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Abstract

Multi-agent collaboration among models has
shown promise in reasoning tasks but is un-
derexplored in long-form generation tasks like
summarization and question-answering. We
extend multi-agent multi-model reasoning to
generation, specifically to improving faithful-
ness through refinement, i.e., revising model-
generated outputs to remove factual inconsis-
tencies. We investigate how iterative collabo-
ration among multiple instances and types of
large language models (LLMs) enhances sub-
tasks in the refinement process, such as error
detection, critiquing unfaithful sentences, and
making corrections based on critiques. We de-
sign intrinsic evaluations for each subtask, with
our findings indicating that both multi-agent
(multiple instances) and multi-model (diverse
LLM types) approaches benefit error detec-
tion and critiquing. Additionally, reframing
critiquing and refinement as reranking rather
than generation tasks improves multi-agent per-
formance. We consolidate these insights into a
final “recipe” called Multi-Agent Multi-Model
Refinement (MAMM-REFINE), where multi-
agent and multi-model collaboration signifi-
cantly boosts performance on three summariza-
tion datasets as well as on long-form question
answering, demonstrating the effectiveness and
generalizability of our recipe.1

1 Introduction

Large language models (LLMs) have achieved re-
markable performance in natural language genera-
tion but still suffer from hallucinations and a lack
of faithfulness (Guerreiro et al., 2023; Zhang et al.,
2023; Tang et al., 2023, 2024b; Liu et al., 2024),
where the generated content is inconsistent with
the input source or the world. To address this prob-
lem, many studies have developed post-hoc self-
refinement techniques (Madaan et al., 2023; Gero

1Our code is available at https://github.com/
meetdavidwan/mammrefine.

et al., 2023; Raunak et al., 2023; Jiang et al., 2023;
Gou et al., 2024; Wadhwa et al., 2024). However,
these techniques have been found to be less effec-
tive without external feedback, as models require
external information to identify errors (Huang et al.,
2024a). One promising avenue for extending mod-
els beyond their inherent capabilities is multi-agent
debate (Chen et al., 2024a; Du et al., 2023; Liang
et al., 2023), where multiple LLMs improve their
answers over the course of a debate or discussion.
The agents can be multiple instances of the same
model or different models (i.e. multi-model).

While several approaches focus on improving
generation faithfulness through refinement, e.g. by
breaking down the refinement process into fine-
grained subtasks (Liu et al., 2023b; Wadhwa et al.,
2024), past work has used a single instance of the
same model for each of these subtasks, without
multi-agent collaboration. Different models, due to
their diverse training data and methods, often ex-
hibit different hallucination patterns (Rawte et al.,
2023; Guerreiro et al., 2023; Ye et al., 2023). There-
fore, adopting a multi-model, multi-agent frame-
work could help systems achieve higher faithful-
ness by allowing models to revise their solutions
based on diverse answers obtained through collab-
oration. In such collaborative settings, different
models’ hallucinations might cancel out.

However, several challenges remain before
the promise of multi-agent and multi-model ap-
proaches can be realized in generation tasks: First,
multi-agent frameworks have shown great promise
for reasoning tasks (Chen et al., 2024a; Du et al.,
2023; Liang et al., 2023) where the final answers
are generally from a closed set and easily verified,
leading to easy stopping criteria and enabling vot-
ing across agents. Applying multi-agent collabo-
ration to generative tasks such as summary refine-
ment – where final answers are long and difficult
to verify – is less straightforward. Additionally,
due to the complexity and multitude of the design
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choices in generation and refinement tasks, it is
not clear which components would benefit from a
multi-agent framework. As verified by our empiri-
cal results, naively applying multi-agent reasoning
to all subtasks might unnecessarily increase cost
and could even hurt performance, as agents may
lead each other down incorrect paths.

To extend multi-agent approaches to long-form
generation, we focus on the task of improving faith-
fulness through refinement, as it is backed by exten-
sive literature on evaluation metrics and generation
strategies. As illustrated in Figure 1, we conduct
a comprehensive analysis to determine which re-
finement subtasks benefit most from a multi-agent
pipeline. Focusing on the three-subtask approach
from Wadhwa et al. (2024), a state-of-the-art refine-
ment strategy, we consider DETECT, CRITIQUE,
and REFINE subtasks, which can be recombined
into different pipelines (e.g., DETECT-REFINE,
CRITIQUE-REFINE, REFINE only). We apply
multi-agent collaboration to these subtasks, fram-
ing CRITIQUE and REFINE with two approaches:
a discriminative method (RERANK) that selects the
best option among multiple candidates, and GEN-
ERATE, which updates the answer freely. Our re-
search addresses three core questions: (1) Which
refinement subtasks benefit from a multi-agent
approach? (2) Which subtasks benefit from a
multi-model approach? (3) For which task type
(GENERATE or RERANK) is the multi-agent ap-
proach most effective?

To answer these, we perform an extensive in-
trinsic analysis to find the optimal setting for
each subtask, creating a “recipe”, Multi-Agent
Multi-Model Refinement (MAMM-REFINE), that
combines the best configurations. Using TofuE-
val (Tang et al., 2024c), a dataset with human-
annotated sentence-level faithfulness judgments
and critiques, we design intrinsic evaluation tasks
for each of the three subtasks, DETECT, CRITIQUE,
and REFINE, as illustrated in Figure 2. Our findings
show that multi-agent approaches generally out-
perform single-model baselines, with multi-model
variants offering further gains, and for CRITIQUE

and REFINE, multi-agent methods provide consis-
tent gains with RERANK but not with GENERATE.

Next, after determining the best configuration for
each subtask from the intrinsic evaluations, we eval-
uate end-to-end performance on three summariza-
tion datasets with MAMM-REFINE, MediaSum
(Zhu et al., 2021), MeetingBank (Hu et al., 2023),
and UltraChat (Ding et al., 2023), comparing our

approach with other refinement baselines. Across
different refinement pipelines that use various com-
binations of subtasks, we show that selecting the
best components from our intrinsic analysis gives
us a generalizable recipe for improved refinement
that holds across generation tasks and datasets, with
gains on all three summarization tasks. We fur-
ther show that our recipe generalizes to long-form
question answering, improving faithfulness in a
non-summarization domain.

