
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 9158–9176

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

SMAB: MAB based word Sensitivity Estimation Framework and its
Applications in Adversarial Text Generation

Saurabh Kumar Pandey1*, Sachin Vashistha2*, Debrup Das3,
Somak Aditya2, Monojit Choudhury1

saurabh2000.iitkgp@gmail.com, sachinvashistha.phdcse@kgpian.iitkgp.ac.in,
saditya@cse.iitkgp.ac.in, monojit.choudhury@mbzuai.ac.ae

1MBZUAI,
2Indian Institute of Technology, Kharagpur

3University of Massachusetts Amherst

Abstract
To understand the complexity of sequence clas-
sification tasks, Hahn et al. (2021) proposed
sensitivity as the number of disjoint subsets of
the input sequence that can each be individu-
ally changed to change the output. Though
effective, calculating sensitivity at scale us-
ing this framework is costly because of expo-
nential time complexity. Therefore, we intro-
duce a Sensitivity-based Multi Armed Bandit
framework (SMAB), which provides a scal-
able approach for calculating word-level local
(sentence-level) and global (aggregated) sensi-
tivities concerning an underlying text classifier
for any dataset. We establish the effectiveness
of our approach through various applications.
We perform a case study on CHECKLIST gener-
ated sentiment analysis dataset where we show
that our algorithm indeed captures intuitively
high and low-sensitive words. Through exper-
iments on multiple tasks and languages, we
show that sensitivity can serve as a proxy for
accuracy in the absence of gold data. Lastly, we
show that guiding perturbation prompts using
sensitivity values in adversarial example gener-
ation improves attack success rate by 15.58%,
whereas using sensitivity as an additional re-
ward in adversarial paraphrase generation gives
a 12.00% improvement over SOTA approaches.
Warning: Contains potentially offensive con-
tent.

1 Introduction

Classifiers leveraging pre-trained Language Mod-
els (PLMs) while being empirically successful, are
often opaque. Identifying input subspaces where
the models classify correctly (or incorrectly) or
the input patterns the model is sensitive towards,
is not straightforward. In the presence of model
weights (white box), it may be feasible to explore
such spaces but computationally intractable. On the
other hand, methods attempting to explain black-
box models resort to robust diagnostic tests (such as

* indicates equal contribution, Order chosen at random

CHECKLIST; Ribeiro et al. (2020)) at scale, which
requires human input and may not be sufficient.
Visualization techniques such as LIME (Ribeiro
et al., 2016), SHAP (Lundberg and Lee, 2017) at-
tempt to explain local causes towards a prediction
but do not provide a global view of these models.
Therefore, a systematic framework is required to
understand the model’s weaknesses and strengths
related to the input space without assuming access
to model weights.

Hahn et al. (2021) proposed a theoretical frame-
work for understanding the complexity of sequence
classification tasks using sensitivity, where sensi-
tivity is the number of disjoint subsets of the input
sequence that can each be individually changed to
change the output. High-sensitivity functions are
complex because a single change in the input can
alter the output, whereas low-sensitivity functions
are simple. Sensitivity helps predict the complexity
of the tasks for various machine learning methods.
While the proposed method effectively captures
the task complexity, it requires iterating exhaus-
tively over all possible independent subsequences
in the input, resulting in a time complexity that
is exponential to the number of input tokens. In
this work, we extend this definition of sensitivity
and propose a scalable framework based on multi-
armed bandits to calculate word-level sensitivities
on sequence classification tasks, without assuming
access to model weights and gold labels.

Specifically, our framework provides an effec-
tive tool for local attributions of the model output
to individual segments of the input (sentence level
local sensitivities) as well as dataset-level sensi-
tivities to specific words/phrases, which is inde-
pendent of any context (global sensitivities). We
introduce SMAB, a sensitivity-based multi-armed
bandit framework, which utilizes masked language
modeling (MLM) to compute word-level sensitiv-
ities in the dataset through effective exploration-
exploitation strategies in a multi-armed bandit

9158

Figure 1: Overview of our SMAB framework. The outer arm consists of all words in the corpus, each linked to a set
of sentences in the inner arm. w1 is a word in the outer arm, and Sw1 is the set of sentences in the inner arm that
contains w1. Gw1

t is the Global Sensitivity of word w1 at step t. We utilize a sample-replace-predict strategy to
estimate local sensitivity values Lw1

for a word w1. Here, Pw1
is the set of predicted labels obtained after perturbing

Sw1
sentences and using the target classifier. s1 is chosen randomly from Pw1

while s2 is chosen such that it has the
highest reward. The local sensitivity values of a word help to update its Global Sensitivity values, which helps in
better outer arm selection in the next time step.

setup. Using these word-level sensitivities, we
prove the effectiveness of the SMAB framework on
three different tasks for three different application
scenarios: (1) Case Study on CHECKLIST, where
we show that for template generated datasets, the
global sensitivity values obtained from SMAB can
help us identify high and low sensitive words across
different test types. (2) Sensitivity as a Proxy for
Accuracy, we show that sensitivity can serve as
an unsupervised proxy for accuracy for a given
classifier when the gold labels are unavailable. (3)
Adversarial Example Generation, where we pro-
pose perturbation instructions that use global sensi-
tivities obtained from the SMAB framework along
with perturbation instructions proposed in Xu et al.
(2023) to attack LLMs like GPT-3.5 (Brown et al.,
2020) and Llama-2-7B (Touvron et al., 2023). We
also demonstrate that using local sensitivities as
an additional reward helps design highly accurate
paraphrase attacks for LMs using the adversarial
attack generation method proposed in Roth et al.
(2024). The two primary contributions1 of this
work are summarized as follows.

• We propose an efficient, scalable algorithm,
SMAB, to estimate the local (sentence-level)
and global (dataset-level) sensitivities of
words concerning an underlying classifier
without access to model weights and gold la-
bels.

• We propose and empirically establish the use-

1Code: https://github.com/skp1999/SMAB

fulness of SMAB by (i) a case study on a tem-
plated dataset (using CHECKLIST) to identify
high and low-sensitive words, (ii) proposing
sensitivity as an unsupervised proxy for ac-
curacy (drops), and (iii) adversarial example
generation using local (sentence-level) and
global (dataset-level) word sensitivities.

2 Methodology

We formalize the definitions of the global sensi-
tivity of a word for a given text classifier. Subse-
quently, we explain our proposed sensitivity esti-
mation framework with examples.

2.1 Problem Formulation

Given an input space X containing the input sen-
tences and output space of possible labels Y , we
have a pre-trained classifier fθ : X → Y that maps
the input text x = [w1 · w2 · w3 · · ·wn] ∈ X to a
class ŷ ∈ Y . We are interested in finding the mini-
mal subset of words to replace in x (by contextually
relevant words), such that for the new sentence x′,
fθ(x

′) ̸= fθ(x).

2.2 Definitions

Local Sensitivity: We define the local sensitivity
of a word for a specific input text (x). For
an underlying classifier (fθ), local sensitivity
estimates the relative importance of a word
towards the predicted label (fθ(x)). We estimate

9159

https://github.com/skp1999/SMAB

singleton sensitivity (Hahn et al., 2021)2, which is
proportional to the number of flips of the predicted
label when we replace a target word, say wi, with
contextually relevant words.

Global Sensitivity: Consider a text contain-
ing m words Wx = {w1, w2, . . . wm}. For an
underlying classifier (fθ), we assume there exists
a minimal subset of words Wk ⊆ Wx that can be
replaced to change the predicted label. The global
sensitivity of a word provides a greedy heuristic
to discover such a minimal subset. The higher the
global sensitivity, the higher the chance that the
word belongs to the minimal subset. We estimate
the global sensitivity of a word by aggregating the
local sensitivity of words per sentence.

2.3 SMAB Framework

Multi-armed bandits offer a simple yet powerful
framework for algorithms to optimize decision-
making over a given period of events. Our
proposed framework SMAB can interpret the
importance of all words (global sensitivity) present
in a given dataset for a particular task from a
language modeling perspective. The framework is
described below.

