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Abstract

We introduce IFIR, the first comprehensive
benchmark designed to evaluate instruction-
following information retrieval in expert do-
mains. IFIR includes 2,426 high-quality exam-
ples and covers eight subsets across four spe-
cialized domains: finance, law, healthcare, and
science literature. Each subset addresses one
or more domain-specific retrieval tasks, repli-
cating real-world scenarios where customized
instructions are critical. IFIR enables a detailed
analysis of instruction-following retrieval ca-
pabilities by incorporating instructions at dif-
ferent levels of complexity. We also propose
a novel LLM-based evaluation method to pro-
vide a more precise and reliable assessment of
model performance in following instructions.
Through extensive experiments on 15 frontier
information retrievers, including those based
on LLMs, our results reveal that current models
face significant challenges in effectively follow-
ing complex, domain-specific instructions. We
further provide in-depth analyses to highlight
these limitations, offering insights to guide fu-
ture advancements in retriever development.

1 Introduction

The instruction-following ability has become a cor-
nerstone for LLMs (Ouyang et al., 2022; Jiang
et al., 2023; Groeneveld et al., 2024; AI@Meta,
2024; Yang et al., 2024), empowering them to in-
terpret and respond to complex user commands
and perform a wide range of user-specific tasks.
Despite its critical importance, the instruction-
following capability remains underexplored in the
context of information retrieval (IR).

Current information retrievers struggle to meet
the nuanced requirements of users in real-world
applications, particularly in specialized fields like
law (Ma et al., 2021; Goebel et al., 2024), health-
care (Roberts et al., 2020; Ionescu et al., 2024; Ke
et al., 2024), and scientific research (Cohan et al.,

Figure 1: (Top): An illustration of instruction-following
IR scenarios explored in this study. The example sim-
ulates a legal case search, where the user provides de-
tailed instructions to retrieve relevant legal cases. Cur-
rent IR systems struggle to handle such complex queries.
(Bottom left): As a result, users have to break down
their information needs into simpler, iterative search
queries and manually filter the retrieved cases, resulting
in a time-consuming and inefficient process. (Bottom
right): This study focuses on evaluating the progress
and limitations of current end-to-end retrieval systems
in expert-domain instruction-following IR.

2020; Wang et al., 2023a; Liu et al., 2024), where
precise and context-aware retrieval is crucial (Sax-
ena et al., 2022; Mysore et al., 2022; Weller et al.,
2025b). For instance, in legal research, lawyers
often search for target cases using detailed instruc-
tions that incorporate specific legal criteria, con-
textual information, and desired outcomes, as il-
lustrated in Figure 1. However, traditional IR sys-
tems (Johnson et al., 2016; Liu et al., 2021; Chan
et al., 2024) lack the ability to fully understand and
process such complex user instructions in an end-to-
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end manner. Consequently, users must break down
their complex information-seeking needs into sev-
eral simpler search queries and manually filter the
retrieved cases (Liu et al., 2021), which is time-
consuming and inefficient.

On the other hand, existing instruction-following
IR benchmarks typically employ simplified instruc-
tions, such as single sentence (Su et al., 2023a)
or a set of keywords (Zhao et al., 2024a). This
simplification in evaluation leads to an incom-
plete assessment of the model’s real-world per-
formance. Although concurrent works like FOL-
LOWIR (Weller et al., 2024a, 2025a), INSTRUC-
TIR (Oh et al., 2024) and BRIGHT (Su et al.,
2024) incorporate more complex instructions, they
do not establish explicit complexity levels to eval-
uate retrievers’ fine-grained abilities in following
instructions. Moreover, these studies primarily fo-
cus on general domains, leaving the evaluation of
instruction-following retrieval in expert domains
largely underexplored.

In this work, we introduce IFIR, a com-
prehensive benchmark designed to evaluate the
Instruction- Following capabilities of Information
Retrievers, particularly in the context of special-
ized domains. IFIR includes eight subsets covering
four specialized domains: finance, scientific lit-
erature, law, and healthcare. To provide a more
granular evaluation, we create three levels of in-
struction complexity for each domain, represent-
ing a range of real-world information retrieval sce-
narios in expert domains. IFIR includes 2,426
instruction-following queries, each averaging 6.14
ground-truth passages. To ensure the dataset’s high
quality, we conduct a comprehensive human expert
validation during its construction. Moreover, rec-
ognizing the limitations of traditional evaluation
methods in measuring instruction-following IR per-
formance, we introduce a novel LLM-based metric,
INSTFOL, designed to more accurately assess how
well retrievers follow instructions.

Through extensive experiments on 15 frontier re-
trievers, including those based on LLMs, we derive
three key findings: (1) BM25 performs relatively
well because the instructions in expert domains
contain more glossary terms. (2) Instruction-tuned
retrievers like INSTRUCTOR (Su et al., 2023b) do
not perform significantly better than their base mod-
els, i.e., GTRs (Ni et al., 2022). This demonstrates
that current instruction-tuned retrievers may not be
suitable for complex instructions. (3) Most eval-
uated models experience performance declines as

the complexity of the instructions increases. (4)
LLM-based retrievers demonstrate more robust per-
formance on both nDCG and INSTFOL, highlight-
ing their potential in managing more complex re-
trieval tasks in specialized domains.

We conclude our main contributions as follows:

• We introduce IFIR, a comprehensive IR bench-
mark to evaluate the instruction-following abil-
ity of information retrievers across specialized
domains, meeting their specific demands. The
experiments provide insights into end-to-end re-
trieval in specialized domains.

• We propose INSTFOL, the first LLM-based
evaluation method to measure the instruction-
following ability of information retrievers.

• We conduct extensive experiments encompassing
a wide range of retrievers, deriving key findings
about their instruction-following abilities. Our
experimental results reveal the potential of LLM-
based retrievers in instruction-following retrieval.

2 Related Work

2.1 Expert-domain IR Benchmarks

Information retrieval plays a crucial role in expert
domains by enabling efficient access to domain-
specific knowledge, facilitating evidence-based
decision-making, and accelerating research. In re-
cent years, there has been a growing emphasis on
developing IR benchmarks in specialized domains,
such as law (Xiao et al., 2019; Li et al., 2023), fi-
nance (Jangid et al., 2018; Chen et al., 2021; Zhao
et al., 2024b), scientific literature (Wu et al., 2024;
Ajith et al., 2024), and healthcare (Roberts et al.,
2020; Tamine and Goeuriot, 2021; Xiong et al.,
2024). However, existing benchmarks primarily
employ oversimplified queries, lacking the depth
and specificity required in real-world specialized
domains. For instance, in healthcare, practitioners
often formulate complex, context-rich queries that
integrate patient-specific information (e.g., medi-
cal history and treatment plans) to retrieve relevant
clinical passages. Such queries go beyond simple
keyword search and require models to handle com-
plex, user-customized needs. This gap underscores
the need for a new benchmark that thoroughly eval-
uates the ability of retrievers to handle instruction-
following IR tasks in specialized domains.
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Figure 2: Dataset Construction Pipeline: We derive a specific task according to the dataset, which then guides
the generation of instructions based on the original query and task conditions. An LLM is used to assess whether
the corpora are relevant to these instructions. As illustrated in the figure, different colors in the “Task” section
correspond to the conditions outlined in the “Instruction” section.

2.2 Instruction-Following IR
Several studies have proposed novel training tech-
niques to improve retrievers’ instruction-following
capabilities (Su et al., 2023a; Asai et al., 2023;
Wang et al., 2023c). However, due to the lack of
instruction-specific IR benchmarks during model
development, these approaches have typically
been evaluated using traditional benchmarks like
BEIR (Thakur et al., 2021) and MTEB (Muen-
nighoff et al., 2023), which contain queries without
complex instructions. To address this gap, new
instruction-following IR benchmarks have been
proposed. Specifically, INSTRUCTIR (Oh et al.,
2024) reformulates queries in existing retrieval
datasets by incorporating user-aligned instruction.
However, it limits each query to a single relevant
passage, which does not reflect the complexity
of real-world scenarios where multiple relevant
passages may exist. While FOLLOWIR (Weller
et al., 2024a) introduces more complex instructions
and passage setups, it focuses on the reranking
task. Moreover, these studies primarily focus on
instruction-following retrieval in general domains,
leaving the evaluation of instruction-following IR
in expert domains largely underexplored.