2 Method

We begin refinement with a model-generated out-
put Y and optionally an input context X (e.g., a
summarization document or question-answering
context (Xu et al., 2023)). Using a refinement
prompt and model Mr, we transform Y into a re-
fined output Yr. We first outline common refine-
ment pipelines and their corresponding subtasks,
and next illustrate how each adapts to our multi-
agent setting for generative tasks:

Direct Refinement. A single task directly prompts
the refinement model to improve the summary
based on the document: Yr = Mr(X,Y ).

DETECT-CRITIQUE-REFINE (DCR). As illus-
trated in top left section of Figure 1, we follow
Wadhwa et al. (2024)’s breakdown of refinement
into three steps, covering all components of the
refinement process. First, each output sentence
yi ∈ {y0, . . . , yN} is evaluated by a detection
subtask Md(X, yi), DETECT, to produce a binary
faithfulness label, indicating whether the sentence
requires refinement. We define faithfulness as
whether the output is supported by the input, and
measure it using a model given the prompt de-
scribed in Appendix D.2 In addition to a binary
label, the detection step produces a reasoning chain
which can be treated as a critique of the sentence
(i.e. justifying why the sentence is unfaithful). For
each sentence marked as unfaithful, we also op-
tionally employ a critique subtask Mc(X, yi), CRI-
TIQUE, that generates a critique ci detailing the er-
ror span (i.e. which tokens make the output unfaith-
ful) and suggest a fix. Finally, based on the outputs
of DETECT and CRITIQUE, we use REFINE to gen-
erate a refined summary Yr = Mr(X,Y,C), where
C is the set of critiques, either directly from DE-
TECT’s reasoning or from the explicit CRITIQUE

subtask. These three subtasks can be recombined
2Note that this prompting process is not the same what is

used as the final evaluation metrics described in Section 3.2.
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Figure 1: Illustration of the refinement pipeline (top-left) and how multi-agent debate is applied to different subtasks.
In the DETECT subtask (top-right), agents collectively choose among a discrete set of options, such as making
yes/no decisions or selecting the most faithful candidate. For the CRITIQUE and REFINE subtasks, we explore
two approaches. In the bottom-left panel, we frame the task as generative (using GENERATE), where each agent
updates its own critique or output based on other agents’ responses. In the bottom-right panel, we frame it as a
discriminative task using RERANK, where agents choose the best output from the candidates. While discriminative
tasks converge to a single solution, generative tasks result in updated responses from each agent.

into other variants, e.g. DETECT-REFINE (refining
only on unfaithful generations), and CRITIQUE-
REFINE (Chern et al., 2023b) (refining based on
critiques for all examples).

Multi-agent Debate. We adapt the multi-agent
framework introduced by Chen et al. (2024a),
which has shown strong performance on short-form
QA tasks such as commonsense and math reason-
ing. Let A1, . . . , An be a list of n agents partici-
pating in a discussion. In the initial round, we ask
each agent to generate its own output gi0. For each
subsequent round k, we ask each agent to update
its answer based on all agents’ responses from the
last round, i.e., gik = Ai(g1k−1, . . . , g

n
k−1), forming

a conversational state. That is, for each subtask,
every agent can view the previous responses of the
other agents and update its answer accordingly. Dis-
cussion ends when the maximum round is reached
or when the agents have reached a consensus.

Extending to Generative Tasks. While adapting
multi-agent collaboration to a binary classification
task like DETECT is straightforward (see upper
right of Figure 2), extending it to long-form tasks
like CRITIQUE and REFINE is challenging for two
key reasons. First, evaluation is challenging as each
agent produces its own answer; past work has ad-
dressed this by averaging the performance of indi-
vidual agents (Du et al., 2023). Secondly, determin-
ing a stopping criterion is challenging. Unlike with
classification tasks, where it is clear when agents

have converged to the same answer, evaluating and
matching long-form outputs is a challenging open
problem (Huang et al., 2024a). Nevertheless, as
shown in the bottom left of Figure 1, we experiment
with a generative multi-agent variant (GENERATE)
of CRITIQUE and REFINE, where agents read oth-
ers’ answers and update their own.

To better leverage the strength of multi-agent
systems on closed-set tasks, we implement an al-
ternative way to combine generations: RERANK,
as illustrated in bottom right of Figure 1. Here,
we transform open-ended generative tasks into a
discriminative ones by asking agents to select the
best generation from a set of candidates. Agents
in RERANK produce item indices (a closed set),
making the task a classification problem and sim-
plifying voting and convergence checks.

3 Experimental Setup

3.1 Agent Setup

In all of our tasks, we use two strong agents of
similar capability – GPT-4o (OpenAI, 2024) and
Claude-3.5 Sonnet (Anthropic, 2024) when em-
ploying multiple agents; for our main experiments,
we limit the number of agents to two to reduce com-
putational cost. In Section B.4, we also illustrate
the gains achieved by adding more agents. We use
the same prompts for all models, which are shown
in Appendix D. We consider the following combi-
nations to evaluate the effectiveness of multi-agent
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Figure 2: Illustration of our setup for intrinsic evaluations for different subtasks. We convert TofuEval, a dataset of
system summaries with human-annotated faithfulness labels and critiques, to tasks for evaluating the performance
of different multi-agent setups for DETECT, CRITIQUE, and REFINE subtasks with RERANK and GENERATE.

settings along three axes: agent, model, and task.
First, we differentiate between single-agent (SA)
and multi-agent (MA) settings based on the num-
ber of agents used. Second, within the MA setting,
we distinguish between single-model (SM), where
multiple instances of the same model are used, and
multi-model (MM), where different models serve
as agents. From the pipeline perspective, we also
consider a single-agent multi-model setting, where
different subtasks use different models. Finally,
we frame CRITIQUE and REFINE as both genera-
tive (via GENERATE) and discriminative tasks (via
RERANK). For the two models we employ, this
results in two instances of GPT-4o (2xG), two in-
stances of Claude (2xC), and the MAMM setting of
using one GPT-4o and one Claude (G+C). For fair
comparison between single-agent and multi-agent
settings, we report the average performance of the
single agents. For GENERATE, which generates
multiple outputs, we report the average scores, sim-
ilar to Du et al. (2023). For all tasks, we set the
debate to run for a maximum of 10 rounds.

