
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 9049–9076

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CRScore: Grounding Automated Evaluation of Code Review Comments in
Code Claims and Smells

Atharva Naik Marcus Alenius Daniel Fried Carolyn Rosé
Language Technologies Institute

Carnegie Mellon University
{arnaik, malenius, dfried, cprose}@cs.cmu.edu

Abstract

The task of automated code review has recently
gained a lot of attention from the machine learn-
ing community. However, current review com-
ment evaluation metrics rely on comparisons
with a human-written reference for a given code
change (also called a diff). Furthermore, code
review is a one-to-many problem, like genera-
tion and summarization, with many “valid re-
views” for a diff. Thus, we develop CRScore —
a reference-free metric to measure dimensions
of review quality like conciseness, comprehen-
siveness, and relevance. We design CRScore to
evaluate reviews in a way that is grounded in
claims and potential issues detected in the code
by LLMs and static analyzers. We demonstrate
that CRScore can produce valid, fine-grained
scores of review quality that have the greatest
alignment with human judgment among open
source metrics (0.54 Spearman correlation) and
are more sensitive than reference-based met-
rics. We also release a corpus of 2.9k human-
annotated review quality scores for machine-
generated and GitHub review comments to sup-
port the development of automated metrics1.

1 Introduction

Code Review is an essential quality control tool
for software engineers to ensure that source code
is free of bugs and upholds standards (McIntosh
et al., 2014; Bavota and Russo, 2015). Software en-
gineers prefer lightweight, asynchronous review
processes, as enabled through GitHub’s review
comment feature, over formal, in-person reviews
(Beller et al., 2014; Badampudi et al., 2023). This
has led to the creation of benchmarks for automated
generation of natural language (NL) review com-
ments (Li et al., 2022; Tufano et al., 2022). How-
ever, these benchmarks use reference-based eval-
uation metrics like BLEU (Papineni et al., 2002),
which have been shown to have low validity (Re-

1https://github.com/atharva-naik/CRScore

iter, 2018; Evtikhiev et al., 2023), especially when
paired with limited and low-quality references.

Code review is fundamentally a one-to-
many problem, where a given diff can have
multiple possible issues that a review can
tackle. Having a limited number of reference
reviews (e.g., one per diff in CodeReviewer
(Li et al., 2022)) leads to unfairly low scores
with reference-based metrics. For example, for
the diff shown in Figure 1, the ground truth
review focuses on whether the ToHexString()
function could cause a performance issue. How-
ever, the model-generated review focuses on
ToHexString().Equals("0000000000000000")
being an odd condition with a scenario where
its being triggered is unlikely, which is also a
valid review for the diff. However, the BLEU
score value for the model-generated review is very
low, specifically at 0.0458, due to poor n-gram
overlap. Additionally, the references can also be
low-quality due to missing context, as shown in
Table 5, or can focus on trivial and tangential
issues (Pangsakulyanont et al., 2014). Such
low-quality references paired with reference-based
metrics can harshly and unfairly penalize models.

Motivated by these drawbacks, we propose
CRScore, an automated but reference-free evalu-
ation metric that uses dimensions of review quality
from prior work (Piorkowski et al., 2020; Turzo
and Bosu, 2024). In particular, Comprehensiveness
– does the review convey all the necessary informa-
tion? Conciseness – does the review only convey
the necessary information in an efficient way and
Relevance – is all the information on topic. We op-
erationalize our metric through a two-step process:
1 generate a list of pseudo-references spanning

information like possible claims, issues, and im-
plications of a code change, and 2 use semantic
textual similarity (STS) to align parts of the review
to the pseudo-references. To generate the pseudo-
references, we use a neuro-symbolic approach that

9049

https://github.com/atharva-naik/CRScore

combines Large Language Models (LLMs) and
Code Analysis Tools (CATs) that can detect for-
matting errors, faulty design patterns (code smells
Rasheed et al. 2024), etc. We combine these meth-
ods for more exhaustive pseudo-references and to
overcome drawbacks of each method (section A.1).

Finally, we demonstrate the validity of CRScore
by human evaluation of the quality of pseudo-
references and by measuring the alignment of our
metrics with human judgment. We show that a
large number (82.6%) of pseudo-references gen-
erated by CRScore are correct, and that it has
the greatest alignment with (Spearman correlation
0.5431) and sensitivity to (Figure 8) the human
judgment of review quality, as compared to that of
the reference-based metrics.

Contributions. (1) We propose an automated
reference-free metric that combines the advantages
of LLMs and CATs to measure review quality along
fine-grained dimensions. (2) We collect human an-
notations of pseudo-reference quality and review
conciseness, comprehensiveness, and relevance to
validate our approach. We plan to make these
scores publicly available as a resource for contin-
ued development of automated metrics. (3) We
benchmark several LLMs of code for code review
on the CodeReviewer dataset using CRScore and
compare it with reference based metrics.

Figure 1: Example diff with multiple valid reviews.
The ground truth and model-generated reviews focus
on different topics, like the performance of the added
check, and how likely it is to be triggered. However, a
reference-based metric like the BLEU score assigns this
review a low score of 0.0458.

2 Related Work

In this section, we summarize the limitations of
reference-based evaluation, the need for better
code review evaluation metrics, inspiration from
reference-free evaluation for other tasks, and how
code smells can be leveraged to evaluate reviews.

2.1 Reference Based Evaluation Metrics:

Reference-based metrics like BLEU (Papineni
et al., 2002), ROUGE (Ganesan, 2018), and
BERTScore (Zhang et al., 2020) have seen
widespread adoption for text generation tasks like
translation and summarization due to their con-
venience. While metrics like BLEU, ROUGE,
and character F-score (Popović, 2015, 2017) use
n-gram overlap between the reference and candi-
date text, metrics like BERTScore (Zhang et al.,
2020) try to capture the semantic similarity. How-
ever prior studies have shown metrics like BLEU
to have low validity (overlap with human judg-
ment) and reliability (Reiter, 2018; Evtikhiev et al.,
2023). Meanwhile, BERTScore can fail for candi-
dates with errors that are lexically and stylistically
similar to references (Hanna and Bojar, 2021).

2.2 Code Review Evaluation

Due to the high time and resource demands of code
review, automated approaches have gained pop-
ularity (Yang et al., 2024). Tufano et al. (2021,
2022); Li et al. (2022) proposed large datasets for
code review tasks like code changes quality detec-
tion, review comment generation, and code refac-
toring. However, these datasets used reference-
based metrics and thus suffer from the issues high-
lighted in sec 2.1. While many studies have fo-
cused on modeling methods for code review tasks
(Pornprasit and Tantithamthavorn, 2024; Lu et al.,
2023; Dong-Kyu, 2024; Fan et al., 2024; Yu et al.,
2024; Lin et al., 2024), they either retain the same
reference-based automated metrics like BLEU (Pa-
pineni et al., 2002), or use human evaluation. Some
studies have focused on evaluating style and presen-
tation of review comments for usefulness (Rahman
et al., 2017; Ochodek et al., 2022; Yang et al., 2023)
(see Appendix B.3 for detailed comparison) or neg-
ativity and toxicity (Ahmed et al., 2017; Sarker
et al., 2023). This work focuses on -focused and
reference-free automated evaluation. We show that
reference-based metrics combined with noisy refer-
ences fail to capture human preferences. We pro-
pose CRScore, the first automated content-focused

9050

reference-free metric to overcome these limitations.

2.3 Reference Free Evaluation
Reference-free evaluation metrics have been pro-
posed for various text-generation tasks to capture
multiple valid outputs. Instead of using references,
these metrics try to measure general “quality di-
mensions” like relevance, informativeness, etc. VI-
FIDEL (Madhyastha et al., 2019), InfoMetIC (Hu
et al., 2023), and ClipScore (Hessel et al., 2021)
evaluate dimensions like faithfulness, informative-
ness, and relevance, respectively for image cap-
tioning. FED (Mehri and Eskenazi, 2020a), and
USR (Mehri and Eskenazi, 2020b) evaluate dimen-
sions like informativeness, relevance, and over-
all quality for dialog. Studies on the helpfulness
of software documentation and code review (Pi-
orkowski et al., 2020; Turzo and Bosu, 2024) pro-
pose quality dimensions like conciseness, com-
pleteness, understandability, relevance, and sup-
porting evidence. The common trend across these
studies is some notion of conciseness, informative-
ness/comprehensiveness, and relevance being use-
ful, prompting us to focus on them. However, our
work is the first to operationalize these dimensions
for automated evaluation.

