Factory Initialization

Good/bad
algorithm pairs

DPO Training

✔

✗

Generate model-improving
algorithms in Python

STEP2 STEP3 STEP4
Evaluate the models

Step 1

Step 2 Step 3 Step 4

 Next algorithm generationStep 5Decrease
temperature

Figure 1: The overview of Self-Developing. This framework involves the simultaneous improvement of the seed
model and its self-improvement algorithms by repeating the following steps: First, the algorithm factory πg

t is
initialized by seed model M0 (Step 1). In t-th iteration, the algorithm factory πg

t takes a prompt x and generates
Python code for model-improvement algorithms (Step 2). Then we apply generated algorithms to the seed model
M0 to create improved models. The improved models are evaluated on the target task to measure the algorithm’s
effectiveness using task scores s(i)t (Step 3). Based on the scores, preference data consisting of high-performance
and low-performance algorithm pairs are created, and the next generation of the algorithm factory πg

t+1 is trained
using DPO (Step 4). In the next iteration, πg

t+1 is used as an algorithm factory (Step 5).

2.2 Algorithm Evaluation

The objective of the algorithm factory πg
t is to gen-

erate algorithms that enhance the seed model’s per-
formance on target tasks. However, in the initial
iteration, πg

1 is untrained and unable to generate
effective algorithms. Therefore, in subsequent iter-
ations, we train the algorithm factory to generate
more effective algorithms. We evaluate the merged
models obtained from the generated algorithms on
the target tasks, and based on these evaluations,
we create preference data to train the algorithm
factory.

We assess the effectiveness of the algorithm by
evaluating the model generated with the algorithm
on the target tasks. First, from the set of algorithms
generated as Python functions, we remove those
that are non-executable or result in timeouts, ob-
taining a set of executable algorithms {a(i)t }Ni=1.
Second, these algorithms are applied to the task
vectors {τCj}Kj=1 and merged with M0 to gener-

ate new models {M (i)
t }Ni=1. Then, we evaluate the

new models on the development set of the down-
stream tasks, and a task score s

(i)
t ∈ R is calcu-

lated for each model. These scores indicate the
effectivenesses of the algorithms. The set of evalu-
ation results {s(i)t }Ni=1 obtained for all executable
algorithms is used to create the preference data as
described in §2.3.

2.3 Algorithm Factory Refinement

To generate increasingly superior algorithms, we
train the algorithm factory using Direct Prefer-
ence Optimization (DPO; Rafailov et al., 2023).
The key to this learning process lies in the uti-
lization of preference data based on the perfor-
mance of the generated algorithms. We evaluate
the set of generated algorithms {a(i)t }Ni=1, select-
ing high-performance algorithms a(i)t,w (chosen) and

low-performance algorithms a(j)t,l (rejected) based

on their evaluation scores {s(i)t }Ni=1. The prefer-
ence information a

(i)
t,w ≻ a

(j)
t,l is then incorporated

into the model’s learning process. This allows πg
t

to learn the characteristics of effective algorithms,
thereby enhancing its ability to generate superior al-
gorithms in subsequent iterations. Specifically, we
select the top-ranked and bottom-ranked algorithms
based on a threshold and construct the training data
as follows:

D = {(x, a(i)t,w, a
(j)
t,l) | s

(i)
t,w ≥ spw and s

(j)
t,l ≤ spl},

(3)
where spw and spl represent the score threshold for
the top pw% and bottom pl%, respectively. Then,
we train the algorithm factory πg

t using D as the
preference dataset.

2.4 Iterative Improvement

Our Self-Developing framework focuses on mu-
tually reinforcing the algorithm factory and seed

Example

def merge_models(model_dict , device):
'''
Develop and implement a novel algorithm for merging the model weights. Your goal is to create a
unique and effective strategy that combines various existing techniques and introduces new
approaches to achieve optimal performance. Consider integrating methods such as adaptive weighting
, hybrid strategies , or advanced heuristics to create a more innovative merging technique.

Args:
model_dict (dict): A dictionary where keys are model names and values are the model weights.
device (torch.device): The device (CPU or GPU) on which the computation will be performed.

Returns:
torch.Tensor: The weights of the merged model.

'''
New strategies for merging the model weights:
1. Adaptive weighting
2. Weighted mean of model weights

Convert model weights to tensors
weights = [model.detach ().to(device) for model in model_dict.values ()]

Step 1: Adaptive weighting
weight_factors = {

'GAIR/Abel -7B-002': 0.6,
'SciPhi/SciPhi -Mistral -7B-32k': 0.3,
'teknium/OpenHermes -2.5-Mistral -7B': 0.4

}

Step 2: Weighted mean of model weights
weighted_weights = [w * factor for w, factor in zip(weights , weight_factors.values ())]
merged_weights = torch.mean(torch.stack(weighted_weights , dim=0), dim=0)

return merged_weights

Figure 2: An example of a model-improving algorithm. This is a model merging function that performs a simple
weighted sum of task vectors. The input is a dictionary (with model names as keys and their respective task vectors
as values). The algorithm factory produces a Python function that returns the merged task vector. We input up to “#
* New * strategies for merging the model weights :\n” to ensure that the algorithm factory begins its
description from the merging strategy.

model through iterative learning and evaluation. In
the (t + 1)-th iteration, we use πg

t+1 as the algo-
rithm factory, which has been trained using DPO
from πg

t . Note that the generated algorithms are
always applied to the seed model M0, as the algo-
rithm factory is trained specifically to improve M0.
By repeatedly performing this improvement cycle,
the algorithm factory gradually generates more ef-
ficient algorithms, creating a cycle where the seed
model M0 is simultaneously enhanced along with
the evolution of the algorithms.

3 Main Results

In this section, we demonstrate that Self-
Developing can generate algorithms that improve
the model itself, and furthermore, these automati-
cally discovered algorithms overperforms the con-
ventional human-designed ones.

3.1 Setup
Tasks We evaluate our approach using the
mathematics-related tasks GSM8k (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021), which
have been employed in previous studies (Yu et al.,
2024; Yuan et al., 2024; Xu et al., 2024b). For

GSM8k, we allocate 100 examples from the test set
as a development set and use the remaining 1220
examples as the test set. For MATH, we select 100
examples from each of its 6 subsets (totaling 600
examples) for the development set and use the re-
maining 4400 examples as the test set. To prevent
any indirect leakage of test set information into the
training data D for πg

t , we evaluate {M (i)
t }Ni=1 ex-

clusively on the development set. After completing
all iterations, we conduct a single evaluation on the
test set, focusing on the top 15 models across all it-
erations that demonstrated the highest performance
on the development set. We perform evaluations us-
ing lm-evaluation-harness1 (Gao et al., 2024),
employing default prompts and few-shot examples.
For both GSM8k and MATH, we use 5-shot exam-
ples and evaluate using Pass@1 (Chen et al., 2021)
with exact match scoring. During the evaluation
process, we use greedy decoding for generating
responses.

Models For the seed model M0, we employ
openchat-3.5-1210, a fine-tuned variant of

1https://github.com/EleutherAI/
lm-evaluation-harness

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

Mistral-7B-v0.12 (Jiang et al., 2023), which has
superior code generation capabilities. We also se-
lect three Mistral-7B-based fine-tuned models as
merging candidates: (1) Abel-7B-0023, which ex-
cels in mathematical tasks (Chern et al., 2023);
(2) OpenHermes-2.5-Mistral-7B4, trained exten-
sively on code instruction data (Teknium, 2023);
and (3) SciPhi-Mistral-7B-32k5, which special-
izes in scientific domains. These models, fine-
tuned for mathematics and science, are expected
to enhance the seed model’s capabilities 6. We use
mergekit7 (Goddard et al., 2024) for model merg-
ing, applying the algorithm to task vectors in each
MLP layer of Transformer (Vaswani et al., 2017).

Self-Developing Our process involves 3 itera-
tions, each generating 3000 algorithms8. To effec-
tively balance the exploration-exploitation trade-
off in iterative DPO, we decrease the temperature
in accordance with the progress of the iteration
(see Appendix B). We set the initial temperature
T1 to 1.2 with a decay rate β of 0.2, resulting in
T3 = 0.85 for the final iteration. The prompt x,
incorporating a one-shot Python implementation
example, remains consistent across iterations (see
Appendix E). This prompt remains fixed and is
used consistently across all iterations. For DPO,
we create preference data D by selecting the top 3%
(pw) of high-performing algorithms and the bottom
10% (pl) of low-performing algorithms. We re-
serve 10% of the training data for development and
fine-tune all πg

t linear layers using LoRA (Hu et al.,
2022) with rank r = 256. We use a learning rate of
1e−6, β of 0.01, and cap the training at 5000 steps.
All experiments run on NVIDIA A100 GPUs. For
iterations where t ≥ 2, we augment D with the top
3 performing algorithms from each preceding itera-
tion {a(i)1 }N1

i=1, · · · , {a
(i)
t−1}

Nt−1

i=1 (see Appendix D).

2https://huggingface.co/mistralai/
Mistral-7B-v0.1

3https://huggingface.co/GAIR/Abel-7B-002
4https://huggingface.co/teknium/OpenHermes-2.

5-Mistral-7B
5https://huggingface.co/SciPhi/

SciPhi-Mistral-7B-32k
6While some of these models may show lower performance

on specific benchmarks compared to the seed model, they can
still contribute to achieving performance beyond individual
models when they possess complementary knowledge or dif-
ferent capabilities.

7https://github.com/arcee-ai/mergekit
8After filtering, the number of executable Python functions

typically ranged from 100 to 300 in our experiments.