3.2 Intrinsic Evaluation Tasks

We evaluate our methods using TofuEval (Tang
et al., 2024c), a topic-focused summarization task
with annotations on two datasets: MediaSum (Zhu
et al., 2021) and MeetingBank (Hu et al., 2023).
TofuEval contains 50 documents for each dataset,
each paired with three topics. It also contains

sentence-level faithfulness judgments from anno-
tators for summaries generated by five different
systems. For each sentence, annotators were asked
to provide a binary faithfulness judgment and, if
deemed unfaithful, write a critique explaining the
error. We use this dataset to create intrinsic tasks
for evaluating DETECT and CRITIQUE. An exam-
ple is shown on the left side of Figure 2, where
summary 2 contains a hallucination regarding the
date of the vote. For all four intrinsic evaluations,
we use all 150 document-topic pairs (50 documents
× 3 topics). We randomly selected one summary
out of the five systems for each document-topic
pair. We split the 50 documents into 10 for valida-
tion and 40 for testing, resulting in 30 validation
and 120 test document-topic pairs. We tune all
methods on the validation set. Our main research
questions for the intrinsic evaluations are: (1) Does
MA improve performance? (2) Does MM improve
performance? (3) How do different frameworks
affect performance? Appendix B.2 further explores
how performance varies over debate iterations.

DETECT Evaluation. We use the human-
annotated faithfulness label and evaluate whether
our detection model outputs the same label as a dis-
criminative task. This yields 81 validation and 324
sentence-level test examples for MediaSum, and 85
validation and 328 test examples for MeetingBank.
Following Laban et al. (2021), we use balanced ac-
curacy (BACC) to account for class imbalance. As
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baseline, we compare to strong automatic metrics,
MiniCheck (Tang et al., 2024a) and AlignScore
(Zha et al., 2023), which are trained entailment
metrics between document chunks and summary
sentences designed for summarization tasks.

RERANK Evaluation. As an alternative to having
agents directly debate their summaries, we aim to
explore the best methods for reranking generated
summaries. To achieve this, we use the human
labels for all the different systems. Because To-
fuEval contains no gold summaries, we bootstrap
this data by identifing cases where only one sys-
tem’s summary is judged by humans to be faithful,
treating that summary as “gold”. We then create
test scenarios where we present this faithful sum-
mary along with two to four unfaithful summaries
randomly sampled from the remaining summaries,
resulting in sets of three to five summaries. We ran-
domly shuffle the candidates to ensure the model
is not biased toward any position. For evaluation,
we measure the accuracy of the model in ranking
the faithful summary highest from the set of candi-
dates. We compare this to two baselines that use
MiniCheck and AlignScore for reranking, selecting
the output with the highest faithfulness score.

CRITIQUE Evaluation. To evaluate the perfor-
mance of the critique model, we consider two set-
tings: Gold and Detect. These settings correspond
to generating critiques when the summary sentence
is considered unfaithful according to gold labels
or model predictions, respectively. In the Gold set-
ting, we use the human-provided faithfulness labels,
whereas in the Detect setting, we use the predicted
faithfulness labels from the best model found in
the intrinsic DETECT evaluation (G+C). We also
evaluate the explanations generated by the DETECT

subtask as part of its chain-of-thought. To evaluate
our approach, we adopt the methodology outlined
by Wadhwa et al. (2024), which we further verify
with human evaluations in Section C.1. Specif-
ically, we prompt GPT-4o to assess whether the
generated critique aligns with the human-written
critique. We instruct the model to select one of the
following options: (1) Error Match: The generated
critique identifies the same error as described by
the human. (2) Error, No Match: The generated cri-
tique discusses a different error than the one noted
by the human. (3) No Error Detected, No Match:
The generated critique states that there is no error,
despite the human indicating otherwise.

REFINE Evaluation. We evaluate different meth-

ods for the refinement model using the same setup
as in the final evaluation. We primarily test the ef-
fect of various refinement methods when using the
best detector from the intrinsic DETECT evaluation
(G+C) and the best critique models for both the
Gold critique (2xC) and DETECT settings (2xG).
We assess the faithfulness of the summaries using
MiniCheck (Tang et al., 2024a) and a GPT-4-based
Likert evaluation, following Wadhwa et al. (2024).
Both metrics show high correlations with human
judgments of faithfulness (Tang et al., 2024a; Liu
et al., 2023a; Chiang and Lee, 2023; Gao et al.,
2023), which we also verify in Section C.2. We cal-
culate the faithfulness of each summary sentence
and then aggregate averaging across all sentences.

3.3 Extrinsic Refinement Setup

While the intrinsic tasks are tuned on the validation
set of MediaSum and MeetingBank, we evaluate
for the extrinsic evaluation on the test sets of Medi-
aSum and MeetingBank, as well as on UltraChat
(Ding et al., 2023) as a held-out, out-of-domain
setting. As baselines, we use each single agent
individually to perform each component task. We
then combine identical models in a multi-agent
setting (e.g., 2xG or 2xC) and also explore a multi-
model setting by combining Claude and GPT-4o.
For tasks where a generative approach is applicable
(i.e., critique and refinement), we further investi-
gate GENERATE, as detailed in Section 2. We use
MiniCheck and Likert scores for evaluation.

4 Results

We report the intrinsic and extrinsic results, and
examine how MAMM-REFINE generalizes to long-
form question-answering. We provide additional
discussions and show improvement from additional
agents and how multi-agent performance changes
after each round of discussion in Appendix B.

4.1 DETECT Intrinsic Results

We present the best strategy for DETECT, which
identifies hallucinating sentences and thus helps
the refinement systems to refine only where needed.
We report BACC in the left side of Table 1. We first
note that the single agents perform competitively
compared to the baseline of using the MiniCheck
and AlignScore metrics to detect unfaithful sen-
tences, especially on MeetingBank.

Effect of Multi-Agent. Using the same model does
not improve performance, except for a slight im-
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DETECT RERANK
MediaSum MeetingBank MediaSum MeetingBank

Category Method 2 3 4 2 3 4

Baseline MiniCheck 72.8 69.8 56.7 46.7 53.3 80.0 53.3 76.7
AlignScore 70.8 71.6 56.7 46.7 46.7 70.0 63.3 70.0

Single Agent GPT-4o 72.1 76.5 73.1 38.5 53.8 62.5 65.6 53.1
Claude 72.7 77.7 84.6 50.0 53.8 78.1 56.3 56.3

Multi-Agent Single-Model 2xG 72.5 75.5 83.3 46.2 40.0 62.5 66.7 50.0
2xC 72.5 76.1 92.3 46.2 58.3 81.3 56.3 56.3

Multi-Agent Multi-Model G+C 74.3 80.2 92.3 53.8 45.5 81.3 68.8 62.5

Table 1: Detection (left) and reranking (right) results. We report balanced accuracy for detection and accuracy
of selecting the faithful candidate for reranking (Acc@1). Reranking performance is broken down by number of
distractors (columns). We bold the method that we select as the best method for DETECT and RERANK.

provement of 0.4% on MediaSum when using 2xG
over single GPT-4o. On MeetingBank, we observe
a decrease of 1% with both 2xG and Claude.