Multi-armed Bandit. Our use of multi-
armed bandits has two levels – with words at the
outer arms and sentences in the inner arm. The
outer arm consists of all the words present in
a dataset obtained after applying preprocessing
techniques like removal of stopwords, removal
of random URLs, and lemmatization. The outer
arm is associated with a reward value termed as
Global Sensitivity of a word w, which provides a
greedy heuristic to discover a minimal subset of
words in a sentence that needs to be changed to
flip the predicted label. The inner arm comprises
all the sentences from the dataset in which a
particular word w from the outer arm is present.
We denote Sw as the set of all the sentences in
which a particular outer arm or word (say w)
is present. Each inner arm also has a reward
value, defined as Local Sensitivity for the inner arm.

Calculating Local Sensitivity: Local Sen-
sitivity Lw for a word w at each step t is calculated
by perturbing sentences using sample-replace-

2For subset sensitivity, Hahn et al. (2021) captures the
variance among predicted labels, we capture mean over flips
of the predicted label from the original label.

predict strategy. First, we sample a word from all
the words present in the outer arm using either
Upper Confidence Bound1 (UCB) (Auer et al.,
2002) or Thompson Sampling (TS) (Thompson,
1933). We use TS to draw a sample with maximum
value from the Beta distribution of sensitivity of all
words using:

w∗
t+1 = argmax

w∈W
(Beta(α, β)) , (1)

where α ∈ (0,1) and β = 1− α. Then, we replace
the word w in all the sentences of the inner arm
using predictions of a masked language model,
ensuring that the resulting sentence with the new
word w′ remains coherent and semantically sound.
This process is repeated N times (here N = 10).
If, across the N replacements, the new word w′

matches the original word w, we discard that in-
stance. Let Pw denote the set of all valid instances
i.e., instances that have not been discarded. Lastly,
we use the target model to predict the labels of the
newly constructed Pw sentences. By utilizing the
target model predictions of the Pw sentences, we
select a randomly sampled sentence s1 ∈ Pw with
reward r1 (sentence-level local sensitivity) and a
sentence s2 ∈ Pw with the highest reward r2 is
selected. The local sensitivity for a word Lw is
calculated as the convex combination of rewards
from s1 and s2, ϵ ∈ (0, 1)

Lw = ϵ ∗ r1 + (1− ϵ) ∗ r2, (2)
Calculating Global Sensitivity: Global sensitivity
value (represented as Gw

t) for a particular word
w at a particular step/iteration t is calculated as
follows:

Gw
t =

(Nw ∗ Gw
t−1 + Lw)

1 + Nw
, (3)

where Nw represents the number of times the word
w has been picked up till now. Gw

t ∈ (0,1). We
assign Lw to 1 if Lw > 0. We minimize the total
regret Rt over the total number of iterations. The
estimation of total regret and the pseudocode of the
complete algorithm is presented in Algorithm 1.

2.4 SMAB Training Details

We initialize the global sensitivity values of all the
words (arms) present in a dataset with Beta(α, β),
where α = Random(0, 0.5) and β = (1−α). We
use ϵ in the convex addition function as 0.9. We iter-
ate with the total number of steps, N = 2, 00, 000.
We report the #datapoints used for training, inner
and outer arm details in Table 9.

9160

3 SMAB: A Case Study on CHECKLIST

Dataset. Evaluating the global sensitivity values
of words is challenging as they depend on a spe-
cific task and classifier combination. There is no
straightforward way to determine the ground truth
global sensitivity of different words. Therefore,
we start with a template-generated dataset such
as CHECKLIST (Ribeiro et al., 2020), where for
a template, we know that changing specific key-
words may cause a label flip while changing others
should not have any effect on the label. We note
that this still provides only an approximation of
sensitivity values, as the global sensitivity value
of a word (as defined in §2.2) also depends on the
target classifier.

Method. The CHECKLIST framework creates tar-
geted test cases inspired by standard software engi-
neering practices. Each test belongs to one of the
categories – MFT (Minimum Functionality Test),
INV (Invariance Test), and DIR (Directional Ex-
pectation Test). INV applies perturbations that pre-
serve the original label, whereas DIR tests if the
confidence of a label changes in a specific direc-
tion. These tests (INV & DIR) consist of templates
that vary according to the test type in consideration.
For example, change names test suite of INV test
type has sentences where we only vary a single
word (name) in the complete sentence. In the texts
shown below, only the name (Alicia) changes in
the newly created example.

Example:
@JetBlue Thank you Alicia!Exceptional Service
@JetBlue Thank you Haley!Exceptional Service

We utilize test types from INV and DIR to iden-
tify words with low and high sensitivity using our
SMAB framework. We experiment with two outer
arm sampling strategies, UCB and TS. We use the
perturbed Twitter US airline sentiment dataset 3

obtained from CHECKLIST. We sample ∼ 35k sen-
tences from all the test types covering 38 test types.
We extract 8498 arms from the above sentences af-
ter some initial preprocessing (stopwords removal,
lemmatization). Finally, we run our SMAB algo-
rithm (§2.3) on the above set of arms and sentences
to obtain the global sensitivity of all the words.

Observations. We observe that the perturbation
of words (arms) present in INV templates does not

3https://github.com/marcotcr/checklist

TYPE EXAMPLE Gw
s

INV @united happens every time in and out of
<Newark> 0.0397

INV @JetBlue and of course that was supposed to say
<Jeremy>, not login. 0.0883

DIR
Thanks @JetBlue. Next up we will see how
the slog from JFK to the city goes. You are
<exceptional>.

0.6185

DIR

@USAirways Delays due to faulty engine light.
Great work guys. Coming up on 2 hrs sitting
on the plane. WorstAirlineInAmerica. You are
<creepy>.

0.7574

INV
@SouthwestAir I didit’s just been such a
disheartening experience for me and my family
...and a lot of taxi money wasted. <@MZ0ql9>

0.9311

Table 1: A few examples from the CHECKLIST test
suite showing the highlighted words in the template and
their respective estimated global sensitivity (Gw

s) using
SMAB. The templated words are enclosed in <word>.
The low and high sensitivity words are highlighted in
blue and red respectively.

tend to change the label of the original sentence.
In contrast, the words in DIR templates are more
prone to flipping the label since they contribute to
confidence score manipulation. Further analysis
(details in Figure 5 in the Appendix) shows that the
words from DIR templates have higher estimated
global sensitivity and have a much wider spread
of values ranging from 0 to 1. In contrast, as ex-
pected, the words from INV are concentrated in the
low-sensitivity range of (0-0.2). Further, in Table
1, we present some qualitative examples from var-
ious test types, words, and their estimated global
sensitivities.

Evaluation. Sensitivity threshold is the value
above which a word present in a sentence if per-
turbed, is highly likely to change the predicted la-
bel. To evaluate the performance of our framework,
we propose a metric, Sensitivity Attack Success
Rate (SASR), calculated as follows. Given a test
dataset, a word, w, from the set of all the words
present in the dataset, Sw, the set of sentences in
which the word is present, and Gw

s , its estimated
global sensitivity from our SMAB framework, if
the word is above the sensitivity threshold and re-
placing the word with the predictions of a masked
language model flips the predicted label in any one
of the sentences from Sw, it is called a success.
SASR is the fraction of all the words in a dataset
above the sensitivity threshold that can flip the pre-
dicted label.