Models GSM8k (%) MATH (%)

Base Model (Seed Model)

openchat-3.5-1210 (M0) 70.1 0.5

Models for Merging

Abel-7B-002 (C1) 64.8 3.7
OpenHermes-2.5-Mistral-7B (C2) 60.1 1.7
SciPhi-Mistral-7B-32k (C3) 56.5 1.0

Human-Designed Algorithms (Best Performances)

Task Arithmetic (Ilharco et al., 2023) 71.9 8.5
TIES Merge (Yu et al., 2024) 71.8 8.4
Model Stock (Jang et al., 2024) 39.5 6.1

LLM-Designed Algorithms (Top 3 Performances)

1st (GSM8k: Figure 10, MATH: Figure 20) 76.1 8.5
2nd (GSM8k: Figure 13, MATH: Figure 21) 76.1 8.4
3rd (GSM8k: Figure 14, MATH: Figure 22) 76.0 8.4

Table 1: Performance evaluation results of each method
on the GSM8k and MATH tasks. The algorithms discov-
ered by Self-Developing outperforms the seed model
and existing model-improving algorithms. These re-
sults demonstrate that LLMs can invent effective model-
improving algorithms that surpass human-designed tech-
niques.

Baselines We compare our Self-Developing
with well-established human-designed model-
improving algorithms, selecting representative
methods that have demonstrated effectiveness in re-
cent literature. Specifically, we include Task Arith-
metic (Ilharco et al., 2023), TIES Merging (Yadav
et al., 2023), and Model Stock (Jang et al., 2024)
as baselines. For Task Arithmetic and TIES Merg-
ing, we exhaustively evaluate all combinations of
mixing ratios of 20%, 40%, and 60% for candidate
models for merging on the development set. For
each task, we select the combination that performs
best on the development set and then evaluate this
optimal combination on the test set.

3.2 Results

Table 1 presents the performance comparison be-
tween human-designed algorithms and algorithms
discovered by Self-Developing on the GSM8k and
MATH tasks. For our approach, we display the top
three performances obtained across all iterations of
our algorithm discovery process.

Q1: Can LLMs evolve using self-discovered al-
gorithms? The results in Table 1 demonstrate
that LLMs can improve their own performance
using self-discovered model-improvement algo-
rithms. The models applying the top three algo-
rithms discovered by the LLM consistently outper-
form both the seed model (openchat-3.5-1210)
and the three models for merging. Notably, on the

https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/GAIR/Abel-7B-002
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k
https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k
https://github.com/arcee-ai/mergekit

GSM8k task, we achieve the highest accuracy of
76.1%, representing a significant performance gain
of about 6% over the seed model’s 70.1%. For
the MATH task, our best model reaches 8.5% ac-
curacy, showing a substantial improvement from
the seed model’s 0.5%. These results are particu-
larly remarkable considering that powerful external
models like GPT-4 were not used in the algorithm
generation process.

Q2: Do discovered algorithms surpass human-
designed ones? A significant finding is that our
proposed method autonomously discovered algo-
rithms that outperform human-designed techniques
such as Task Arithmetic and TIES merging. As
shown in Table 1, models created using the LLM-
discovered algorithms consistently demonstrate
higher performance on the GSM8k task compared
to Task Arithmetic (76.1% vs 71.9%) and TIES
merging (76.1% vs 71.8%). On the MATH task,
our best model is comparable to the top perfor-
mance of Task Arithmetic (8.5%) and slightly out-
performs TIES merging (8.4%). Outperforming
Task Arithmetic, renowned for its strength in math-
ematical reasoning (Yu et al., 2024), highlights our
autonomous algorithm discovery’s effectiveness
and its potential to surpass well-crafted human-
designed algorithms.

Q3: Does training the algorithm factory im-
prove algorithm quality? One of the key contri-
butions of our work is the automatic improvement
of model-improving algorithms, which is made
possible by training the algorithm factory. Our
findings demonstrate that this training leads to a
significant enhancement in the quality of generated
algorithms, enabling a novel form of LLM self-
improvement. Table 2 shows a clear improvement
in performance across iterations, particularly for
the MATH task. We see substantial performance
gain in MATH from 7.0% to 8.5%. This iterative
improvement confirms our method’s ability to con-
tinuously self-improve through the discovery of
increasingly effective algorithms.

Figure 3 demonstrates that the quality of algo-
rithms improves with each iteration. This figure
shows the distribution of development scores for
models created using algorithms generated in each
iteration. In the early iterations, low-performing
algorithms were dominant, but as learning pro-
gressed, we can observe a significant increase in
the ratio of high-performing algorithms. By train-
ing the algorithm factory, the LLM not only dis-

Model GSM8k (%) MATH (%)

M0 70.1 0.5

M best
1 75.8 7.0

M best
2 76.0 7.5

M best
3 76.1 8.5

Table 2: Performance progression on the test data for
the top-performing models for each iteration selected on
the development data, demonstraining the effectiveness
of training algorithm factory iteratively.

GSM8k MATH

Figure 3: Distribution of algorithm performance on
GSM8k and MATH development sets across iterations.
Early iterations are dominated by low-performing al-
gorithms, but as learning progresses, the ratio of high-
performing algorithms increases significantly.

covers effective model-improving algorithms but
also refines these algorithms over time, resulting in
increasingly enhanced models.

Q4: How Do the Algorithms Evolve Across It-
erations? Our analysis reveals several interest-
ing characteristics that distinguish LLM-generated
algorithms from human-designed ones. These al-
gorithms demonstrate the framework’s ability to
flexibly combine different techniques, which is par-
ticularly evident in their evolution across iterations.

In iteration 1, a weighted mixture strategy (Fig-
ure 4) was discovered that combines weighted av-
erages with element-wise maximum and minimum
operations, achieving 71.3% accuracy in GSM8k
development set. This initial algorithm demon-
strated the framework’s ability to explore sophisti-
cated weight combination methods beyond simple
averaging. Interestingly, the algorithm factory also
proposed incorporating Gaussian blur, a technique
commonly used in computer vision, although this

Discovered Merging Function

def merge_models(model_dict , device):
New strategies for merging the model weights:
1. Use a combination of weighted averages , element -wise maximums , and element -wise minimums.
2. Apply a Gaussian blur to the weights before merging.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def merge_strategy(x, y):
Use a combination of weighted averages , element -wise maximums , and element -wise minimums
return 0.33 * x + 0.33 * y + 0.33 * torch.max(x, y) + 0.01 * torch.min(x, y)

Apply a Gaussian blur to the weights before merging
def gaussian_blur(x, sigma =1.0):

Implement the Gaussian blur using convolution
kernel_size = 2 * sigma + 1
kernel = torch.Tensor ([1 / (2 * sigma * (2 * np.pi) ** 0.5) * torch.exp(-torch.pow(x / (2 *

sigma), 2) / (2 * sigma ** 2)) for x in range(-kernel_size // 2, kernel_size // 2)])
return torch.nn.functional.conv2d(x.unsqueeze (1), kernel.unsqueeze (0), padding=kernel_size //

2)

Iteratively merge each subsequent model 's weights
for i, weight in enumerate(weights [1:], start =1):

weights [0] = merge_strategy(weights [0], weight)
if i % 5 == 0:

weights [0] = gaussian_blur(weights [0])

return weights [0]

Figure 4: A merging algorithm discovered in iteration 1, which combines weighted averages with element-wise
maximum and minimum operations. This initial algorithm achieved 71.3% accuracy in GSM8k development set.

function was not activated in our experimental set-
ting with three models.

In iteration 3, the algorithm evolved to incor-
porate adaptive weighting mechanisms into the
previous mixture strategy of weighted averages
and element-wise operations (Figure 5), reaching
73.6% accuracy in GSM8k development set. The
weights are dynamically adjusted based on a cus-
tom distance metric that considers both the magni-
tude and direction of the weight vectors.

These results validate the necessity of our frame-
work: while Task Arithmetic and TIES merging
are constrained to predefined weight combinations,
our framework’s ability to explore diverse algorith-
mic strategies enables it to discover more effec-
tive solutions beyond simple weight optimization.
The discovered algorithms often involve sophisti-
cated operations that would be difficult to achieve
through simpler approaches, such as methods based
on custom distance metrics that consider both mag-
nitude and direction of weight vectors, and adap-
tively adjusted weighting strategies based on model
similarity. For detailed analysis, see Appendix C.

4 Transferability of Algorithms

We analyze the effectiveness of the algorithms dis-
covered by the algorithm factory on out-of-domain
models that were not used in the algorithm genera-
tion process.

Experimental Setup To investigate the trans-
ferability of LLM-discovered algorithms, we
maintained the original seed model M0 while
introducing a new set of candidate models
(Cnew

1 , Cnew
2 , Cnew

3) and applied the discovered al-
gorithms to these new models. From models
with capabilities similar to the original merge can-
didates, we selected WizardMath-7B-V1.19 (Xu
et al., 2024a), BioMistral-7B10 (Labrak et al.,
2024), and Starling-LM-7B-alpha11 (Zhu et al.,
2024a) as new candidate models for merging. Al-
though these models differ from the candidate mod-
els used in algorithm generation, they are fine-
tuned based on Mistral-7B (Jiang et al., 2023) and
can therefore be merged with the seed model. We
apply the top 15 algorithms discovered by the al-
gorithm factory (based on their performance on
the development set with the original candidate
models) to these new models. For comparison, we
chose Task Arithmetic, which showed the second-
best performance after our proposed method in §3,
and apply its top 15 mixing ratios (based on devel-
opment set with the original candidate models) to
these new models.

