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Abstract

In typical multimodal tasks, such as Visual
Question Answering (VQA), adversarial at-
tacks targeting a specific image and ques-
tion can lead large vision-language models
(LVLMs) to provide incorrect answers. How-
ever, it is common for a single image to be as-
sociated with multiple questions, and LVLMs
may still answer other questions correctly even
for an adversarial image attacked by a specific
question. To address this, we introduce the
query-agnostic visual attack (QAVA), which
aims to create robust adversarial examples
that generate incorrect responses to unspec-
ified and unknown questions. Compared to
traditional adversarial attacks focused on spe-
cific images and questions, QAVA significantly
enhances the effectiveness and efficiency of
attacks on images when the question is un-
known, achieving performance comparable to
attacks on known target questions. Our re-
search broadens the scope of visual adversar-
ial attacks on LVLMs in practical settings, un-
covering previously overlooked vulnerabilities,
particularly in the context of visual adversar-
ial threats. The code is available at https:
//github.com/btzyd/qava.

1 Introduction

With the expansion in model parameters and
training datasets, large vision-language mod-
els (LVLMs) have gained significant popularity,
demonstrating exceptional performance across var-
ious tasks, including image classification, im-
age captioning, semantic segmentation, and vi-
sual question answering (VQA) (Liu et al., 2023a;
Alayrac et al., 2022; Wang et al., 2023). However,
training LVLMs from the ground up is resource-
intensive. As a result, the prevailing approach in-
volves fine-tuning pre-trained visual encoders and
large language models (LLMs) while training a
vision-language alignment module. This process
adapts visual tokens to the input space of the LLMs
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Figure 1: Traditional adversarial attacks involve in-
putting an image xi and a specified target question
xt,target into LVLMs, with adversarial images gener-
ated through gradient-based methods. This approach
typically results in incorrect answers for xi and xt,target

(i.e., Q1). However, for other questions xt,other ∈
{xt,other ∈ T |xt,other ̸= xt,target} within the question
set T that are not the same as the xt,other, it remains
possible for LVLMs to provide correct answers (i.e.,
Q2-Q6). Our QAVA samples a set of questions xt,QAVA
and performs attacks on these questions, even if they
are unrelated to the original image xi. QAVA generates
adversarial images that are likely to produce incorrect
responses when faced with unknown target questions.

after they pass through the alignment module, en-
abling the LLMs to effectively process visual to-
kens. A well-known and efficient visual-language
alignment module is Q-former (Li et al., 2023),
which is employed by many popular LVLMs to
bridge the visual encoder and the LLM (Dai et al.,
2023; Zhu et al., 2023).

Despite their robust capabilities, LVLMs remain
vulnerable to adversarial attacks. Attack-Bard
(Dong et al., 2023) employs surrogate models to
manipulate images, causing LVLMs to err on the
image captioning task using the fixed prompt, “De-
scribe this image”. Similarly, VLAttack (Yin et al.,
2023) targets both visual and textual modalities to
disrupt the output of LVLMs for a specific ques-
tion and image. However, these methods focus
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exclusively on attacks against one image and one
question at a time. Consequently, the adversarial
examples generated by these attacks may not be
effective when confronted with different questions.

To develop more potent attacks, our objective
is to manipulate images so that they yield incor-
rect answers to an unknown set of target questions,
noted as query-agnostic visual attack (QAVA).
These query-agnostic adversarial examples have
the potential to cause significant disruption to the
model. For instance, during the inference phase,
LVLMs may consistently provide incorrect answers
to any question regarding the manipulated image.
Moreover, employing these adversarial examples
during the training or supervised fine-tuning phase
could be even more detrimental, particularly when
used for data poisoning. We enhance the attack
by scrutinizing both the attack’s location and the
selection of questions used.

In terms of attack positioning, traditional attack
methods typically employ the end-to-end loss func-
tion of the entire LVLM as the attack objective
function. However, for adversarial attacks, it is
crucial to identify and target the most vulnerable
component of the LVLM. Given the extensive num-
ber of parameters in large language models, we
posit that end-to-end attacks on LVLMs may not
be as effective as targeting the inputs to the LLMs.
Consequently, we focus on attacking the output
of the visual-language alignment module. The
visual-language alignment module’s output encom-
passes multimodal interactions, and we can disrupt
these critical multimodal interactions by targeting
the alignment module, potentially leading to more
effective attack outcomes.

Regarding the questions employed in attacks, we
observed that when targeting the visual-language
alignment module, effective attack performance
can be achieved even with the use of randomized
questions that are unrelated to the image. Further-
more, the attack is enhanced when a larger number
of random, irrelevant questions are utilized, which
verifies our QAVA’s flexibility and effectiveness.

In conclusion, QAVA diverges from traditional
attacks in two key aspects: (1) We focus on attack-
ing the output of the visual-language alignment
module within LVLMs, which is verified to be
more vulnerable to query-agnostic attacks. (2) We
utilize multiple randomized, image-independent
questions in our attacks, ensuring that the adver-
sarial examples are maximally incorrect when con-
fronted with unknown potential inputs.

Our main contributions are summarized as fol-
lows: (1) We introduce a query-agnostic attack
method, QAVA, which enhances the practicality of
adversarial attacks on images within LVLMs. (2)
We identify the vulnerability of visual-language
alignment modules in LVLMs to adversarial at-
tacks and leverage this vulnerability to execute
query-agnostic attacks. (3) Extensive experiments
demonstrate the efficacy of our QAVA approach
in both white-box and black-box attack scenarios.
Additionally, our QAVA method exhibits inter-task
transferability, such as transferring from the VQA
task to the image captioning task. This serves as an
important alert regarding the security of LVLMs.