2.4 Code Smell Detection
“Code smells” (Fowler, 1997) are design flaws
and bad practices (also called anti-patterns) that
can lead to maintainability issues. Detecting code
smells automatically has traditionally been accom-
plished by static analysis-based approaches (Tsan-
talis et al., 2008; Paiva et al., 2017; Liu and Zhang,
2017). Recently machine learning (Sandouka and
Aljamaan, 2023) and transfer learning (Sharma
et al., 2021) based approaches have been pro-
posed to learn more complex heuristics. Recent
approaches have leveraged LLMs via prompting
(Liu et al., 2024) and agents (Rasheed et al., 2024)
to achieve improvement and tackle repository-level
code smell detection. However, these approaches
are limited in the types of smells they target (Liu
et al., 2024; Sandouka and Aljamaan, 2023), train-
ing data requirements (Zhang et al., 2024), or lack
comprehensive evaluation (Rasheed et al., 2024).
Also, code smells differ across programming lan-
guages (Abidi et al., 2019), and transfer learning
approaches can only be leveraged for similar lan-
guages (Sharma et al., 2021). Due to these limita-
tions of learning-based methods and to mitigate the
self-selection bias of LLMs (sec A.1) we use code

analysis tools.

3 Operationalizing CRScore

Motivated by the one-to-many nature of code
reviews, noisy references, and the pitfalls of
reference-based automated metrics, we develop
CRScore — a reference-free, quality dimension-
based automated metric. As shown in Figure 2,
instead of relying on explicit references, our met-
ric generates “pseudo-references” from the code
change spanning claims, implications, and is-
sues/smells that hurt maintainability — in other
words, some topics that a review should address
(Rasheed et al., 2024). Then we use semantic tex-
tual similarity (STS) measures to quantify how
much these topics are addressed by a code review
as shown in Figure 2 through the lens of three qual-
ity dimensions: conciseness, comprehensiveness,
and relevance. They capture review quality, similar
to precision, recall, and f-score used for classifi-
cation and retrieval. We describe the three main
components of our framework — the quality dimen-
sions, pseudo-reference generation, and similarity
measurement — below.

3.1 Quality Dimensions

We are inspired by (Piorkowski et al., 2020; Turzo
and Bosu, 2024) to pick the dimensions of “concise-
ness”, “comprehensiveness” (similar to complete-
ness), and “relevance”. The former two capture
and strike a balance between comprehensive re-
views with a lot of detail and concise, minimalist
reviews. Conciseness and comprehensiveness play
the role of precision and recall respectively, captur-
ing how much of the review is on topic, and how
much information is covered. Relevance strikes a
balance between the two, like f-score, measuring
the overall quality of the review. Additionally, we
also do a human evaluation of the validity of the
pseudo-references focusing on aspects like support-
ing evidence (Piorkowski et al., 2020).

3.2 Pseudo Reference Generation

To generate pseudo references we develop an LLM-
based pipeline for generating claims about the code
changes on two levels of abstraction: 1) Low-level
changes and 2) High-level “implications” of the
change. To allow for reproducibility and ease of de-
ployment we use a 6.7B parameter open source
LLM, Magicoder (Wei et al., 2023). We fine-
tune Magicoder-S-DS-6.7B for this task using task-

9051

Figure 2: Operationalization of CRScore: Our metric first generates pseudo-references for the diff — claims,
implications and issues. Then each pseudo-reference is embedded by a sentence transformer along with each review
sentence and the pairwise semantic textual similarity (STS) is computed. The high similarity threshold τ is used to
compute the Con and Comp metrics whose harmonic mean yields the Rel score.

specific data produced by a stronger model (GPT-
4) as shown in Figure 3. We generate claims by
prompting GPT-4 for a random subset of 1k code
changes from the CodeReviewer validation data.

In addition to the claims, we also utilize pro-
gram analysis tools that can detect issues and “code
smells” (characteristics that indicate deeper flaws
in programs as shown in Table 14) like PySmell2

as well as static analyzers like PMD3 and JSHint4.
They can detect unused variables, unnecessary ob-
ject creation, syntax errors, leaking variables, type
conversion issues, etc. These tools target Python,
Java, and Javascript respectively, and can use rule-
based analysis to detect issues at a file or repository
level. They complement the aspects that might be
missed by an LLM-based analysis. We combine
the code smells and claims to get the final set of
pseudo references.

3.3 Computing Similarity with Pseudo
References:

We use a Sentence Transformer (Reimers, 2019)
model (mxbai-embed-large-v15) to compute Se-
mantic Textual Similarity (STS) between pseudo-
references and review sentences. The pairwise sim-
ilarities are then used to compute the conciseness,
comprehensiveness, and relevance, as shown by
equations 1, 2, and 3. We picked this model be-
cause it has the best performance, as of July 2024,
on English STS on the MTEB benchmark (Muen-

2https://github.com/whyjay17/Pyscent
3https://pmd.github.io/
4https://jshint.com/
5https://huggingface.co/mixedbread-ai/

mxbai-embed-large-v1

nighoff et al., 2022) for models with less than 1B
parameters.

We start by computing token embeddings for the
pseudo-references (p-refs) and review sentences (r-
sents), excluding the stopwords and pooling the rest
of the token embeddings to build representations
for the whole sentence. Then we compute STS
scores with these sentence embeddings via pair-
wise cosine similarity s() between the p-refs (P)
and r-sents (R). The Conciseness (Con) which is
computed as:

Con =

∑
r∈R I[maxp∈P s(c, r) > τ]

|R| (1)

represents the fraction of r-sents from the model-
generated review with greater similarity to any p-
ref above a threshold τ . Here, I is an indicator
variable such that:

I[x] =

{
1, if x is true
0, otherwise

Con resembles precision as it captures the frac-
tion of r-sents (candidate set) that are “on topic”
concerning the p-refs (reference/gold set). The
Comprehensiveness (Comp) computed as:

Comp =

∑
p∈P I[maxr∈R s(c, r) > τ]

|P| (2)

represents the fraction of p-refs that have greater
similarity to any of the r-sents than the threshold τ .
This metric resembles recall as it captures the frac-
tion of the p-refs (gold set) covered by the model-
generated r-sents (candidate set). There is a trade-
off between conciseness and comprehensiveness

9052

https://github.com/whyjay17/Pyscent
https://pmd.github.io/
https://jshint.com/
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1

just like precision and recall, and to capture the
trade-off between these metrics like the F1 score,
we define the Overall Relevance Rel as the har-
monic mean of Con and Comp:

Rel =
2 · Con · Comp

Con+ Comp
(3)

Based on the definition of I[x] all of our metrics
range in value from [0, 1].
Selecting threshold τ for high similarity: For
our similarity threshold τ we use the average simi-
larity between a pseudo-reference and the review
sentence talking about it. To compute it we use the
distribution of pseudo-reference and review sim-
ilarity scores for the best model (GPT-3.5 in our
case). Starting with the CodeReviewer test set we
exclude the data used for collecting human annota-
tions. For the remaining 9869 instances, we com-
pute the similarity between each review sentence
and pseudo-reference for its corresponding code
change. Then we associate each review sentence
with the most similar pseudo-reference to capture
correspondence. Finally, we average the similarity
score value across all review sentences, giving us
a value for the threshold6 τbest = 0.7314. While
choosing the right threshold is important for our
metric, we note that it is robust to some variations
in the value as shown in Table 18.

4 Validating CRScore

To be a valid metric, CRScore needs to satisfy a few
properties. Firstly, the generated pseudo-references
should have few errors and unverifiable claims
while being exhaustive. Additionally, we want our
dimension-level scores (Con, Comp, and Rel), es-
pecially Rel, to correlate with human judgment for
each dimension. The most important property, is
arguably the ability of our metric (especially Rel)
to rank review generation systems in the same order
as humans. In the subsequent sections, we describe
how we design the experiments to collect annota-
tions for these properties (section 4.1, 4.2), choose
a set of systems to be rated by humans (section 4.4),
and set up reference-based metrics (section 4.5) for
comparison CRScore.