9https://huggingface.co/WizardLMTeam/
WizardMath-7B-V1.1

10https://huggingface.co/BioMistral/
BioMistral-7B

11https://huggingface.co/berkeley-nest/
Starling-LM-7B-alpha

https://huggingface.co/WizardLMTeam/WizardMath-7B-V1.1
https://huggingface.co/WizardLMTeam/WizardMath-7B-V1.1
https://huggingface.co/BioMistral/BioMistral-7B
https://huggingface.co/BioMistral/BioMistral-7B
https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha
https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha

Discovered Merging Function

def merge_models(model_dict , device):
New strategies for merging the model weights:
1. Use a combination of weighted averages , element -wise maximums , and element -wise minimums.
- Assign a different weight to each strategy (e.g., 1/3 for averaging , 1/3 for maximum , 1/3
for minimum).
2. Normalize the weight tensors and use a custom distance metric that takes into account both
magnitude and direction.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def custom_distance(x, y):
Calculate L2 norms of x and y
x_norm = torch.norm(x, 2) + 1e-12
y_norm = torch.norm(y, 2) + 1e-12
Normalize x and y
x = x / torch.norm(x, 2) + 1e-12
y = y / torch.norm(y, 2) + 1e-12
Compute the custom distance as a weighted sum of L2 distance and cosine distance
return (torch.norm(x - y, 2) * 0.4 + (1 - torch.norm(x - y, 2) / (torch.norm(x, 2) + torch.norm

(y, 2))) * 0.6 * torch.tensor ([1.0]))

Initialize merged_weights with the first model 's weights
merged_weights = weights [0]. clone ()
n = len(weights)

Iteratively merge each subsequent model 's weights with adaptive weights for each strategy
alpha_avg , alpha_max , alpha_min = [1. / n] * 3
for i, weight in enumerate(weights [1:], 1):

with torch.no_grad ():
dist = custom_distance(merged_weights , weight)
Update the adaptive weights based on the distance
alpha_avg *= (1 / (1 + dist.pow (1. / 3).item()))
alpha_max *= (1 / (1 + dist.clamp(min =1.).pow (1. / 3).item()))
alpha_min *= (1 / (1 + (1 - dist.clamp(max =0.).pow (1. / 3)).item()))

Merge the weights using the adapted alpha values
merged_weights = alpha_avg * merged_weights + alpha_max * torch.max(merged_weights , weight) +

alpha_min * torch.min(merged_weights , weight)

return merged_weights

Figure 5: A merging algorithm discovered in iteration 3, incorporating adaptive weighting mechanisms based on a
custom distance metric. Extends the mixture strategy from iteration 1, achieving 73.6% on GSM8k development set.

Results Figure 6 is the results of the transferabil-
ity evaluation for the algorithms. The algorithms
discovered by Self-Developing demonstrated trans-
ferability on both GSM8k and MATH tasks. In the
GSM8k task, many algorithms maintained high per-
formance even when applied to new candidate mod-
els for merging. Our LLM-discovered algorithms
are positioned above the diagonal line, indicating
high scores even when applied to new candidate
models. In contrast, the results for Task Arithmetic
are concentrated below the diagonal line, suggest-
ing limited transferability. These findings indicate
that the algorithm factory not only generates algo-
rithms optimized for specific model sets but also
discovers merge algorithms that maintain high per-
formance on similar candidate models. Similar
results are obtained for the MATH task, which are
provided in Appendix A.

Optimized Task Arithmetic vs. LLM-
Discovered Algorithms Next, we compare Task
Arithmetic that is optimized for the new candidate
models, with the LLM-discovered algorithms. For

Task Arithmetic, we exhaustively explore all com-
binations of mixing ratios for the new candidate
models, following the same procedure as in § 3.
Table 3 provides a detailed comparison of their per-
formance. It is important to note that the algorithms
discovered by the LLM are not optimized for the
new candidate models (meaning that these models
are out-of-domain for these algorithms).

Our algorithms consistently outperform both the
individual models and Task Arithmetic across all
tasks. In the GSM8k task, our algorithm achieves
a high accuracy of 78.8%, surpassing the best indi-
vidual model by 3.3 percentage points and the best
Task Arithmetic result by 7.4 percentage points.
Similarly, in the MATH task, our algorithm reaches
2.5%, more than doubling the performance of Task
Arithmetic. These results not only demonstrate the
effectiveness of our proposed method but also high-
light its robustness when applied to new model sets
without re-optimization. The consistent superiority
of our approach over Task Arithmetic, particularly
on out-of-domain models, underscores the high
performance of the discovered algorithms.

GSM8k

Original Test (%)

Tr
an
sf
er
 T
es
t (
%
)

H

G

F E

Tr
an
sf
er
 T
es
t (
%
)

Original Test (%)

D

C A B

Figure 6: Transferability of the top 15 merge algorithms
for the GSM8k task. The x-axis shows the score on
the original set of fine-tuned models used for merg-
ing, while the y-axis shows the score when the same
merging algorithm is applied to a new set of fine-tuned
models. Alphabetic labels (A, B, C, etc.) represent dis-
covered algorithms with high transferability, detailed in
Appendix F. Points above the diagonal line indicate bet-
ter transferability, with higher positions showing greater
improvement on new models to be merged.

5 Related Work

Self-improving The concept of self-improving
artificial intelligence was proposed by Minsky
(1966) and Good (1965), and later formalized by
Schmidhuber (2003). With the rapid development
of LLMs, the community has shifted towards prac-
tical implementations of self-improvement (Huang
et al., 2023). Many recent self-improvement ap-
proaches primarily focus on the generation of fine-
tuning with self-generated training data (Yuan et al.,
2024; Gülçehre et al., 2023; Zhang et al., 2024;
Wang et al., 2023; Xu et al., 2024a). Their methods
do not generate or learn the improvement strategies
themselves. Additionally, agents that modify out-
puts based on feedback from the environment have
been proposed (Madaan et al., 2023; Shinn et al.,

Models GSM8k (%) MATH (%)

Base Model (Seed Model)

openchat-3.5-1210 (M0) 70.1 0.5

New Models for Merging

WizardMath-7B-V1.1 (Cnew
1) 57.4 0.03

Starling-LM-7B-alpha (Cnew
2) 75.5 0.1

BioMistral-7B (Cnew
3) 0.0 0.5

Task Arithmetic (Top 3 Performances)

1st 71.4 1.2
2nd 71.3 0.6
3rd 70.6 0.4

LLM-Designed Algorithms (Top 3 Performances)

1st 78.8 2.5
2nd 78.8 2.4
3rd 78.8 2.0

Table 3: Test accuracy (%) on GSM8k and
MATH tasks for Task Arithmetic (top 3 mixing ra-
tios optimized for new candidate models) and LLM-
discovered algorithms (applying top 15 algorithms from
§3 without re-optimization for new candidates).

2023; Ishibashi and Nishimura, 2024), but these
are different from our goal of improving the LLM
itself.

Algorithm Generation using LLMs Code gen-
eration by LLMs (Jiang et al., 2024) has been
proposed for various applications, such as solv-
ing reasoning problems (Chen et al., 2023) and
generating agent actions (Wang et al., 2024). Fo-
cusing on LLMs’ code generation capabilities, sev-
eral approaches have been suggested where LLMs
generate and execute code to enhance their own
abilities. For example, Lu et al. (2024) propose a
method where LLMs themselves are used to dis-
cover loss functions for preference optimization.
Zelikman et al. (2023) propose a method to im-
prove a code that makes structured calls to a LLM.
These methods generate improvement algorithms
using LLMs. Unlike their approaches, we not only
generate model-improvement algorithms but also
enhance the LLM that generates these algorithms.
Another major difference is that we do not rely on
external LLMs, like GPT-4 (OpenAI, 2023), other
than the seed model, for algorithm generation. Our
work builds upon these foundations but uniquely fo-
cuses on the autonomous improvement of both the
algorithms and the model generating them, with-
out relying on external models, thus pushing the
boundaries of self-improving AI systems.

Limitations

While our study provides valuable insights, we
acknowledge several limitations. First, focusing
solely on mathematical reasoning tasks may not
fully represent the diverse range of tasks LLMs
encounter in real-world applications. Although
this choice aligns with standard benchmarks in
LLM self-improvement research (e.g., GSM8K and
MATH) (Zelikman et al., 2022; Zhang et al., 2024;
Huang et al., 2023) and allowed for in-depth anal-
ysis, extending the evaluation to a broader range
of tasks, such as natural language understanding or
code generation, could offer additional insights into
the generalizability of our findings. Furthermore,
due to computational resource constraints, we had
to prioritize specific tasks for in-depth analysis,
which prevented us from conducting experiments
in other domains. While our results demonstrate
LLMs’ self-improvement capabilities in mathemat-
ical reasoning benchmarks, we recognize the im-
portance of validation across broader domains and
hope this gap will be addressed in future research.

Acknowledgments

We would like to thank Takuya Tamura and Daichi
Haraguchi at NEC Data Science Laboratories for
their valuable discussions and insights throughout
this research.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Trans. Mach.
Learn. Res., 2023.

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang,
Yong Dai, Lei Han, and Nan Du. 2024. Self-playing
adversarial language game enhances LLM reasoning.
CoRR, abs/2404.10642.

Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu,
Kehua Feng, Junlong Li, and Pengfei Liu. 2023. Gen-
erative ai for math: Abel.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.48550/ARXIV.2404.10642
https://doi.org/10.48550/ARXIV.2404.10642
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168

Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Rong Ge, Sham M. Kakade, Rahul Kidambi, and Pra-
neeth Netrapalli. 2019. The step decay schedule: A
near optimal, geometrically decaying learning rate
procedure for least squares. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 14951–14962.

Charles Goddard, Shamane Siriwardhana, Malikeh
Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024.
Arcee’s mergekit: A toolkit for merging large lan-
guage models. CoRR, abs/2403.13257.

Irving John Good. 1965. Speculations concerning the
first ultraintelligent machine. Adv. Comput., 6:31–88.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 1051–1068. Association
for Computational Linguistics.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Yoichi Ishibashi and Yoshimasa Nishimura. 2024. Self-
organized agents: A LLM multi-agent framework
toward ultra large-scale code generation and opti-
mization. CoRR, abs/2404.02183.

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han.
2024. Model stock: All we need is just a few fine-
tuned models. In Computer Vision - ECCV 2024 -
18th European Conference, Milan, Italy, September
29-October 4, 2024, Proceedings, Part XLIV, volume
15102 of Lecture Notes in Computer Science, pages
207–223. Springer.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2024. A survey on large language
models for code generation. CoRR, abs/2406.00515.

Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip H. S.
Torr, and Puneet K. Dokania. 2023. Sample-
dependent adaptive temperature scaling for improved
calibration. In Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI 2023, Thirty-Fifth Con-
ference on Innovative Applications of Artificial Intel-
ligence, IAAI 2023, Thirteenth Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2023,
Washington, DC, USA, February 7-14, 2023, pages
14919–14926. AAAI Press.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-
Antoine Gourraud, Mickael Rouvier, and Richard
Dufour. 2024. Biomistral: A collection of open-
source pretrained large language models for medical
domains. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 5848–
5864. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://proceedings.neurips.cc/paper/2019/hash/2f4059ce1227f021edc5d9c6f0f17dc1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2f4059ce1227f021edc5d9c6f0f17dc1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2f4059ce1227f021edc5d9c6f0f17dc1-Abstract.html
https://doi.org/10.48550/ARXIV.2403.13257
https://doi.org/10.48550/ARXIV.2403.13257
https://doi.org/10.1016/S0065-2458(08)60418-0
https://doi.org/10.1016/S0065-2458(08)60418-0
https://doi.org/10.48550/ARXIV.2308.08998
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.67
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.67
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.48550/ARXIV.2404.02183
https://doi.org/10.48550/ARXIV.2404.02183
https://doi.org/10.48550/ARXIV.2404.02183
https://doi.org/10.48550/ARXIV.2404.02183
https://doi.org/10.1007/978-3-031-72784-9_12
https://doi.org/10.1007/978-3-031-72784-9_12
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2406.00515
https://doi.org/10.48550/ARXIV.2406.00515
https://doi.org/10.1609/AAAI.V37I12.26742
https://doi.org/10.1609/AAAI.V37I12.26742
https://doi.org/10.1609/AAAI.V37I12.26742
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.348
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.348
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.348
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J. Chan,
Jakob N. Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. 2024. Discovering preference
optimization algorithms with and for large language
models. CoRR, abs/2406.08414.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Marvin Minsky. 1966. Artificial intelligence. Scientific
American, 215(3):247–260.

OpenAI. 2023. Best practices for prompt engineering
with the openai api.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Jürgen Schmidhuber. 2003. Goedel machines:
Self-referential universal problem solvers mak-
ing provably optimal self-improvements. CoRR,
cs.LO/0309048.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. 2016. Mastering the game of go with deep neu-
ral networks and tree search. Nat., 529(7587):484–
489.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants. Hugging-
Face.

Tao Tu, Anil Palepu, Mike Schaekermann, Khaled Saab,
Jan Freyberg, Ryutaro Tanno, Amy Wang, Brenna Li,

Mohamed Amin, Nenad Tomasev, Shekoofeh Azizi,
Karan Singhal, Yong Cheng, Le Hou, Albert Webson,
Kavita Kulkarni, S. Sara Mahdavi, Christopher Sem-
turs, Juraj Gottweis, Joelle K. Barral, Katherine Chou,
Gregory S. Corrado, Yossi Matias, Alan Karthike-
salingam, and Vivek Natarajan. 2024. Towards con-
versational diagnostic AI. CoRR, abs/2401.05654.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Pei-Hsin Wang, Sheng-Iou Hsieh, Shih-Chieh Chang,
Yu-Ting Chen, Jia-Yu Pan, Wei Wei, and Da-Chang
Juan. 2020. Contextual temperature for language
modeling. CoRR, abs/2012.13575.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
code actions elicit better LLM agents. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484–13508. Association for Computational
Linguistics.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024a. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more CRINGE than
others: Preference optimization with the pairwise
cringe loss. CoRR, abs/2312.16682.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan
Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng,
Zhengxiao Du, Wenyi Zhao, Jie Tang, and Yux-
iao Dong. 2024b. Chatglm-math: Improving math
problem-solving in large language models with a self-
critique pipeline. CoRR, abs/2404.02893.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A.
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

https://doi.org/10.48550/ARXIV.2406.08414
https://doi.org/10.48550/ARXIV.2406.08414
https://doi.org/10.48550/ARXIV.2406.08414
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://arxiv.org/abs/cs/0309048
http://arxiv.org/abs/cs/0309048
http://arxiv.org/abs/cs/0309048
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1038/NATURE16961
https://doi.org/10.48550/ARXIV.2401.05654
https://doi.org/10.48550/ARXIV.2401.05654
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2012.13575
http://arxiv.org/abs/2012.13575
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2404.02893
https://doi.org/10.48550/ARXIV.2404.02893
https://doi.org/10.48550/ARXIV.2404.02893
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son Weston. 2024. Self-rewarding language models.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Eric Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2023. Self-taught optimizer
(STOP): recursively self-improving code generation.
CoRR, abs/2310.02304.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024. Rest-mcts*: LLM self-
training via process reward guided tree search. CoRR,
abs/2406.03816.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and
Jiantao Jiao. 2024a. Starling-7b: Improving helpful-
ness and harmlessness with RLAIF. In First Confer-
ence on Language Modeling.

Yuqi Zhu, Jia Li, Ge Li, Yunfei Zhao, Jia Li, Zhi Jin, and
Hong Mei. 2024b. Hot or cold? adaptive tempera-
ture sampling for code generation with large language
models. In Thirty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 437–445.
AAAI Press.

A Transferability

Our proposed method demonstrated significant
transferability in both the GSM8k and MATH tasks,
as shown in Figure 6 and Figure 7. These figures
showcase the performance of various discovered
algorithms on their original test sets and on transfer
test sets with new, unseen merge candidate mod-
els. For a more detailed breakdown of algorithm
performance, we refer to Table 4.

Original Test (%)

Tr
an
sf
er
 T
es
t (
%
)

MATH

O

M

N

J K I
L

P

Figure 7: Transferability of the top 15 merge algorithms
for the MATH task. The x-axis shows the test score on
original models to be merged, while the y-axis shows
the score on new models to be merged. Each point
represents a different algorithm, with points above the
diagonal line indicating better transferability.

For the MATH task, most Task Arithmetic scores
are below 1% when applied to new models, indicat-
ing the challenge of transferability (Figure 7). In
contrast, our generated algorithms achieved scores
of up to approximately 2.5% on new models, sig-
nificantly outperforming Task Arithmetic.

Transferability for GSM8k is particularly strong.
Algorithms A (Figure 10) to D (Figure 15) show im-
proved performance when applied to new models.
For instance, Algorithm A (Figure 10) improves
from 76.05% on the original test to 78.75% on the
transfer test.

A particularly interesting finding is the remark-
able cross-task performance of some algorithms.
Notably, Algorithm G (Figure 18), discovered us-
ing GSM8k data, achieves an accuracy of 74.82%
on GSM8k and 7.96% on the MATH task. This
performance on MATH is nearly on par with Al-
gorithm I (Figure 20), which was specifically opti-
mized for the MATH task (8.50%). Such cross-task
effectiveness suggests the potential for discovering
algorithms with LLMs that are effective across var-
ious problem types. Additionally, it was found that

https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=0NphYCmgua
https://doi.org/10.48550/ARXIV.2310.02304
https://doi.org/10.48550/ARXIV.2310.02304
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.03816
https://doi.org/10.48550/ARXIV.2406.03816
https://openreview.net/forum?id=GqDntYTTbk
https://openreview.net/forum?id=GqDntYTTbk
https://doi.org/10.1609/AAAI.V38I1.27798
https://doi.org/10.1609/AAAI.V38I1.27798
https://doi.org/10.1609/AAAI.V38I1.27798

GSM8k MATH

Discovered
Algorithms

Original
Test

Transfer
Test

Original
Test

Transfer
Test

Algorithms discovered using GSM8k

A (Figure 10) 76.05 78.75 2.01 1.72
B (Figure 13) 76.05 78.75 1.99 1.63
C (Figure 14) 75.96 78.75 1.82 1.67
D (Figure 15) 75.96 78.84 1.82 1.70
E (Figure 16) 75.80 76.78 0.29 0.62
F (Figure 17) 75.31 77.03 5.10 0.26
G (Figure 18) 74.82 78.10 7.96 0.36
H (Figure 19) 74.49 74.73 6.22 1.87

Algorithms discovered using MATH

I (Figure 20) 69.48 69.48 8.50 0.08
J (Figure 21) 70.30 78.10 8.41 0.06
K (Figure 22) 70.30 78.10 8.41 0.06
L (Figure 23) 69.32 63.41 8.13 0.17
M (Figure 24) 69.89 53.40 7.99 1.27
N (Figure 25) 73.83 65.14 7.78 0.92
O (Figure 26) 71.29 65.87 7.48 2.40
P (Figure 27) 69.57 65.71 7.02 1.97

Table 4: Performance of merged models on GSM8k
and MATH tasks. Algorithms A-H were developed
using GSM8k data, and algorithms I-P were developed
using MATH data. ‘Original Test’ columns show the
performance on merge candidate models used in the
algorithm search, while ‘Transfer Test’ columns indicate
performance on new, unseen merge candidate models,
assessing the transferability of each algorithm.

algorithms discovered for MATH are also effective
on GSM8k, suggesting that exploring algorithms
on more challenging tasks may lead to the discov-
ery of algorithms that are effective across a broader
range of tasks.