2 Related Work

Large vision-language models. LVLMs are typ-
ically composed of a pre-trained LLM, a visual
encoder, and a projector that aligns visual and tex-
tual modalities. Recent popular LVLMs include In-
structBLIP (Dai et al., 2023) and MiniGPT-4 (Zhu
et al., 2023). Both models utilize EVA-CLIP (Sun
et al., 2023) as the visual encoder and employ the
Q-Former (Li et al., 2023) for aligning textual and
visual modalities. For the LLM component, models
such as Vicuna (Chiang et al.) and FlanT5 (Chung
et al., 2022) are viable options. These LVLMs
have demonstrated outstanding performance across
various multimodal tasks, including image classifi-
cation and VQA (Antol et al., 2015), among others.
Adversarial Attacks. By introducing small per-
turbations to the inputs of neural networks, adver-
sarial attacks (Szegedy et al., 2014; Nguyen et al.,
2015) can cause models to produce incorrect out-
puts. These attacks can be categorized into white-
box and black-box (or gray-box) attacks (Papernot
et al., 2016). In white-box attacks, the adversary
has full access to the model’s parameters. Con-
versely, in black-box or gray-box attacks, the ad-
versary has limited information, such as the ability
to make a certain number of queries to the model
or knowledge of some of the model’s parameters.
Furthermore, adversarial attacks can be classified
as either targeted or untargeted. Untargeted attacks
aim to generate incorrect outputs, while targeted
attacks strive to manipulate the output to meet the
adversary’s specific expectations. Initial research
on adversarial attacks concentrated mainly on the
visual modality, given its high-dimensional and
continuous input space (Moosavi-Dezfooli et al.,
2016; Goodfellow et al., 2015; Carlini and Wagner,
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2017). More recent studies have extended the at-
tacks to discrete textual modalities (Alzantot et al.,
2018; Jia and Liang, 2017; Wallace et al., 2019).
Additionally, some research has focused on tar-
geting the fusion of visual and textual modalities
(Zhang et al., 2022; Lu et al., 2023).
LVLMs and Adversarial Attacks. With the in-
creasing popularity of LVLMs, numerous recent
studies have focused on adversarial attacks against
these models. Recent research has demonstrated
the feasibility of generating adversarial examples
to jailbreak LVLMs (Shayegani et al., 2023b). This
includes attacking images using gradient-based
approaches (Carlini et al., 2023), targeting texts
through prompt engineering (Liu et al., 2023c), and
embedding malicious instructions into images as
text, with the aim of having the model execute these
commands via optical character recognition (OCR)
(Shayegani et al., 2023a). While these studies pri-
marily address the security concerns surrounding
LVLMs, our research is specifically focused on the
safety and integrity of images within these mod-
els. Some studies (Luo et al., 2024) have also con-
centrated on query-agnostic adversarial attacks, in
which LVLMs are prompted to respond with an-
swers such as “none” or “don’t know” to various
inquiries. In contrast, our study specifically ex-
amines scenarios in which LVLMs are induced to
provide incorrect answers.

3 Method

3.1 Preliminary

We provide a concise overview of the adversarial
attack pipeline. This study specifically investigates
gradient-based white-box adversarial attacks. Let
the LVLM be represented as y = f(fi(xi), xt),
where xi and xt denote the input image and text,
respectively, with fi(·) serving as a visual encoder,
and y as the textual output generated by the LVLM.
Given the input image xi and text xt, our objective
is to identify an adversarial image x′i such that
y′ = f(fi(x

′
i), xt) is semantically distant from y.

This is subject to the condition that the difference
between xi and x′i remains within the constraints ϵ,
i.e., |x′i − xi|p ≤ ϵ.

FGSM (Goodfellow et al., 2015) generates the
adversarial example x′i by updating the original
input xi using a single gradient computation. In
contrast, PGD (Madry et al., 2018) executes mul-
tiple iterative gradient updates, projecting x′i after
each update to ensure adherence to the perturba-
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What is in the mirror?

Where is the horse's rider?
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……
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Figure 2: The framework of QAVA is structured as
follows: Initially, we generate N randomly sampled
questions, denoted as xt,QAVA, which are not pertinent to
the input image xi. Subsequently, we introduce random
perturbations to xi to create the initial variant, x′

i,QAVA.
Both xi and xt,QAVA are then input into the LVLM, and
the LVLM’s response serves as a label. Despite the fact
that the question xt,QAVA is unrelated to the image xi,
the LVLM still provides a response. Following this, we
input x′

i,QAVA and xt,QAVA into the LVLM to calculate
the MSE loss based on the Q-former output features.
Adversarial attacks are executed using techniques such
as PGD or C&W by employing the loss functions, de-
noted as LQAVA. The traditional end-to-end attack loss
function, LLLM, is also shown.

tion constraints defined by ϵ∞. The C&W attack
(Carlini and Wagner, 2017) employs Eq. (1) as its
optimization objective, which is iterated multiple
times. The first component of Eq. (1) seeks to mod-
ify the model output to diverge significantly from
the original output by employing a specific loss
function L. Meanwhile, the second component
ensures that the adversarial example x′ remains
sufficiently close to the original input x. The con-
stant c serves as a hyperparameter, balancing the
divergence in model outputs against the l2 distance
between x′ and x.

LCW (x, x′, . . . ) = L(x, x′, . . . )− c× ||x− x′||22
(1)

The objective of QAVA is to manipulate images
such that they yield incorrect responses to unknown
target questions. Consequently, our task involves
employing a specific method to adversarially attack
a given image. We explore the selection of sur-
rogate questions for these attacks in Sec. 3.2 and
detail the associated loss functions in Sec. 3.3.

3.2 Strategies for Sampling Questions
We outline the four question sampling strategies
utilized in our QAVA attack as follows.
White-box targeting questions (WTQ). WTQ em-
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ploys a predefined set of target questions that are
used to evaluate the adversarial example generated
by attack. In contrast, our QAVA method does not
have access to any information regarding the target
questions at the time of the attack.