4.1 Rating Quality of Pseudo-References
To show that LLM-generated pseudo-references
used by the CRScore evaluation pipeline are high-

6We also show that computing the threshold with ground
truth reviews yields a comparably good threshold τGT =
0.6576 with respect to correlation with human annotations.

quality, we gather annotations capturing incorrect,
unverifiable, and missing claims. We had two
trained human annotators (co-authors of this pa-
per) judge the quality of the pseudo-references
for 100 randomly sampled code changes from
CodeReviewer (Li et al., 2022) each in Python,
Java, and Javascript (300 total, see Appendix D.5
for details). The annotators were asked to code the
pseudo-references as 1 (correct based on evidence),
0 (incorrect based on evidence), and -1 (unverifi-
able due to lack of evidence). They were also asked
to add any pseudo-references about issues/claims
not covered by the pseudo-references. We report
the fraction of correct claims (accuracy), incorrect
claims (error rate), unverifiable claims (unverifi-
able rate), and missing claims (missing rate). If Nc,
Nu, Ni, and Na represent the number of correct,
unverifiable, incorrect, and added claims then each
of these rates can be calculated as:

Accuracy =
Nc

Nc +Nu +Ni

Error Rate =
Ni

Nc +Nu +Ni

Unverifiable Rate =
Nu

Nc +Nu +Ni

Missing Rate =
Na

Nc +Nu +Ni

Based on these expressions: Accuracy +
Unverifiable Rate + Error Rate = 1. The results
for each language are shown in table 1. The an-
notators follow guidelines laid out in a codebook
(section D.1) which includes examples for each cat-
egory. We measured the coding reliability of our
approach by collecting annotations from both anno-
tators on a common set of 100 pseudo-references.
These annotations yielded a Cohen Kappa of 0.804
which indicates great inter-annotator reliability
(Landis and Koch, 1977). Also, we only evalu-
ate the LLM-generated claims here as we know
the static code analysis tools are rule-based and
reliably correct.

4.2 Rating Review Quality Dimensions
To show that CRScore aligns with the human judg-
ment of review quality along the proposed dimen-
sions: comprehensiveness, conciseness, and rele-
vance we gather annotations from the same annota-
tors on reviews generated by 9 systems (section 4.4)
and the ground truth references. We use the same
code changes used in section 4.1.

9053

The raters again follow a codebook (section D.2)
that contains guidelines and examples for annotat-
ing each dimension using the pseudo-references
on a 5-point Likert scale. The raters use the up-
dated set of pseudo-references based on the first
phase of annotations described in section 4.1. In-
correct and unverifiable references are removed
and missing claims are added. We also add the
pseudo-references (issues and code smells) gen-
erated by the code analysis tools for each code
change. Raters are also asked to annotate any
claims they find unnecessary for a given code
change, which are then excluded while rating the
review on each quality dimension. Again, we mea-
sure the reliability of the codebook by collecting
annotations from the two raters, this time on a com-
mon set of 100 reviews. We compute Krippen-
dorff’s alpha reliability (Krippendorff, 2018) for
each dimension, yielding values of 0.8868, 0.8505,
and 0.8806 for conciseness, comprehensiveness,
and relevance respectively. Alpha values > 0.8 are
generally considered reliable. Despite the steps
taken to ensure reliability of the annotations, their
might be some concerns about potential biases,
which we address in Appendix D.9.

Based on these annotations, we measure
the agreement between CRScore (Rel) and the
reference-based metrics with the human-annotated
relevance Likert scores using Kendal and Spear-
man correlation (Table 3). We also compute the
correlation between the system rankings generated
by the metric and human annotations (Table 2).

Language Accuracy Error
Rate

Unverifiable
Rate

Missing
Rate

Python 83.65 12.02 4.33 5.77
Java 79.09 13.22 7.69 8.89
Javascript 85.21 6.52 8.27 2.51

Table 1: Quality of pseudo-references – the fraction
of correct (accuracy), incorrect (error rate), unverifi-
able (unverifiable rate), and added claims (missing rate)
based on human annotations.

4.3 Annotating Similarity between
Pseudo-References and Reviews

While annotating the review quality dimensions
using the pseudo-references the annotators are also
asked to mention the pseudo-references covered
by each system-generated review. This gives us a
dataset of 5.7k pseudo-reference and review pairs,
where 1948 are positive examples or cases where

Metric rs p τ p

BLEU -0.3 0.433 -0.1667 0.612
BLEU
(without stop)

-0.15 0.7 -0.0556 0.919

BERTScore 0.35 0.356 0.2222 0.477
Normalized
Edit Distance

0.1667 0.668 0.0556 0.919

ROUGE-L
F-measure

0.0167 0.966 0.556 0.919

chrF 0.4833 0.187 0.3889 0.18
chrF++ 0.6 0.088 0.4444 0.119
LaaJ-Magic 0.8 0.010 0.6667 0.013
LaaJ-GPT 0.9833 1.9e-6 0.9444 5.0e-5
Rel (τbest)
ours 0.95 8.7e-5 0.8889 2.4e-4

Table 2: Spearman (rs) and Kendall (τ) correlations
between system rankings produced by each metric and
human annotations for relevance. Only our metric and
the LaaJ variants achieve a high, statistically signif-
icant correlation. Our metric has a comparable cor-
relation to LaaJ-GPT which uses a much more pow-
erful closed-source model, while being much better
than LaaJ-Magic which uses Magicoder-S-DS-6.7B, the
same based model as CRScore.

the review addresses a claim according to a hu-
man, while the rest are negative examples or pairs
where the reviews don’t address a pseudo-reference.
Using this data we evaluate the STS model with
various similarity thresholds (tau) using it to covert
the similarity score into a binary classifier and re-
port its precision, recall and F1-score in predicting
whether in a pseudo-reference and review pair the
review addresses the pseudo-reference. The results
are shown in Table 4

4.4 Review Generation Systems
To see if CRScore can rank code review systems of
varying capacity, we choose a diverse set of review
generation models. They span various parameter
sizes, pre-training, and fine-tuning strategies:
Simple baselines: We create two simple baselines,
namely, a BM-25 retriever and an LSTM as de-
scribed in section D.3. We choose these models
with the expectation that they will likely perform
the worst, to see if our metric assigns them a low
score.
CodeReviewer: We pick the CodeReviewer model
from (Li et al., 2022) as it is a transformer-based
model trained on code review-specific data and ob-
jectives.
Open source LLMs: We prompt several open-

9054

source LLMs in a few-shot manner with a fixed set
of three example code changes and review pairs
from the validation set. We use LLMs in the 3-13B
parameter range: Stable-Code-3B (Pinnaparaju
et al.), DeepSeekCoder-6.7B (Guo et al., 2024),
Magicoder-6.7B (Wei et al., 2023), CodeLLaMA-
7B and 13B (Roziere et al., 2023) and LLaMA-3-
8B (AI@Meta, 2024).
Closed source LLMs: We prompt closed-source
LLMs like GPT-3.5 in a manner similar to the open-
source LLMs.

4.5 Reference-based Metrics

We pick commonly used reference-based metrics
for code review and other text generation tasks to
compare with CRScore:
BLEU (Papineni et al., 2002) measures the n-gram
precision between the generated text and references
with an additional brevity penalty to discourage
short outputs. It is used for evaluation in both
(Tufano et al., 2021) and CodeReviewer (Li et al.,
2022). We report the results with and without stop
word removal.
Normalized Edit Distance is a normalized Leven-
shtein distance used in prior work (Tufano et al.,
2021; Bairi et al., 2024) to measure the number
of edits required to match candidate and target re-
views or code.
ROUGE-L F-measure is a popular recall-oriented
metric originally proposed for summarization and
machine translation. We use the longest common
subsequence-based sentence level f-measure imple-
mentation.7

chrF: (Popović, 2015) Is a machine translation
metric which is essentially a character level F score
computed using character level n-grams.
chrF++: (Popović, 2017) Is a variant of chrF that
additionally incorporates word n-grams.
BERTScore: (Zhang et al., 2020) We use the
BERTScore F1 measure to capture the semantic
similarity between the reference review and the
generated review.
LLM-as-a-judge (LaaJ): Following recent de-
velopments (Zheng et al., 2023) we develop an
LLM prompting-based approach that compares the
model-generated reviews against CodeReviewer
references to generate relevance scores. We prompt
them with descriptions of the same Con, Comp, and
Rel dimensions developed in section 3.1 with the
prompt shown in D.4. We evaluate two variants

7https://pypi.org/project/rouge-score/

of this metric one that uses GPT-4o as the judge
LLM (LaaJ-GPT) and one that uses Magicoder-S-
DS-6.7B (LaaJ-Magic), the opensource model used
by CRScore, for a fair comparison.