We calculate SASR for a test set from CHECK-
LIST templated dataset of 1800 sampled data points
and plot SASR for different sensitivity thresholds

9161

Figure 2: Variation of SASR with sensitivity threshold
on CheckList test dataset for UCB and TS. For UCB,
words are only present in bins (0-0.1) and (0.9-1.0),
hence SASR becomes constant after 0.1. It shows that
Thompson Sampling proves to be a better sampling
strategy for this task as compared to UCB.

for both the algorithms, UCB and TS, as shown
in Figure 2. We observe that the SASR_TS in-
creases as we increase the sensitivity threshold,
which signifies that the words in the high sensitivity
region (0.7-1.0) are responsible for the change in
the predicted label. SASR_UCB remains constant
after threshold of 0.1 since the estimated sensitivity
values from UCB lie only in two bins, (0.0-0.1)
and (0.9-1.0). Additionally, we plot the number of
words obtained at different sensitivity thresholds
to ensure sufficient words are present to calculate
SASR. For TS, we get 104 words even above the
sensitivity threshold of 0.9, with around 83 of these
words able to produce a flip. Hence, it shows that
the estimated global sensitivities from our SMAB
framework, in a true sense, capture the impact of
various words in a sentence for a particular task in
a given dataset.

4 Sensitivity as a Proxy for Accuracy

Using our multi-armed bandit framework (in §2.3),
we calculate the word sensitivities for each word
in a given dataset based on the model predictions
(in an unsupervised way). Here, we aim to quan-
tify the correlation between the accuracy of vari-
ous models and the difference between their cor-
responding sensitivity distributions obtained from
the SMAB framework. We experiment with two
different settings - (i) Correlation across languages
(same model) and (ii) Correlation within language
(different models). We compare the KL divergence

of the sensitivity distributions from two different
models (/languages) with the relative drop in ac-
curacy between models (languages). We compute
DKL(P ∥ Q) =

∑N
i=1 P (i) log P (i)

Q(i) , where P
and Q represent sensitivity distributions obtained
from two different runs of SMAB. N represents
the number of sensitivity bins (here 10). We cal-
culate accuracy on the same dataset using ground
truth labels. We hypothesize that KL divergence is
negatively correlated with accuracy drop for both
the settings, which signifies that the sensitivity dis-
tributions may serve as an unsupervised proxy for
accuracy for a given target classifier when gold
labels are absent.

4.1 Tasks & Datasets
Hate Speech Classification Task. Hate Clas-
sification is a challenging task that contains many
words spanning different sensitivity bins (contains
highly-sensitive target words). We selected hate
speech classification datasets from various sources,
covering nine languages - English, Bengali, French,
German, Greek, Hindi, Italian, Spanish, and Turk-
ish. Details for these datasets is provided in the
appendix B.1.1. Hereafter, we refer to this dataset
as the mHate dataset.
Natural Language Inference Task. We use the
XNLI (Conneau et al., 2018) dataset, a cross-lingual
NLI dataset for this task, which expands upon the
English-based MultiNLI dataset (Williams et al.,
2018) by translation into 14 languages. We select
five languages - English, French, Greek, Hindi, and
Spanish to evaluate our hypothesis.

4.2 Correlation Across Languages
Robust evaluation and benchmarking of low-
resource languages have always been challenging
because of the lack of sufficient and reliable evalu-
ation datasets (Ahuja et al., 2022a), (Ahuja et al.,
2022b). SMAB may be highly effective in the
evaluation and benchmarking of low-resource lan-
guages. We experiment with various languages of
mHate and XNLI datasets. We quantify the relative
zero-shot drop in accuracy and attempt to corre-
late it with the KLD. We utilize the mBERT (De-
vlin et al., 2019) classifier for mHate and mDe-
BERTa (He et al., 2021) for XNLI. Given a clas-
sifier, we get the predictions on the mentioned
language split of the dataset. Then, we compare
the KLD between sensitivity distributions of dif-
ferent languages from a base language (English, in
our case) and the model’s accuracy in various lan-

9162

Figure 3: KL Divergence v/s accuracy across languages
of mHate dataset using mBERT.

guages. We plot KLD v/s accuracy to study nine
languages for a particular target classifier under
study.

4.3 Results

From Figures 3 and 4, we observe a negative cor-
relation between KL Divergence and Accuracy on
the test set. For mHate, we calculate KLD between
sensitivity distributions obtained from our SMAB
framework across eight languages and sensitivity
distribution for English. We observe a negative
correlation with Pearson Correlation Coefficient(R)
of −0.75 (statistically significant with p-value of
0.03). Similarly, for XNLI, we perform it for 5
different languages against English and obtain a
Correlation Coefficient of −0.91 (statistically sig-
nificant with p-value of 0.03). We also carry out
experiments for within the language setting using
various pre-trained classifiers and obtain a similar
correlation (Appendix C). The results show that
KLD between sensitivity distributions is negatively
correlated with the accuracy of a target classifier.
Hence, the sensitivity values obtained from SMAB
act as an unsupervised proxy for accuracy for a
given target classifier on a dataset when the gold
labels are absent.

5 Adversarial example generation

5.1 Datasets

We evaluate the utility of word-level sensitivities
in adversarial example generation using the Sen-
timent Analysis task. We conduct experiments
on the Cornell Movie Review dataset (RT dataset)
(Pang and Lee, 2005) and SST-2 dataset (Socher
et al., 2013). We extend two perturbation-based
(or paraphrase) attack baselines using sensitivities

Figure 4: KL Divergence v/s accuracy across languages
of XNLI dataset using mDeBERTa.

predicted from our SMAB framework.

5.2 Evaluation Metrics
Attack Success Rate: Following Wang et al.
(2018), we evaluate our attack methods using
the Attack Success Rate (ASR). Given a dataset
D = {(x(i), y(i))}Ni=1 consisting of N pairs of
samples x(i) and ground truth labels y(i), for an
adversarial attack method A that generates an
adversarial example A(x) given an input x to
attack a surrogate model f , ASR is calculated as
follows:

∑

(x,y)∈D

1
[
(f(A(x)) ̸= y) ∧ (f(x) = y)

]

1
[
f(x) = y

] (4)

After Attack Accuracy: It measures the ro-
bustness of a model to an adversarial attack, A
low After-attack accuracy represents a highly
vulnerable model to adversarial attacks. It is
calculated as follows:

1

|D|
∑

(x,y)∈D
1
[
(f(A(x)) = f(x) = y)

]
(5)

5.3 PromptAttack using Global Sensitivities
Our first baseline, PromptAttack (Xu et al., 2023),
is a prompt-based adversarial attack that can
effectively audit the adversarial robustness of a
target LLM. For a target LLM, PromptAttack
prompts the same LLM with a perturbation
instruction such that the LLM generates an adver-
sarial sample for a given input text, effectively
fooling itself. Authors propose character-level,
word-level, and sentence-level perturbations. As
we capture word-level sensitivities, we define three
word-level perturbation instructions utilizing the

9163

Perturb
Type Perturbation instructions

W1 Replace at most two words in the sentence with synonyms.

W2 Choose at most two words in the sentence that do not contribute to the meaning of the sentence and delete them.

W3 Add at most two semantically neutral words to the sentence.

W4 (Ours)

For a given sentence, there always exists a minimal subset of words that need to be replaced to flip the label of the
sentence while preserving its semantic meaning. Global Sensitivity of a word provides a greedy heuristic to discover
such a minimal subset. The higher the global sensitivity, the higher the chance that the word belongs to the minimal
subset. Given the minimal subset of the words ["[Word1]", "[Word2]"] and their global sensitivity values in the
decreasing order [GS1, GS2], replace these words in the original sentence with semantically close words.

W5 (Ours)
The words "[Word1]" and "[Word2]" are highly sensitive in the given sentence, and perturbing either "[Word1]",
"[Word2]", or both can change the label of the sentence while preserving the semantic meaning of the new sentence
as that of the original.

W6 (Ours) Add at most two semantically close words to the sentence, replacing the words "[Word1]" or "[Word2], or both.