Effect of Multi-Model. Multi-model improves be-
yond the two base models. Specifically, G+C out-
performs Claude, the best of the two single models,
by 1.6% and 2.5% on MediaSum and Meeting-
Bank, respectively. This indicates the effectiveness
of multi-model in improving detection accuracy.

Takeaway. Multi-agent single-model does not im-
prove DETECT, but the multi-model variant helps.

4.2 RERANK Intrinsic Results

Next, we determine the best combination for
RERANK, since it will be used for both critique
and refinement. The accuracy of selecting the most
faithful summaries with different numbers of can-
didates is shown on the right of Table 1.

Effect of Multi-Agent. Here, MA improves over
its SA, specifically on MediaSum. However, we
only observe an improvement of 3.2% with re-
ranking 2 candidates using 2xC on MeetingBank.

Effect of Multi-Model. Similar to DETECT, we
find that MAMM generally achieves high accuracy:
it is tied with MASM with 2xC for the highest
accuracy when reranking two candidates, and out-
performs all other variants when reranking three
candidates on MediaSum and MeetingBank. This
confirms the importance of having multiple mod-
els. Among the different settings, we find that the
largest gain occurs when there are only two choices,
improving accuracy by 7.7% and 3.2% on Media-
Sum and MeetingBank, respectively. This aligns
with prior works showing that LLMs perform better
in pairwise comparisons (Huang et al., 2024b).

Takeaway. The multi-model multi-agent approach

improves reranking accuracy, showing the benefit
of such a framework for closed-set tasks.

4.3 CRITIQUE Intrinsic Results
We present the results in Table 2, which analyzes
whether the generated critiques identify the same
errors as the gold critiques. The critiques that come
with the DETECT’s CoT are overall worse than
those from the dedicated critique subtask, where
the highest error matching score with the two-step
approach under the Detect setting is 12% higher.
This underscores the importance of having an ad-
ditional critique step, so as not to overload LLMs
with two tasks at once (Wadhwa et al., 2024).

Effect of Multi-Agent. For Gold critique case, we
observe that reranking on Claude’s critiques per-
forms the best, almost achieving a perfect score.
This shows that 2xC can critique the correct prob-
lem if there is no error in DETECT. Note that is
unrealistic, as the CRITIQUE will not have perfect
DETECT predictions and thus will not have 0% "No
Error" outputs, where CRITIQUE fails to find errors.
Using predictions from DETECT gives us a more
realistic idea of what a model will do when the
sentence is actually correct and CRITIQUE incor-
rectly considers it having some faithfulness errors.
Interestingly, for the more realistic Detect scenario,
reranking on 2xG critiques achieves the highest
performance. Compared to a single GPT-4o set-
ting, the multi-agent approach improves by 2.4%
in terms of capturing the correct error. Multi-agent
approach performs the best under the two settings.

Effect of Multi-Model. For both Gold and Detect
settings, G+C is ranked second. As it performs
slightly worse than the 2xC for Gold and 2xG for
Detect, MM still demonstrates its generalizability.

Effect of Task Framing. Finally, we also compare
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Setting Category MC EM↑ EMM↓ NE↓

DETECT’s
CoT

SA
GPT-4o 54.0 7.3 38.8
Claude 55.9 6.7 37.5

MASM
2xG 51.9 8.7 39.6
2xC 53.8 8.7 37.6

MAMM G+C 57.0 8.9 34.1

Gold SA
GPT-4o 95.1 5.0 0.0
Claude 98.5 1.6 0.0

Gold
w. RERANK

MASM 2xG 96.8 3.3 0.0
MASM 2xC 99.2 0.8 0.0
MAMM G+C 97.5 2.5 0.0

Detect SA
GPT-4o 67.1 3.2 29.9
Claude 68.3 2.5 29.3

Detect
w. RERANK

MASM 2xG 69.5 1.3 29.3
MASM 2xC 68.3 2.5 29.3
MAMM G+C 68.9 1.9 29.3

Detect
w. GENERATE

MASM 2xG 62.1 2.9 35.0
MASM 2xC 67.5 0.9 31.6
MAMM G+C 66.1 2.0 31.9

Table 2: CRITIQUE Results under Gold and Detect set-
ting, and using DETECT’s CoT. EM = Error Match,
EMM = Error Mismatch, and NE=No Error Found. We
bold the best strategy for CRITIQUE for the two settings.

the generative task framing (GENERATE) and the
discriminative framing (RERANK) in the bottom
section of Table 2. Overall, the best generative
approach (2xC) has a lower error matching rate
than its reranking counterpart, which is the worst
of the three multi-agent systems when reranked.

Takeaway. Though multi-model provides consis-
tent improvement across the two settings, using
single-model multi-agent to rerank critiques per-
forms the best compared to other variants. GENER-
ATE does not show improvement from multi-agent.

4.4 REFINE Intrinsic Results
Next, we evaluate which method is best for refine-
ment. We present the results of using 2xC critiques,
as they achieve higher faithfulness scores with the
validation set in Table 3 and report the results with
2xG critiques in Appendix B.1.3

Effect of Multi-Agent. The best setting, 2xG,
achieves only a 0.3% gain in MiniCheck. We hy-
pothesize that with good critiques, a strong LLM-
based refinement model can perform the task well.

Effect of Multi-Model. For G+C variant with
RERANK, we similarly observe that it does not
improve beyond the single-model performance. In
fact, it achieves faithfulness scores between the two
single-agent faithfulness scores.

3The result with 2xG critiques show the same trends as
with 2xC critiques.

Category MR MCS↑ GL↑
Original - 78.3 3.8

Single Agent GPT-4o 84.6 4.2
Claude 82.8 4.2

MASM w. RERANK 2xG 84.9 4.2
MASM w. RERANK 2xC 82.5 4.2
MAMM w. RERANK G+C 83.4 4.2

MASM w. GENERATE 2xG 85.2 4.2
MASM w. GENERATE 2xC 79.1 4.2
MAMM w. GENERATE G+C 81.4 4.2

Table 3: REFINE results with 2xC critiques with
MiniCheck (MCS) and GPT-4o Likert score (GL). We
bold the method that we select as the best method for
REFINE. Full table with scores on MediaSum and Meet-
ingBank separately is shown in Table 6.