B Temperature Decay for Iterative DPO

Iterative DPO (Yuan et al., 2024; Xu et al., 2023;
Yuan et al., 2024) has been shown to outperform
a single round of DPO by iteratively updating the
model through preference optimization steps, thus
producing refined outputs.

Temperature (Hinton et al., 2015) is a crucial
parameter for controlling the creativity of the gen-
erated text. In our method, it also plays a significant
role in the generation process of model-improving
algorithms. Generally, a higher temperature in
LLMs results in more diverse and creative text,
while a lower temperature yields more accurate
outputs (OpenAI, 2023). This can be viewed as
a means to control the trade-off between explo-
ration and exploitation. Recent studies have pro-
posed methods to dynamically adjust the temper-

ature based on the input text (Zhu et al., 2024b;
Joy et al., 2023; Wang et al., 2020). In iterative
DPO, the temperature has traditionally been set
manually12.

To appropriately balance exploration and ex-
ploitation during the algorithm generation process,
we introduce a temperature decay inspired by learn-
ing rate decay (Ge et al., 2019; Loshchilov and
Hutter, 2017). This approach allows for dynamic
adjustment of the exploration strategy as iterations
progress.

In the initial iterations, a high initial temperature
facilitates the generation of a wide range of creative
algorithms, maximizing the opportunity to discover
innovative solutions that might be overlooked by
conventional approaches. During the mid-phase, a
gradual decrease in temperature leverages the effec-
tive features of the algorithms learned so far while
continuing to explore new variations and combina-
tions. In the later stages, a lower temperature fo-
cuses the search around known high-performance
algorithms, increasing the likelihood of efficiently
discovering superior algorithms.

Specifically, the temperature update at iteration
t is based on the Inverse Time Decay schedule:

Tt =
T1

1 + β(t− 1)
, (4)

where T1 denotes the initial temperature, and β ∈
R is a hyperparameter that controls the decay rate.
By adjusting the decay rate β, one can regulate the
speed of the transition from exploration to exploita-
tion.

Experiment This experiment investigates the im-
pact of temperature settings and their decay on the
quality and diversity of Python functions generated
in an iterative DPO process. Figure 8 visualizes
the filtering results to observe qualitative changes
in Python functions sampled from the algorithm
factory πg

t at each iteration. The figure shows the
results for different temperature settings with and
without temperature decay. The experiment was
conducted under the following conditions:

• Initial temperatures: {1.20, 0.70, 0.20}

• Temperature control: Fixed temperature and
temperature decay (β = 0.2)

• Number of iterations: 3 for each condition
12For instance, in (Yuan et al., 2024), the temperature is

fixed at T = 0.6 or T = 0.7 during data generation step for
iterative DPO.

Decay

Fixed

Figure 8: Impact of temperature settings and decay on generated Python functions across iterations. Results
are categorized as: Duplicate Data, No Function Extracted (failed to generate a function), Success (executable
functions), Non-Executable Function (syntactically incorrect), and Timeout (execution time exceeded).

The generated Python functions were filtered
into the following categories:

• Duplicate Data

• No Function Extracted

• Success (executable functions)

• Non-Executable Function

• Timeout

Key finding 1: Higher temperatures is effec-
tive for enhancing data diversity Comparing
high and low temperature settings, it was found
that higher temperatures consistently produce more
diverse data. Throughout all iterations, low tem-
perature (T = 0.20) tends to generate a higher
proportion of duplicate data, reducing diversity. In
contrast, high temperatures (T = 0.70, T = 1.20)
produce less duplication and more diverse data.
The T = 0.70 setting generates the highest num-
ber of executable functions (‘Success’ in Figure 8)
in the first iteration, but this proportion decreases
sharply in later iterations. The T = 1.20 setting,
while having a lower initial success rate, continues
to generate a relatively high number of executable
functions in later iterations. These results suggest
that higher temperature settings can generate high-
quality data more consistently over the long term.

Key finding 2: Temperature decay is effective
for stable data generation Applying tempera-
ture decay tends to be more effective than using a
fixed temperature for generating data stably. With
fixed temperatures, there is a tendency for the rate
of non-executable functions to increase in later it-
erations. When temperature decay is applied, the
rate of duplicate functions shows an increase in
later iterations, but the rate of non-executable func-
tions decreases, resulting in a small increase in the
number of executable algorithms (’Success’). This
phenomenon suggests that temperature decay may
shift the generation process from creating more
varied data towards generating more accurate data.
These findings indicate that an appropriate temper-
ature decay strategy could play a role in optimizing
the quality and diversity of generated data in itera-
tive DPO.

C Analysis of LLM-Discovered
Algorithms

Complexity of Coefficient Calculation In
model merging, coefficients play a crucial role in
determining how different models are merged. The
coefficients in merge strategies mainly included
the following: (1) Weighting Factor, determining
the extent to which weights of different models are
reflected, (2) Adaptive Coefficient, dynamically ad-
justed based on model characteristics (e.g., weight
norms), and (3) Blend Ratio, determining the ratio

when combining different merge strategies (e.g.,
multiplication and averaging). For example:

Weighting Factor
x + alpha * (y - x)

Adaptive Coefficient
alpha * torch.mul(x, y) + beta * torch.max(x, y

)

Blend Ratio
(average + element_wise_maximum +

element_wise_minimum) / alpha

There was a marked tendency for coefficient cal-
culations to become more complex as iterations
progressed. In iteration t = 1, relatively simple
coefficients (e.g., a fixed value of 0.5) were often
used for mixing task vectors, but by iteration t = 2,
a method was introduced for dynamically calcu-
lating coefficients using the cosine similarity of
task vectors (Algorithm O; Figure 26), similar to
Model Stock (Jang et al., 2024). The increasing
complexity of coefficient calculations may enable
the realization of more precise and adaptive merge
strategies. This likely resulted in a tendency to
enhance performance by fine-tuning coefficients
while maintaining the basic structure of specific
strategies.

Diversity of Ideas In the early iterations, a wide
range of ideas were explored. Table 5 shows a por-
tion of the words and their frequencies found in
the strategies of algorithms generated by the LLM
during iteration t = 1. This result demonstrates
that diverse methods are proposed. The most fre-
quently used methods are based on ’similarity’ and
’distance’. There is a clear tendency to utilize geo-
metric information of vectors (’angle’, ’geometric’,
’metric’, ’norm’, ’frobenius’, etc.). Additionally,
’element-wise’ and ’pairwise’ operations are also
commonly observed. Furthermore, a wide array of
algorithms are proposed, including statistical meth-
ods (’kullback’, ’leibler’, ’gaussian’, ’distribution’,
’entropy’, ’lasso’, etc.), learning-based approaches
(’learning’, ’train’), matrix decomposition (’fac-
torization’, ’svd’, ’pca’), and grouping techniques
(’clustering’, ’neighbor’, ’kmeans’, etc.). Among
the creative algorithms, many interesting ones are
included. For example, the set similarity-based
method is a unique algorithm that treats vectors
as sets of values and calculates their set similar-
ity (Figure 9). Although the development scores
of models using these methods are not high, there

is potential to discover superior algorithms by in-
creasing the number of generated algorithms.

Merging strategy: Algorithm A We explain the
merging algorithm that achieved the best perfor-
mance on the GSM8k task among the generated
algorithms, demonstrating exceptionally high trans-
ferability to out-of-domain models (labeled ‘A’ in
Figure 6). The exact function generated can be
found in Figure 10. Below, we present a mathemat-
ical formulation of the algorithm.

This merging algorithm repeatedly
applies a function (implemented as
hybrid_merge_strategy in the code) to se-
quentially merge the task vectors. Starting with
the initial vector τmerged

1 = τ1, the function f is
applied iteratively to combine each subsequent
task vector τi with the current merged vector. This
process can be represented as follows:

τ
merged
2 = f(τ

merged
1 , τ2),

τ
merged
3 = f(τ

merged
2 , τ3),

...

τ
merged
K = f(τ

merged
K−1 , τK).

(5)

Finally, this algorithm outputs the final merged
vector τmerged

K . Here, the function f can be defined
as:

f(τ
merged
i−1 , τi) =

1

2

(
τ

merged
i−1 + µi1

)
, (6)

where d is the dimension of the task vectors, and
1 ∈ Rd is a vector with all elements are 1. µi ∈ R
is the mean of all elements of the task vector τi:

µi =
1

d

d∑
j=1

(τi)j , (7)

where (τi)j ∈ R denotes the j-th element of τi.