5 Results

5.1 Validity of Pseudo-References
We show the rates of correct, incorrect, unverifi-
able, and missing claims as explained in section
4.1 in Table 1. The pseudo-references produced by
our pipeline were relatively accurate with roughly
82.6% accuracy across the languages. The best
performance is for Javascript and the worst is for
Java. The most frequent issues in the code claims
were incorrect claims. Most of the errors were in
code comprehension (“misreading the code”) and
over-generalization (incorrect assumptions made
from the limited context, contradicting file level
context). Some examples are shown in Table 12.
For Javascript, we observed unverifiable claims to
be the biggest issue, e.g., claims about code ef-
ficiency or functionality made without evidence.
E.g.: “However, this change could also potentially
enable less strict . . . behavior, . . . This could make
the code less efficient . . . ”.

Metric τ rs

BLEU 0.001 -0.0001
BLEU
(without stopwords)

0.0425 0.0542

BERTScore 0.081 0.1083
Normalized
Edit Distance

0.0193 0.0249

ROUGE-L
F-measure

0.0757 0.0989

chrF 0.1484 0.1966
chrF++ 0.1555 0.2057
LaaJ-Magic 0.2464 0.2748
LaaJ-GPT 0.5247 0.605
Rel (τbest) (Ours) 0.4567 0.5431

Table 3: Comparing Kendal-Tau (τ) and Spearman Rank
(rs) correlation of reference-based evaluation metrics
and our reference-free relevance score (Rel) with hu-
man annotations for the relevance dimension. Results
that don’t achieve statistical significance are grayed out.
Our metric archives the second-best correlation behind
LaaJ-GPT however it does so with a much smaller 6.7B
parameter open-source model. Additionally, CRScore
outperforms LaaJ-Magic which uses the same base LLM
(Magicoder) as the judge model.

9055

https://pypi.org/project/rouge-score/

5.2 Validity of Review Quality Dimension
Scores (Con, Comp and Rel)

Correlation with human Likert score annota-
tions: We compute the Spearman and Kendall rank
correlations between the human-annotated Likert
scores and the metric values. These values were
gathered for the 300 CodeReviewer test instances
mentioned in section 4.1, (results in Table 3). We
exclude human annotations done on the ground
truth references (“Ground Truth” row in Table 10)
because the reference-based metric value for these
would be 1 by default unfairly lowering their cor-
relations. We observe that while almost all the
reference-based metrics have weak to no correla-
tions with human judgment our metric Rel and
LaaJ-GPT achieve the greatest correlations. We
also show correlations between human Likert scale
annotations for all dimensions and all metrics (in-
cluding Con and Comp) in Table 9.
Comparing system rankings: Arguably the most
important desideratum for our metric is the abil-
ity to rank systems similar to human evaluators.
We compare the system rankings produced by our
metric Rel with rankings produced by human an-
notations for relevance, showing the correlations
in Table 2. Only the LaaJ metrics and our metric
achieve a strong, statistically significant correlation
with the rankings computed from human annota-
tions. The system rankings (shown in Table 15)
reveal that our metric gets the ranking mostly right,
except for LLaMA-3-8B-Instruct, which is ranked
slightly lower by our metric compared to human
relevance annotations. We also report the quality
dimension scores for each system according to our
metrics (Con, Comp, and Rel) and human anno-
tations in Table 10. Our metrics also have a simi-
lar spread of values to the human annotations and
greater sensitivity to human preferences as shown
in Figure 8 and Table 13.

5.3 CodeReviewer Dataset Reference Quality

We compare the quality of the CodeReviewer ref-
erence reviews with the reviews generated by the
9 system evaluated by the human annotators. The
average scores for conciseness, comprehensiveness,
and relevance attained by the CodeReviewer refer-
ences are 3.05, 1.88, and 2.13, while the average
scores obtained by all 9 systems are 2.57, 1.84,
and 1.99. This suggests that the average reference
review is barely better than the average evaluated
system according to the human annotators for rel-

STS Threshold (τ) P R F1

0.6 0.4055 0.9512 0.5686
0.65 0.4433 0.8794 0.5895
0.6576 (τGT) 0.4475 0.8665 0.5902
0.7 0.4832 0.77 0.5938
0.7314 (τbest) 0.5173 0.6899 0.5913
0.75 0.5401 0.633 0.5828
0.8 0.6223 0.444 0.5183

Table 4: Precision (P), Recall (R), and f1-score (F1)
achieved by the STS embedding model for various STS
thresholds (τ) evaluated on the human annotations link-
ing each review sentence to the pseudo-references ad-
dressed by it.

evance, but they are more concise. Additionally,
the best system according to human annotators (as
evident from Table 10), GPT-3.5 achieves average
scores of 3.63, 2.65, and 2.9 for each dimension –
much better than the reference reviews. This pro-
vides further motivation for the development of
reference-free evaluation metrics like CRScore for
code review.

5.4 Failure Cases

We analyze the cases where our metric greatly
overestimates or underestimates the quality of a
review with respect to human annotations. We
find such cases using the procedure described in
Appendix E.1. This is also supported by the re-
sults in Table 4 that show that the STS model used
while having a decent amount of recall, has rela-
tively low precision values for most of the thresh-
olds evaluated including τbest, the threshold used
in Table 2 and 3. For underestimation cases, we
observe our pseudo-reference generation pipeline
generates fewer references on average (2.44) com-
pared to the whole data (4.76). This suggests that
even though the STS model has a high recall, hav-
ing fewer pseudo-references, makes it harder to
evaluate the relevance of reviews since CRScore
might underestimate comprehensiveness compared
to humans. Additionally, we observe reviews like
“Why do we need these imports” which are brief,
contain stopwords, and have fewer relevant tokens,
making it hard for STS to recognize their relevance
to pseudo-reference. For overestimation cases, we
observe the presence of inline code snippets at a
higher rate (45%) compared to all reviews (28%)
and underestimation cases (12%). Some example
reviews for each case are shown in Table 16, 17.

9056

6 Discussion

In this work we identify issues with current code
review evaluation benchmarks like CodeReviewer
(Li et al., 2022), which fail to capture the one-
to-many nature of code review and contain noisy
references. To enable auditing current evaluation
metrics and aid the development of a better met-
ric, we propose three review quality dimensions
– conciseness, comprehensiveness, and relevance
based on current literature on reference-free evalua-
tion (Mehri and Eskenazi, 2020b; Piorkowski et al.,
2020; Turzo and Bosu, 2024).

To ground these dimensions in topics that re-
views should address (Rasheed et al., 2024), we
propose an automated pseudo-reference generation
pipeline that leverages LLMs and code smell de-
tectors. We validate the quality of these pseudo-
references via human evaluation. Based on these
dimensions, we develop reliable guidelines for cod-
ing review quality using pseudo-references and col-
lect annotations for 9 review generation systems
and “ground truth” reviews for the CodeReviewer
dataset spanning Python, Java, and Javascript.

The collected annotations show that current
reference-based metrics except for LLM-as-a-
judge with powerful closed source models like
GPT-4o fail to capture human preferences, which
is further compounded by humans preferring some
models over the references. We propose CRScore
as a metric to capture the three dimensions using
the pseudo-references generated by open source
LLMs and static analysis tools like code smell de-
tectors through STS models like sentence trans-
formers (Reimers, 2019). Our approach has the
second greatest alignment with human preferences,
lagging only behind LaaJ-GPT and the greatest
alignment among open source metrics. It achieves
the best review quality correlation scores (0.4577 τ
and 0.5425 rs), system ranking correlations (0.95
rs and 0.8889 τ), as well as the greatest sensitivity
(Figure 8) among open source metrics. Addition-
ally, it greatly improves over using the Magicoder
LLM directly as a judge, while also being more
efficient (since the LLM needs to be run only once
to produce the pseduo-references as compared to
the LLM-as-a-judge, where it needs to be re-run
for every review model evaluated). However, we
also note that despite its reproducibility, efficiency
and greater alignment with human preferences,
CRScore exhibits only moderate correlations with
review quality, and systematically underestimates

or overestimates it in some cases.

7 Conclusion

Our work takes the first steps towards addressing
the challenges involved in evaluating the quality of
code reviews. We propose useful dimensions for
capturing review quality, and offer CRScore as an
automated, efficient, open-source and reproducible
metric for capturing them. We collect a dataset of
human judgment of review quality scores to show
the validity of CRSore. We compare CRScore with
7 reference-based metrics, for 9 review generation
systems using the collected annotations. Our met-
ric achieves the best alignment with human prefer-
ences among open source metrics and is the most
sensitive. However, there is scope for improvement
by developing better pseudo-reference generation
and STS matching methods to try and match the
performance of closed-source models like GPT-4o
in judging review quality.