Effect of Task Framing. We also compare
RERANK with GENERATE and find that the meth-
ods using GENERATE further hurt faithfulness
when applied to 2xC and G+C, while providing
a slight but not significant gain of 0.3% over the
method using RERANK.4 As mentioned in Sec-
tion 2, GENERATE does not guarantee outputting
a single candidate. Considering the limited im-
provement and the high computational cost of per-
forming multiple rounds of GENERATE (since it
requires generating outputs for all agents in each
round) compared to only debating on the examples
where agents choose different best candidates in
RERANK, we opt for 2xG with RERANK.

Takeaway. Overall, we recommend refining us-
ing 2xG with RERANK on 2xC critiques, illustrat-
ing the need for multi-model approaches from the
pipeline perspective, where different models excel
at different tasks; that is, Claude excels at generat-
ing critiques, and GPT-4o excels at refinement.

4.5 Overall Result with Final Recipe

Finally, we evaluate MAMM-REFINE on Media-
Sum, MeetingBank, and the held-out dataset, Ul-
traChat. We first focus on applying our best con-
figurations for each subtask to existing refinement
pipelines. As shown in Wadhwa et al. (2024), di-
rect refinement even degrades MiniCheck scores
on MeetingBank and UltraChat, demonstrating the
necessity of a pipeline with more fine-grained sub-
tasks. Nevertheless, we also evaluate direct re-
finement and pipelines without all the fine-grained
subtasks, showing that applying our best configura-
tion of REFINE and DETECT subtasks improves the

4We use paired bootstrap test (Koehn, 2004).
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MediaSum MeetingBank UltraChat
Method MD MC MR MCS↑ GL↑ MCS↑ GL↑ MCS↑ GL↑
Original - - - 74.4† 4.1† 82.1† 3.6† 77.6 3.8†

REFINE Only - - GPT-4o 77.6 4.3 76.9† 3.6† 75.8 4.0†

- - 2xG 78.3 4.3 77.9† 3.7† 76.7 4.1†

DETECT + REFINE
Claude - GPT-4o 77.4 4.3 81.9† 3.7† 78.3 4.0†

G+C - GPT-4o 77.8 4.3 81.1† 3.7† 78.3 4.0†

CRITIQUE + REFINE
- GPT-4o GPT-4o 78.9 4.5 85.1 3.9 80.0 4.3
- GPT-4o 2xG 78.9 4.5 85.2 4.0 80.6 4.3
- 2xC 2xG 81.7 4.5 86.7 4.0 80.8 4.3

Single-Agent Single-Model GPT-4o GPT-4o GPT-4o 79.2 4.4 86.6 4.0 80.5 4.1†

Single-Agent Multi-Model Claude Claude GPT-4o 78.7 4.4 86.1 4.0 81.3 4.2
Multi-Agent Single-Model 2xG 2xG 2xG 79.9 4.4 87.0 4.0 79.9 4.2
MAMM-REFINE (Ours) G+C 2xC 2xG 82.4 4.4 87.4 3.9 81.5 4.3

Table 4: Results on MediaSum, MeetingBank and UltraChat with MiniCheck (MCS), GPT-4o Likert score (GL). We
show the models used for DETECT (MD), CRITIQUE (MC), and REFINE (MR). † denotes statistically significant
improvement by MAMM-REFINE over that entry (p < 0.05 using paired bootstrap test).

Method MD MC MR MCS↑ G-L↑
Original - - - 76.7 3.5†

SASM G G G 80.1 3.9
SAMM C C G 80.9 4.0
MASM 2xG 2xG 2xG 79.1 3.9

MAMM-REFINE G+C 2xC 2xG 82.0 4.1

Table 5: Results on Long-form QA with context.

results, with results shown in Table 4. Specifically,
using 2xG for MR improves MiniCheck by 1% on
MeetingBank and UltraChat, though still underper-
forming the original summaries, showing the need
for critique-based refinement. Additionally, when
we add DETECT, our best MAMM setting (G+C)
further improves over direct refinement. Similarly,
for the variants of CRITIQUE+REFINE, switching
to MA MR yields a slight gain, as observed in Sec-
tion 4.4. Specifically, 2xC for MC and 2xG for
MR provides 2.8%, 0.8%, and 1.0% boosts over
using only GPT-4o for MC and MR on MiniCheck
compared to the CRITIQUE+REFINE baseline.

We finally examine the three-step approach us-
ing all of our best configurations. Here, we observe
the highest MiniCheck scores. In fact, MAMM-
REFINE is the only method among three-step ap-
proaches that has a statistically significant (p <
0.05) gain over the original summary on both Medi-
aSum and MeetingBank, as measured by both met-
rics. On the UltraChat dataset, MAMM-REFINE is
also the only three-step variant with a statistically
significant faithfulness improvement over the origi-
nal summary according to the GPT-4o Likert score.
We also test four settings – applying single or multi-

model configurations to single or multi-agent se-
tups – and evaluate these as an ablation study. For
MediaSum and MeetingBank, multi-agent is impor-
tant, while on UltraChat, multi-model is important.
Nevertheless, we observe a consistent trend where
both multi-agent and multi-model configurations
are key to improving faithfulness.

4.6 Extending to Long-form QA

Next, we also explore how the pipeline extends to
other generation tasks, such as long-form question
answering (LFQA). We use the ELI5 dataset (Fan
et al., 2019) collected in WebGPT (Nakano et al.,
2021), which includes questions, model-generated
answers, and the corresponding supporting con-
text. From this data, we randomly select 100 ex-
amples and apply our refinement model. With the
supporting context, the task is essentially question-
answering with retrieved evidence, i.e. retrieval-
augmented generation. Since evaluating the faith-
fulness of LFQA with context has the same setup
as summarization (Xu et al., 2023), we employ
the same experimental setup and metrics. The re-
sults are shown in Table 5. We observe that multi-
model and multi-agent approaches improve the
faithfulness of the answers, and our recipe provides
the most faithful responses, improving 5.3% on
MiniCheck and 0.6 points on the Likert score. We
similarly observe as an ablation that multi-model
provides a stronger gain than multi-agent. This
illustrates that our recipe can not only generalize to
a held-out summarization dataset, but to a held-out
non-summarization generation task like long-form
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question answering. We also report the setup and
results without the context in Appendix B.5.