Visual question generation (VQG). VQG
(Mostafazadeh et al., 2016) is capable of gener-
ating questions for input images, including ques-
tions with specific anticipated answers (e.g., “yes”
or “green”). In this strategy, we input the images
into LVLMs and generate N questions using VQG
prompts (e.g., “Taking the image into account, gen-
erate N questions.”).

Random sample questions (RSQN). RSQN ran-
domly samples N questions from the validation set
of VQA v2, which comprises 214,354 questions.

Random Sample Questions by Types (RSQt).
RSQt ensures a balanced representation of each
question type in the final set of sampled questions.
This approach involves categorizing questions by
type, such as “What is on the”, “What animal is”,
“What color is”, among others.

3.3 Design of the Loss Function LQAVA

For the LVLM f , the forward process f(fi(xi), xt)
with a label generates a native loss function, LLLM,
which is typically employed to optimize the adver-
sarial image. Our aim is to identify more effective
loss functions to enhance attack performance.

Revisiting the forward process of LVLMs, the
Q-former, introduced by BLIP-2 and utilized in
LVLMs such as InstructBLIP and MiniGPT-4, is
instrumental in aligning visual and textual modal-
ities within the feature space. For instance, in In-
structBLIP, the image xi is encoded into a vec-
tor of shape [257, 1408], denoted as fi(xi), by the
image encoder fi. The Q-former Q(·, ·) then ex-
tracts a feature of shape [32, 768], represented as
q = Q(fi(xi), xt), guided by the text xt. This fea-
ture q is subsequently upscaled to [32, 4096] and
input into the LLM along with the text xt, as illus-
trated in Fig. 2.

The feature vectors output by the Q-former can
be utilized as supervised signals to optimize the ad-
versarial image. Specifically, for a given question
xt and clean image xi, we first input them into the
Q-former to obtain q = Q(fi(xi), xt). Next, we
input the question xt and the perturbed image x′i
into the Q-former to derive q′ = Q(fi(x′i), xt). We

then optimize the MSE loss functions, i.e.

max LQAVA(q, q
′) =

1

MN

M∑

i=1

N∑

j=1

(
qi,j − q′i,j

)2

subject to |xi − x′i|∞ ≤ ϵ∞ (2)

The loss function LQAVA is calculated for all
white-box questions (e.g., WTQ) or surrogate ques-
tions (e.g., RSQ). After summing these individual
computations, we obtain the overall loss function
LQAVA, as detailed in Algorithm 1 in Appendix A.

4 Experiments

4.1 Experiment Settings
Datasets. We utilize the validation set of VQA
v2 as the foundational dataset, comprising a total
of 40,504 images and 214,354 questions. The dis-
tribution of questions across images in VQA v2
is uneven; for instance, over 18,000 images have
only three questions, whereas merely 50 images
have 50 or more questions. We define the dataset
VQA v2 m+n as a subset of VQA v2, including m
images, each associated with n questions, resulting
in a total of m × n questions. To construct the
dataset VQA v2 m+n, we randomly sample m im-
ages from those with at least n corresponding ques-
tions, followed by randomly selecting n questions
for each image. Our experiments were performed
on the VQA v2 32+50 data subset. We adhere to
the official evaluation procedure designated for the
VQA v2 dataset. It is crucial to acknowledge that
the ground truth answers for each question in VQA
v2 are not singular; each validation question pos-
sesses ten ground truth answers, which are utilized
to compute the VQA scores.
Models. In our experiments, we employ BLIP-2
(Li et al., 2023) and InstructBLIP (Dai et al., 2023).
Both LVLMs utilize CLIP as the visual encoder and
incorporate a set of learnable queries along with a
Q-former trained on a frozen visual encoder and
LLM. Additionally, we assess the transferability of
our QAVA approach on LLaVA (Liu et al., 2023a)
and MiniGPT-4 (Zhu et al., 2023).
Adversarial Attacks. We employ two standard
adversarial attack methods: PGD-l∞ and CW-l2.
For the PGD attack, unless otherwise specified, we
typically set the number of attack steps n to 20,
the attack step size α to 2 (i.e., 2/255), and the
maximum perturbation magnitude ϵ∞ to 8. For
the CW attack, we generally configure the number
of attack steps n to 50, the attack step size α to
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0.01 (i.e., approximately 2.55/255), and set the
confidence level to 0. The choice of the constant
c in the CW attack is contingent upon the loss
function employed. Specifically, since LLLM is
approximately 20 times larger than LQAVA, we set
the constant c = 0.1 when using LLLM as the loss
function. Conversely, when utilizing LQAVA, we
set the constant c = 0.005.

4.2 Main Results of QAVA

LLLM(RSQN) can effectively attack images. We
assess the baseline VQA performance of In-
structBLIP with FlanT5XL and InstructBLIP with
Vicuna-7B on the VQA v2 32+50 dataset. Sub-
sequently, we apply PGD and CW attacks using
WTQ to evaluate the maximum potential of attack
performance. Following this, we randomly select
N questions from the entire set of VQA v2 ques-
tions (214,354 questions) to form RSQN and use
these for the attack. The results, presented in Tab. 1,
demonstrate that both PGD and CW can effectively
reduce VQA scores when white-box questions are
used. However, when using randomly sampled ir-
relevant questions, PGD and CW do not reach the
same level of performance as with WTQ, display-
ing a difference of approximately 10 to 15 points.