8 Future Work

Although our metric is a great first step towards
reference-free evaluation of code reviews, it still
suffers from systematic under and over-estimation
errors in certain cases, which causes it to fall short
of powerful closed source models. We believe
these limitations stem from pseudo-reference cov-
erage issues and the limitations of STS methods
when it comes to matching data containing both
code and text. Future work can extend the pseudo-
references by adding components for detecting
code security, efficiency issues, etc. Also, better
embedding models should be developed to measure
how faithfully review sentences capture the pseudo-
references. Additionally, code smell detection can
be expanded beyond Python, Java, and Javascript
to languages like C/C++, Ruby, and Go, present in
the CodeReviewer dataset.

Limitations

• While annotating reviews for the review qual-
ity dimensions of conciseness, comprehen-
siveness, and relevance, the human annotators
are given a list of pseudo-references that over-
lap with the one used by CRScore. We believe
this isn’t a source of anchoring bias because
the human annotators are allowed to add and
remove claims from the pseudo-references
in the first stage of annotation (while rating
pseudo-reference quality). The final list of

9057

pseudo-references used for review quality an-
notations is different from the one used by
CRScore. Additionally, the pseudo-references
provide a common ground for the annotators
to rate review quality and comprehensiveness.
This also helped us achieve high reliability for
coding review quality (section 4.2).

• Semantic textual similarity (STS) models
are imperfect at matching relevant pseudo-
references to the review sentences, especially
when there are very few claims and the re-
views contain inline code snippets, where the
latter can inflate the STS scores.

• Our pseudo-reference generation pipeline is
not comprehensive enough in some cases
which can lead to underestimation of review
quality as shown by our failure case analy-
sis. Additionally, it could be extended by
adding more modules like code smell detec-
tors for aspects like code security, code effi-
ciency, etc. similar to Rasheed et al. (2024).
Also, code smell detector tools can be added
for languages other than Python, Java, and
Javascript, like Go, C/C++, and Ruby present
in the CodeReviewer dataset.

• Our metric only achieves a moderate correla-
tion with human annotations of review quality,
and while it is much better than the reference-
based metrics in terms of alignment with hu-
man judgment and sensitivity to review qual-
ity as judged by humans, it is only a first step
towards developing better metrics for code re-
view. Future work should try to address the
limitations of our claim generation pipeline
and STS methods.

Ethics Statement

Our work doesn’t violate any ethical guidelines and
is compliant with copyright rules and regulations
as we use an existing publicly available dataset and
augment it with annotations of review quality using
reviews generated by 9 systems and the references
in the dataset. While there is a slight risk of harmful
or toxic text being a part of the pseudo-references
generated by the LLM component in our pseudo-
reference generation pipeline we don’t believe it to
be a major risk based on the annotations done for
the pseudo-reference quality.

References
Apache lucene.

Mouna Abidi, Manel Grichi, Foutse Khomh, and Yann-
Gaël Guéhéneuc. 2019. Code smells for multi-
language systems. In Proceedings of the 24th Euro-
pean Conference on Pattern Languages of Programs,
EuroPLop ’19, New York, NY, USA. Association for
Computing Machinery.

Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and
Shahram Rahimi. 2017. Senticr: A customized sen-
timent analysis tool for code review interactions. In
2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 106–
111. IEEE.

AI@Meta. 2024. Llama 3 model card.

Deepika Badampudi, Michael Unterkalmsteiner, and
Ricardo Britto. 2023. Modern code reviews—survey
of literature and practice. ACM Transactions on Soft-
ware Engineering and Methodology, 32(4):1–61.

Dzmitry Bahdanau. 2014. Neural machine translation
by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade,
Arun Iyer, Suresh Parthasarathy, Sriram Rajamani,
B Ashok, and Shashank Shet. 2024. Codeplan:
Repository-level coding using llms and planning.
Proceedings of the ACM on Software Engineering,
1(FSE):675–698.

Gabriele Bavota and Barbara Russo. 2015. Four eyes
are better than two: On the impact of code reviews
on software quality. In 2015 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), pages 81–90.

Moritz Beller, Alberto Bacchelli, Andy Zaidman, and
Elmar Juergens. 2014. Modern code reviews in open-
source projects: Which problems do they fix? In
Proceedings of the 11th Working Conference on Min-
ing Software Repositories, MSR 2014, page 202–211,
New York, NY, USA. Association for Computing Ma-
chinery.

Wikipedia Contributors. 2019a. Cohesion (computer
science).

Wikipedia Contributors. 2019b. Cyclomatic complex-
ity.

Lee Dong-Kyu. 2024. A gpt-based code review system
for programming language learning. arXiv preprint
arXiv:2407.04722.

Aryaz Eghbali and Michael Pradel. 2023. Crystalbleu:
Precisely and efficiently measuring the similarity of
code. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE ’22, New York, NY, USA. Association for
Computing Machinery.

9058

https://lucene.apache.org/
https://doi.org/10.1145/3361149.3361161
https://doi.org/10.1145/3361149.3361161
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1145/3585004
https://doi.org/10.1145/3585004
https://doi.org/10.1109/ICSM.2015.7332454
https://doi.org/10.1109/ICSM.2015.7332454
https://doi.org/10.1109/ICSM.2015.7332454
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/2597073.2597082
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu:: How
should we assess quality of the code generation mod-
els?

Lishui Fan, Jiakun Liu, Zhongxin Liu, David Lo, Xin
Xia, and Shanping Li. 2024. Exploring the capabil-
ities of llms for code change related tasks. arXiv
preprint arXiv:2407.02824.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Martin Fowler. 1997. Refactoring: Improving the de-
sign of existing code.

Alexander Frömmgen, Jacob Austin, Peter Choy,
Nimesh Ghelani, Lera Kharatyan, Gabriela Surita,
Elena Khrapko, Pascal Lamblin, Pierre-Antoine Man-
zagol, Marcus Revaj, Maxim Tabachnyk, Daniel Tar-
low, Kevin Villela, Dan Zheng, Satish Chandra, and
Petros Maniatis. 2024. Resolving code review com-
ments with machine learning. In 2024 IEEE/ACM
46th International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP).

Kavita Ganesan. 2018. Rouge 2.0: Updated and im-
proved measures for evaluation of summarization
tasks. arXiv preprint arXiv:1803.01937.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When
the large language model meets programming-the
rise of code intelligence. CoRR.

Michael Hanna and Ondřej Bojar. 2021. A fine-grained
analysis of BERTScore. In Proceedings of the Sixth
Conference on Machine Translation, pages 507–517,
Online. Association for Computational Linguistics.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan
Le Bras, and Yejin Choi. 2021. CLIPScore: A
reference-free evaluation metric for image captioning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7514–7528, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Anwen Hu, Shizhe Chen, Liang Zhang, and Qin
Jin. 2023. Infometic: An informative metric for
reference-free image caption evaluation. arXiv
preprint arXiv:2305.06002.

Klaus Krippendorff. 2018. Content analysis: An intro-
duction to its methodology. Sage publications.

J R Landis and G G Koch. 1977. The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174.

Zhen Li, Xiaohan Xu, Tao Shen, Can Xu, Jia-Chen
Gu, and Chongyang Tao. 2024. Leveraging large
language models for nlg evaluation: A survey. arXiv
preprint arXiv:2401.07103.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, et al. 2022. Au-
tomating code review activities by large-scale pre-
training. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 1035–1047.

Hong Yi Lin, Patanamon Thongtanunam, Christoph
Treude, and Wachiraphan Charoenwet. 2024. Im-
proving automated code reviews: Learning from ex-
perience. In Proceedings of the 21st International
Conference on Mining Software Repositories, pages
278–283.

Haiyang Liu, Yang Zhang, Vidya Saikrishna, Quanquan
Tian, and Kun Zheng. 2024. Prompt learning for
multi-label code smell detection: A promising ap-
proach. arXiv preprint arXiv:2402.10398.

Xinghua Liu and Cheng Zhang. 2017. The detection
of code smell on software development: a mapping
study. In 2017 5th International Conference on
Machinery, Materials and Computing Technology
(ICMMCT 2017), pages 560–575. Atlantis Press.

Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun
Zuo. 2023. Llama-reviewer: Advancing code re-
view automation with large language models through
parameter-efficient fine-tuning. In 2023 IEEE 34th
International Symposium on Software Reliability En-
gineering (ISSRE), pages 647–658. IEEE Computer
Society.