3 IFIR Benchmark

We introduce IFIR, a comprehensive bench-
mark designed to assess and enhance retrievers’
instruction-following capabilities in expert do-
mains. The construction process of IFIR, illus-
trated in Figure 2, employs a semi-automated,
human-in-the-loop pipeline that ensures both scala-

bility and high quality. Specifically, we expand the
queries in existing specialized-domain IR bench-
mark (detailed in §3.1) by incorporating detailed
instructions that closely mirror real-world scenar-
ios in relevant expert domains (§3.2). Each ex-
ample is thoroughly validated by domain experts
(details of annotator selection and assigned tasks
are provided in Table 4 in Appendix), ensuring that
the instructions are contextually relevant and rep-
resent real-world challenges (§3.2). Additionally,
the corresponding relevant passages are carefully
verified for completeness and accuracy (§3.3). In
the following subsections, we provide a detailed de-
scription of each step in the construction pipeline.

3.1 Retrieval Dataset Collection

To facilitate comprehensive evaluations of
instruction-following capabilities across diverse
expert domains, IFIR spans four specialized
domains: finance, scientific literature, law, and
healthcare. These domains are chosen for their
significant demand for precise information
retrieval and the complexity of their often nuanced
queries. For each domain, we extend one or two
well-established traditional IR benchmarks (see
Table 1), adapting them to instruction-following
IR tasks. This ensures that IFIR captures the
real-world challenges for each expert domain.

3.2 Instruction Annotation

We now describe the process of augmenting the
original IR benchmark queries with instructions
that mirror real-world demands and challenges spe-
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Domain Adopted Datasets # Qry Corpus Size # RP Designed Tasks Reflecting Real-world Challenges

Finance FiQA (Jangid et al., 2018) 1,718 57,638 3.54 Retrieve financial suggestions based on user-specific
needs to support informed decision-making.

Scientific SciFact-open (Wadden et al., 2022) 152 500,000 4.84 Retrieve relevant scientific literature tailored to
specific scientific research needs.Literature NFCorpus (Boteva et al., 2016) 86 3,633 2.81

Law
AILA (Bhattacharya et al., 2019) 85 2,914 2.01 Retrieve legal cases that satisfy customized demands.
FIRE (Mandal et al., 2017) 168 1,745 3.36 Retrieve legal cases to support the judicial decision.

Healthcare
TREC-PM (Roberts et al., 2017, 2018) 172 241,006 15.61 Retrieve relevant clinical trials based on patient’s

demographics (e.g., age, gender, medical history)TREC-CDS (Roberts et al., 2015) 43 633,955 10.84

Table 1: Overview of the adopted datasets and designed instruction-following IR tasks in IFIR, along with basic
statistics for each domain. “# RP” represents the average relevant passage number per instruction-following query.

cific to each domain. Details of instruction gener-
ation are shown in Appendix A.1. These instruc-
tions introduce complex, often implicit conditions
that significantly increase the difficulty of retrieval
tasks, as they require the model to not only iden-
tify relevant passages but also interpret and follow
specific instructions tied to nuanced, task-specific
information retrieval. To ensure high-quality in-
struction annotation, we employ a human-in-the-
loop pipeline. We first use LLMs (i.e., GPT-4o
2024-05-13 version) to generate instructions at
varying levels of complexity for each query. These
instructions are then reviewed and refined by do-
main experts to ensure they are precise and aligned
with the real-world demands of the respective do-
mains. We detail the annotation process for each
domain as follows:

Finance In the finance domain, we focus on the
instruction-following IR task centered around per-
sonal finance inquiries, simulating scenarios where
users seek guidance in making informed financial
decisions. We design three complexity levels of
instructions in queries: The first level involves sim-
ple instructions, e.g., “Please help me to find a
financial suggestion for the query {$query}.” The
second level includes additional personal informa-
tion such as age, occupation, and financial status.
The third level builds upon the second level by in-
corporating specific financial goals. For example,
“As a 40-year-old accountant with a steady income
and moderate savings, I am seeking advice on the
best business structure for taxes when combining
full-time work with running a small side business.
I am looking for insights on how to optimize tax
efficiency while balancing the demands of my full-
time job and side business.”

Scientific Literature In the science literature
field, we focus on the science passage searching
queries, simulating a person working in a relevant

area(e.g., teacher, student, etc.) trying to find pas-
sages related to scientific claims or problems. We
recognize that query instructions can vary in re-
search topics (e.g., society, history, biomedical,
etc.) and research objectives (e.g., influence, rea-
soning process). We use the Scifact-open dataset
to generate three different levels of instructions.
The first level of instruction might state, “Please
help me find relevant evidence to support the sci-
entific claim.” The second level uses previously
annotated “SUPPORT” and “CONTRADICT” tags
to generate instructions like “Please help me to find
supporting evidence for this scientific claim.” The
third level includes more customized requirements
like research topics and objectives.

Law In the legal field, we focus primarily on the
legal case retrieval task, simulating someone(i.e.,
a lawyer) attempting to find relevant references
from previous legal cases. We have two types of
instructions. One type is to retrieve prior cases
that support the reasoning process for the current
case, which originates from the FIRE2017 dataset.
The other, derived from AILA2019, is designed to
retrieve similar cases according to the demands of
legal professionals. For the first type, we construct
instructions based on the context in the passage that
requires citation. For the second type, we construct
three different levels of instructions. The first level,
similar to previous domains, is “Please help me to
find cases similar to the current legal case.” The
second level adds conditions including whether
the case is beneficial to the defendant or plaintiff.
The third level constructs instructions searching for
cases relevant to some details of the current case
while still satisfying the previous two levels.

Healthcare In the healthcare domain, we focus
on retrieving healthcare-relevant passages (e.g.,,
clinical trials, diagnoses), simulating a doctor
finding passages suitable for patients. The seed
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datasets are derived from TREC-CDS and TREC-
PM. Given the two different datasets and corre-
sponding tasks in the biomedical field, TREC-CDS
provides a summary accompanied by a detailed de-
scription, which we directly use as the instruction.
Inspired by the TREC-CDS track, we expand the
basic information provided in the TREC-PM track
and construct three levels of instructions. The first
level contains conditions of the patient’s disease
and gene variation. The second level adds condi-
tions about the patient’s demographics, including
age and gender. The third level allows the LLM
to create information about the patient’s treatment
history and family medical history.

Table 1 presents the data statistics of IFIR. It in-
cludes a total of 2,426 instruction-following queries
across four expert domains. Examples of queries
for each domain are provided in Appendix A.2.
Each query is carefully reviewed by one of domain
experts (Table 4 in Appendix).

3.3 Relevant Passage Annotation
We next discuss the process of annotating relevant
passages. For each instruction-following query in
IFIR, we select relevant passages from its original
dataset. The key insight is that if a passage is anno-
tated as relevant to a query, it may also be relevant
to an instruction constructed based on that query.
Therefore, we need to verify whether these query-
relevant passages satisfy the conditions outlined
in the corresponding instructions. Specifically, we
first use LLM (i.e., GPT-4o) to assess the relevance
of each original relevant passage to the instruction.
The LLM is tasked with generating justification ex-
planations alongside its relevance assessments (we
present prompt in Appendix B). Human annotators
then review the relevance of each passage and the
justifications provided by the LLM. If a passage
is found to be misaligned with the instruction, the
annotators exclude it.