Attack Question InstructBLIP(Vicuna-7B)
method strategy Overall Other Number Yes/No

✘ ✘ 78.00 66.98 69.68 94.29

PGD

WTQ50 42.41 17.56 50.59 71.13

RSQ1 62.81(±1.34) 45.20 60.13 85.68
RSQ5 58.46(±0.66) 39.72 56.37 82.58
RSQ10 57.61(±1.50) 37.71 55.24 83.28
RSQ15 55.08(±1.85) 34.39 53.22 81.57
RSQ20 55.42(±0.72) 34.58 55.42 81.55
RSQ25 54.53(±1.40) 33.65 54.26 80.79

CW

WTQ50 40.66 16.93 43.05 69.68

RSQ1 61.30(±1.73) 44.65 58.45 83.03
RSQ5 58.58(±0.63) 40.74 56.20 81.65
RSQ10 57.65(±1.33) 39.24 53.22 82.05
RSQ15 57.05(±1.99) 38.01 54.28 81.74
RSQ20 57.13(±0.95) 37.42 55.79 82.25
RSQ25 55.68(±1.42) 35.64 56.03 80.69

Table 1: LLLM(RSQN) can effectively attack images, but
its performance still lags behind that of WTQ.

LQAVA(RSQN) can further improve attack per-
formance than LLLM(RSQN). LLLM(RSQN) ap-
proach typically employs the end-to-end loss func-
tion LLLM of the LLMs. In contrast, we propose
targeting the visual-language alignment module us-
ing LQAVA, as defined in Sec. 3.3. We compared
the effectiveness of LLLM and LQAVA, with results

presented in Tab. 2. For WTQ, there is no signifi-
cant difference in performance between LQAVA and
LLLM. However, for RSQ, using LQAVA results
in a significantly better attack performance than
LLLM. This highlights the effectiveness of our ap-
proach LQAVA(RSQN), indicating its potential to
enhance adversarial attack capabilities.

Attack Loss Question InstructBLIP(Vicuna-7B)
method L strategy Overall Other Number Yes/No

✘ ✘ ✘ 78.00 66.98 69.68 94.29

PGD

LLLM
WTQ50 42.41 17.56 50.59 71.13
RSQ25 54.53(±1.40) 33.65 54.26 80.79

LQAVA

WTQ50 44.41 21.12 43.96 73.75
RSQ1 45.70(±1.06) 21.70 46.29 75.60
RSQ5 43.59(±1.16) 20.76 42.00 72.69
RSQ10 44.85(±1.07) 22.11 43.25 73.83
RSQ25 44.07(±0.83) 20.15 46.60 73.32

CW

LLLM
WTQ50 40.66 16.93 43.05 69.68
RSQ25 55.68(±1.42) 35.64 56.03 80.69

LQAVA

WTQ50 41.82 17.63 39.68 72.79
RSQ1 43.16(±1.03) 19.39 42.24 73.25
RSQ5 42.18(±1.15) 18.37 41.48 72.24
RSQ10 41.85(±0.83) 17.38 41.03 72.77
RSQ25 40.98(±1.71) 16.45 40.48 71.88

Table 2: LQAVA is better than LLLM in use of RSQN.

Generalizability of QAVA to other LVLMs. Pre-
viously, our experiments focused solely on the In-
structBLIP Vicuna-7B. To assess the broader appli-
cability of QAVA, we extended our evaluation to in-
clude additional LVLMs, with results summarized
in Tab. 3. The findings demonstrate that QAVA
consistently delivers effective attack performance
across a wider spectrum of LVLMs, showcasing its
robustness and adaptability in diverse LVLMs.

Model Clean LLLM(RSQ25) LQAVA(RSQ10)

BLIP-2 opt-2.7B 45.64 34.56 19.15
BLIP-2 FlanT5XL 62.05 29.39 32.28
BLIP-2 opt-6.7B 48.26 15.25 19.49

BLIP-2 FlanT5XXL 62.10 29.11 26.93
InstructBLIP FlanT5XL 74.54 49.78 34.31
InstructBLIP Vicuna-7B 78.00 54.53 44.85
InstructBLIP FlanT5XXL 73.02 48.57 34.32
InstructBLIP Vicuna-13B 67.87 53.19 42.90

Table 3: Results of QAVA on various LVLMs.

Generalizability of QAVA to other datasets.
To further assess the applicability of QAVA, we
conducted evaluations using the VizWiz test-dev
dataset (Gurari et al., 2018, 2019), which consists
of 8,000 image-question pairs, each image paired
with a single question. We explored two attack
scenarios: LLLM(WTQ1), which represents a tra-
ditional end-to-end adversarial attack targeting the
specific question, and LQAVA(RSQ10), which illus-
trates the QAVA attack using 10 randomly selected
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questions from VQA v2 without prior knowledge
of the target questions. As shown in Tab. 4, QAVA
reliably performs effective adversarial attacks us-
ing these randomized questions against unknown
target questions on VizWiz. These results under-
score the versatility and robustness of QAVA across
different datasets and question distributions.

Attack VizWiz test-dev evaluation
method overall yes/no number other unanswerable

Clean 33.08 81.74 28.10 39.14 10.99
LLLM(WTQ1) 10.48 63.71 8.25 8.44 6.93
LQAVA(RSQ10) 10.69 59.04 7.78 9.54 5.85

Table 4: Results of QAVA on VizWiz test-dev dataset.

4.3 Ablation Study of Question Sampling

No need for image-related surrogate questions.
VQG for images requires LVLMs to process the
image and generate numerous tokens, which can be
resource-intensive and time-consuming. While this
approach ensures that the questions used for the
attack are closely related to the image, the results
presented in Tab. 5 indicate that this does not lead
to a significant improvement in attack performance.
Consequently, in practical applications, it is unnec-
essary to employ VQG to create the set of surrogate
questions, as the benefits in terms of attack efficacy
do not justify the additional computational cost.