Pranava Madhyastha, Josiah Wang, and Lucia Specia.
2019. VIFIDEL: Evaluating the visual fidelity of
image descriptions. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 6539–6550, Florence, Italy. Asso-
ciation for Computational Linguistics.

Shane McIntosh, Yasutaka Kamei, Bram Adams, and
Ahmed E. Hassan. 2014. The impact of code re-
view coverage and code review participation on soft-
ware quality: A case study of the qt, vtk, and itk
projects. In Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, MSR 2014,
page 192–201, New York, NY, USA. Association for
Computing Machinery.

Shikib Mehri and Maxine Eskenazi. 2020a. Unsuper-
vised evaluation of interactive dialog with dialogpt.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 225–235.

Shikib Mehri and Maxine Eskenazi. 2020b. USR: An
unsupervised and reference free evaluation metric
for dialog generation. In Proceedings of the 58th

9059

https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://aclanthology.org/2021.wmt-1.59
https://aclanthology.org/2021.wmt-1.59
https://doi.org/10.18653/v1/2021.emnlp-main.595
https://doi.org/10.18653/v1/2021.emnlp-main.595
https://doi.org/10.18653/v1/P19-1654
https://doi.org/10.18653/v1/P19-1654
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64

Annual Meeting of the Association for Computational
Linguistics, pages 681–707, Online. Association for
Computational Linguistics.

mschwager. 2016. Github - mschwager/cohesion: A
tool for measuring python class cohesion.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Miroslaw Ochodek, Miroslaw Staron, Wilhelm Med-
ing, and Ola Söder. 2022. Automated code review
comment classification to improve modern code re-
views. In Software Quality: The Next Big Thing
in Software Engineering and Quality, pages 23–40,
Cham. Springer International Publishing.

Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo,
and Cláudio Sant’Anna. 2017. On the evaluation of
code smells and detection tools. Journal of Software
Engineering Research and Development, 5(1):7.

Thai Pangsakulyanont, Patanamon Thongtanunam,
Daniel Port, and Hajimu Iida. 2014. Assessing mcr
discussion usefulness using semantic similarity. In
2014 6th International Workshop on Empirical Soft-
ware Engineering in Practice, pages 49–54.

Arjun Panickssery, Samuel R Bowman, and Shi Feng.
2024. Llm evaluators recognize and favor their own
generations. arXiv preprint arXiv:2404.13076.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung,
Jonathan Tow, James Baicoianu, and Nathan Cooper.
Stable code 3b.

David Piorkowski, Daniel González, John Richards,
and Stephanie Houde. 2020. Towards evaluating and
eliciting high-quality documentation for intelligent
systems. arXiv preprint arXiv:2011.08774.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Chanathip Pornprasit and Chakkrit Tantithamthavorn.
2024. Fine-tuning and prompt engineering for large
language models-based code review automation. In-
formation and Software Technology, page 107523.

Md Tajmilur Rahman, Rahul Singh, and Mir Yousuf
Sultan. 2024. Automating patch set generation from
code reviews using large language models. In Pro-
ceedings of the IEEE/ACM 3rd International Confer-
ence on AI Engineering-Software Engineering for AI,
pages 273–274.

Mohammad Masudur Rahman, Chanchal K. Roy, and
Raula G. Kula. 2017. Predicting usefulness of code
review comments using textual features and devel-
oper experience. In 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories
(MSR), pages 215–226.

Zeeshan Rasheed, Malik Abdul Sami, Muhammad
Waseem, Kai-Kristian Kemell, Xiaofeng Wang, Anh
Nguyen, Kari Systä, and Pekka Abrahamsson. 2024.
Ai-powered code review with llms: Early results.
arXiv preprint arXiv:2404.18496.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Ehud Reiter. 2018. A structured review of the validity of
BLEU. Computational Linguistics, 44(3):393–401.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Rana Sandouka and Hamoud Aljamaan. 2023. Python
code smells detection using conventional machine
learning models. PeerJ Comput Sci, 9:e1370.

Jaydeb Sarker, Asif Kamal Turzo, Ming Dong, and
Amiangshu Bosu. 2023. Automated identification of
toxic code reviews using toxicr. ACM Transactions
on Software Engineering and Methodology, 32(5):1–
32.

Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and
Diomidis Spinellis. 2021. Code smell detection by
deep direct-learning and transfer-learning. Journal
of Systems and Software, 176:110936.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen,
and Tien Nguyen. 2019. Does bleu score work for
code migration? In 2019 IEEE/ACM 27th Inter-
national Conference on Program Comprehension
(ICPC), pages 165–176. IEEE.

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander
Chatzigeorgiou. 2008. Jdeodorant: Identification and
removal of type-checking bad smells. In 2008 12th
European Conference on Software Maintenance and
Reengineering, pages 329–331.

9060

https://github.com/mschwager/cohesion
https://github.com/mschwager/cohesion
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.1186/s40411-017-0041-1
https://doi.org/10.1186/s40411-017-0041-1
https://doi.org/10.1109/IWESEP.2014.11
https://doi.org/10.1109/IWESEP.2014.11
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://huggingface.co/stabilityai/stable-code-3b
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/https://doi.org/10.1016/j.infsof.2024.107523
https://doi.org/https://doi.org/10.1016/j.infsof.2024.107523
https://doi.org/10.1109/MSR.2017.17
https://doi.org/10.1109/MSR.2017.17
https://doi.org/10.1109/MSR.2017.17
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.1162/coli_a_00322
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://doi.org/https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/10.1109/CSMR.2008.4493342
https://doi.org/10.1109/CSMR.2008.4493342

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo,
Luca Pascarella, Denys Poshyvanyk, and Gabriele
Bavota. 2022. Using pre-trained models to boost
code review automation. In Proceedings of the 44th
international conference on software engineering,
pages 2291–2302.

Rosalia Tufano, Luca Pascarella, Michele Tufano,
Denys Poshyvanyk, and Gabriele Bavota. 2021. To-
wards automating code review activities. In 2021
IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), pages 163–174. IEEE.

Asif Kamal Turzo and Amiangshu Bosu. 2024. What
makes a code review useful to opendev developers?
an empirical investigation. Empirical Software Engi-
neering, 29(1):6.

Manushree Vijayvergiya, Małgorzata Salawa, Ivan Bud-
iselić, Dan Zheng, Pascal Lamblin, Marko Ivanković,
Juanjo Carin, Mateusz Lewko, Jovan Andonov,
Goran Petrović, et al. 2024. Ai-assisted assessment
of coding practices in modern code review. arXiv
preprint arXiv:2405.13565.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Lanxin Yang, Jinwei Xu, Yifan Zhang, He Zhang, and
Alberto Bacchelli. 2023. Evacrc: Evaluating code
review comments. In Proceedings of the 31st ACM
Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2023, page 275–287, New York,
NY, USA. Association for Computing Machinery.

Zezhou Yang, Cuiyun Gao, Zhaoqiang Guo, Zhenhao Li,
Kui Liu, Xin Xia, and Yuming Zhou. 2024. A survey
on modern code review: Progresses, challenges and
opportunities. arXiv preprint arXiv:2405.18216.

Yongda Yu, Guoping Rong, Haifeng Shen, He Zhang,
Dong Shao, Min Wang, Zhao Wei, Yong Xu, and
Juhong Wang. 2024. Fine-tuning large language
models to improve accuracy and comprehensibility
of automated code review. ACM Trans. Softw. Eng.
Methodol. Just Accepted.

Fengji Zhang, Zexian Zhang, Jacky Wai Keung, Xiangru
Tang, Zhen Yang, Xiao Yu, and Wenhua Hu. 2024.
Data preparation for deep learning based code smell
detection: A systematic literature review.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham
Neubig. 2023. Codebertscore: Evaluating code gen-
eration with pretrained models of code. Deep Learn-
ing for Code (DL4C) workshop, 11th International
Conference on Learning Representations, ICLR 2023,
abs/2302.05527.

A Introduction Details

This section contains details to corroborate some
of the points made in the introduction section.

A.1 Benefits of Neuro Symbolic
Pseudo-Reference Generation

While LLMs have recently shown promise for
evaluating natural language generation (NLG) (Li
et al., 2024) they suffer from biases like favor-
ing their own generations (“self-selection bias”)
(Panickssery et al., 2024) or in other words, if we
were to have Magicoder or GPT-3.5 as the evalua-
tor LLM it would assign higher scores to the text
generated by Magicoder and GPT-3.5 respectively.
Code analysis tools (CATs) on the other hand are
limited in scope compared to LLMs in detecting
issues like best practice violations (Vijayvergiya
et al., 2024) but don’t have any self-selection bias.
However, combining these methods can reduce the
self-selection bias of LLMs, while supplementing
the narrow coverage of code analysis tools. Indeed
the results show that despite using Magicoder as
the evaluation LLM, our metric CRScore doesn’t
preferentially rank Magicoder above any models
other than LLaMA-3 when compared to the human
ranking.