Word Frequency Word Frequency Word Frequency Word Frequency

weight 564 group 10 probability 4 pooling 2
similarity 285 attention 10 sequence 4 softmax 2
distance 262 variance 10 correlation 4 dropout 2
mean 217 factorization 9 absolute 4 euclidean 2
norm 158 metric 9 pca 4 intersection 2
average 61 learning 9 clustering 4 zscore 1
element 40 decomposition 8 frobenius 3 ode 1
maximum 38 decay 8 voting 3 moment 1
l1 32 magnitude 8 lp 3 tikhonov 1
sum 27 median 8 regression 3 lasso 1
minimum 26 domain 7 neighbor 3 ridge 1
wise 23 hybrid 7 gradient 3 polymorphism 1
difference 22 pairwise 7 train 3 skewness 1
matrix 19 entropy 6 kernel 3 kurtosis 1
normalization 16 means 6 hadamard 3 guessscore 1
cluster 16 distribution 6 ema 3 sigmoid 1
optimization 14 kl 5 tucker 2 ghash 1
dimension 13 heuristic 5 leibler 2 newton 1
coefficient 13 order 5 kullback 2 svd 1
scale 11 geometric 5 trimean 2 sort 1
addition 10 angle 5 approximation 2 rmse 1
threshold 10 rank 4 tree 2 pivot 1
regularization 10 moving 4 hamming 2 noise 1

Table 5: Word frequency in comments of Python code generated by the algorithm factory at iteration t = 1. These
words (nouns) were extracted from comments following the prefix (# New strategies for merging the model
weights:).

Discovered Merging Function

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Consider calculating the norms (sizes) of the weight tensors.
2. Define a weighting function that takes into account both model consistency and diversity.
3. Introduce a parameter `p`, adjusting the balance between model consistency and diversity.
4. Introduce another parameter `alpha ` adjusting the balance between linear interpolation and
weighted averaging.

Assign parameters `p` and `alpha `
p = 0.75
alpha = 0.5

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def weighting_function(x, y, p, alpha):
Calculate weight using the Jaccard similarity
intersection = torch.sum(torch.sigmoid(x) * torch.sigmoid(y))
union = torch.sum(torch.sigmoid(x)) + torch.sum(torch.sigmoid(y))
jaccard = intersection / union
Normalize the weights using weighting parameter `p`
normalized_jaccard = jaccard ** p
Combine weights using a mix of interpolation and averaging with parameter `alpha `
return alpha * x + (1 - alpha) * normalized_jaccard * y

Initialize merged_weights with the first model 's weights
merged_weights = weights [0]. clone ()
for weight in weights [1:]:

merged_weights = weighting_function(merged_weights , weight , p, alpha)

return merged_weights

Figure 9: This algorithm demonstrates a creative approach. The vectors are interpreted as sets of values, with the
Jaccard index serving as a similarity measure for adaptive weighting.

Discovered algorithm A

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Hybrid approach using element -wise multiplication and average

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def hybrid_merge_strategy(x, y, alpha =0.5):
Calculate element -wise multiplication and average
return (1 - alpha) * x + alpha * torch.mean(y, dim=(0 if x.dim() == 1 else 1), keepdim=True)

Iteratively apply the merge strategy to combine each subsequent model 's weights with the initial
model 's weights
initial_weights = weights [0]. clone ()
merged_weights = weights [0]. clone ()

for i in range(len(weights)):
if i == 0:

continue
merged_weights = hybrid_merge_strategy(merged_weights , weights[i], alpha =0.5)
Store the merged weights after every k-th model
if i % len(weights) == 0:

weights [0] = merged_weights.clone()

return merged_weights

Figure 10: Discovered algorithm A. This is one of the most effective algorithms discovered by the LLM, generated
during iteration t = 3.

D Pseudocode

Algorithm 1 Self-Developing
Input: M0: Seed model, T : Target Task
Input: x: Prompt
Input: I: Max iterations, N : Number of algorithm generation
Input: T1: Initial temperature, β: Decay rate
Input: pw, pl: Percentages for DPO data selection
Input: k: Number of top-performing algorithms to add from previous iterations
Input: S: Number of low-performing algorithms to pair with each high-performing algorithm
Output: M best: Best improved model
1: Initialize algorithm generator: πg

1 ←M0

2: Initialize best model: M best ←M0

3: Initialize best score: sbest ← −∞
4: for t = 1 to I do
5: // Algorithm Generation
6: Update temperature: Tt =

T1
1+β(t−1)

▷ Decrease temperature
7: At ← {} ▷ Initialize empty set for algorithms
8: for i = 1 to N do
9: a

(i)
t ∼ πg

t (a | x) ▷ Generate algorithm with temperature Tt

10: if IsValid(a(i)
t) then

11: At ← At ∪ {a(i)
t } ▷ Add valid algorithm to set

12: end if
13: end for
14: // Algorithm Evaluation
15: St ← {} ▷ Initialize empty set for scores
16: for a

(i)
t ∈ At do

17: M
(i)
t ← Apply(a(i)

t ,M0) ▷ Apply algorithm to get improved model
18: s

(i)
t ← EvaluateT (M

(i)
t) ▷ Evaluate improved model with dev set

19: St ← St ∪ {s(i)t } ▷ Add task score to set
20: end for
21: // DPO Data Selection
22: spw ← Percentile(St, 100− pw) ▷ Top pw% score threshold
23: spl ← Percentile(St, pl) ▷ Bottom pl% score threshold
24: At,w ← {a(i)

t ∈ At | s(i)t ≥ spw} ▷ High-performing algorithms
25: At,l ← {a(i)

t ∈ At | s(i)t ≤ spl} ▷ Low-performing algorithms
26: Apre,w ←

⋃t−1
j=1 Aj,w ▷ Union of all previous high-performing algorithms

27: Atop3 ← TopK(Apre,w, k) ▷ Select top 3 algorithms based on scores
28: At,w ← At,w ∪Atop3 ▷ Add top 3 to high-performing set
29: D ← {} ▷ Initialize empty DPO dataset
30: for a

(i)
t,w ∈ At,w do

31: Li ← Sample(At,l, S) ▷ Sample S low-performing algorithms
32: for a

(j)
t,l ∈ Li do

33: D ← D ∪ {(x, a(i)
t,w, a

(j)
t,l)} ▷ Add pair to DPO dataset

34: end for
35: end for
36: // Update Algorithm Generator
37: Update πg

t to πg
t+1 using DPO with D

38: // Update Best Model
39: if max(St) > sbest then
40: sbest ← max(St)

41: M best ← Apply(a(i∗)
t ,M0) where i∗ = argmaxi s

(i)
t

42: end if
43: end for
44: return M best

E Prompt

Figure 12 shows the prompt template we used for
generating model merging algorithms. The prompt
uses a relatively creative merging algorithm as a
one-shot example (Figure 11). While simpler exam-
ples might seem sufficient, our preliminary experi-
ments suggested the need for a more sophisticated
example to guide the generation of creative merg-
ing algorithms.

During our preliminary experiments, we inves-
tigated how the presence or absence of a one-shot
example affects algorithm generation. This exam-
ple serves multiple purposes: demonstrating the ex-
pected format of a Python function, showing how
to handle model weights as tensors, and illustrating
basic weight combination operations.

Our preliminary exploration of zero-shot settings
(i.e., without the one-shot example) revealed sev-
eral important challenges. Many generated out-
puts failed to be executable Python functions, of-
ten containing syntax errors or undefined variables.
The generated algorithms also showed less variety
in their approaches, mostly converging to simple
weighted averaging operations.

These preliminary findings led us to include the
one-shot example in our main experiments, as it
appeared crucial not only for ensuring the gener-
ation of executable code but also for encouraging
the exploration of diverse algorithmic strategies.
The example helps the LLM understand both the
technical requirements (e.g., proper tensor opera-
tions) and the potential space of solutions for model
merging algorithms.

One-shot example

def merge_models(model_dict , device):
'''
Develop and implement a novel algorithm for merging the model weights. Your goal is to create a
unique and effective strategy that combines various existing techniques and introduces new
approaches to achieve optimal performance. Consider integrating methods such as adaptive weighting
, hybrid strategies , or advanced heuristics to create a more innovative merging technique.

Args:
model_dict (dict): A dictionary where keys are model names and values are the model weights.
device (torch.device): The device (CPU or GPU) on which the computation will be performed.

Returns:
torch.Tensor: The weights of the merged model.

'''
Strategy for merging the model weights:
1. Initialize `merged_weights ` with the first model's weights.
2. Iteratively apply the merge strategy to combine each subsequent model 's weights with the
merged result.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def merge_strategy(x, y):
Calculate the norms (sizes) of the weight tensors
x_size = torch.norm(x)
y_size = torch.norm(y)
Adjust the weighting factor based on the norms
alpha = (x_size + y_size) * 0.5 / x_size
Merge the weights using the adjusted alpha
return x + alpha * y

Initialize merged_weights with the first model 's weights
merged_weights = weights [0]. clone ()

Iteratively merge each subsequent model 's weights
for weight in weights [1:]:

merged_weights = merge_strategy(merged_weights , weight)

return merged_weights

Figure 11: One-shot example.

Prompt Template

Task
The goal is to merge the weights of multiple pre-trained language models to create a merged model that effectively combines
the weights of different models to achieve higher performance. Refer to the code below and devise a new merging strategy
to implement.

Reference Code
“‘python

import torch

models = {
'GAIR/Abel -7B-002': torch.rand(dim), # Abel -7B-002 is a model fine -tuned for mathematical tasks ,
demonstrating strong performance on datasets such as GSM8k and MATH.
'SciPhi/SciPhi -Mistral -7B-32k': torch.rand(dim), # SciPhi -Mistral -7B-32k is a fine -tuned LLM
focused on scientific reasoning and education , optimized for Alpaca -style prompts.
'teknium/OpenHermes -2.5-Mistral -7B': torch.rand(dim), # OpenHermes 2.5 is a fine -tuned model ,
building on OpenHermes 2, specifically enhanced with additional code datasets. Training on code
improved its performance on various non -code benchmarks like TruthfulQA and AGIEval.