Attack Question VQA v2 scores
method strategy Overall Other Number Yes/No

PGD

WTQ50 44.41 21.12 43.96 73.75

RSQ10 44.85(±1.07) 22.11 43.25 73.83

RSQt
10 43.85(±1.29) 20.32 44.54 73.13

VQG10 43.26(±0.67) 20.83 39.44 72.53

CW

WTQ50 41.82 17.63 39.68 72.79

RSQ10 41.85(±0.83) 17.38 41.03 72.77

RSQt
10 42.05(±1.22) 17.79 40.22 73.01

VQG10 39.38(±1.07) 16.00 38.10 69.08

Table 5: The ablation study of the question sampling
strategy as outlined in Sec. 3.2. In all experiments,
the loss function LQAVA is utilized on InstructBLIP
Vicuna-7B. RSQ10 involves the random sampling of
10 questions from the entire list of available questions.
In contrast, RSQt

10 first randomly selects 10 question
types from the 67 types identified in VQA v2 and subse-
quently samples one question from each selected type,
ensuring that no more than one question per type is
sampled. The approach VQG10 employs MiniGPT-4 to
generate 10 questions specifically for the images.

Randomly sampling questions is simple and effi-

cient. The findings in Tab. 5 show that RSQt does
not significantly enhance attack performance. Con-
sequently, a straightforward approach of randomly
sampling questions RSQN is sufficient and effec-
tive. This method not only simplifies the process
but also reduces computational overhead, all while
maintaining robust attack performance.

4.4 Abalation Study of the Imperceptibility of
Images Generated by QAVA

Although we employed a smaller attack strength
(e.g., ϵ∞ = 8 in PGD), adversarial examples may
still be detectable upon careful examination, as
shown in Fig. 3a. Previous studies have devel-
oped techniques to enhance image imperceptibil-
ity in classical attack methods, such as SSAH
(Luo et al., 2022). By integrating QAVA with
SSAH, we can produce adversarial images that are
both imperceptible and query-agnostic, as demon-
strated in Fig. 3b. The VQA scores for QAVA and
QAVA+SSAH are demonstrated in Tab. 6. There
exists a trade-off between the imperceptibility of
adversarial examples and the effectiveness of adver-
sarial attacks. Nevertheless, QAVA+SSAH success-
fully generates adversarial examples that are both
imperceptible and exhibit a significant attack im-
pact. Additional adversarial images are presented
in Fig. 4. Furthermore, we investigate the effect
of varying attack strengths on the efficacy of our
approach, as detailed in Sec. 5.

(a) The QAVA image. (b) The QAVA+SSAH image.

Figure 3: Visualization of image imperceptibility.

Attack method
VQA v2 scores

Overall Other Number Yes/No

QAVA 44.85 22.11 43.25 73.83
QAVA+SSAH 50.67 28.64 50.37 78.37

Table 6: The combination of QAVA and SSAH gener-
ates imperceptible adversarial examples.
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5 Ablation Study of QAVA Attack
Strength

Our experiments concentrate on two main attack
methods: PGD and C&W, as described in Sec. 4.1.
To evaluate the balance between attack efficacy
and image imperceptibility, we investigated differ-
ent levels of attack strength. As demonstrated in
Tab. 7, our QAVA approach consistently generates
effective adversarial examples across various attack
strengths. Even at lower attack intensities, there is
a notable reduction in VQA scores, while the noise
introduced remains nearly imperceptible.

Attack ϵ∞ of PGD VQA v2 scores
method c of C&W Overall Other Number Yes/No

PGD
4/255 48.93 27.57 46.42 76.46
8/255 44.85 22.11 43.25 73.83
16/255 38.86 16.02 38.29 67.67

C&W
0.05 51.72 32.11 48.13 77.37
0.005 41.85 17.38 41.03 72.77
0.0005 36.44 11.41 38.45 67.22

Table 7: The alternative attack strength of LQAVA with
RSQ10. The other settings are the same as Sec. 4.1.

5.1 The Efficiency of QAVA Attacks

Table 2 illustrates that our QAVA LQAVA(RSQ10)
attains performance levels comparable to tra-
ditional end-to-end adversarial attacks method
LLLM(WTQ50) that directly target 50 specific ques-
tions. To further underscore the efficiency of our
QAVA approach, we evaluate three scenarios: tra-
ditional end-to-end attacks targeting 1 question and
50 questions, and QAVA targeting 10 randomly se-
lected questions. In comparison to the traditional
end-to-end approach, our QAVA method offers sig-
nificant improvements in both time and memory
efficiency. As indicated in Table 8, QAVA achieves
approximately 80% savings in GPU memory usage
because it targets only the output of the vulnera-
ble visual language alignment module, bypassing
the resource-intensive LLM. Regarding time effi-
ciency, while the traditional approach is rapid when
attacking a single question, it proves ineffective for
a series of target questions. Conversely, attacking
all 50 questions using the traditional method is ef-
fective but requires prior knowledge of all target
questions and is time-intensive. In contrast, our
QAVA approach, which employs 10 random ques-
tions without prior knowledge of specific targets,
achieves attack results comparable to those of the
traditional method across all target questions, while

requiring only 5% of the time consumed by the tra-
ditional end-to-end adversarial attack.

Attack method Time (s) GPU Mem (GB) VQA scores

Clean ✘ ✘ 78.00
LLLM(WTQ1) 208 32.62 57.07
LLLM(WTQ50) 7788 32.62 42.41
LQAVA(RSQ10) 387 6.30 44.85

Table 8: The efficiency of QAVA over traditional end-to-
end adversarial attacks. Red cells denote worse perfor-
mance, while green cells indicate better performance.