3.4 Dataset Analysis
Table 1 presents the basic statistics of IFIR. We
also conduct a final human evaluation of data qual-
ity on 50 examples from each domain subset. For
each domain, an external expert (not involved in
the data annotation) assesses the quality of each ex-
ample, providing ratings across several criteria on
a scale of 1 to 5. The results, shown in Table 2, in-
dicate consistently high scores (> 4) for instruction-
following query and relevant passages. These eval-
uation results indicate the high quality of the bench-

Evaluation Criteria Score (1-5)

Instruction-Following Query
Naturalness 4.24
Fluency 4.81
Expertise 4.87

Relevant Passage (RP)
Relevant Passage Agreement 4.43

Excluded RP
Exclusion Agreement 4.32

Table 2: Human Validation Results. Naturalness of
instructions evaluates how well the instructions align
with real-world demands. The Relevant Passage Agree-
ment Score refers to human annotators’ agreement with
the LLM on identifying a golden passage, while the
Exclusion Agreement Score reflects human annotators’
agreement on excluding a passage.

mark proposed by us, further demonstrating its
reliability for assessing instruction-following capa-
bilities in relevant tasks.

4 Experiment Setup

This section outlines the experimental setup of our
study. We first introduce the two automated met-
rics used for evaluating IFIR, and then discuss the
evaluated retrieval systems. Implementation details
can be found in Appendix B.

4.1 Evaluation Metrics

nDCG We use the widely-adopted IR metric,
nDCG (Järvelin and Kekäläinen, 2002), to eval-
uate retrieval performance. Specifically, given a
query with instruction Q, golden passages G, the
retrieved passages P are compared against the G
using nDCG to quantify the accuracy and relevance
of the retrieval. While nDCG offers a broad assess-
ment of a model’s retrieval capabilities, it does not
capture the fine-grained aspects of a model’s ability
to follow instructions.

INSTFOL To address the aforementioned limita-
tion, we introduce a new LLM-based metric, INST-
FOL, specifically designed to evaluate instruction-
following capabilities on IFIR. The core idea is to
assess the improvement a retriever demonstrates
when instructions are incorporated into the query,
compared to when they are not. We adopt the eval-
uation prompt from G-Eval (Liu et al., 2023), as
shown in Figure 8 in the Appendix, and use GPT-
4o-mini as the base evaluator to assess the align-
ment between each retrieved passage and the given
instruction. Considering the potential biases and
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FiQA SciFact-open NFCorpus AILA FIRE TREC-PM TREC-CDS Average

nDCG INSTFOL nDCG INSTFOL nDCG INSTFOL nDCG INSTFOL nDCG INSTFOL nDCG INSTFOL nDCG INSTFOL nDCG INSTFOL

Non-instruction-tuned Models
GTR-XL 0.44 -4.85 0.54 -2.93 0.60 7.30 0.05 -0.13 0.54 0.40 0.31 -0.85 0.15 7.69 0.37 0.95
BM25 0.25 1.10 0.49 -0.40 0.43 1.46 0.10 0.02 0.55 0.03 0.47 3.43 0.07 -2.14 0.34 0.50
GTR-Large 0.39 -6.47 0.50 0.05 0.51 -3.37 0.07 -0.36 0.49 -5.21 0.28 -1.46 0.09 11.38 0.33 -0.78
GTR-Base 0.33 -4.62 0.47 -0.62 0.47 -0.08 0.05 0.54 0.52 0.81 0.27 -0.65 0.13 7.03 0.32 0.35
Contriever 0.13 0.52 0.29 -8.22 0.36 0.17 0.08 0.09 0.51 2.82 0.09 1.24 0.04 2.46 0.21 -0.13
ColBERT 0.07 0.17 0.14 0.34 0.16 0.06 0.07 -0.01 0.39 1.44 0.02 1.03 0.00 -0.94 0.12 0.30

Instruction-tuned Models
NV-Embed-v2 0.68 2.76 0.65 -1.10 0.71 13.70 0.07 -0.35 0.54 0.60 0.54 0.72 0.40 -5.19 0.51 1.59
GritLM-7B 0.63 3.09 0.63 -0.06 0.70 15.10 0.10 -0.32 0.51 4.01 0.57 -0.09 0.42 -0.32 0.51 3.06
E5-mistral-7B 0.54 4.26 0.63 0.05 0.69 14.14 0.10 0.08 0.57 6.31 0.56 0.92 0.28 -4.42 0.48 3.05
Instructor-XL 0.48 1.03 0.49 -2.36 0.53 0.35 0.07 -0.30 0.53 1.96 0.17 -2.06 0.19 0.18 0.35 -0.17
Instructor-Large 0.49 3.65 0.46 0.20 0.56 3.68 0.07 0.29 0.51 2.19 0.15 -3.86 0.17 6.70 0.34 1.84
Promptriever-7B 0.22 8.95 0.34 3.69 0.60 18.17 0.09 -0.31 0.52 5.18 0.35 13.26 0.09 7.07 0.32 8.00
Instructor-Base 0.39 3.31 0.45 0.42 0.48 2.06 0.06 0.18 0.51 -2.70 0.17 1.34 0.09 13.93 0.31 2.65

Proprietary Models
OpenAI-v3-large 0.54 1.57 0.59 -0.48 0.58 0.31 0.11 -0.03 0.57 -0.03 0.52 0.18 0.30 -5.72 0.46 -0.60
OpenAI-v3-small 0.46 2.31 0.58 -0.94 0.56 0.83 0.08 -0.29 0.53 3.26 0.41 -1.21 0.24 -0.81 0.41 0.45

Table 3: Performance of retrievers on IFIR measured by nDCG@20 and INSTFOL@20 (%). Fine-grained results(i.e.,
hybrid) can be found at Appendix C. Model performance is ranked based on average results with the nDCG metric.

inaccuracies introduced by LLMs, we use the Prob-
ability Normalization technique (as detailed in Ap-
pendix B ) to reduce overestimation, which has
been proven effective in current works (Liu et al.,
2023; Liusie et al., 2024). For each passage in the
Top-K retrieval results, the LLM is instructed to
produce the relevance score. We then average the
scores as the final matching score S. The INST-
FOL @K for the Top-K retrieved passages is then
calculated as:

INSTFOL@K = (Sinst − Sq) · α (1)

where Sq measures how well the passages retrieved
by the original query (without instruction) align
with the given instruction; Sinst measures how well
the passages retrieved by the query (with instruc-
tion) meet the same instruction. The factor α is a
normalization function that ensures the INSTFOL

score ranges between -1 and 1. In practice, we
set α as 1

3−Sq
. The implementation details of the

INSTFOL metric are provided in Appendix B.
Our in-depth analysis in Section 6 demonstrates

that INSTFOL exhibits a high correlation with hu-
man expert evaluations, highlighting its reliability.

4.2 Evaluated Retrievers

We evaluate a wide range of retrievers, with model
sizes ranging from 110M to 7B parameters. These
models are categorized into two main types:

Non-instruction-tuned models We include the
following commonly-used non-instruction-tuned
models for the experiments: (1) BM25 (Robertson

et al., 2009), which is a lexical retriever; (2) Col-
BERT (Khattab and Zaharia, 2020), which encodes
queries and documents separately and introduces a
mechanism of delayed interaction to be more effec-
tive; (3) Contriever (Izacard et al., 2022), which is
a BERT-based model trained by contrastive learn-
ing; and (4) GTR (Ni et al., 2022), which uses the
encoder from the T5 model and are pre-trained on
MS MARCO (Bajaj et al., 2018).