Table 2: Perturbation instructions used in Prompt Guidance: In W4, W5 and W6, [Word1] is replaced with the
most sensitive word in the sentence, while [Word2] is replaced with the second most sensitive word. In W4, GS1
and GS2 represent the global sensitivity values of the most sensitive word and the second most sensitive word.

global sensitivity values obtained from the SMAB
framework on the SST-2 dataset. Prompts for the
sentiment classification task on SST-2 can be found
in Table 11 and all perturbation instructions are
outlined in Table 2. We experiment with GPT-3.5
(gpt-35-turbo), Llama-2-7B and Qwen-2.5-7B
as the target LLMs. Our instructions primarily
rely on perturbing the high-sensitive words in
the input text. We apply the fidelity filter used in
Xu et al. (2023) with the following constraints:
BERTScore ≥ 0.92 (Zhang et al., 2019) and
Word Modification Ratio≤ 1.0 (Wang et al., 2018).

Results. As shown in Table 3, using GPT-3.5
as the target LLM, we compute sensitivity val-
ues from our SMAB framework with six different
LLMs serving as classifiers, referred to as SMAB
LLMs: BERT, GPT-3.5, Llama-2-7B, Llama-2-
13B, Llama-3.1-8B and Qwen-2.5-7B. For all four
SMAB LLMs, our word level perturbation instruc-
tions outperform the baselines W1, W2, and W3.
We obtain the best ASR of 52.06% and the lowest
After Attack Accuracy of 44.23% when we use
Qwen-2.5-7B as the SMAB LLM. It demonstrates
improvement over the baselines by a margin of
15.58%. Likewise, with Llama-2-7B as both the
target LLM and the SMAB LLM, perturbation type
W5 outperforms the top baseline W3. With Qwen-
2.5-7B as both the target LLM and SMAB LLM,
out perturbation type W6 outperforms the top base-
line W3. The results show that our instructions
utilizing high-sensitive words consistently outper-
form the baselines and can generate high-quality

adversarial examples as shown in Table 12.

5.4 ParaphraseAttack using Local
Sensitivities

Roth et al. (2024) studies adversarial attacks on text
classifiers using an encoder-decoder paraphrase
model (T5), trained to generate adversarial ex-
amples using a reinforcement learning algorithm
(Williams, 2004) with a constraint-enforcing re-
ward that helps generation of semantically close,
label invariant and grammatically correct adver-
sarial examples. We modify the original reward
function by incorporating an additional Sensitiv-
ity reward, defined as the difference between the
sensitivity of the input text and the sensitivity of
the generated text. Details of the modified reward
function and the keyphrase sensitivity calculation
can be found in Appendix D. During inference, we
generate 8 paraphrases for each input text using var-
ious decoding mechanisms under constraints used
in Roth et al. (2024) and use the target classifier to
predict the label. We used the RT dataset to con-
duct experiments using the same hyperparameter
and design choices used in the referenced work.
The details of the different models used, including
the paraphrase model are provided in Table 6.

Human Evaluation. We also perform a human
evaluation of the generated adversarial examples.
Two co-authors (graduate CS students trained in
NLP) quantify the quality of generated paraphrases
on three aspects. We use the human evaluation met-
rics proposed in Das et al. (2024). Specificity (SPE)
measures how specific the aspects obtained in the

9164

SMAB
LLM

Perturb
Type ASR ↑ After Attack

Accuracy ↓
Target LLM→ GPT-3.5

(Before Attack Accuracy - 92.16%)

✗

W1 22.20 72.09
W2 24.63 69.73
W3 36.48 58.68

BERT
W4 37.32 58.20
W5 38.34 56.96
W6 48.23 47.84

Llama-2-7B
W4 37.49 57.85
W5 38.20 57.04
W6 48.26 47.80

Llama-2-13B
W4 38.61 56.95
W5 38.56 56.79
W6 50.09 46.23

Llama-3.1-8B
W4 48.16 47.80
W5 39.96 55.40
W6 46.98 48.90

Qwen-2.5-7B
W4 51.62 44.61
W5 38.87 56.37
W6 52.06 44.23

GPT-3.5
W4 37.94 57.55
W5 39.40 56.09
W6 46.06 49.95

Target LLM→ Llama-2-7B
(Before Attack Accuracy - 92.32%)

✗

W1 56.19 36.13
W2 43.97 48.35
W3 60.20 32.11

Llama-2-7B
W4 30.55 61.76
W5 61.69 30.62
W6 44.85 47.46

Target LLM→ Qwen-2.5-7B
(Before Attack Accuracy - 76.38%)

✗

W1 36.70 39.68
W2 14.79 61.58
W3 28.78 47.71

Qwen-2.5-7B
W4 28.44 47.94
W5 36.01 40.25
W6 37.16 39.22

Table 3: PromptAttack results on SST-2 dataset. SMAB
LLM is the LLM used for calculating sensitivity val-
ues from the SMAB framework. ASR and After At-
tack Accuracy are in (%). All perturb types that out-
performed the highest baseline score is highlighted in
green and the best-performing perturb type is high-

lighted in green .

generated text are in response to the input. Gram-
maticality (GRM) measures how grammatically
correct are the paraphrased sentences. Choose-or-
Not (CHO) represents whether a human considers

the generated paraphrase adversarial. Humans eval-
uate SPE and GRM on a Likert scale of 1-5 (least
to most). CHO is 1 if a human considers the gen-
erated paraphrase adversarial, else 0. We compute
the average score across all instances for each met-
ric. For human evaluation, we selected up to 100
unique paraphrases generated by each model vari-
ation that flipped the label of a text. The number
of unique paraphrases varies across strategies, as
detailed in Table 7.

Results. Table 4 shows that incorporating sensi-
tivity reward consistently results in a higher ASR
and CHO for a particular strategy and temperature
combination. Each strategy uses a combination of
decoding mechanisms and whether the sensitivity
reward is used or not. We achieved the highest ASR
of 93.03% with DistilBERT (Sanh, 2019) as the
SMAB Model, beam search decoding strategy and
a temperature of 1.00 that exceeds the correspond-
ing baseline variant by 74.09% and the best base-
line variant by 62.39%. Similarly, we achieved
the best CHO using BERT as the SMAB model
that exceeds the corresponding baseline variant by
20.14% and the best baseline variant by 12.00%.
We present the qualitative examples in the Table
10.

Strategy Temp ASR ↑ SPE ↑ GRM ↑ CHO ↑
(Human Evaluation)

SMAB Model→ ✗

DBS + (✗) 0.85 30.64 3.43 3.65 27.00
BS + (✗) 0.85 17.27 3.50 3.85 22.58
BS + (✗) 1.00 18.94 3.72 3.87 19.11
BS + (✗) 1.15 14.76 3.64 3.86 18.86

SMAB Model→ BERT
DBS + (✓) 0.85 50.41 3.28 3.35 21.00
BS + (✓) 0.85 19.77 3.38 3.88 25.35
BS + (✓) 1.00 22.00 3.46 3.65 24.05
BS + (✓) 1.15 50.97 3.52 3.45 39.00

SMAB Model→ DistilBERT
DBS + (✓) 0.85 88.85 3.88 3.90 22.00
BS + (✓) 0.85 38.99 3.44 3.57 37.00
BS + (✓) 1.00 93.03 3.86 3.88 26.00
BS + (✓) 1.15 20.89 3.40 3.74 22.66

Table 4: ParaphraseAttack Results on RT dataset. The
strategy represents the combination of decoding mecha-
nism (DBS: Diverse Beam Search, BS: Beam Search)
and usage of sensitivity reward (✗: No sensitivity, ✓:
Sensitivity using BERT/DistilBERT). Temp: decoding
temperature. ASR/CHO in (%). All variants outper-
forming the highest baseline score are highlighted in
green and the best-performing variant is highlighted

in green .