5.2 Experiments on QAVA’s Transferability

Surrogate model
LLaVA VQA scores
m = 0 m = 0.9

Clean image 78.32
InstructBLIP FlanT5XL 65.83 64.99
InstructBLIP Vicuna-7B 68.76 64.69
InstructBLIP FlanT5XXL 66.97 66.82
InstructBLIP Vicuna-13B 67.17 63.86

Table 9: Results of transfer attacking LLaVA using
DI+MI with LQAVA(RSQ10), where m denotes the mo-
mentum. We use the LLaVA-v1.5-7b model with CLIP-
ViT-L-336px, which differs significantly from Instruct-
BLIP. Despite this, QAVA still has good transferability.

Transferability of QAVA between InstructBLIP
and LLaVA on VQA tasks. We investigated the
transferability of the QAVA attack on the VQA
tasks between InstructBLIP and LLaVA, with the
results presented in Tab. 9. To enhance the trans-
ferability of the adversarial examples, we incorpo-
rated the momentum attack (Dong et al., 2018) and
diverse input methods (Xie et al., 2019).
Transferability of QAVA between BLIP-2 and
InstructBLIP on VQA tasks. We examined the
transferability of QAVA across the LVLMs utilized
in Tab. 3. Adversarial examples were generated on
each LVLM independently, and their VQA scores
were evaluated on the other models, with the re-
sults presented in Tab. 10. The experiments were
conducted using the VQA v2 32+50 dataset with
LQAVA(RSQ10). Each row represents the surrogate
model used to generate the adversarial perturbation,
while each column represents the target model used
to test the VQA scores. The diagonal cells indi-
cate white-box model settings, whereas the non-
diagonal cells represent black-box model settings,
demonstrating transferability. The results indicate
that our QAVA exhibits strong transferability.
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Surrogate model
BLIP-2 InstructBLIP

opt-2.7B FlanT5XL opt-6.7B FlanT5XXL FlanT5XL Vicuna-7B FlanT5XXL Vicuna-13B

Clean images 45.64 62.05 48.26 62.10 74.54 78.00 73.02 67.87
BLIP-2 opt-2.7B 19.15 27.63 19.48 28.09 42.37 44.93 41.28 45.84
BLIP-2 FlanT5XL 27.26 32.28 24.68 35.88 45.64 48.1 46.29 48.58
BLIP-2 opt-6.7B 22.47 28.2 19.49 34.22 45.32 45.53 41.69 44.25

BLIP-2 FlanT5XXL 20.22 29.07 25.07 26.93 44.81 47.35 44.39 46.91
InstructBLIP FlanT5XL 22.99 28.18 23.52 24.29 34.31 45.34 43.35 47.98
InstructBLIP Vicuna-7B 20.15 22.85 19.35 27.1 38.53 44.85 38.83 43.61
InstructBLIP FlanT5XXL 18.07 27.43 16.81 29.47 42.67 46.46 34.32 46.84
InstructBLIP Vicuna-13B 19.85 22.2 19.76 30.34 40.29 43.41 39.84 42.90

Table 10: Results of transferring attacks against BLIP-2 and InstructBLIP on VQA.

LLM of Attack
Loss L Image Caption evaluation on InstructBLIP

InstructBLIP method CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE

Vicuna-7B

✘ ✘ 160.5 82.5 68.4 54.6 42.9 61.4 31.4 25.4

PGD
LLLM(RSQ10) 71.4 61.8 42.9 29.4 20.4 45.8 19.6 13.1
LQAVA(RSQ10) 16.9 38.8 19.8 10.4 5.9 28.2 10.0 4.1

CW
LLLM(RSQ10) 92.7 67.3 50.0 36.3 25.9 49.6 22.5 16.1
LQAVA(RSQ10) 13.0 29.2 14.5 7.1 3.8 25.6 8.6 3.4

Table 11: Results of inter-task transferability (VQA→ caption) of adversarial examples on InstructBLIP. The grey
lines are the results of clean images. QAVA(RSQ10) effectively improves the tasks transferability.

Target model Surrogate model CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE

MiniGPT-4

Clean image 89.7 65.9 49.9 35.8 25.0 52.9 29.4 24.6
InstructBLIP FlanT5XL 16.9 39.9 24.0 14.0 8.4 33.3 15.9 8.6
InstructBLIP Vicuna-7B 12.9 37.8 21.7 12.3 7.4 31.8 14.8 7.4
InstructBLIP FlanT5XXL 18.0 39.6 24.0 14.5 9.0 33.7 15.9 8.6
InstructBLIP Vicuna-13B 13.7 36.2 21.0 12.0 7.2 31.2 14.1 6.9

LLaVA

Clean image 116.9 73.1 56.8 42.0 30.3 56.6 29.9 24.4
InstructBLIP FlanT5XL 82.9 65.5 47.8 33.5 22.7 50.2 25.1 18.4
InstructBLIP Vicuna-7B 82.3 64.6 47.4 33.5 23.2 49.7 25.0 18.1
InstructBLIP FlanT5XXL 86.5 65.6 48.1 33.9 23.5 50.5 25.5 18.8
InstructBLIP Vicuna-13B 79.9 64.2 46.5 32.5 22.3 49.2 24.7 17.8

Table 12: Results of transferability of adversarial examples on both tasks (VQA→ caption) and models (Instruct-
BLIP→MiniGPT-4/LLaVA). The attack is all LQAVA(RSQ10).

Transferability of QAVA from VQA to caption
task on InstructBLIP. We investigated the perfor-
mance of images subjected to adversarial attacks
on tasks beyond VQA. Specifically, we input adver-
sarial images generated from the VQA v2 500+10
dataset into InstructBLIP to produce image cap-
tions using the prompt “A short image caption:”.
The results of these adversarial images on the im-
age caption task are displayed in Tab. 11. Despite
targeting unrelated random questions, the adver-
sarial approach effectively reduces image caption
performance. The efficacy of QAVA-generated ad-
versarial images on the caption task underscores
the effectiveness of RSQ and LQAVA. The trans-
ferability results for the captioning task on more
LVLMs are shown in Tab. 16 in the Appendix.