Instruction-tuned retrievers For the instruction-
tuned models, we select: (1) INSTRUCTOR (Su
et al., 2023b), which are finetuned on the GTR fam-
ily using MEDI datasets, and can be utilized for var-
ious tasks including retrieval; (2) E5-mistral-7b-
instruct (Wang et al., 2023b), which is a retriever
based on a Mistral model and trained on synthetic
data. (3) GritLM-7B (Muennighoff et al., 2024),
which is also a Mistral model, trained on the syn-
thetic data from E5-mistral-7b-instruct and MEDI2,
capable of performing both generation and retrieval
tasks; (4) Promptriever (Weller et al., 2024b), is
an instruction-trained bi-encoder retriever special-
ized for instruction-following tasks. The model we
choose is Promptriever-7B. (5) NV-Embed (Lee
et al., 2024) is a retriever trained by a two-stage con-
trastive instruction-tuning method. (6) Proprietary
Retrievers, including OpenAI’s Text-Embedding-
v3-Large and Text-Embedding-v3-Small.

5 Experimental Results

This section first presents the key experimental
results, followed by an in-depth analysis of model

10191



performance, an error case study, and a reliability
evaluation of the proposed IFIR metric.

5.1 Main Results

Table 3 presents the main results, from which we
derive the following key findings:

Non-instruction-tuned models BM25 demon-
strates relatively good performance, suggesting pos-
sible lexical bias in the datasets. Moreover, GTR
models outperform BERT-based models. Unlike
ColBERT and Contriever, which are trained solely
on the MSMARCO dataset, GTR models also uti-
lize the collected community question-answer pairs
and Natural Question (Kwiatkowski et al., 2019)
datasets. These datasets, which are more closely
aligned with human interactions, may contribute to
the superior performance of GTR models.

Instruction-tuned models (1) The INSTRUC-
TOR models show minimal improvement over their
backbone (i.e., GTR), and in some cases, even
perform worse. This may indicate that the IN-
STRUCTOR models could be overfitting on specific
datasets or are better suited to shorter instructions.
(2) GritLM-7B, which is of the same size as E5-
mistral-7b-instruct, demonstrates stronger perfor-
mance on healthcare domains where E5-mistral-7b-
instruct encounters difficulties. This performance
gap may stem from GritLM-7B’s inclusion of train-
ing data in extra domains, which likely boosts its
capacity to handle healthcare content more effec-
tively. (3) Notably, Promptriever-7b outperforms
other open-source retrievers in the INSTFOL met-
ric, while NV-Embed-v2 and GritLM-7B demon-
strate outstanding performance in the nDCG met-
ric. Promptriever-7b excels in INSTFOL due to its
targeted training on instance-level instructions, en-
abling it to adjust relevance based on user input.
(4) The proprietary retriever, OpenAI-v3-Large,
achieves relatively strong performance on nDCG.
However, both OpenAI’s retrievers do not demon-
strate superior performance on INSTFOL compared
to other retrievers. Unfortunately, the technical de-
tails of them, including their training processes, are
confidential, which limits our ability to fully under-
stand the factors contributing to their performance.

Overall The current training methodologies that
integrate instructions are not yet perfect solutions
for handling long instructions across various do-
mains. From the relatively good performance of
BM25 on both metrics, we can deduce that lexi-

cal search may serve as an auxiliary tool for com-
plex instructions in specific domains. Meanwhile,
although some LLM-based retrievers do not per-
form well in traditional metrics like nDCG, they
exhibit a superior and stable instruction-following
ability compared to other retrievers. Addition-
ally, the instruction-trained method introduced by
Promptriever is highly intuitive and effective, hold-
ing promise for future integration into IR systems.

5.2 Analysis

Scaling up model size leads to better retrieval
performance. From Table 3, we can conclude
that the scaling law applies to retrievers as well.
Specifically, as model sizes increase from 110M
to 1B, both the GTR and INSTRUCTOR mod-
els demonstrate improved nDCG metrics. Ad-
ditionally, LLM-based retrievers(e.g., E5-mistral-
7b-instruct, GritLM-7B) exhibit relatively strong
performance on average. However, when con-
sidering instruction-following ability, the scaling
law does not apply when the model size is below
the 1B threshold. Given the strong performance
of GritLM-7B and Promptriever in instruction-
following ability, it can be inferred that the current
retrieval system can be further enhanced by LLMs
finetuned for retrieval tasks.

Existing instruction training methods are still
limited. Currently, some retrievers, such as IN-
STRUCTOR and GritLM-7B, are trained with in-
structions like “Retrieve document from Wikipedia”
or “Classify the question’s topic” to fit the vary-
ing demands of different domains. We investigate
how significantly such training methods can en-
hance performance across various domains. Ac-
cordingly, as described in these works, we incorpo-
rate these instructions as prompts in both the query
and embedding processes. We format the input
as “[Prompt] [Query] [Instruction]”.
The prompt is actually the instruction in these
works which gives hints to target tasks and do-
mains, e.g., “Represent the science question for
retrieval. ” which is different from our instruction.
We use instruction in these works as a prompt to
check whether this is an enhancement compared
to embedding with no prompt. The results are
shown in Figure 3, with detailed outcomes avail-
able in the Appendix C.2. We observe that adding
instructions does not significantly impact the fi-
nal performance. Additionally, for LLM-based re-
trievers (i.e., GritLM), performance even declines.
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Figure 3: The nDCG improvement when the model is
provided with detailed instructions for retrieval.
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Figure 4: Average nDCG@20 performance on different
levels of instructions in different domains.

Therefore, for various domains, merely adding min-
imal instructions is insufficient. Domain-specific
datasets and more complex instructions are re-
quired for different domains.

Increase in instruction complexity results in per-
formance decline. As discussed in §3.2, to test
the instruction-following abilities of different re-
trieval systems with finer granularity, we construct
instructions with varying complexity levels. As
shown in Figure 4, there is a noticeable perfor-
mance degradation with level2 and level3 instruc-
tions compared to level1. Interestingly, in some
subsets, level3 performs better than level2. This
improvement is attributed to the fact that level3
instructions are longer and contain more explicit
conditions, providing more hints about possible
candidates. Overall, we observe that retrievers fine-
tuned from LLMs exhibit robust and superior per-
formance compared to other models. This excellent
performance may result from LLMs’ general capa-
bilities and long-context abilities. Detailed results
can be found in the Appendix C.3.

5.3 Error Analysis

We select those instructions with both low nDCG
scores and INSTFOL scores and create a taxon-
omy of these instructions, categorizing them as (1)

Long Instructions. In the legal domain, some in-
structions exceed 1,024 tokens due to the inclusion
of lengthy legal case. Current retrievers are typi-
cally trained with a maximum token length of 512,
which cannot perfectly handle these lengthy in-
structions. (2) Dense with Specialized Knowledge.
For instructions that require specialized knowledge,
especially in the science literature and healthcare
domains, common training data do not cover all the
expert knowledge needed in specialized domains.
(3) Highly Customized Instructions, as illustrated
in Appendix B. In finance and healthcare domains,
users or doctors have several prioritized goals and
needs that traditional retrievers may not recognize.

6 Reliability Analysis of INSTFOL

To evaluate the reliability of the proposed LLM-
based evaluation metric, INSTFOL, we conduct a
thorough analysis. Our focus is on INSTFOL’s
core component: the LLM’s ability to score the
relevance between an instruction-following query
and a passage. We validate these LLM-based rele-
vance scores by comparing them with human evalu-
ation scores. Specifically, we randomly sample 400
query-passage pairs and assign each to one domain
expert for evaluation. Both the human evaluators
and the LLM (i.e., GPT-4o) are instructed to rate
relevance on a scale of 1 to 5. After collecting the
scores from both sources, we evaluate their align-
ment at the instance level. Notably, we observe
a strong Pearson correlation coefficient of 0.704,
indicating that INSTFOL can effectively assess a
retriever’s instruction-following capabilities.