9165

6 Related Work

Sensitivity has been commonly used as a mea-
sure for the complexity of sequence classification
tasks (Hahn et al., 2021). Sensitivity has also been
used for the understanding and optimization of
prompts in related paradigms such as in-context
learning. Lu et al. (2024) performs an analysis of
accuracy and sensitivity, for different prompts in
an ICL setting and observes a negative correlation
between them. FormatSpread (Sclar et al., 2024)
also presents a Multi-armed bandit framework for
a model-agnostic evaluation of performance spread
across different prompt formats. Multiple research
work have focused on the paradigm of adversarial
text generation by perturbing safe input examples
through gradient-based approaches (Ebrahimi et al.,
2018; Cheng et al., 2020). Wallace et al. (2019)
deployed a gradient guided search over all tokens
to extract universal adversarial triggers, which are
input-agnostic tokens to trigger a model. Ribeiro
et al. (2018) followed a similar approach by present-
ing simple and universal semantically equivalent
adversarial rules (SEARs) that create adversaries
on safe inputs. Other approaches such as Iyyer
et al. (2018) and Roth et al. (2024), have delved
into the training of paraphrase networks for con-
trolled generation of attack examples, whereas Xu
et al. (2023) proposed prompt-based adversarial
attack to audit LLMs.

7 Conclusion

We introduce the notion of local (sentence-level)
and global (word-level) sensitivities to capture the
intricacies of a text classifier for a given dataset.
We introduce a novel, cost-effective sensitivity esti-
mation framework, SMAB. Through experiments
on CHECKLIST-generated dataset, we show that
our SMAB framework captures high-sensitive and
low-sensitive words effectively. We observe that
the comparative accuracy between two models (for
the same language or for across language on the
same task) has strong negative correlations with
KL divergence between (global) sensitivity distri-
butions of the models – showing sensitivity can be
used as an unsupervised proxy for accuracy (drops).
Further, we define three word-level perturbation in-
structions utilizing the global sensitivity values ob-
tained from the SMAB framework to attack LLMs
such as GPT-3.5 with a high success rate. We also
show that sensitivity can be used as an additional
reward in paraphrase-based attacks to improve the

attack success rate of adversarial models. Hence,
word-level sensitivities provide a closer look at how
opaque language models work.

Limitations

The work explores the proposed framework for
sequence classification tasks. Further exploration is
needed to extend to other tasks, such as generation
and translation. The hypothesis of sensitivity acting
as an unsupervised proxy is valid under the specific
conditions we tested. A more detailed study of
various families of models and tasks might provide
deeper insights into the correlation, which will be
highly useful for evaluating and benchmarking low-
resource languages. It is also important to note that
we performed experiments concerning adversarial
example generation in English, and a full-fledged
multilingual study needs to be performed.

Ethics Statement

Although our framework helps identify words with
different sensitivity levels, there can be a few reper-
cussions. It is important to note that the method
does not guarantee that the examples generated will
always be adversarial. The framework, and hence
the sensitivity values, may be misused by people to
develop better jailbreak techniques.

Acknowledgements

This research is partially supported by SERB
SRG/2022/000648. We acknowledge the Ope-
nAI and Azure credits from the Microsoft Ac-
celerate Foundation Models Research (AFMR)
Grant. Sachin Vashistha is partially supported by
the Prime Minister’s Research Fellowship (PMRF)
grant.

References
Kabir Ahuja, Sandipan Dandapat, Sunayana Sitaram,

and Monojit Choudhury. 2022a. Beyond static mod-
els and test sets: Benchmarking the potential of pre-
trained models across tasks and languages. arXiv
preprint arXiv:2205.06356.

Kabir Ahuja, Shanu Kumar, Sandipan Dandapat, and
Monojit Choudhury. 2022b. Multi task learning
for zero shot performance prediction of multilingual
models. arXiv preprint arXiv:2205.06130.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine learning, 47:235–256.

9166

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Mohit Bhardwaj, Md Shad Akhtar, Asif Ekbal, Amitava
Das, and Tanmoy Chakraborty. 2020. Hostility de-
tection dataset in hindi. Preprint, arXiv:2011.03588.

Florian Boudin. 2016. pke: an open source python-
based keyphrase extraction toolkit. In Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: System Demonstrations,
pages 69–73, Osaka, Japan.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang,
and Cho-Jui Hsieh. 2020. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with ad-
versarial examples. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(04):3601–3608.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Çağrı Çöltekin. 2020. A corpus of Turkish offensive
language on social media. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 6174–6184, Marseille, France. European
Language Resources Association.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsuper-
vised cross-lingual representation learning at scale.
Preprint, arXiv:1911.02116.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Mithun Das, Saurabh Pandey, Shivansh Sethi, Punyajoy
Saha, and Animesh Mukherjee. 2024. Low-resource
counterspeech generation for Indic languages: The
case of Bengali and Hindi. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2024,
pages 1601–1614, St. Julian’s, Malta. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

Mai ElSherief, Caleb Ziems, David Muchlinski, Vaish-
navi Anupindi, Jordyn Seybolt, Munmun De Choud-
hury, and Diyi Yang. 2021. Latent hatred: A bench-
mark for understanding implicit hate speech. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 345–363,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Michael Hahn, Dan Jurafsky, and Richard Futrell. 2021.
Sensitivity as a complexity measure for sequence
classification tasks. Transactions of the Association
for Computational Linguistics, 9:891–908.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-
enhanced bert with disentangled attention. Preprint,
arXiv:2006.03654.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Sheng Lu, Hendrik Schuff, and Iryna Gurevych. 2024.
How are prompts different in terms of sensitivity?
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5833–5856, Mexico

9167

https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://arxiv.org/abs/2011.03588
https://arxiv.org/abs/2011.03588
http://aclweb.org/anthology/C16-2015
http://aclweb.org/anthology/C16-2015
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1609/aaai.v34i04.5767
https://doi.org/10.1609/aaai.v34i04.5767
https://doi.org/10.1609/aaai.v34i04.5767
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://aclanthology.org/2020.lrec-1.758/
https://aclanthology.org/2020.lrec-1.758/
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://aclanthology.org/2024.findings-eacl.111
https://aclanthology.org/2024.findings-eacl.111
https://aclanthology.org/2024.findings-eacl.111
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.1162/tacl_a_00403
https://doi.org/10.1162/tacl_a_00403
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/2024.naacl-long.325

City, Mexico. Association for Computational Lin-
guistics.

Scott Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Preprint,
arXiv:1705.07874.

Thomas Mandl, Sandip Modha, Prasenjit Majumder,
Daksh Patel, Mohana Dave, Chintak Mandlia, and
Aditya Patel. 2019. Overview of the hasoc track at
fire 2019: Hate speech and offensive content identifi-
cation in indo-european languages. In Proceedings
of the 11th Annual Meeting of the Forum for Infor-
mation Retrieval Evaluation, FIRE ’19, page 14–17,
New York, NY, USA. Association for Computing
Machinery.

Nedjma Ousidhoum, Zizheng Lin, Hongming Zhang,
Yangqiu Song, and Dit-Yan Yeung. 2019. Multilin-
gual and multi-aspect hate speech analysis. Preprint,
arXiv:1908.11049.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115–124, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Juan Carlos Pereira-Kohatsu, Lara Quijano Sánchez,
Federico Liberatore, and Miguel Camacho-Collados.
2019. Detecting and monitoring hate speech in twit-
ter. Sensors (Basel, Switzerland), 19.

Zesis Pitenis, Marcos Zampieri, and Tharindu Ranas-
inghe. 2020. Offensive language identification in
Greek. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 5113–
5119, Marseille, France. European Language Re-
sources Association.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Ex-
plaining the predictions of any classifier. Preprint,
arXiv:1602.04938.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Nauros Romim, Mosahed Ahmed, Hriteshwar Talukder,
and Md Saiful Islam. 2020. Hate speech detection
in the bengali language: A dataset and its baseline
evaluation. Preprint, arXiv:2012.09686.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wojatzki.
2016. Measuring the Reliability of Hate Speech An-
notations: The Case of the European Refugee Cri-
sis. In Proceedings of NLP4CMC III: 3rd Work-
shop on Natural Language Processing for Computer-
Mediated Communication, volume 17 of Bochumer
Linguistische Arbeitsberichte, pages 6–9, Bochum.

Tom Roth, Inigo Jauregi Unanue, Alsharif Abuadbba,
and Massimo Piccardi. 2024. A constraint-enforcing
reward for adversarial attacks on text classifiers.
Preprint, arXiv:2405.11904.