Transferability of QAVA from InstructBLIP
and VQA to LLaVA/MiniGPT-4 and caption
task. We also explored the transferability of QAVA
across tasks (from VQA to captioning) and models
(from InstructBLIP to LLaVA/MiniGPT-4). The
results presented in Tab. 12 demonstrate QAVA’s
strong transferability between tasks and LVLMs,
even when the attacks are based on irrelevant ran-
dom questions. Given that image captioning is a
classical pre-training task for LVLMs, employing
the adversarial examples generated by QAVA to
disrupt the training process of LVLMs could poten-
tially have a significant impact.

5.3 Generalizability of QAVA
Our primary experiments were conducted using
the VQA v2 dataset. To further assess the gen-
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eralizability of QAVA, we performed additional
experiments on several other datasets, including
ImageNet (Deng et al., 2009), OKVQA (Marino
et al., 2019), NoCaps (Agrawal et al., 2019), and
Flickr30k (Young et al., 2014). The results pre-
sented in Tab. 13 demonstrate the effectiveness of
QAVA in executing successful attacks across a di-
verse array of datasets.

Dataset Metric Clean QAVA

ImageNet Accuracy 81.0 34.8
OKVQA VQA score 56.9 23.85
NoCaps CIDEr 120.2 15.2

Flickr30k CIDEr 85.2 9.1

Table 13: The generalizability of QAVA on other
datasets including classification, Q&A and captioning.

5.4 Discussions of QAVA

Potential Further Optimizations of QAVA. (1)
Recent research on universal adversarial attacks on
images has introduced Stochastic Gradient Aggre-
gation (SGA) (Liu et al., 2023b), a technique that
improves stability by calculating multiple gradients
over a small batch of images and merging them into
a single gradient. Inspired by SGA, we can further
improve the attack performance of QAVA by sam-
pling different small batches of stochastic questions
at each step of the attack process, as illustrated in
Tab. 14. (2) Further optimization could enhance
the performance of QAVA. Specifically, the vul-
nerable vision-language alignment module consists
of multiple layers, and our current loss function
LQAV A targets only the output of the last layer of
the Q-former. We extended the loss function to
incorporate outputs from all layers of the Q-former.
The results presented in Tab. 15 demonstrate that
this minor optimization of the loss function leads
to an improvement in the performance of QAVA.

Attack method
VQA v2 scores

Overall Other Number Yes/No

LQAVA(RSQ10) 44.85 22.11 43.25 73.83
LQAVA(RSQ10) + SGA 41.14 19.08 37.97 69.74

Table 14: The optimized version of QAVA, drawing
inspiration from SGA, leads to more robust query-
agnostic adversarial examples.

Potential Defense of QAVA. We discuss possible
defenses against QAVA in Appendix B.

Method VQA v2 scores

LQAVA(RSQ25) 44.07± 0.83
Multi-layer LQAVA(RSQ25) 42.54± 0.92

Table 15: The optimized version of QAVA, employing
multi-layer loss function LQAVA.

6 Conclusion

In this paper, we introduce a robust adversarial
attack method, QAVA, designed to generate ad-
versarial examples that significantly mislead re-
sponses to unknown target questions for a given
image. QAVA initially identifies the vulnerability
within the LVLMs, specifically the vision-language
alignment module. Subsequently, it executes adver-
sarial attacks utilizing a broader range of randomly
sampled, image-irrelevant questions. Extensive ex-
periments demonstrate the effectiveness of QAVA
in both white-box and black-box attack scenarios.
Additionally, we verify the high transferability of
QAVA across various LVLMs and different tasks.
Our findings with QAVA serve as a critical alert
regarding the security vulnerabilities of LVLMs.

7 Limitation

We summarize the limitations of our work as fol-
lows. We will try to do these in the future.

(1) Although extensive experiments have demon-
strated the effectiveness of attacks utilizing irrele-
vant questions, we have not yet provided a plausi-
ble explanation for the impact that such irrelevant
randomized questions can have on the attacks.

(2) Insufficient assessment of potential negative
impacts of QAVA. As we analyzed, the adversarial
examples obtained using QAVA are more aggres-
sive and may have a larger negative impact if they
are used for poisoning in the pre-training or super-
vised fine-tuning process of LVLMs. However, this
aspect was not evaluated experimentally.

(3) We only evaluated the transferring attack of
QAVA for image captioning tasks, not for broader
visual-language tasks.
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A The Algorithm of QAVA

Algorithm 1: The steps of QAVA(RSQN)
using PGD to attack Q-former
Input: image xi
Model: visual encoder fi, Q-former Q
Data: the question set T
Hyperparameter: questions number N ,

attack step α,
perturbation limitation
ϵ∞, number of attack
iterations n

Output: the adversarial image x′i
1 for k ← 1 to n do
2 LQAVA = 0;
3 for j ← 1 to N do

/* Randomly select a question
from T */

4 xt ∼ T ;
5 q = Q(fi(xi), xt);
6 q′ = Q(fi(x′i), xt);
7 LQAVA = LQAVA + 1

NLQAVA(q, q
′);

8 end
9 x′i = Clipϵ∞(x′i+α×sign(∇x′

i
LQAVA));

10 end
11 return x′i;

B The Discussion of Potential Defense
Methods for QAVA

QAVA targets the output of the vulnerable visual-
language alignment module within LVLMs. To
mitigate such attacks, potential defense strategies
include: (1) Implementing adversarial training of
the visual-language alignment module. This ap-
proach is cost-effective, as it does not involve the
computationally intensive LLM. (2) Developing
mechanisms to suppress the module’s output when
faced with image-unrelated questions. For instance,
earlier LVLMs (Qi et al., 2023) were susceptible
to jailbreak attacks via adversarial images irrele-
vant to the input instructions. Conversely, mod-
ern LVLMs, such as GPT-4 and Gemini, would
ignore input images unrelated to the instructions.
However, these models might still be vulnerable to
jailbreaks when adversarial images pertain to the
instructions.