7 Conclusion

We introduce IFIR, a novel IR benchmark designed
to assess the instruction-following capabilities of
retrievers. IFIR focuses on domain-specific in-
structions, reflecting the diverse needs across var-
ious fields. Our experiments reveal that current
instruction-tuned models struggle with long, com-
plex instructions. Moreover, as the complexity in-
creases, a noticeable performance decline occurs
across all tested retrieval systems. However, LLM-
based retrievers demonstrate more robust perfor-
mance and relatively better results compared to
other models. This suggests potential solutions for
end-to-end specialized-domain retrieval scenarios.
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Limitations

In this section, we list three limitations of this
study, each of which opens avenues for future
improvements. First, our dataset has a limited
number of queries accompanied by instructions,
and we do not provide a training dataset for fu-
ture works to train their models. Second, we do
not compare the performance of domain-specific
retrievers like BioBERT (Lee et al., 2020) with
general-purpose retrievers. Domain-specific re-
trievers, equipped with specialized training data,
may achieve superior results in niche fields. Future
work should explore the integration and evaluation
of such specialized models, particularly in domains
like healthcare or law, where domain knowledge is
crucial. Finally, there are some relevance judgment
gaps (Abbasiantaeb et al., 2024) in the selected
seed datasets. Since we select relevant passages
based on previously annotated passages, this ap-
proach may lead to some relevant passages being
ignored. Future work could investigate ways to
improve relevance judgment, potentially through
the use of more crowd-sourced human annotation.

References
Zahra Abbasiantaeb, Chuan Meng, Leif Azzopardi, and

Mohammad Aliannejadi. 2024. Can we use large
language models to fill relevance judgment holes?
arXiv preprint arXiv:2405.05600.

AI@Meta. 2024. The llama 3 herd of models.

Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya
Goyal, Danqi Chen, and Tianyu Gao. 2024. Lit-
search: A retrieval benchmark for scientific literature
search. arXiv preprint arXiv:2407.18940.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2023. Task-aware retrieval
with instructions. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 3650–
3675.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human gener-
ated machine reading comprehension dataset.

Paheli Bhattacharya, Kripabandhu Ghosh, Saptarshi
Ghosh, Arindam Pal, Parth Mehta, Arnab Bhat-
tacharya, and Prasenjit Majumder. 2019. Fire 2019
aila track: Artificial intelligence for legal assistance.
In Proceedings of the 11th annual meeting of the fo-
rum for information retrieval evaluation, pages 4–6.

Vera Boteva, Demian Gholipour, Artem Sokolov, and
Stefan Riezler. 2016. A full-text learning to rank
dataset for medical information retrieval.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. arXiv preprint arXiv:2404.00610.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R Routledge,
et al. 2021. Finqa: A dataset of numerical reasoning
over financial data. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3697–3711.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S. Weld. 2020. Specter:
Document-level representation learning using
citation-informed transformers. In ACL.

Randy Goebel, Yoshinobu Kano, Mi-Young Kim, Ju-
liano Rabelo, Ken Satoh, and Masaharu Yoshioka.
2024. Overview and discussion of the competi-
tion on legal information, extraction/entailment (col-
iee) 2023. The Review of Socionetwork Strategies,
18(1):27–47.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur,
Khyathi Chandu, Arman Cohan, Jennifer Dumas,
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, William Smith,
Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richard-
son, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca
Soldaini, Noah Smith, and Hannaneh Hajishirzi.
2024. OLMo: Accelerating the science of language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15789–15809, Bangkok,
Thailand. Association for Computational Linguistics.

Bogdan Ionescu, Henning Müller, Ana-Maria Drăguli-
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A IFIR Benchmark

A.1 Instruction Generation

We first ask LLM (i.e., GPT-4o) to generate an in-
struction according to the reality demands, with the
prompts on dataset NFCoprus shown in Figure 5.
And then we check whether previous annotated pas-
sages for the query satisfy the generated instruction,
with the prompts shown in Figure 6.

For the datasets with multi-levels, including
FiQA, SciFact-open, AILA, and TREC-PM, we
do not construct a fully complex instruction all at
once. Since we have different levels of reasoning,
we ask the LLM to detail the instruction level by
level, akin to a bottom-up approach. For example,
for a given instruction at level 2, such as “Please
help me to find the plaintiff’s beneficial legal case.”
we request the LLM to generate a more complex
instruction for the next level that also includes the
“plaintiff’s beneficial” condition. The prompt for
instruction generation on dataset AILA is shown in
Figure 7.

A.2 Details of Instructions in Each Domain

Instruction examples are shown in Table 5. For the
legal datasets, which belong to the legal domain,
the query part consists of only a summary or is
omitted due to the length context of legal cases.

Different complexity instruction examples are
shown in Table 6. To emphasize, we describe the
content of each level again. As the level increases,
so do the conditions. Target passages in Level 3
must satisfy the conditions of Levels 1 and 2, and
Level 2 candidates must satisfy Level 1 conditions.
(1) FiQA: The first level simply asks for financial
suggestions. The second level includes information
about personal financial status. The third level
incorporates personal financial purposes.
(2) Scifact-open: The first level involves asking
for science passages relevant to a given science
claim. The second level seeks evidence that either
contradicts or supports this claim. The third level
is tailored for students or researchers who need to
find evidence based on customized demands.
(3) AILA: The first level involves searching for
similar cases. The second level requires that the
relevant case be beneficial for the plaintiff or defen-
dant. The third level adds more explicit conditions
such as the details of the current cases, potential
goals, and more similar scenarios.
(4) TREC-PM: The first level includes informa-
tion about the patient’s disease. The second level

adds the patient’s demographics, including age and
gender. The third level incorporates additional in-
formation about the patient’s treatment history and
family history.

B Implementation Details

Embedding To accommodate the long context
of certain passages, we employ a sliding window
of 512 tokens with an overlap of 128 tokens, us-
ing mean pooling to generate embeddings. For
LLM-based retrievers, however, we do not apply
mean pooling due to their extended context window.
Given hardware constraints, we run LLM-based
retrievers in FP16 mode to reduce GPU memory
usage. When querying, we concatenate the query
and instruction with a space character. Because of
the large number of passages and the correspond-
ingly large embeddings, we use LangChain and
Elasticsearch in our experiments. In addition, we
also provide the BEIR code.

Implementation Details of INSTFOL Given Cq,
which is the retrieved passages set for a query, and
Cinst, which is the retrieved corpus set for the query
combined with instructions, we evaluate each pas-
sage in both sets using LLM (i.e., gpt-4o-mini)
with some evaluation criteria. This approach is in-
spired by G-Eval (Liu et al., 2023) and TREC’s
principles of data collection. We then obtain two
sets of weighted scores, Sq and Sinst. Sq measures
how well the passages retrieved by the original
query (without instruction) align with the given
instruction; Sinst measures how well the passages
retrieved by the query (with instruction) meet the
same instruction. Each score in Sq and Sinst is cal-
culated as follows, where sk is an element of Sq or
Sinst, and pk represents the logarithmic probability
of each score as determined by the API:

weighted_score =

∑10
k=1(sk × epk)∑10

k=1 e
pk

Here, epk converts the log probabilities back to stan-
dard probabilities for calculation purposes. This
formula accounts for the inherent probabilistic na-
ture of LLMs, where predictions for each token
are based on a statistical probability distribution
influenced by configurations such as temperature
and top_p.

We use the average of Sq and Sinst to calculate
the instruction-following ability through a metric
we propose, called INSTFOL. The insight is to con-
sider the maximum improvement a retriever can
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[system prompt]
You are an expert in science.

[user input]
Given the scientific claim: {claim}, Imagine you are a student or researcher seeking information on a specific topic.
Based on the conditions listed below, construct a detailed retrieval instruction tailored to the claim. You do not need
to incorporate all of the conditions, but ensure your instruction is relevant.
* Research fields
* Research topics
* Research objectives
* Customized needs (For example, experimental subjects, experimental methods, etc.)

The instruction should target a single type of information and be both coherent and logical. It should also be
detailed and specific, presented in the first person, and narrated naturally in one paragraph.

Please return your answer as follows:
Instruction: ...

Figure 5: Prompt for generating instruction on NFCorpus dataset.