}

def merge_models(model_dict , device):
'''
Args:

model_dict (dict): A dictionary where keys are model names and values are the model weights.
device (torch.device): The device (CPU or GPU) on which the computation will be performed.

Returns:
torch.Tensor: The weights of the merged model.

'''
Implement the merging strategy here“‘

Implementation Instructions
Implement the ‘merge_models‘ function and devise a new strategy for merging the model weights. Consider combining
multiple strategies such as weighted averages, element-wise maximums, element-wise minimums, geometric means,
Manhattan distances (L1 norm), cosine similarity, Euclidean distances (L2 norm), harmonic means, median merging,
matrix factorization, or hadamard product. Document your thought process and the changes you make in the code.

Example1
“‘python
{One-shot exaple}
“‘

Example2
“‘python

def merge_models(model_dict , device):
'''
Develop and implement a novel algorithm for merging the model weights. Your goal is to create a
unique and effective strategy that combines various existing techniques and introduces new
approaches to achieve optimal performance. Consider integrating methods such as adaptive weighting
, hybrid strategies , or advanced heuristics to create a more innovative merging technique.

Args:
model_dict (dict): A dictionary where keys are model names and values are the model weights.
device (torch.device): The device (CPU or GPU) on which the computation will be performed.

Returns:
torch.Tensor: The weights of the merged model.

'''
New strategies for merging the model weights:

Figure 12: Prompt template.

F Discovered Algorithms

Discovered algorithm B

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Hybrid approach combining element -wise multiplication and average

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def hybrid_merge_strategy(base , to_merge , alpha =0.5):
average = (base + torch.mean(to_merge , dim=0) * alpha) / (1 + alpha)
weighted = torch.mean(to_merge * torch.tensor (1 / alpha , device=base.device).unsqueeze (0), dim

=0)
return (1 - alpha) * base + alpha * weighted * torch.tensor(alpha , device=base.device).

unsqueeze (0)

Iteratively merge the weights using the custom strategy
merged_weights = weights [0]. clone ()
for i in range(1, len(weights)):

merged_weights = hybrid_merge_strategy(merged_weights , weights[i])

return merged_weights

Figure 13: Discovered algorithm B.

Discovered algorithm C

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
- Define a merge strategy using a hybrid approach that incorporates element -wise multiplication
and weighted averaging
- Introduce an additional parameter `alpha ` that can be tuned to control the contribution of each

constituent model
- Utilize a validation dataset to dynamically adjust `alpha ` based on the performance improvement

on the validation set

Extract weights from the models and move them to the specified device
weights = [model.detach ().to(device) for model in model_dict.values ()]

def merge_strategy(x, y, alpha):
Apply element -wise multiplication
product = torch.mul(x, y)
Perform weighted averaging
return torch.mul(product , alpha) + torch.mul(1 - alpha , x)

Define a function to evaluate the performance of the merged model on a validation set
def validate_model(model , valid_dataloader):

Implement the validation logic
pass

Initialize `alpha ` with a default value (e.g., 0.5) or a value obtained from a preliminary
experiment
alpha = 0.5
Alternatively , `alpha ` can be dynamically adjusted using a validation dataset

Initialize merged_weights with the first model 's weights
merged_weights = weights [0]. clone ()

Iteratively merge each subsequent model 's weights using the new hybrid strategy
for i, weight in enumerate(weights [1:], 1):

Adjust `alpha ` based on the performance improvement (optional)
new_alpha = adaptive_alpha_tuning(alpha , validate_model(model , valid_dataloader), model_dict.

keys()[i])
merged_weights = merge_strategy(merged_weights , weight , new_alpha)

Merge the weights using the hybrid strategy with the current alpha value
merged_weights = merge_strategy(merged_weights , weight , alpha)

return merged_weights

Figure 14: Discovered algorithm C.

Discovered algorithm D

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Design a hybrid strategy by performing element -wise multiplication and mean
2. Define two parameters , alpha and beta , to control the merging ratio

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

Define two parameters to control the merging ratio
alpha = 0.6
beta = 0.4

def merge_strategy(x, y, alpha =0.5, beta =0.5):
Perform element -wise multiplication
xy = x * y
Perform mean aggregation to find the average weights
return alpha * x + beta * torch.mean(xy, dim=0)

Initialize merged_weights with the first model 's weights
merged_weights = weights [0]. clone ()

Iteratively merge each subsequent model 's weights
for weight in weights [1:]:

merged_weights = merge_strategy(merged_weights , weight)

return merged_weights

Figure 15: Discovered algorithm D.

Discovered algorithm E

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
- Calculate cosine similarity (allow vector embedding models with different dimensions)
- Perform Harmonic mean (in scenarios where average performs poorly due to rare peaks)

def cosine_similarity(v1 , v2):
return (v1 * v2).sum() / ((v1 ** 2).sum() * (v2 ** 2).sum()) ** 0.5

def harmonic_mean(y_pred , labels):
y_pred = torch.clamp(y_pred , 1e-5, 1.0) # avoid zero division
return (labels.size (0) + (labels * y_pred).sum()).float () / (labels.sum() + y_pred.sum())

weights = [model.detach ().to(device) for model in model_dict.values ()]

Start merging from the second weight.
for i in range(1, len(weights)):

weight = weights[i]
last_weight = weights[i-1]

Calculate the cosine similarity as the merging strategy
sim = cosine_similarity(weight.reshape (-1), last_weight.reshape (-1))

Perform element -wise multiplication according to the similarity
last_weight *= sim

Save for next merge
weights[i] = last_weight

Last merged weights
merged_weights = weights [-1]
return merged_weights

Figure 16: Discovered algorithm E.

Discovered algorithm F

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
- Hybrid approach: combine element -wise multiplication with average

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def hybrid_merge_strategy(base , to_merge , alpha =0.5):
Calculate the average weights
average = (base + torch.mean(to_merge , dim=0) * 0.5)
Scale the weights to be added but keep the important weights from the top models larger
return base + alpha * (torch.mean(to_merge , dim=0) - base) * 0.5

merged_weights = weights [0]. clone()

Sort the weights based on the norms (sizes) of the weight tensors in descending order
weights.sort(key=lambda x: torch.norm(x), reverse=True)

Iteratively merge the weights with the current merged_weights
for weight in weights:

merged_weights = hybrid_merge_strategy(merged_weights , weight)

return merged_weights

Figure 17: Discovered algorithm F.

Discovered algorithm G

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
- Implement a hybrid strategy that combines multiple methods , such as element -wise multiplication

and averaging

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def hybrid_strategy(x, y, alpha):
Perform element -wise multiplication
z = torch.mul(x, y)
Perform averaging
z_avg = (x + y) * 0.5
Adjust weights with factor alpha
return z * alpha + z_avg * (1 - alpha)

Define a function to calculate weighting factors based on weight tensor norms
def calculate_alpha(x, y):

x_size = torch.norm(x)
y_size = torch.norm(y)
return (x_size + y_size) * 0.5 / (x_size + y_size)

Iteratively merge the model weights using the *new* hybrid strategy
for i in range(2, len(weights) + 1):

alpha = calculate_alpha(weights[i - 2], weights[i - 1])
merged_weights = hybrid_strategy(weights[i - 2], weights[i - 1], alpha)
weights[i - 1] = torch.clone(merged_weights)

return weights [1] # Return the weights of the second model (the first one is just an initial value
)

Figure 18: Discovered algorithm G.

Discovered algorithm H

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Hybrid approach: Combine element -wise multiplication and average

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def hybrid_merge_strategy(base , to_merge , alpha =0.5):
Calculate the average of the base and the weight to be merged
average = (base + torch.norm(to_merge , p=1) * to_merge / torch.norm(to_merge , p=1)) / (1 +

torch.norm(to_merge , p=1))
Perform element -wise multiplication with alpha factor
return alpha * base + (1 - alpha) * average

merged_weights = weights [0]. clone ()

Sort the models based on their norms in decreasing order
sorted_weights = sorted(weights , key=lambda x: torch.norm(x, p=1), reverse=True)

Iteratively merge the weights with the merged_weights using the hybrid strategy
for weight in sorted_weights [1:]:

merged_weights = hybrid_merge_strategy(merged_weights , weight)

return merged_weights

Figure 19: Discovered algorithm H.

Discovered algorithm I

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Initialize the merged model with the weights of the first and second models ,
weighting them equally (50/50).
2. For each subsequent model , merge the current merged model and the next
model's weights , weighting the current merged model as 90% and the
next model as 10%.
3. If the number of models is odd , treat the middle model as the final
"second" model for the merge algorithm.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def merge_strategy(merged_weights , weight , alpha_model =0.9, alpha_strategy =0.5):
Adjust the weighting factor based on the model 's position
alpha = alpha_model * alpha_strategy / (1 + (1 / (len(weights) - (1 if len(weights) % 2 == 0

else 2))))
Merge the weights using the adjusted alpha
return merged_weights + alpha * (weight - merged_weights)

Initialize merged_weights with the first and second model 's weights
merged_weights = (weights [0] + weights [1]) * 0.5

Iteratively merge each subsequent model 's weights
for weight in weights [2:]:

merged_weights = merge_strategy(merged_weights , weight)

return merged_weights

Figure 20: Discovered algorithm I.