A.2 Release of Code and Data

We plan to make the human preferences annotation
dataset and code for the evaluation metric and eval-
uated models public if the paper is accepted. We
will add the GitHub link to the code base and the
dataset to the camera-ready submission.

B More Related Work

B.1 Code Specific Reference Based Metrics

Due to the popularity and convenience of auto-
mated reference-based metrics like BLEU (Pap-
ineni et al., 2002), ROUGE (Ganesan, 2018), and
BERTScore (Zhang et al., 2020) the research com-
munity has developed several code-specific ver-
sions like CodeBLEU (Ren et al., 2020), RUBY
(Tran et al., 2019), CrystalBLEU (Eghbali and
Pradel, 2023) and CodeBERTScore (Zhou et al.,

9061

https://doi.org/10.1145/3611643.3616245
https://doi.org/10.1145/3611643.3616245
https://doi.org/10.1145/3695993
https://doi.org/10.1145/3695993
https://doi.org/10.1145/3695993
http://arxiv.org/abs/2406.19240
http://arxiv.org/abs/2406.19240
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/ARXIV.2302.05527
https://doi.org/10.48550/ARXIV.2302.05527

Figure 3: Supervised fine-tuning pipeline for training Magicoder-6.7B for claim generation. We generate synthetic
data by using GPT-4 to generate claims for the code changes in CodeReviewer validation set.

Review Missing
Context

Don’t redefine, just import the
existing one in cmdline.py . :)

Folder
structure,
Codebase
organization

I think we can remove this
function, right? (duplicate with
ses_starter.py)

Folder
structure,
Codebase
organization

MPRester(os.environ(
["MP_API_KEY"]) can be
left simply as MPRester() and
it will pick up the API key
from the environment. What . . .

Class
definition,
Environment
variables

Table 5: Ground truth reviews in the automatically
mined CodeReviewer data that assume contextual infor-
mation about the code base not available in the dataset

2023). CodeBLEU extends BLEU by incorporating
code structure through dataflow and syntax match
between generated code and references, while Crys-
talBLEU filters out trivially shared n-grams. RUBY
incorporates the distance between the syntax tree
and program dependency graph of references and
generated code. CodeBERTScore extends the
embedding-based BERTScore by replacing BERT
with a pre-trained CodeBERT (Feng et al., 2020)

model. However prior studies have shown metrics
like BLEU to have low validity (overlap with hu-
man judgment) and reliability for text generation
(Reiter, 2018), code generation (Evtikhiev et al.,
2023), and code migration (Tran et al., 2019). How-
ever, metrics like ROUGE, BERTScore, and Code-
BERTScore all have a notion of precision, recall,
and f-score which is captured by conciseness, com-
prehensiveness, and relevance respectively.

B.2 Code Review Automation

Due to the high time and resource demands of
code review automated approaches have gained
popularity (Yang et al., 2024). Pornprasit and Tan-
tithamthavorn (2024); Lu et al. (2023); Dong-Kyu
(2024); Fan et al. (2024); Yu et al. (2024) propose
fine-tuning and prompt engineering approaches to
leverage LLMs for code review and code-change re-
lated tasks. Frömmgen et al. (2024); Rahman et al.
(2024) propose methods for code refactoring based
on review comments. Vijayvergiya et al. (2024)
propose the detection of “best practice violations”
. Lin et al. (2024) propose oversampling reviews
from experienced reviewers as a proxy of review
quality improving informativeness and correctness
of generated reviews. Rasheed et al. (2024) pro-
pose an LLM agent for code review and code smell
detection.

9062

B.3 Comparing with Review
Usefulness/Presentation Style Methods

Our approach evaluates review informativeness and
content related to issues such as code smells com-
pared to prior work which has focused more on
linguistic features, style, and presentation. (Yang
et al., 2023) proposes EvaCRC an automated ap-
proach for review quality evaluation by categoriz-
ing reviews along quality attributes like emotion,
question, suggestion, and evaluation and rating
quality along those attributes on a four-tier grad-
ing scale. While their conceptualization is similar
to ours, they focus on quality attributes related to
review style and understandability rather than the
actual content. Additionally, they don’t ground
their assessments for these dimensions into a list
of claims and issues which makes it harder to un-
derstand the scores. Rahman et al. (2017) propose
RevHelper as an approach for predicting the use-
fulness of reviews based on a mixture of three re-
viewer expertise (e.g. Code Authorship) and five
textual features: stop word ratio, reading ease, ques-
tion ratio, and conceptual similarity. Most of the
textual features identified by RevHelper deal with
review style and presentation, and as pointed out in
section 5.4 some of them like code elements could
lead to overestimation of review quality. While
the notion of conceptual similarity comes close to
the conceptualization of our Rel score their opera-
tionalization of it is very different from ours. They
directly measure similarity over lines of the code
change and review comments. We believe this is
redundant with the notion of preferring reviews
that reference code elements and can be gamed
by review generation models that reference code
snippets incorrectly. Ochodek et al. (2022) develop
CommentBERT an approach for automatically clas-
sifying review comments based on their purpose
and the type of change required using a taxonomy
of comments with 12 categories with dimensions
like code_design, code_logic, etc. While they do
classify the review content, they don’t look at what
makes them useful.

B.4 Code Smell Detection

The problem of detecting “code smells” or symp-
toms of design flaws and bad practices (also called
anti-patterns) has been traditionally tackled by
analysis-based approaches (Tsantalis et al., 2008;
Paiva et al., 2017; Liu and Zhang, 2017). Recent
work has explored learning-based methods for po-

tentially more nuanced detection of code smells.
Sandouka and Aljamaan (2023) create a dataset of
1k Python code smells like “Long Method” and
“Large Class” to train traditional ML models like
random forests. Sharma et al. (2021) leverage
deep learning models like autoencoders and trans-
fer learning for adapting to unseen programming
languages. Liu et al. (2024) propose a prompting-
based approach for “Long Method” and “Long Pa-
rameter List” code smells in Java. Rasheed et al.
(2024) create an LLM agent to detect code smells
in repositories. However, these approaches are lim-
ited in the types of smells they target, training data
requirements (Zhang et al., 2024), or lack compre-
hensive evaluation. Also, code smells differ across
programming languages (Abidi et al., 2019), and
transfer learning approaches can only be leveraged
for similar languages (Sharma et al., 2021). Due to
these limitations of learning-based methods we use
traditional language-specific code analysis tools.

C Method Details

This appendix contains additional details on the
implementation of our CRScore metric.

C.1 Distribution of Sentence Similarity Scores

We plot the histogram of values of the sentence
similarity scores in Figure 5 showing a roughly
normal distribution. We also plot the quantile-
quantile (Q-Q) plot in Figure 6 that compares the
quantile of a normal distribution with the empiri-
cally observed distribution of sentence similarity
scores. Ideally, the Q-Q plot should be a straight
line (shown in red) but we observe deviation to-
wards really high ranges among the actual values
(shown in blue). Due to computational constraints,
these plots are constructed out of a randomly sam-
pled subset of 100k similarity scores from the orig-
inal 100M+ sentence similarity scores computed
from the CodeReviewer test set review pairs.

C.2 Code Smell Detection Details

In this section, we cover some of the details of the
code smell detectors used in this study.

C.2.1 Class Cohesion
Class cohesion captures the degree to which the
elements of a class belong together (Contributors,
2019a). In other words, cohesion measures the
strength of the relationship between pieces of func-
tionality (attributes and methods) within a given

9063

Figure 4: This figure shows how semantic textual similarity (STS) is used to measure the coverage of pseudo-
references by the review sentences. We compute pairwise semantic similarities between all pseudo references and
review sentences and employ a threshold to compute comprehensiveness as the fraction of pseudo references for
which at least one review sentence has higher similarity than the threshold. Meanwhile, conciseness is the fraction
of review sentences which high have higher similarity than the threshold with any pseudo reference.

Figure 5: Histogram of sentence similarity of randomly sampled 100K sentence pairs from the CodeReviewer test
set showing the scores are roughly normally distributed, justifying the usage of the 5-sigma rule for coming up with
the threshold of 0.85 for high similarity used in metric computation.

class. For example, in highly cohesive classes func-
tionality is strongly related and methods and at-
tributes are more co-dependant and hang together
as a logical whole (mschwager, 2016).