V Sanh. 2019. Distilbert, a distilled version of bert:
Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2024. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
In The Twelfth International Conference on Learning
Representations.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

William R Thompson. 1933. On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–
294.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods

9168

https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://arxiv.org/abs/1908.11049
https://arxiv.org/abs/1908.11049
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://api.semanticscholar.org/CorpusID:207961644
https://api.semanticscholar.org/CorpusID:207961644
https://aclanthology.org/2020.lrec-1.629/
https://aclanthology.org/2020.lrec-1.629/
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://arxiv.org/abs/2012.09686
https://arxiv.org/abs/2012.09686
https://arxiv.org/abs/2012.09686
https://arxiv.org/abs/2405.11904
https://arxiv.org/abs/2405.11904
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Ronald J. Williams. 2004. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang,
Jingfeng Zhang, and Mohan Kankanhalli. 2023. An
llm can fool itself: A prompt-based adversarial attack.
Preprint, arXiv:2310.13345.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

A MAB Framework: Additional Details

We summarize the details of the SMAB framework
in an Algorithm format in Algorithm 1.

Outer Arm Selection. We employ the UCB sam-
pling strategy to choose a specific word w at each
step t using:

w∗
t+1 = argmax

w∈W
(Beta(α, β))

where W is the set of all the words or outer arms.
Nw is the no. of times a word w has been picked
so far.

Estimation of Total Regret. In MAB, Total
Regret Rt is defined as the total loss we get by
not selecting the optimal action up to the step or
iteration t. Let the outer arm or word w be picked
up at the step or iteration t. Now, in turn, we will
pick up sentences s1 and s2 ∈ Sw. Let Lw be the
local sensitivity. Hence, the Total Regret Rt up to
the iteration t is defined as:

Rt = Rt−1 + ([Lw∗ − Lw] ∗ Gw
t) (6)

where Gw
t is the Global sensitivity value of (the

outer arm) the word w that was picked and LW ∗

is the highest value of local sensitivity that can be
obtained out of the set Sw.

Comparison of Time Complexity. Let |D| be
the size of the dataset i.e. the number of input
sentences in the dataset, |Σ| be the total number
of words in the dataset, |V | be the vocabulary size
of the Language Model, and cost(f) be the cost
to use a Language Model for various purposes like
classification, Masked Language Modeling.
Time Complexity for Subset-sensitivity: Let |P |
be the size of the subset. For every input sentence
in the dataset, we use an MLM to generate |V ||P |

perturbed strings and then classify them using an
LLM to see if the label flipped. Hence, the Time
Complexity is:

O(|D| · |V ||P | · cost(f)) (7)
For calculating the block sensitivity, the subset sen-
sitivity is calculated K times, corresponding to the
K partitions, which can go exponential.
Time Complexity of SMAB: Local sensitivity in
our algorithm is closely related to the subset sen-
sitivity defined in Hahn et al. (2021). Our local
sensitivity is obtained by taking |P | = 1 (single-
ton sensitivity) and global sensitivity is calculated
using equation 3 in our paper, which is O(1). The
time complexity of our SMAB algorithm given T
as the total number of iterations is:

O(T · (|Σ| + (|D| · |V | · cost(f)))) (8)

It is calculated as

• Initialization (Lines 1-3): Initializing G and
N, both of size |Σ|, has a complexity ofO(|Σ|)
and setting t ← 0 has O(1) complexity.
Hence, the total complexity for the Initializa-
tion step is O(|Σ|).

• Outer Loop (Lines 4–10): The loop runs T
times. We analyze the per-iteration complex-
ity below.

• Selecting the Word (Line 5): Finding w∗

requires evaluating the expression
w∗
t+1 = argmax

w∈W
(Beta(α, β))

that requires O(|Σ|) operations.

• Fetching Sentences (Line 6): Accessing Sw,
the set of sentences for the selected word w∗,
has O(1) complexity.

9169

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://api.semanticscholar.org/CorpusID:2332513
https://api.semanticscholar.org/CorpusID:2332513
https://api.semanticscholar.org/CorpusID:2332513
https://arxiv.org/abs/2310.13345
https://arxiv.org/abs/2310.13345

• Selecting Two Sentences and Calculating
Local Sensitivity (Line 7): Here, first the set
Sw is created by using xlm-roberta-large
10 number of times for each sentence. It takes
O(|D| · |V |) complexity as our setup replaces
a single word every time. Then, for every sen-
tence, a target classifier is used to predict the
label that requires cost(f) for each sentence.
Afte that, selecting s1 randomly from Sw has
O(1) complexity. Selecting s2 with the high-
est reward requires evaluating the reward for
all sentences in Sw, which takes O(|D|) and
finally, Computing the local sensitivity Lw is
a constant-time operation: O(1). Total com-
plexity for this step is O(|D| · |V | · cost(f))

• Updating Global Sensitivity (Line 8): It is a
constant-time operation: O(1).

• Final Output Computation (Lines 9–10):
Calculating the final global sensitivities G[w]
for all w ∈W and the total regret Rt involves
O(|Σ|).

The per-iteration complexity is:
O(|Σ|+ (|D| · |V | · cost(f))).

For T iterations, the overall complexity becomes:
O(T · (|Σ| + (|D| · |V | · cost(f))))

This shows that our proposed algorithm is computa-
tionally more efficient than the existing algorithms.
In practice, the top few replacements (perturba-
tions) from the MLM probability distribution are
used instead of iterating over all vocabulary sym-
bols.

B CHECKLIST: Additional Results

In Figure 5, we show a scatter plot of the word sen-
sitivities estimated using SMAB (with Thomspon
Sampling). As mentioned in the main paper, we ob-
serve that words from DIR templates have a larger
distribution, present in the 0.2− 1 range, whereas,
the words from the invariant test cases (INV tem-
plate) have lower sensitivities (mostly between 0
and 0.2).

B.1 Dataset details

B.1.1 Hate Speech Dataset
In this section, we describe the sources of our com-
piled dataset for the hate classification task for dif-
ferent languages. The complete statistics for all the
languages can be found in Table 5.

Algorithm 1 Multi-Armed Bandit Algorithm
Input: A set of words/outer-arms W, Dictionary
D containing the set Sw of sentences as a value for
every key i.e. word w ∈ W and total number of
iterations T← 200000.
Output: The set G containing final global-
sensitivity values for every word w ∈W

1: Initialize the set G as the initial values of the
global sensitivities of the words. Here, |G| =
|W|

2: Initialize the set N (|N| = |W|) to zero. N
represent the count of every word w ∈W.

3: t← 0
4: Repeat steps 5 to 9 until t ̸= T :
5: Select a word w ∈W such that

w∗
t+1 = argmax

w∈W
(Beta(α, β))

6: Sw ← D[w∗], Nw ← Nw + 1
7: Select two sentences s1, s2 ∈ Sw and calculate

Local sensitivity as:

Lw = ϵ · r1 + (1− ϵ) · r2

8: Update Global Sensitivity Gw
t as

Gw
t =

(Nw ∗ Gw
t−1 + Lw)

1 + Nw

9: Final Global Sensitivity Values: G[w]← Gw
t

10: Total Regret Rt = Rt−1 + ([Lw∗−Lw] ∗Gw
t)

English: We used the Stage 1: High Level Cat-
egorization of the Implicit Hate dataset provided
by (ElSherief et al., 2021). It contains three labels
namely implicit_hate, explicit_hate, and not_hate.
We converted this multi-classification task into
a binary classification task where the labels im-
plicit_hate, and explicit_hate are treated as the hate
label.

Bengali: We used a subset of the Bengali Hate
speech dataset provided by (Romim et al., 2020)
which includes the categories crime, religion, and
politics for hate label and all the categories for
non-hate label.