[system prompt]
You are an expert in science.
[user input]
Given an instruction {instruction}, and an corpus {corpus}, check whether the instruction is satisfied by the corpus.
Please only return ’yes’ or ’no’ and your reason, and return in the following format.
Answer: yes/no Reason: ...

Figure 6: Prompt for evaluating corpus on NFCorpus dataset.

[system prompt]
You are an expert in the legal domain.
[user input]
Given a legal case:
{case}.
And an instruction: {instruction}.

Please provide a detailed instruction based on the case. Include specific situations from the case to elaborate on the
instruction. Your response should be narrated as if you are examining various cases, and it should be presented in a
single paragraph.
The instruction should not be longer than 2-3 sentences.

For example:
Legal Case: "XYZ Corporation filed a lawsuit against John Doe, a former employee, for defamation after Doe
posted allegations on his personal social media claiming that XYZ provided false information to customers. While
Doe’s post didn’t result in significant or immediate financial loss for the company, XYZ argued that it tarnished
their reputation."
Instruction: "I’m the plaintiff’s lawyer and I’m looking for civil tort cases involving the right to reputation and
lowered social evaluation, particularly where an employee posted on social media that the company made false
statements in providing services but no serious consequences occurred, and it’s difficult to prove the lowered social
evaluation."
Your response should be formatted as follows:
Instruction: ...

Figure 7: Prompt for instruction generation on AILA dataset.
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ID Fluent in English Major Annotation tasks

1 > 10 yrs Legal Legal subset annotation
2 > 7 yrs Legal Legal subset annotation
3 > 10 yrs Biology Healthcare subset annotation; Science Literature subset

annotation; Annotation Validation
4 > 7 yrs Pharmacy Healthcare subset annotation; Science Literature subset

annotation
5 > 10 yrs Biomedical engineering Healthcare subset annotation; Science Literature subset

annotation; Annotation Validation
6 > 7 yrs Mathematics Financial subset annotation; Annotation Validation.
7 > 6 yrs Finance Financial subset annotation;
8 Native Speaker Finance Financial Subset Annotation
9 > 10 yrs Legal Legal subset annotation

Table 4: Human annotator’s tasks

achieve. Consider a case with two students, A and
B. Student A has a rank of 300 and a previous rank
of 500, while student B has a rank of 10 and a
previous rank of 40. Traditionally, we would cal-
culate improvement through absolute differences.
However, student B has less room to improve his
rank. Based on this insight, we propose the INST-
FOL metric to evaluate the retriever’s instruction-
following ability. The factor α is a normalization
function that ensures the INSTFOL score ranges
between -1 and 1. In practice, we set α as 1

3−Sq
.

INSTFOL@K = (Sinst − Sq) · α (2)

When calling the API to evaluate the INSTFOL,
we use top_p = 0.7 and top_logprobs = 5. We set
the temperature to 0.0 to reduce the overestimation
by the LLM. The prompt for evaluation is shown
in Figure 8.

Error Analysis The example of error analysis is
illustrated in Table 7.

C Details of Experimental Results

C.1 Detailed Results of IFIR

In addition to the results obtained using INSTFOL,
we also present the outcomes of traditional IR met-
rics, as shown in Table 8. Furthermore, beyond the
end-to-end retrieval method, we implement a hy-
brid retrieval approach utilizing BM25. An overall
improvement in performance can be observed for
GTR-xl, Instructor-xl, and Promptriever compared
to the end-to-end method. However, as shown in
Table 8, performance varies across tasks. This high-
lights the importance of designing a carefully tai-
lored hybrid retrieval pipeline to meet the demands
of real-world scenarios.

C.2 Detailed Results of Retrievers with
Instructions as Prompts

As shown in Table 9, we present the instructions
as prompts, as described in these papers. However,
we use these instructions as prompts to differentiate
from our instructions. The input to the retrievers
should be formatted as “[Prompt] [Query] [Instruc-
tion]." Additionally, there may be slight differences
in the input format due to different models.

C.3 Detailed results of different retrievers on
different levels.

The detailed result for each domain is shown in
Table 10. The result of INSTFOL is shown in
Table 11. From Table 11, we can find that cur-
rent information retrievers are not good at long
instructions and instructions with highly dense ex-
pert knowledge.
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Dataset query instruction

FiQA Full-time work + running small side business:
Best business structure for taxes?

As a 40-year-old accountant with a steady income and moderate savings, I
am seeking advice on the best business structure for taxes when combining
full-time work with running a small side business. I am particularly interested in
understanding the tax implications, legal considerations, and potential benefits
of different business structures. Additionally, I am looking for insights on how
to optimize tax efficiency while balancing the demands of my full-time job and
side business.

SciFact-open A deficiency of folate decreases blood levels
of homocysteine.

As an expert in the field of science, I need to find a peer-reviewed research article
or a review paper that presents contradicting evidence regarding the relationship
between folate deficiency and homocysteine levels in the blood. The passage
should offer evidence that opposes the claim stating that a deficiency of folate
results in decreased blood levels of homocysteine.

NFCorpus Why are Cancer Rates so Low in India? I am a student researching the factors contributing to low cancer rates in India,
and I am specifically interested in understanding the role of dietary habits. I
need to find scientific studies or articles from the fields of oncology, nutrition,
and epidemiology that focus on the relationship between Indian dietary patterns
and cancer prevention. My objective is to analyze the types of foods commonly
consumed in India and their potential protective effects against cancer. To meet
my customized needs, I require information on specific dietary components,
such as spices, fruits, vegetables, and traditional Indian dishes, that have been
associated with lower cancer rates. Additionally, I am interested in any experi-
mental studies or clinical trials investigating the effects of these dietary factors
on cancer cells or animal models.

AILA The appellant, once a prime witness in a
bribery trial, became a Cabinet Minister and
resigned after critical judicial remarks during
an appeal that acquitted the first respondent.
The High Court questioned the evidence and
the appellant’s credibility, overturning the ini-
tial conviction for accepting bribes.

I represent the appellant and I seek cases involving a defendant who benefitted
from a reversal of a conviction due to lack of acceptable evidence and a plausible
explanation for the incriminating evidence found in their possession, despite
adverse remarks made by the Appellate Judge regarding the credibility of the
appellant’s testimony in a bribery case where the defendant was acquitted based
on insufficient prosecution evidence.

FIRE [A legal case summary] What was the deci-
sion and legal principle established in the case
referred to as [?CITATION?] in relation to the
doctrine of promissory estoppel in the con-
text of government representations and obliga-
tions?

Retrieve the prior case referred to as [?CITATION?] and focus on the court’s
analysis and ruling regarding the application of promissory estoppel against
the government, particularly in situations where representations are made by
governmental authorities and the subsequent obligations arising from such rep-
resentations. Pay attention to any discussion on the enforceability of promises
made by the government, the limitations of promissory estoppel against the
government, and the factors determining the applicability of the doctrine in
cases involving governmental representations.

TREC-PM A patient diagnosed with Liposarcoma with
CDK4 Amplification. I am looking for possi-
ble clinical trials suitable for this patient.

I am seeking clinical trials for a 38-year-old male diagnosed with Liposarcoma
with CDK4 Amplification. Please focus on trials specifically targeting Liposar-
coma or related soft tissue sarcomas. It is crucial that the trials consider the
presence of CDK4 Amplification in the patient’s condition. Additionally, the
patient’s age and gender should be taken into account when selecting suitable
clinical trial options. Patient Profile: The patient is a 38-year-old male who
has been diagnosed with Liposarcoma with CDK4 Amplification. He has a
treatment background that includes both chemotherapy and radiation, and he
is currently in remission. It is important to note that he has a history of smok-
ing and is also dealing with obesity. Given these demographic details, I am
seeking clinical trials that specifically target Liposarcoma or related soft tissue
sarcomas, taking into consideration the presence of CDK4 Amplification. The
trials should also consider the patient’s age and gender, as well as any potential
influences from his treatment background, smoking history, and obesity.