5 Related Work

Multi-Agent systems with LLMs. A large body of
research focuses on multi-agent systems for reason-
ing tasks (Du et al., 2023; Liang et al., 2023; Yin
et al., 2023; Chen et al., 2024a; Kim et al., 2024;
Haji et al., 2024; Tang et al., 2024d; Sun et al.,
2024), where multiple LLMs engage in debates
or discussions. Recent studies have also proposed
multi-agent systems for LLM evaluation, where
agents either undergo a peer review process, ob-
taining a win rate by ranking each other (Li et al.,
2023b), or engage in debates to determine the bet-
ter LLM response (Chan et al., 2023). To address
hallucination, Feng et al. (2024) propose using a
multi-agent system to identify knowledge gaps be-
tween LLMs. The success of this paradigm hinges
on the fact that reasoning tasks typically have well-
defined solutions. In contrast, multi-agent systems
for generation tasks largely focus on enhancing
creativity through role-playing (Wang et al., 2024;
Lu et al., 2024; Li et al., 2023a), where evalua-
tion metrics are less established. To the best of
our knowledge, we are the first to propose a multi-
agent long-form generation in the context of im-
proving faithfulness on summarization and long-
form question-answering.

Refinement. Refinement has gained significant
focus, including leveraging human feedback (Saun-
ders, 2023) and automatic feedback through self-
refinement from the same model (Madaan et al.,
2023; Gero et al., 2023; Raunak et al., 2023), other
trained models (Xu et al., 2024; Akyurek et al.,
2023; Paul et al., 2024; Chern et al., 2023a; Chen
et al., 2024b), or external tools (Jiang et al., 2023;
Olausson et al., 2024; Gou et al., 2024; Chen et al.,
2024c). For improving faithfulness of summa-
rization, many post-processing approaches (Fabbri
et al., 2022; Balachandran et al., 2022; Thorne and
Vlachos, 2021) focus on training such refinement
model, or using human-annotated numeric scores
as feedback (Stiennon et al., 2020; Wu et al., 2021;
Nguyen et al., 2022; Scheurer et al., 2024). More
recently, efforts have concentrated on using LLMs
to directly refine generations, such as by utilizing
fine-grained feedback from a faithfulness detec-
tor at the level of atomic, non-decomposable facts
(Wan et al., 2024), or employing a two-step (Liu
et al., 2023b) or three-step (Wadhwa et al., 2024)

refinement approach. Our work is complementary
to past refinement and multi-LLM work, as we mea-
sure the effect of multi-agent approaches across the
components of the refinement pipeline. By testing
MM and MA settings, we create a generalizable
refinement recipe across generation tasks.

6 Conclusion

We carefully curate components for incorporat-
ing multi-agent collaboration into generation, im-
proving generation faithfulness through refinement.
Through intrinsic evaluations, we find that em-
ploying multiple agents, particularly multiple mod-
els, benefits discriminative tasks like DETECT and
RERANK. We then show how to apply RERANK

to CRITIQUE and REFINE. In extrinsic evaluations,
we find that the best variation for each compo-
nent improves several refinement methods, and our
final recipe shows gains on three summarization
benchmarks and transfers to long-form question-
answering tasks, showing its generalizability.

Limitations

First, our work primarily focuses on faithfulness,
which is crucial to building user trust in LLMs
and enabling safe model use. While there are
other aspects, such as coherence and relevance, that
could contribute to a comprehensive evaluation, we
choose to evaluate faithfulness due to its rich liter-
ature and extensive experiments using the best au-
tomatic evaluation metrics. Regarding evaluation,
although the automatic metrics we use have shown
high correlations with human judgments of faithful-
ness, a gap still exists, which could be addressed by
conducting human evaluations. However, consider-
ing the trade-off between the high cost and unreli-
ability of using Mechanical Turk workers, we opt
to report statistical significance based on automatic
evaluations for more reliable assessments. Finally,
refinement pipelines and multi-agent frameworks
involve additional steps that lead to higher compu-
tational costs. However, these costs tend to reduce
over time, and applying multi-agent reasoning to
open-ended generation tasks more broadly is a cru-
cial area for which we lay the groundwork. We
do not forsee any particular risks beyond those in-
herent to any text generation task. Since our work
focuses on improving faithfulness, it is aimed at
mitigating some of the risks associated with using
LLMs for generation.
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A Experimental Setup Details

In our experiments, we first test multi-agent and
multi-model approaches to each component sepa-
rately using intrinsic evaluations, and then combine
these components and measure end-to-end refine-
ment performance. Here, we describe the setup of
our intrinsic evaluations for the different subtasks,
as shown in Figure 2, and then detail our final eval-
uation setup on three summarization benchmarks.

A.1 Models

We use the latest versions of GPT-4o and Claude
as of October 12, 2024. The number of parameters
for these models has not been disclosed. We use
the default decoding parameters for all models. For
sentence splitting for DETECT, we utilize NLTK’s
library (Bird et al., 2009).

A.2 Datasets

We use annotations from TofuEval on the Media-
Sum and MeetingBank, released under the MIT-0
license. UltraChat and WebGPT are released under
the MIT license. We follow the authors’ instruc-
tions to process the data. To our knowledge, the
authors of the datasets ensured that there are no
harmful data. All datasets are in English.

A.3 Metrics

We use MiniCheck and AlignScore, following the
authors’ original repositories. For GPT-4 Likert,
we use the gpt-4-0125 version of GPT-4. For
VeriScore, we use the authors’ original code5 and
employ GPT-4o for extracting and verifying claims.