Hindi: For the Hindi language, we combined
datasets collected from two different sources: 1)
(Mandl et al., 2019) provides a binary (hate/no-
hate) version of the Hindi dataset. 2) We used a
subset of the Hindi dataset (excluding the fake cat-

9170

Figure 5: Scatter plot of estimated global sensitivities of
arms of INV and DIR templates using TS. Words from
DIR templates have higher estimated global sensitivity
and are spread in the whole space as opposed to words
from INV templates.

egory) provided by (Bhardwaj et al., 2020) which
includes the category non-hostile for non-hate label
and all remaining categories for hate label.

Spanish: We used two datasets for the Spanish
language: 1) HatEval dataset is provided by (Basile
et al., 2019), and 2) (Pereira-Kohatsu et al., 2019)
has provided the hate speech dataset in the Spanish
language.

Turkish: We used a corpus of offensive content
for the Turkish language collected from Twitter
posts (Çöltekin, 2020).

French: We used the french version of the Mul-
tilingual and Multi-Aspect Hate Speech Analysis
dataset (Ousidhoum et al., 2019) and converted it
into a binary (hate or non-hate) classification task.

German: We combined the dataset from two
different sources: 1) The german hate speech
dataset provided for the HASOC track at FIRE
2019 (Mandl et al., 2019), and 2) the german hate
speech dataset related to the Refugee crises (Ross
et al., 2016).

Greek: We used the Offensive Greek Tweet
Dataset (OGTD) provided by (Pitenis et al., 2020).

Language Hate No Hate Total

English 1026 1658 2684
Bengali 806 1194 2000
French 1593 421 2014
German 904 1607 2511
Greek 501 1100 1601
Hindi 783 549 1332

Spanish 1010 1290 2300
Turkish 400 1290 1690

Table 5: Dataset Statistics for val split of mHate dataset

C KLD v/s Accuracy Experiments

Correlation Within Langauge. We experiment
with various models on mHate and XNLI dataset.
We use 5 different target classifiers for a language
to estimate global sensitivities. We use XLM-
R (Conneau et al., 2020), mBERT, mDeBERTa
(He et al., 2021), FlanT5-L (Chung et al., 2022)
and GPT-3.5 for predictions on mHate and XNLI
dataset. For a given language, we then compare
the difference in sensitivity distributions of differ-
ent models with respect to a base model (XLM-R),
measured as KL Divergence with the performance
of different models on that langauge (accuracy).
We plot KLD v/s Accuracy plots for different mod-
els under study.

Figure 6: KLD v/s accuracy within language on mHate-
English dataset.

D Improving Paraphrase Attack with
Local Sensitivity

D.1 Senisitivity Reward Calculation

We adjust the original reward function R(x, x′)
by incorporating an additional Sensitivity reward
S(x, x′) weighted by the scaling constant α ∈

9171

(0, 1) as shown:
R(x, x′) = R(x, x′) + αS(x, x′). (9)

Here, S(x, x′) is the difference between the sensi-
tivity of the input text x and the sensitivity of the
generated text x′: S(x, x′) = s(x) − s(x′). The
sensitivity of a text is calculated as

s(x) =

∑m
i=1

∑ni
j=1 L

ij
s∑m

i=1 ni
(10)

where m represents the total number of keyphrases,
ni represents the number of words in the i-th
keyphrase and Lij

s represents the local sensitivity
of jth word in the ith keyphrase. For our experi-
ments, we used Scaling constant α = 0.25. We
extract the keyphrases from a text using a Topi-
cRank keyphrase extraction model using an open
source toolkit pke (Boudin, 2016).

D.2 Key Phrase sensitivity Calculation

We present the key-phrase sensitivity estimation
process in a pseudo-code form in Algorithm 2. This
algorithm takes as input the original text x and cal-
culates its sensitivity. The algorithm has three main
steps: In the first step, it extracts the key phrases
from the input text x using the Topic Rank Key
phrase extraction Model M and stores them in a list
K. This first step is shown in line 6 of the pseudo-
algorithm. In the second step, it calculates the sen-
sitivities of each key phrase. The algorithm iterates
through all the key phrases stored in the list K and
does the following: 1 It extracts all the words that
are present in the current key phrase and stores it in
the list words. Similarly, it maintains a global vari-
able Total_words that will store the total number
of words extracted from each Keyphrase. 2 It cre-
ates a masked sentence xmasked from the input text
x by replacing all the words that are present in the
current key phrase with [MASK]. 3 It then uses
bert-large-uncased to generate 10 perturbed
sentences by predicting new words at the locations
where [MASK] is present in xmasked. These 10 per-
turbations are stored in the list Masked_output.
4 The algorithm then predicts the label of the

input text x and 10 perturbed sentence present
in the list Masked_output and stores the pre-
dictions in the variable Prediction_original and
in the list Prediction_List respectively. 5
Then, it iterates through all the labels in the
Prediction_List and increments the variable
flips if the Prediction_original doesn’t match
the current label. 6 Finally, it calculates the lo-
cal sensitivity of the current keyphrase as the pro-

portion of the total flips that we got out of the
total labels i.e. flips/len(Prediction_List) and
stores it in a list Keyphrase_sensitivity at the in-
dex corresponding to the current key phrase. This
second step is shown in lines 7 to 25 in the pseudo-
algorithm. In the third step, the algorithm adds up
all the values in the list Keyphrase_sensitivity
and divides it by Total_words to get the sensitiv-
ity of the input text x. This third step is shown in
lines 27 to 33 in the pseudo-algorithm.

D.3 Qualitative analysis of the type of Attacks
Table 10 shows the three different types of attacks
carried out by different variants when using dis-
tilbert as the SMAB Model. 1 Type 1 attack
involves generating adversarial examples by replac-
ing one or more words in a sentence with new
words and rephrasing the original sentence. Model
variant with decoding strategy BS + (✓) and a tem-
perature of 0.85 has learned to carry out Type 1
attacks. 2 Type 2 attack involves generating ad-
versarial examples by removing one or more words
from the original sentence while preserving its se-
mantic meaning. Model variant with decoding strat-
egy BS + (✓) and a temperature of 1.15 has learned
to carry out Type 2 attacks. 3 Type 3 attack
involves appending various suffixes to sentences,
such as adding but it’s true, or words like but why
followed by a ?. Model variant with decoding strat-
egy BS + (✓) and a temperature of 1 has learned to
carry out Type 3 attacks.

9172

Purpose Model Threshold

Paraphraser prithivida/parrot_paraphraser_on_T5 -

Target (RT) textattack/distilbert-base-uncased-rotten-tomatoes -

Sensitivity (RT) textattack/bert-base-uncased-rotten-tomatoes -

Linguistic
Acceptability

textattack/albert-base-v2-CoLA 0.5

Semantic
Consistency

sentence-transformers/paraphrase-MiniLM-L12-v2 0.8

Label
Invariance

howey/electra-small-mnli 0.2

Table 6: Various models as target model, in sensitivity reward functions and constraints used in Paraphrase Attack
using Local Sensitivity based adversarial example generation experiment. RT: Rotten Tomatoes dataset.

Strategy Temp Total generated
paraphrases

Total used
paraphrases

SMAB Model→ ✗

DBS + (✗) 0.85 62 62
BS + (✗) 0.85 53 53
BS + (✗) 1.00 110 100
BS + (✗) 1.15 68 68

SMAB Model→ BERT
DBS + (✓) 0.85 181 100
BS + (✓) 0.85 71 71
BS + (✓) 1.00 79 79
BS + (✓) 1.15 183 100

SMAB Model→ DistilBERT
DBS + (✓) 0.85 319 100
BS + (✓) 0.85 140 100
BS + (✓) 1.00 334 100
BS + (✓) 1.15 75 75

Table 7: Total unique paraphrases generated by each
model variation from a total of 359 test instances that
resulted in a label flip and the total paraphrases selected
for human evaluation for the Rotten Tomatoes dataset.