Discovered algorithm J

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Explore novel strategies by considering dependency between each pair of models.
- Merge based on similarity of their architecture , mission , or data utilization.
- Group models with similarities and merge groups independently.
- Apply separate merging algorithms to groups with distinct strategies.
- Devise an algorithm to fine -tune the merging factors for each model.
2. *New* Find optimal strategy:
- Test various merging techniques and select the best strategy based on its performance on the

validation dataset.
- Create a dynamic system that adjusts merging strategies according to the performance needs.
- Develop a machine learning -based approach to optimize the weights of the merged model ,
utilizing a validation dataset to iteratively fine -tune the results.

For brevity , we will use an average methodology in the main implementation ,
but it is highly recommended to follow the guidelines above and develop a more
unique and innovative strategy for merging weights to achieve higher performance.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def avg_merge_strategy(x, y):
Perform an element -wise average merge strategy
return (x + y) * 0.5

Apply the average merge strategy to each pair of weights
weights = [avg_merge_strategy(w, ws) for w, ws in zip(weights [1:], weights [:-1])]

Initialize merged_weights with the first model 's weights
merged_weights = weights [0]. clone ()

Merge the first model 's weights with the results of the pair -wise merges
merged_weights = avg_merge_strategy(merged_weights , weights [0])

return merged_weights

Figure 21: Discovered algorithm J.

Discovered algorithm K

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Hybrid approach (e.g. mixture of weighted averages , element -wise maximums , and median merging)
2. Adaptive weighting based on hard/easy examples or layers
3. Matrix factorization with prior knowledge embedding (e.g. domain knowledge or ontology
information)
4. Hybrid strategy that adapts weighting based on model robustness and performance on specific
tasks

Add methods for matrix factorization and other advanced merging techniques

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

def merge_strategy(x, y):
Hard -coded sample strategy
return (x + y) / 2

Iteratively merge each subsequent model 's weights
merged_weights = weights [0]. clone()
for i, weight in enumerate(weights [1:], start =1):

if i % 2 == 1:
Apply the mix of element -wise maximums and median merging
merged_weights = merge_strategy(merged_weights , weight)

return merged_weights

Figure 22: Discovered algorithm K.

Discovered algorithm L

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Partition the models into groups based on their performance on a set of validation datasets.
2. For each group , apply a clustering algorithm (e.g., k-means) to determine the representative
model within the group.
3. Merge all the representative models from each group using a weighted average ,
with weights proportional to the number of models in each group.

Assign each model to a group based on its performance on a set of validation datasets
group_models = {f"Group -{i+1}": [] for i in range (6)}
for name , model in model_dict.items():

Replace with actual performance evaluation
score = torch.randperm (5)[0]
group_models[f"Group -{score +1}"]. append(name)

Determine the representative model for each group
representative_models = {}
for group , model_names in group_models.items():

if not model_names:
continue

weights = [model.detach ().to(device) for model in [model_dict[name] for name in model_names]]
mean_weight = torch.mean(torch.stack(weights), dim=0)
representative_models[group] = mean_weight.clone()

Merge the representative models using a weighted average
merged_weights = sum(representative_models.values (), torch.tensor (0).to(device)) / len(
representative_models.keys())

return merged_weights

Figure 23: Discovered algorithm L.

Discovered algorithm M

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Initialize a list `weights ` by converting the model weights to tensors and moving them to the
specified device.
2. Define a merge strategy using adaptive weighting:
- Calculate the norms (sizes) of the weight tensors.
- Adjust the weighting factor (`alpha `) dynamically based on the norms.
- Merge the weights using the adjusted alpha to combine the models.
3. If there are fewer than 3 models , return the first (or average of all) model 's weights.
4. If there are exactly 3 models , return the median of the three models ' weights.
5. Otherwise , initialize `merged_weights ` with the first model's weights and iteratively apply
the adaptive weighting merge strategy to combine each subsequent model 's weights with the merged
result.

weights = [model.detach ().to(device) for model in model_dict.values ()]
n_models = len(weights)

if n_models < 3:
Return the first (or average of all) model 's weights
return weights [0]

elif n_models == 3:

Return the median of the three models ' weights
def merge_strategy(x, y, z, alpha =0.5):

Calculate the norms (sizes) of the weight tensors
x_size = torch.norm(x)
y_size = torch.norm(y)
z_size = torch.norm(z)
Compute the three weighting factors based on the norms
alpha_x = (x_size + y_size + z_size) * 0.33 / (x_size + y_size)
alpha_y = (x_size + y_size + z_size) * 0.33 / (y_size + z_size)
alpha_z = (x_size + y_size + z_size) * 0.33 / (z_size + x_size)

Merge the weights using the adjusted alphas
return (1 - alpha_x) * x + alpha_x * ((1 - alpha_y) * y + alpha_y * z)

merged_weights = merge_strategy(weights [0], weights [1], weights [2])
return merged_weights

else:
Initialize merged_weights with the first model 's weights and iteratively apply the adaptive

weighting merge strategy to combine each subsequent model 's weights with the merged result
merged_weights = weights [0]. clone()
for weight in weights [1:]:

merged_weights = merge_strategy(merged_weights , weight)
return merged_weights

Figure 24: Discovered algorithm M.

Discovered algorithm N

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Initialize the merged_weights with the average of all model weights.
2. For each weight tensor , perform element -wise multiplication of the weight tensor with
its corresponding softmax normalization of a weight importance tensor , where the
importance tensor is computed over all weight tensors.
3. Sum up all the element -wise multiplied weight tensors to get the final merged
weights.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

Calculate the average of all model weights
avg_weights = torch.stack(weights).mean (0)

Normalize each weight by the L2 norm and compute the softmax normalization
weight_importance = torch.softmax(torch.stack([torch.norm(weight , 2) for weight in weights]), dim
=0)

Element -wise multiply original weights with their corresponding importance and sum up
merged_weights = torch.stack([weight * importance for weight , importance in zip(weights ,
weight_importance)], dim=0).mean (0)

return merged_weights

Figure 25: Discovered algorithm N.

Discovered algorithm O

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Initialize merged_weights with the mean of all model weights.
2. Merge each weight tensor with merged_weights using a weighted average ,
where the weights for each model are proportional to the cosine similarity
of that model's weights to the current merged_weights.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]
n_models = len(weights)

Step 1: Compute the mean of all model weights
merged_weights = torch.stack(weights).mean (0)

Step 2: Merge each weight tensor with merged_weights
for i, weight in enumerate(weights):

Compute the cosine similarity of the model i's weights
to the current merged_weights
sim = torch.sum(merged_weights * weight) / (torch.norm(merged_weights) * torch.norm(weight))

Perform a weighted average to merge the model i's weights
merged_weights = (1 / (i + 1) * merged_weights + sim / (i + 1) * weight)

To ensure consistency , move the final merged_weights to the CPU
merged_weights = merged_weights.to('cpu')

return merged_weights

Figure 26: Discovered algorithm O.

Discovered algorithm P

def merge_models(model_dict , device):
''' Develop and implement a novel algorithm ...(omitted)'''
New strategies for merging the model weights:
1. Initialize `merged_weights ` with one of the model's weights.
2. Hybrid approach: merge with weighted average (50%), maximum (25%), minimum (25%).
3. Use threshold mechanism for fusion based on average cosine similarity between pairs.
4. Compare model improvements from different strategies: Borda Count.

Convert model weights to tensors and move them to the specified device (CPU or GPU)
weights = [model.detach ().to(device) for model in model_dict.values ()]

Prepare a Borda Count -based fusion strategy
strategy_scores = {'weighted_average ': 50, 'maximum ': 25, 'minimum ': 25}
fusion_strategy = 'weighted_average '

Initialize merged_weights
merged_weights = weights [0]. clone()

for i, weight in enumerate(weights [1:], 1):
if fusion_strategy == 'weighted_average ':

merged_weights = (merged_weights + weight) / (i+1)
elif fusion_strategy == 'maximum ':

merged_weights = torch.max(torch.stack([merged_weights , weight]), 0)[0]
elif fusion_strategy == 'minimum ':

merged_weights = torch.min(torch.stack([merged_weights , weight]), 0)[0]
else:

raise ValueError("Unknown fusion strategy")

Modify the threshold mechanism and Borda Count
threshold = 0.1
threshold_type = 'cosine_similarity '

if fusion_strategy == 'threshold ' and i > 0:
cosine_similarities = [torch.mm(merged_weights.unsqueeze (0), weight.unsqueeze (1)).flatten ()

for weight in weights [1:]]
avg_cosine_similarity = torch.mean(torch.stack(cosine_similarities))
if avg_cosine_similarity < threshold:

merge_strategy_borda = fusion_strategy
strategy_scores = {k: v for k, v in strategy_scores.items() if k != 'threshold '}

elif threshold_type == 'cosine_similarity ':
avg_cosine_similarity = threshold

strategy_scores[merge_strategy_borda] += 1

if i == len(weights) - 1:
merged_weights = weight.clone()

return merged_weights

Figure 27: Discovered algorithm P.

	Introduction
	Self-Developing: Learning to Generate Model-Improvement Algorithms
	Algorithm Generation
	Algorithm Evaluation
	Algorithm Factory Refinement
	Iterative Improvement

	Main Results
	Setup
	Results

	Transferability of Algorithms
	Related Work
	Transferability
	Temperature Decay for Iterative DPO
	Analysis of LLM-Discovered Algorithms
	Pseudocode
	Prompt
	Discovered Algorithms