TREC-CDS Given some infomation about patient. 58-
year-old woman with hypertension and obesity
presents with exercise-related episodic chest
pain radiating to the back.What is the patient’s
diagnosis?

A 58-year-old African-American woman presents to the ER with episodic
pressing/burning anterior chest pain that began two days earlier for the first time
in her life. The pain started while she was walking, radiates to the back, and is
accompanied by nausea, diaphoresis and mild dyspnea, but is not increased on
inspiration. The latest episode of pain ended half an hour prior to her arrival.
She is known to have hypertension and obesity. She denies smoking, diabetes,
hypercholesterolemia, or a family history of heart disease. She currently takes
no medications. Physical examination is normal. The EKG shows nonspecific
changes.

Table 5: Examples of instructions in different domains.
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Dataset level1 level2 level3

FiQA Please help me to find the
financial suggestions for
my query.

I am a 40-year-old accountant with a
steady income and moderate savings.

As a 40-year-old accountant with a steady income and moderate savings, I
am seeking advice on the best business structure for taxes when combining
full-time work with running a small side business. I am particularly interested in
understanding the tax implications, legal considerations, and potential benefits
of different business structures. Additionally, I am looking for insights on how
to optimize tax efficiency while balancing the demands of my full-time job and
side business

SciFact-open Please find the science pas-
sage which related to the
claim

Please help me to find the contradict
evidence.

As an expert in the field of science, I need to find a peer-reviewed research article
or a review paper that presents contradicting evidence regarding the relationship
between folate deficiency and homocysteine levels in the blood. The passage
should offer evidence that opposes the claim stating that a deficiency of folate
results in decreased blood levels of homocysteine.

AILA Please help me find the rel-
evant legal cases.

As a defendant player, I want the case
where the defendant is beneficial.

I represent the appellant and I seek cases involving a defendant who benefitted
from a reversal of a conviction due to lack of acceptable evidence and a plausible
explanation for the incriminating evidence found in their possession, despite
adverse remarks made by the Appellate Judge regarding the credibility of the
appellant’s testimony in a bribery case where the defendant was acquitted based
on insufficient prosecution evidence.

TREC-PM I’m looking for clinical
trials suitable for a 38-
year-old male patient diag-
nosed with Liposarcoma
with CDK4 Amplification.

I am seeking clinical trials for a 38-year-
old male diagnosed with Liposarcoma
with CDK4 Amplification. Please fo-
cus on trials specifically targeting Li-
posarcoma or related soft tissue sarco-
mas. It is crucial that the trials consider
the presence of CDK4 Amplification
in the patient’s condition. Additionally,
the patient’s age and gender should be
taken into account when selecting suit-
able clinical trial options.

I am seeking clinical trials for a 38-year-old male diagnosed with Liposarcoma
with CDK4 Amplification. Please focus on trials specifically targeting Liposar-
coma or related soft tissue sarcomas. It is crucial that the trials consider the
presence of CDK4 Amplification in the patient’s condition. Additionally, the
patient’s age and gender should be taken into account when selecting suitable
clinical trial options. Patient Profile: The patient is a 38-year-old male who
has been diagnosed with Liposarcoma with CDK4 Amplification. He has a
treatment background that includes both chemotherapy and radiation, and he
is currently in remission. It is important to note that he has a history of smok-
ing and is also dealing with obesity. Given these demographic details, I am
seeking clinical trials that specifically target Liposarcoma or related soft tissue
sarcomas, taking into consideration the presence of CDK4 Amplification. The
trials should also consider the patient’s age and gender, as well as any potential
influences from his treatment background, smoking history, and obesity.

Table 6: Examples for different levels’ instruction in various domains.

Type Example

Long Instruction [A long legal case] As the defendant player, seek cases where the prosecution’s evidence relies heavily on circumstantial
evidence and lacks direct proof of intent or direct involvement in the alleged crime, similar to a situation where the
accused individuals were convicted based on circumstantial evidence and witness testimonies, despite maintaining their
innocence throughout the trial and appeal process.

Dense with special-
ized knowledge

CHEK2 has a significant role in breast cancer As a scientist investigating the claim that ’CHEK2 has a significant role
in breast cancer,’ I should search for research articles or review papers that provide support evidence on the specific
functions of the CHEK2 gene in relation to breast cancer development.

Highly customized
instructions

I am seeking clinical trials suitable for a 35-year-old female diagnosed with colorectal cancer and exhibiting FGFR1
Amplification. Please prioritize trials that focus on colorectal cancer specifically or a narrower focus related to this
patient’s condition. Additionally, it is crucial to include trials that directly match the FGFR1 Amplification gene
mutation in the patient. The patient’s age and gender are also important factors to consider in selecting appropriate
clinical trials. Please ensure that the trials selected meet these criteria for optimal patient care and treatment options.

Table 7: Taxonomy of instructions with low nDCG score and INSTFOL score.
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[system prompt]
You are an expert in legal domain.

[user input]
Given an instruction: instruction,
and a prior case: corpus,
please evaluate the prior case according to the instruction and Evaluation Criteria and return a JSON object with the score
and reason.

There are 3 relevant levels to evaluate the case regarding the instruction:
1. The prior case is similar to the one in the instruction.
2. The prior case satisfies the instruction at the ’plaintiff’ or ’defendant’ beneficial level.
3. The prior case totally matches the instruction, including the detailed requirements in the instruction.

Evaluation Criteria:
1. If the prior case only meets the instruction at the first level, the score is 1.
2. If the prior case meets the instruction at the first and second levels, the score is 2.
3. If the prior case meets the instruction at all three levels, the score is 3.
4. If the prior case does not meet any of the levels, the score is 0.

Please give a score between 0 and 3.

**
IMPORTANT: Please make sure to only return in JSON format, with the "score" and "reason" key. No additional words or
explanations are needed.
Please think step by step about the reason and give the score according to the Evaluation Criteria.

Example JSON:

"score": 1,
"reason": "The corpus only matches the instruction in terms of research field and research topics."

**

JSON:

Figure 8: Prompt for instruction generation on AILA dataset.

FiQA SciFact-open NFCorpus AILA FIRE TREC-PM TREC-CDS Average

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

End-to-end retrieval

GTR-XL 0.44 0.40 0.54 0.49 0.60 0.57 0.05 0.04 0.54 0.50 0.31 0.27 0.15 0.12 0.37 0.34
BM25 0.25 0.21 0.49 0.45 0.43 0.40 0.10 0.08 0.55 0.51 0.47 0.43 0.07 0.05 0.34 0.30
GTR-Large 0.39 0.34 0.50 0.46 0.51 0.46 0.07 0.07 0.49 0.41 0.28 0.23 0.09 0.06 0.33 0.29
GTR-Base 0.33 0.28 0.47 0.43 0.47 0.42 0.05 0.04 0.52 0.47 0.27 0.24 0.13 0.09 0.32 0.28
Contriever 0.13 0.10 0.29 0.24 0.36 0.29 0.08 0.06 0.51 0.48 0.09 0.06 0.04 0.04 0.21 0.18
ColBERT 0.07 0.05 0.14 0.12 0.16 0.13 0.07 0.05 0.39 0.35 0.02 0.01 0.00 0.00 0.12 0.10