Strategy Temp FSR ↑ After Attack
Accuracy ↓

SMAB Model→ ✗

DBS + (✗) 0.85 24.79 69.35
BS + (✗) 0.85 15.87 82.72
BS + (✗) 1.00 17.54 81.05
BS + (✗) 1.15 13.64 85.23

SMAB Model→ BERT
DBS + (✓) 0.85 44.87 49.58
BS + (✓) 0.85 18.10 80.22
BS + (✓) 1.00 20.33 77.99
BS + (✓) 1.15 47.62 49.02

SMAB Model→ DistilBERT
DBS + (✓) 0.85 86.35 11.14
BS + (✓) 0.85 35.93 61.00
BS + (✓) 1.00 92.20 6.96
BS + (✓) 1.15 20.33 79.10

Table 8: ParaphraseAttack Results on Rotten Tomatoes
(RT) dataset. The strategy represents the combination of
decoding mechanism (DBS: Diverse Beam Search, BS:
Beam Search) and usage of sensitivity reward (✗: No
sensitivity, ✓: Sensitivity using bert/distilbert). Temp:
decoding temperature. FSR/After Attack Accuracy in
(%). Before Attack Accuracy is 100%. All variants
outperforming the highest baseline score are highlighted
in green and the best performing variant is highlighted
in green

9173

Task Dataset Target Classifier Languages #datapoints #arms #edges

Sentiment
Analysis

CheckList cardiffnlp/twitter-roberta-base-sentiment-latest english 34486 8498 52359
RT textattack/distilbert-base-uncased-rotten-tomatoes english 1066 5104 18835

SST-2
distilbert/distilbert-base-uncased-finetuned-sst-2-english
gpt-3.5-turbo
meta-llama/Llama-2-7b

english 872 4088 8041
english 872 4088 8041
english 872 4088 8041

Hate
Classification

Multilingual
hate

google-bert/bert-base-multilingual-uncased
google/flan-t5-large
MoritzLaurer/deberta-v3-base-zeroshot-v1
gpt-3.5-turbo

bengali 2000 7880 18929
english 2684 7061 23149
french 2014 5680 14184
german 2511 11767 24226
greek 1601 9799 22031
hindi 1332 7181 20140
italian 1846 7551 17876

spanish 2150 8780 21982
turkish 1690 12308 20631

Natural
Language
Inference

XNLI MoritzLaurer/mDeBERTa-v3-base-mnli-xnli

english 5010 9543 68156
french 5010 12431 75322
german 5010 13099 61780
greek 5010 15114 90149
hindi 5010 9484 70938

spanish 5010 11994 69166

Table 9: Training details of SMAB for each task and target classifier and the langauges. #datapoints represent the
number of sentences in the training set, #arms represents the unique words present in the dataset after preprocessing.

Attack Examples Flip Result

Type 1

Original: smarter than its commercials make
it seem.
Perturbed: it’s smarter than the commercials
make it appear.

Original: it has become apparent that the
franchise’s best years are long past.
Perturbed: it’s clear that the best years of
the franchise are long gone.

pos→ neg

neg→ pos

Type 2

Original: crush is so warm and fuzzy you
might be able to forgive its mean-spirited
second half.
Perturbed: crush is so warm and fuzzy you
might forgive its mean-spirited second half

Original: you can practically hear george
orwell turning over.
Perturbed: You can hear george orwell
turning over.

pos→ neg

neg→ pos

Type 3

Original: provides a porthole into that noble,
trembling incoherence that defines us all.
Perturbed: It provides a porthole into that
noble trembling incoherence that defines us
all. But why?

Original: this feature is about as necessary
as a hole in the head.
Perturbed: This feature is about as necessary
as a hole in the head. But it’s true.

pos→ neg

neg→ pos

Table 10: Examples of successful adversarial attacks
across the three different attack types when using Dis-
tilBERT as the SMAB Model. The Flip Result col-
umn shows label changes from Original Label →
New Label, where pos and neg denote positive and
negative classes respectively in the Rotten Tomatoes
dataset.

9174

LLM Prompt

GPT-3.5

Given a sentence that is a movie review, your task is to assign a label based on its sentiment. Label 1 if the sentence is a
positive review and Label 0 if the sentence is a negative review. Remember to only provide the label.
Sentence: [input_sentence]
Label:

Llama-2-7B
Please label the sentiment of the given movie review text. The sentiment label should be "positive" or "negative".
Answer only a single word for the sentiment label. Do not leave answer as empty. Do not generate any extra text.
Text: [input_sentence] Answer:

Qwen-2.5-7B
Please label the sentiment of the given movie review text. The sentiment label should be "positive" or "negative".
Answer only a single word for the sentiment label. Do not leave answer as empty. Do not generate any extra text.
Text: [input_sentence] Answer:

Table 11: Prompts used for sentiment classification task on SST-2 dataset

Perturb
Type

Qualitative
Example

Flip
Result

W4
Original Sentence: the title not only describes its main characters, but the lazy people behind the camera as well.
New Sentence: The title not only portrays its main protagonists, but also the laid-back crew behind the camera as well.

neg→ pos

W5
Original Sentence: an important movie, a reminder of the power of film to move us and to make us examine our values.
New Sentence: an important movie, a reminder of the influence of cinema to move us and to force us to question our beliefs.

pos→ neg

W6
Original Sentence: It’s a charming and often affecting journey.
New Sentence: It’s a charming but sometimes disconcerting journey.

pos→ neg

Table 12: Qualitative examples for perturbation types W4, W5, and W6 when using Llama-2-13B both as the as
the SMAB Model and the target Model. The Flip Result column shows label changes from Original Label→
New Label, where pos and neg denote positive and negative classes respectively in the SST-2 dataset. In W4, the
placeholders "[Word1]", "[Word2]", GS1, and GS2 are substituted with characters, people, 0.9865988772394045,
and 0.968535617081986 respectively. In W5, the placeholders "[Word1]" and "[Word2]" are substituted with make
and film respectively. In W6, the placeholders "[Word1]" and "[Word2]" are substituted with affecting and often
respectively.

9175

Algorithm 2 Algorithm to calculate the sensitivity of Input Text
Input: x← Input Text
Require: M ← TopicRank keyphrase extraction model, C ← Classifier Model, m ←

bert-large-uncased Model
Representation: G(x) ← Gold label of the Input Text x, C(x) ← Predicted label of the Input Text x

using the Classifier Model C, m(x)← generates K = 10 perturbations of the input text x using the
model m

Output: s← Sensitivity of the Input Text
1: // Initialization
2: s← 0 ▷ This variable will store the sensitivity of the input text x.
3: Total_words← 0 ▷ This variable represents the total number of words across all the keyphrases.
4: Keyphrase_sensitivity ← {} ▷ A dictionary to store the sensitivity values of each keyphrase.
5: // Extract keyphrases using the TopicRank Model M and store them in the list K.
6: K ←M(x)
7: // Main algorithm
8: for k in K do
9: words← k.split() ▷ Get a list of all the words in the current keyphrase.

10: Total_words += len(words)
11: for w in words do
12: xmasked ← mask the word w in the text x using "[MASK]"
13: end for
14: Masked_output← m(xmasked) ▷ Store all the perturbed samples in this list.
15: Prediction_List← C(Masked_output) ▷ Store the prediction labels of all the perturbed

samples in this list.
16: Prediction_original← C(x) ▷ Store the prediction label of the input text x.
17: flips← 0 ▷ A temporary variable to count the flips.
18: for labels in Prediction_List do
19: if labels ̸= Prediction_original then
20: flips += 1
21: end if
22: end for
23: local_sensitivity ← flips/len(Prediction_List) ▷ Total flips normalized by the total

number of labels.
24: Keyphrase_sensitivity[k]← local_sensitivity
25: end for
26: // Calculate the sensitivity of the input text x.
27: if Total_words ̸= 0 then
28: t← 0 ▷ A temporary variable.
29: for value in Keyphrase_sensitivity.values() do
30: t += value
31: end for
32: s← t/Total_words
33: end if

return s

9176