C Visualization results on the QAVA
attack

In Sec. 4.4, we examine the imperceptibility of ad-
versarial examples produced by the QAVA attack.
The visual representations of these adversarial ex-
amples are provided in Fig. 4.

D Results of the extension to more
LVLMs of Tab. 11

Table 11 presents the inter-task transferability of
QAVA on InstructBLIP Vicuna-7B. Additionally,
Tab. 16 provides further results for other versions of
InstructBLIP, demonstrating QAVA’s applicability
across different LVLMs.

E More results on FlanT5XL

For Tables 2 and 5 in the main paper, we also con-
ducted the same experiments on FlanT5XL. The
results are shown in Tabs. 17 and 18.
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LLM of Attack
Loss L Image Caption evaluation on InstructBLIP

InstructBLIP method CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE

FlanT5XL

✘ ✘ 154.6 81.9 67.1 52.0 39.0 59.7 30.2 24.5

PGD
LLLM(RSQ10) 52.4 57.1 37.7 24.2 15.6 42.2 17.0 10.0
LQAVA(RSQ10) 19.7 37.8 20.6 11.8 7.1 28.4 10.5 4.3

CW
LLLM(RSQ10) 87.5 66.5 48.7 34.8 24.3 48.0 21.6 15.1
LQAVA(RSQ10) 6.8 25.3 11.6 4.8 2.3 24.3 7.7 2.4

FlanT5XXL

✘ ✘ 154.0 82.3 67.4 52.9 40.6 60.9 30.3 24.3

PGD
LLLM(RSQ10) 43.1 54.6 34.8 22.0 14.4 40.6 16.1 8.8
LQAVA(RSQ10) 23.2 41.4 23.2 12.3 6.7 30.3 11.3 5.6

CW
LLLM(RSQ10) 88.8 58.6 42.8 30.1 21.3 47.7 20.7 15.2
LQAVA(RSQ10) 11.6 23.8 11.6 5.7 3.0 25.2 7.9 3.1

Vicuna-13B

✘ ✘ 129.2 62.6 50.1 38.6 28.8 57.0 28.8 23.6

PGD
LLLM(RSQ10) 60.6 49.0 34.1 22.9 15.2 42.7 19.1 12.7
LQAVA(RSQ10) 12.7 25.4 12.6 6.0 3.2 25.9 8.9 3.6

CW
LLLM(RSQ10) 72.5 52.0 36.7 25.4 17.4 44.6 20.9 14.8
LQAVA(RSQ10) 7.2 25.0 11.7 5.4 2.9 22.4 7.8 3.0

Table 16: Results of inter-task transferability (VQA→ caption) of adversarial examples on InstructBLIP. The grey
lines are the results of clean images. QAVA(RSQ10) effectively improves the tasks transferability.

Attack Loss Question InstructBLIP(FlanT5XL)
method L strategy Overall Other Number Yes/No

✘ ✘ ✘ 74.54 63.07 66.52 91.31

PGD

LLLM
WTQ50 40.91 18.77 31.02 71.63
RSQ25 49.78(±0.92) 26.98 46.60 79.33

LQAVA

WTQ50 36.11 17.71 34.33 59.70
RSQ1 41.54(±1.55) 22.94 41.50 64.87
RSQ5 36.30(±1.89) 19.76 32.81 58.07
RSQ10 34.31(±2.06) 18.10 31.61 55.42
RSQ15 35.22(±1.28) 17.76 33.13 57.72
RSQ20 35.50(±1.21) 18.14 34.50 57.56
RSQ25 35.89(±1.70) 18.47 35.19 57.92

CW

LLLM
WTQ50 41.95 20.08 29.09 73.21
RSQ25 52.77(±0.90) 32.04 47.13 80.45

LQAVA

WTQ50 9.61 4.83 5.29 16.87
RSQ1 20.47(±4.21) 10.42 21.25 32.83
RSQ5 11.99(±1.99) 5.43 11.31 20.42
RSQ10 10.62(±1.55) 5.08 7.79 18.41
RSQ15 12.01(±1.42) 5.59 9.99 20.68
RSQ20 11.46(±1.92) 5.40 9.89 19.52
RSQ25 10.67(±2.29) 4.64 8.92 18.75

Table 17: LQAVA is better than LLLM in use of RSQN.

Attack Question InstructBLIP(FlanT5XL)
method strategy Overall Other Number Yes/No

PGD

WTQ50 36.11 17.71 34.33 59.70

RSQ10 34.31(±2.06) 18.10 31.61 55.42

RSQt
10 34.54(±0.70) 18.23 29.67 56.43

RSQc
10 34.28(±2.40) 18.36 31.93 54.94

VQG10 35.83(±2.48) 18.81 35.18 57.36

CW

WTQ50 9.61 4.83 5.29 16.87

RSQ10 10.62(±1.55) 5.08 7.79 18.41

RSQt
10 9.87(±1.01) 4.94 8.66 16.41

RSQc
10 9.76(±2.89) 4.83 7.24 16.69

VQG10 9.04(±1.84) 4.61 7.58 15.04

Table 18: The ablation study of the question sampling
strategy as outlined in Sec. 3.2.
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(a) Clean image with VQA score
78.00.

(b) QAVA adversarial image with
VQA score: 44.85.

(c) QAVA+SSAH adversarial image
with VQA score: 50.67.

Figure 4: The clean images, the QAVA adversarial images, and the QAVA+SSAH adversarial images. All
experiments are conducted using InstructBLIP Vicuna-7B with the attack LQAVA(RSQ10).
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