NV-Embed-v2 0.68 0.66 0.65 0.62 0.71 0.70 0.07 0.04 0.54 0.51 0.54 0.53 0.40 0.36 0.51 0.49
GritLM-7B 0.63 0.61 0.63 0.60 0.70 0.69 0.10 0.06 0.51 0.46 0.57 0.54 0.42 0.38 0.51 0.48
E5-mistral-7b-inst 0.54 0.51 0.63 0.59 0.69 0.67 0.10 0.06 0.57 0.54 0.56 0.52 0.28 0.23 0.48 0.45
Instructor-XL 0.48 0.44 0.49 0.44 0.53 0.47 0.07 0.05 0.53 0.49 0.17 0.12 0.19 0.15 0.35 0.31
Instructor-Large 0.49 0.45 0.46 0.42 0.56 0.51 0.07 0.06 0.51 0.45 0.15 0.11 0.17 0.12 0.34 0.30
Promptriever-7B 0.22 0.17 0.34 0.28 0.60 0.59 0.09 0.07 0.52 0.48 0.35 0.29 0.09 0.06 0.32 0.28
Instructor-Base 0.39 0.34 0.45 0.42 0.48 0.42 0.06 0.05 0.51 0.46 0.17 0.13 0.09 0.07 0.31 0.27

OpenAI-v3-large 0.54 0.51 0.59 0.54 0.58 0.55 0.11 0.08 0.57 0.54 0.52 0.46 0.30 0.26 0.46 0.42
OpenAI-v3-small 0.46 0.41 0.58 0.52 0.56 0.52 0.08 0.06 0.53 0.48 0.41 0.38 0.24 0.21 0.41 0.37

Hybrid retrieval

GritLM-7B 0.59 0.54 0.62 0.58 0.57 0.51 0.10 0.07 0.55 0.50 0.59 0.56 0.39 0.32 0.49 0.44
GTR-XL 0.43 0.38 0.57 0.51 0.52 0.47 0.06 0.06 0.56 0.53 0.33 0.29 0.14 0.13 0.37 0.34
Instructor-XL 0.46 0.41 0.54 0.51 0.52 0.46 0.09 0.07 0.56 0.52 0.23 0.20 0.20 0.16 0.37 0.33
Promptriever-7B 0.25 0.21 0.42 0.38 0.54 0.49 0.09 0.07 0.56 0.53 0.42 0.37 0.11 0.09 0.34 0.31

Table 8: Performance of retrievers on IFIR measured by nDCG@20 and MRR@20.
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FiQA SciFact-open NFCorpus AILA FIRE TREC-PM TREC-CDS Average

Instructor-Base
0.392 0.451 0.482 0.059 0.506 0.174 0.091 0.308
0.393 0.445 0.489 0.059 0.499 0.232 0.080 0.314

Instructor-Large
0.488 0.463 0.564 0.070 0.510 0.149 0.167 0.345
0.493 0.469 0.567 0.072 0.516 0.166 0.155 0.348

Instructor-XL
0.484 0.488 0.530 0.071 0.529 0.169 0.188 0.351
0.489 0.489 0.544 0.072 0.533 0.204 0.205 0.362

E5-mistral-7b-inst
0.541 0.629 0.686 0.103 0.565 0.563 0.283 0.481
0.495 0.607 0.679 0.108 0.574 0.569 0.293 0.475

GritLM-7B
0.632 0.631 0.698 0.096 0.511 0.575 0.423 0.509
0.567 0.612 0.681 0.093 0.516 0.571 0.425 0.495

Table 9: Detailed nDCG@20 results of adding instructions as prompt. The first line is without instruction as a
prompt, the second is with instruction as a prompt.

FiQA AILA TREC-PM Scifact-open

Level1 Level2 Level3 Level1 Level2 Level3 Level1 Level2 Level3 Level1 Level2 Level3

BM25 0.282 0.221 0.239 0.158 0.060 0.030 0.505 0.437 0.482 0.568 0.438 0.480
Contriever 0.146 0.121 0.111 0.144 0.018 0.012 0.112 0.084 0.077 0.306 0.252 0.325
ColBERT 0.078 0.043 0.107 0.111 0.052 0.012 0.012 0.023 0.037 0.132 0.121 0.165
GTR-Base 0.422 0.215 0.337 0.096 0.017 0.000 0.269 0.280 0.268 0.511 0.448 0.456
GTR-Large 0.479 0.279 0.391 0.117 0.023 0.048 0.293 0.312 0.219 0.538 0.467 0.513
GTR-XL 0.530 0.366 0.413 0.073 0.032 0.023 0.350 0.324 0.243 0.595 0.512 0.515

Instructor-Base 0.424 0.361 0.387 0.110 0.024 0.000 0.119 0.208 0.197 0.481 0.429 0.449
Instructor-Large 0.531 0.454 0.472 0.110 0.024 0.048 0.144 0.157 0.147 0.480 0.404 0.513
Instructor-XL 0.558 0.435 0.445 0.122 0.012 0.042 0.190 0.181 0.135 0.536 0.461 0.476
E5-mistral-7b-inst 0.628 0.490 0.488 0.162 0.041 0.060 0.582 0.567 0.537 0.673 0.620 0.601
GritLM-7B 0.705 0.594 0.581 0.185 0.014 0.017 0.618 0.578 0.527 0.699 0.620 0.583
Promptriever-7B 0.164 0.144 0.377 0.140 0.051 0.048 0.231 0.406 0.417 0.287 0.276 0.449
NV-Embed-v2 0.759 0.657 0.594 0.116 0.026 0.029 0.563 0.547 0.493 0.714 0.634 0.625

OpenAI-v3-small 0.529 0.410 0.429 0.148 0.032 0.013 0.428 0.436 0.371 0.631 0.545 0.563
OpenAI-v3-large 0.616 0.488 0.511 0.158 0.056 0.062 0.553 0.523 0.483 0.621 0.578 0.587

Table 10: Detailed nDCG@20 results of different retrievers on different levels.

FiQA AILA TREC-PM Scifact-open

Level1 Level2 Level3 Level1 Level2 Level3 Level1 Level2 Level3 Level1 Level2 Level3

BM25 -3.76 -2.48 9.53 -0.08 -0.15 0.29 0.83 2.28 7.17 -0.70 -5.36 4.85
Contriever -2.04 -0.69 4.28 0.07 -0.11 0.30 0.07 1.91 1.75 -3.20 -11.25 -10.21
ColBERT -4.43 -7.28 12.21 0.24 0.85 -1.13 0.14 1.11 1.84 -0.23 -1.06 2.31
GTR-Base -3.76 -12.39 2.30 -0.06 0.51 1.18 -4.56 -0.12 2.73 -1.09 -0.39 -0.39
GTR-Large -6.40 -13.20 0.18 0.12 -0.31 -0.88 -3.37 -0.28 -0.73 -0.18 0.64 -0.30
GTR-XL -4.45 -10.59 0.49 0.15 -0.20 -0.34 -3.21 -0.73 1.40 -0.14 0.46 -9.12

Instructor-Base -1.43 1.52 9.83 0.16 -0.23 0.61 -4.31 1.64 6.70 -0.94 0.66 1.54
Instructor-Large -0.34 2.49 8.79 -0.22 0.04 1.04 -2.38 -2.77 -6.42 -1.15 -2.07 3.83
Instructor-XL -0.66 -1.93 5.67 0.03 -0.07 -0.86 -2.00 -0.82 -3.37 0.53 2.34 -9.95
E5-mistral-7b-inst 0.14 -0.13 12.78 1.11 -0.08 -0.79 -0.89 1.10 2.55 -0.22 0.19 0.18
GritLM-7B 0.25 1.68 7.32 -0.37 0.06 -0.66 -0.75 0.14 0.33 -0.36 0.92 -0.73
Promptriever-7B -2.41 2.18 27.09 -1.22 0.37 -0.07 2.09 12.49 25.21 -2.02 -5.17 18.27
NV-Embed-v2 0.14 1.13 7.02 -0.83 -0.20 -0.02 0.37 0.44 1.35 -0.54 0.51 -3.27

OpenAI-v3-small -0.60 -0.62 8.16 0.12 0.10 -1.09 -1.93 -0.80 -0.88 0.26 1.72 -4.79
OpenAI-v3-large -0.95 -0.97 6.63 0.54 -0.12 -0.50 -1.72 -1.37 3.64 -0.19 0.75 -1.99

Table 11: Detailed INSTFOL @20 results of different retrievers on different levels.
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