B Results Details

B.1 Full REFINE results

We report the full results with 2xG and 2xC cri-
tiques in Table 6. With 2xG critiques, we also
observe that RERANK improves performance over

5https://github.com/Yixiao-Song/VeriScore
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2xG Critiques 2xC Critiques
MediaSum MeetingBank Average MediaSum MeetingBank Average

Method MR MCS↑ G↑ MCS↑ G↑ MCS↑ G↑ MCS↑ G↑ MCS↑ G↑ MCS↑ G↑
Original - 74.4 4.1 82.1 3.6 78.3 3.8 74.4 4.1 82.1 3.6 78.3 3.8

Single Agent
GPT-4o 79.6 4.4 86.9 4.0 83.2 4.2 82.1 4.4 87.0 3.9 84.6 4.2
Claude 79.7 4.4 84.0 3.9 81.8 4.2 80.7 4.4 85.0 4.0 82.8 4.2

MASM w. RERANK 2xG 79.9 4.4 87.0 4.0 83.5 4.2 82.4 4.4 87.4 3.9 84.9 4.2
MASM w. RERANK 2xC 81.0 4.4 84.5 4.0 82.8 4.2 80.4 4.4 84.7 4.0 82.5 4.2
MAMM w. RERANK G+C 80.0 4.4 85.9 4.0 83.0 4.2 81.9 4.4 85.0 3.9 83.4 4.2

MASM w. GENERATE 2xG 79.9 4.4 86.5 4.0 83.2 4.2 82.5 4.4 87.8 4.0 85.2 4.2
MASM w. GENERATE 2xC 76.9 4.3 80.2 3.9 78.5 4.1 76.7 4.4 81.6 4.0 79.1 4.2
MAMM w. GENERATE G+C 78.0 4.3 82.6 3.9 80.3 4.1 78.9 4.4 83.9 4.0 81.4 4.2

Table 6: Full refine results with 2xG and 2xC critiques.

the single-agent baseline. Interestingly, in this set-
ting, we do not observe any average improvement
across both metrics using GENERATE. This high-
lights the effectiveness and reliability of RERANK

compared to GENERATE.

B.2 Intrinsic Results on Multiple Iterations

DETECT. For the multi-agent models, we also
analyze the balanced accuracy across multiple it-
erations, as the agents update their answers based
on the other agent’s response. As shown in Fig-
ure 3, one round of discussion provides the largest
improvement, as the models show improvement in
all cases except when using 2xG on MeetingBank.
The largest improvement is with the multi-model
setting, showcasing the benefit of having diverse
responses. Additional rounds only address a few
examples (e.g., 10/324 examples) and do not neces-
sarily improve performance. We find that these are
the harder examples on which the models have dif-
ficulty converging to an answer. See Appendix B.3
for more details.

RERANK. Examining how accuracy changes over
multiple rounds of debate, as shown on the right
of Figure 3, we find that agents improve the most
during the second round and converge by then, ex-
cept for the multi-model multi-agent G+C method.
In this case, on MediaSum, we observe additional
improvement at round 3.

CRITIQUE. We further show the performance of
the two frameworks across multiple iterations on
the left of Figure 4. While reranking improves with
further iterations, asking the models to continue
refining their generations degrades performance.

REFINE. When looking at the improvement across
iterations on the right of Figure 4, 2xG consistently

Round # Converged BACC

0 751 76.2
1 50 52.7
2 8 50.0
3 3 50.0
4 1 0.0

Table 7: Number of converged examples for each round
and the corresponding BACC for the subset.

improves slightly across multiple iterations. How-
ever, both multi-agent approaches (G+C and 2xC)
performance decreases. With GENERATE, we ob-
serve a large decrease in faithfulness score, high-
lighting the more reliable performance of RERANK.

B.3 Analysis on Multi-Round for DETECT

To investigate whether the subsequent rounds in-
volve harder examples that the agents have diffi-
culty agreeing on, we calculate the balanced ac-
curacy on the subset of examples, which the an-
swer from the two agents finally converges for each
round. We hypothesize that the model is unable
to converge because both agents do not know the
correct answer and thus the correct reasoning, mak-
ing them incapable of convincing each other. We
present the number of examples and the correspond-
ing BACC for this subset in Table 7. We observe
that for the 50 examples on which the agents con-
verge in the first iteration, the BACC is already
reduced from 76.2 to 52.7, and the remaining ex-
amples in the subsequent rounds only achieve ac-
curacy at random chance levels. This indicates that
the multi-agent approach can help improve perfor-
mance on more examples but cannot improve cases
where both agents are not confident.
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Figure 4: Error match rate for CRITIQUE and faithfulness score for REFINE across multiple iterations.

MD MC MR MCS↑ GL↑
G+C 2xC 2xG 84.9 4.2

G+C G+C G+C 83.5 4.2
G+C+B G+C+B G+C+B 84.2 4.3
G+C+B 2xC 2xG 84.7 4.2

Table 8: Results with using three agents: GPT-4o
(G), Claude (C), and Gemini (B). MCS=MiniCheck,
GL=GPT4o 1-5 point Likert score.

B.4 Refinement with more Agents

We also explore the use of three agents to assess
the effect of increased agent diversity. We include
Gemini-1.5-flash (Gemini Team et al., 2024) as the
third model, which performs similar to GPT4-o
and Claude. Since the subtask that benefits the
most from a multi-agent, multi-model approach is
DETECT, we experiment by adding the third agent
to DETECT only, as well as adding it to both DE-
TECT and REFINE (and using the RERANK on the
generations from the three agents). We present the
results in Table 8. To measure the effect of adding
a third agent for all subtasks, we compare the per-
formance of using two agents across all subtasks
with that of using three agents. We observe that
using three agents provides additional gains in both
the MiniCheck and Likert scores, indicating that
having more models can indeed help. The three-
agent version also achieves competitive scores with

the variant where we use three agents for DETECT

and the best configuration from our recipe for CRI-
TIQUE and REFINE, indicating that having more
agents may reduce the need for comprehensive test-
ing to identify the best combination of subtasks.

The improvement observed with more agents
can be attributed to more diverse outputs, each
potentially containing different hallucinations due
to the training paradigm. Alternatively, it can be
thought of as the issue of hallucinations correlating
with low confidence: Individual agents may pro-
duce hallucinations when they are less confident
(Cao et al., 2022; van der Poel et al., 2022). How-
ever, the multi-agent framework mitigates halluci-
nations by enabling agents to collaborate and reach
a consensus agreed upon by all (i.e., achieving high
confidence), thereby improving faithfulness.

B.5 LFQA Results without Context
For the case without context, the model must re-
trieve information from its own parametric knowl-
edge. Here, we use VeriScore, a state-of-the-art
verification model from Song et al. (2024).

For the “no context” setting, which is reported
in Table 9, though single agent and single model
performs the best, our recipe improves over the
original answers by 6.3%. Among the different
variations, single-agent multi-model outperforms
multi-agent single-model, indicating that there is
still benefit of using multiple models.
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No Context With Context
Method MD MC MR VeriScore MCS↑ G-Likert↑
Original - - - 62.8 76.7 3.5†

Single-Agent Single-Model GPT-4o GPT-4o GPT-4o 71.9 80.1 3.9
Single-Agent Multi-Model Claude Claude GPT-4o 71.4 80.9 4.0
Multi-Agent Single-Model 2xG 2xG 2xG 71.0 79.1 3.9
MAMM-REFINE (Ours) G+C 2xC 2xG 70.2 82.0 4.1

Table 9: Results on Long-form QA for both with and without context.

Method Detect Critique
BACC EM↑ EMM↓ NE↓

GPT-4o 72.1 95.1 5.0 0.0
Llama3.1-8B 62.2 67.2 32.8 0.0

MAMM w. Llama3.1-8B 71.1 93.8 6.25 0.0

Table 10: MediasSum results with using smaller model,
Llama3.1-8b on DETECT and CRITIQUE.

B.6 Additional Analysis

We have observed that the initial performance of
each agent before the debate is crucial, as the de-
bate outcomes are heavily influenced by these start-
ing points. Specifically, when there is a large dis-
crepancy between the agents’ performances, com-
bining them can help improve the weaker agent
while maintaining similar (or slightly worse) per-
formance for the better agent. This dynamic ex-
plains why certain settings work better for specific
subtasks. For instance, in the critique task, GPT-4o
and Claude single agents differ by 3.4 EM points,
and MAMM averages their performances. How-
ever, SMMA effectively enhances the performance
of both agents, and since Claude performs better
initially, the MASM achieves the highest overall
score by leveraging its stronger baseline.

In contrast, the refine task presents a scenario
where GPT-4o outperforms Claude as a single
agent. Here, SMMA benefits more from GPT-4o’s
higher baseline, allowing it to refine and further
improve its responses. Meanwhile, MAMM strug-
gles due to Claude’s relatively lower performance,
which drags down the combined results. These ob-
servations demonstrate that SMMA is better suited
for tasks where one agent consistently outperforms
the other, as it capitalizes on the stronger model’s
ability to refine its outputs during debate.

Qualitatively, we also find that generations from
the same models exhibit little variation, so MA of
the same model does not significantly aid in provid-
ing options for reranking. Additionally, RERANK

can make mistakes when faced with two choices of

differing quality, especially in cases where the top-
ics are marginal in TofuEval - when dealing with
less frequently mentioned information.

To verify this, we also test on MediaSum by
running both larger and smaller models, where
the performance discrepancy is more pronounced.
Specifically, we employ the Llama3.1-8B model
and GPT-4o as two agents and evaluate them using
DETECT and the gold setting of CRITIQUE. The
results are shown in Table 10. We observe that the
smaller 8B model significantly underperforms com-
pared to GPT-4o. When combined in the MAMM
setting, the overall performance is slightly lower
than that of GPT-4o alone. In cases where the two
models disagree, the smaller model agrees with
the larger model about 82% of the time, thus fail-
ing to contribute to performance improvements. In
the remaining 18% of cases, the larger model is
persuaded to accept the incorrect answer from the
smaller model. These findings underscore the im-
portance of using agents with similar performance
levels to achieve further improvements on subtasks.

C Human Evaluations

C.1 Critique Evaluation

We sampled 50 examples and asked two authors
to annotate the data using the same instructions
provided to GPT, i.e., selecting from three choices.
Annotators did not see the generated scores for any
of the examples. We observed an inter-annotator
agreement of 0.80 using macro-F1 and the aver-
age IAA between the GPT-predicted labels and
our annotations is 0.61. This demonstrates that
the GPT-based metric is an efficient and effective
automatic evaluation method.

C.2 Faithfulness Metric Correlations

We conducted a blind, Likert scale human evalua-
tion on 25 samples from MediaSum with MAMM-
generated summaries, using the same prompt as
for the GPT-based metric. Our annotated Likert
scores achieved a Kendall correlation of 0.46 with
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Method Prompt

Direct
Refinement

I summarized the following document on the topic ‘{Topic}’:
{Document}
Summary of the above document on topic ‘{Topic}’:
{Summary}
If there are any factual inconsistencies in the summary then edit the summary such that the refinement doesn’t
have any inconsistencies. Consistency in this context implies that all information presented in the summary is
substantiated by the document. If the summary is consistent, then just the copy the same summary with no
changes. When refining, make the minimum number of changes.

DETECT Document:
{Document}
Sentence:
{Sentence}
Determine if the sentence is factually consistent with the document provided above. A sentence is factually
consistent if it can be entailed (either stated or implied) by the document. Please briefly explain the reason
within 50 words. Output your answer in json format, with the format as follows: {{“reasoning”: “”, “answer”:
“”}}. Please strictly output in JSON format. Only answer yes or no in the “answer” field.

RERANK Document:
{Document}
Summarize the provided document focusing on "Topic". The summary should be less than 50 words in length.
### Summary 1: {Summary1}
### Summary 2: {Summary2}
...
Select the best summary that contains the least amount of factual inconsistencies. Consistency in this context
implies that all information presented in the summary is substantiated by the document. Please briefly explain
the reason within 50 words. Output your answer in json format, with the format as follows: {{“reasoning”: “”,
“answer”: “”}}. Please strictly output in JSON format. Only answer numbers in the "answer" field.

CRITIQUE I summarized the following document on the topic: ‘{Topic}’:
{Document}
Summary of the above document on topic ‘{Topic}’:
{Summary}
Reason about the factually inconsistent span in the sentence. A span is factually inconsistent if it cannot be
substantiated by the document. Give reasons for the factual inconsistency, point to the error span by stating
“The error span: ⟨span from sentence⟩” and end your answer with a suggested fix to the summary.

REFINE I summarized the following document on the topic ‘{Topic}’:
{Document}
Summary of the above document on topic ‘{Topic}’:
{Summary}
Feedback for the above summary:
{Feedback}
Edit the user response such that the refinement doesn’t have any errors mentioned in the feedback. Make the
minimum number of changes when doing the refinement. Do not include a preamble.

Multi-
Agent
Debate

{Initial Prompt}
Carefully review the following solutions from other agents as additional information, and provide your own
answer and step-by-step reasoning to the question.
One agent’s answer: {{“reasoning”: {}, “answer”: {}}}
One agent’s answer: {{“reasoning”: {}, “answer”: {}}}

Table 11: Prompts for different subtasks and multi-agent debate.

the GPT Likert scores, which is comparable to the
correlation reported in G-Eval (Liu et al., 2023a), a
SOTA, Likert-based evaluation metric (0.43).

D Prompts

We show the prompts for different pipelines in Ta-
ble 11. We use the same 1-5 Likert prompt by
Wadhwa et al. (2024), which contains a detailed
rubric (Li et al., 2024).
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