C.2.2 Cyclomatic Complexity
Cyclomatic complexity is a software metric used to
indicate the complexity of a program (Contributors,
2019b). It is a quantitative measure of the number

9064

Figure 6: Q-Q plot comparing quantiles of empirically observed sentence similarity scores computed over 100K
sentence pairs from the CodeReviewer test set showing the theoretical quantiles match a normal distribution except
for really high values. The discrepancy seen here is likely due to the random sample being a smaller subset of the
whole 100M+ sentence pairs for which we compute similarities.

of linearly independent paths through a program’s
source code.

Popular tools like Radon8, a cyclomatic com-
plexity computation tool for Python often resort to
a rank-based system that categorizes code blocks
based on their cyclomatic complexity and asso-
ciates them with letter grades as shown in Table 6.
Here “A” is the best grade and “F” is the worst
grade. Code blocks are flagged for code smells if
they have a complexity higher than or equal to “C”
in Table 6.

CC Score Rank Risk

1-5 A low - simple block
6-10 B low - well structured and stable block
11-20 C moderate - slightly complex block
21-30 D more than moderate - more complex block
31-40 E high - complex block, alarming
41+ F very high - error-prone, unstable block

Table 6: Code complexity ranks, associated score thresh-
olds, and descriptions of the potential risks.

8https://pypi.org/project/radon/

C.3 Hyperparameters for Training
Pseudo-Reference Generation Pipeline

We train the ise-uiuc/Magicoder-S-DS-6.7B,
with flash attention, random seed of 42, evaluation
every 100 steps (eval_steps), max length padding,
train-val split of 0.1 (10% data used for validation),
batch size of 2, maximum training sequence length
of 1500 and 5 training epochs. The training is done
on a single A100, 80 GB GPU using the Magicoder
training script9.

D Experimental Details

Further experimental details like guidelines for an-
notation of pseudo-reference accuracy, review qual-
ity, etc.

D.1 Codebook for Rating Pseudo-Reference
Quality

The raters are shown model-generated pseudo ref-
erences (claims and implications) about the “diff”,
which either describe the changes or speculate
about potential implications. The claims are state-
ments about the diff related to what changes took

9https://github.com/ise-uiuc/magicoder/blob/
main/src/magicoder/train.py

9065

https://pypi.org/project/radon/
https://github.com/ise-uiuc/magicoder/blob/main/src/magicoder/train.py
https://github.com/ise-uiuc/magicoder/blob/main/src/magicoder/train.py

place, while the implications cover the effects of
the changes or their interpretations like whether
they implement a new functionality or even the
potential intent of the developers. Additionally,
the raters are also given source files as context, in-
cluding the versions of the file before and after the
code change captured by the diff. The raters are
expected to refer to them if they need more infor-
mation than just the diff to judge the accuracy of
the pseudo-references.

Given these inputs, the raters are supposed to
code each pseudo-reference as shown in Table 8. In
further analysis, we excluded the ambiguous claims
(code 2) because they were rarely encountered.

D.2 Rating Review Quality using
Pseudo-References

The raters are given pseudo-references correspond-
ing to the diff but unlike the pseudo-reference qual-
ity annotations, they also include issues/smells de-
tected by the static analysis tools. The issues span
formatting issues, bad programming practices, or
more abstract patterns known as “code smells”.
Code smells are heuristics or code characteristics
associated with deeper problems concerning sys-
tem design. It is important to note that they are
not bugs, but rather subjective principles that vary
across programming languages, developers, teams,
etc. Given the diff and the pseudo-references, the
raters evaluate the quality of the review along the
three dimensions — comprehensiveness, concise-
ness, and relevance. The raters are again given
access to the source files for context and are asked
to rate the quality of 10 reviews per code change
that are generated by a diverse set of review gener-
ation systems and one of them is also the ground
truth review from the CodeReviewer dataset.

The rater’s task is to first go through the list
of pseudo-references and rate their necessity with
respect to the code change. This stage is meant to
remove any pseudo-references that are unnecessary
or redundant with respect to the whole set. The
second stage of the annotation is to link/associate
various pseudo-references to each of the 10 reviews
based on which of them are addressed in the review.
Finally, the raters assign a score on a Likert scale
of 1 to 5 to each review for each dimension. Some
rules of thumb for assigning each score for each
dimension are given in Table 7.

Raters are also given a helpful mental frame-
work to help with the process of linking pseudo-

references to the reviews. To explain what it means
for a review to address a pseudo-reference, we give
an analogy to aspect-based product reviews. The
list/set of claims is similar to a list/set of product as-
pect descriptions, while the code review comment
is similar to a product review. For example, for the
product description and review below:
Description of a newer version of a Phone:
- The new phone improves battery life by 50% (bat-
tery life)
- The new screen has a higher resolution (screen)
Review: The new screen quality is great but the
battery runs out quickly.

The review here is talking about both the screen
and battery life aspects of the product so you can
say it is addressing both aspects (or claims).

Now we can consider an example from the do-
main of code review:
Pseudo-references for code change:
- The code change is in the logging of errors in the
response handler. (error logging)
- The formatting of the error message has been
changed. (formatting change of error message)
- The previous formatting used ’%s %’ at the end
of the error message, which was removed in the
updated code. (% at the end of the error message)
- The change in the formatting of the error message
will affect the way errors are logged and displayed.
(effect of formatting on error logging)
Code review: The %s in the error message is re-
dundant, and the indent=4 in json.dumps is un-
necessary.

The review talks about the third claim by men-
tioning the %s style string at the end of the error
logging.

D.3 Simple Baseline Implementation Details

We create two simple baselines for code review
generation a BM-25, kNN style retriever-based ap-
proach, and a seq2seq LSTM style model. The
implementation details of both approaches are de-
scribed below:
BM-25 retriever: The BM-25 retriever retrieves
a relevant review by matching the closest code
change from the CodeReviewer train set to the
code change to be reviewed from the test set. For
an efficient implementation, we create an inverted
index from all the code changes in the train set us-
ing the Lucene searcher (luc) class from Pyserini
10.

10https://pypi.org/project/pyserini/

9066

https://pypi.org/project/pyserini/

Dimension Score Rule of thumb

Conciseness

1 none of the review is related to the claims+issues.
2 some of the review is related to the claims+issues
3 roughly half of the review is related to the claims+issues
4 most of the review is related to the claims+issues
5 basically the whole review is related to the claims+issues

Comprehensiveness

1 whole review doesn’t cover any of the claims+issues
2 review covers at least 1 claim or issue
3 review covers roughly cover half the claims+issues
4 review covers more than half/most of the claims+issues
5 review covers practically all the claims+issues

Relevance
relevance score must be between conciseness and
comprehensiveness scores
if one of the two dimensions is "limiting", i.e. has a very
low score or poor quality for a given review then the
relevance score should be biased/limited by it.

E.g. a highly concise review but with very low
comprehensiveness should have a relevance score close
to the comprehensiveness

Table 7: Some rules of thumb for scoring the quality of reviews for each dimension. These rules are meant as
guidelines to calibrate multiple annotators and reduce the impact of learning effects in the early stages of annotation.

Code Description Examples Explanation

1

Correct: You can find concrete evidence
to validate or confirm a claim (either in
the diff, the context/source files, or by
looking up domain-specific knowledge
on the web)

Any existing calls to the ‘push‘ function
will need to be updated to include the
new ‘hash‘ parameter. This could
potentially break compatibility with
older code.

This is true since if the parameters are
passed by value and there is a
parameter after the hash then its value
will be accidentally passed as the hash

0

Incorrect: You can find concrete evidence
to contradict a claim (either in the diff, the
context/source files, or looking up
domain-specific knowledge on the web)

The code changes involve the
modification of the parameters passed
to the ScalarSpaceEncoder function.

False because ScalarSpaceEncoder is
a class and not a function.

-1

Unverifiable: You can’t find evidence
to confirm or contradict a claim (even
after looking at the diff, source files, or
looking up domain-specific knowledge
on the web)

The changes could potentially affect the
performance of the code as the order of
the arguments does not matter any longer.

For this claim, the arguments were
being passed by keyword so the
order didn’t matter for functional
correctness but we can’t comment
on the performance

2

Ambiguous: The claim is underspecified
and has multiple interpretations making
it hard to determine what is to be
tested/validated

The function will now only work with
valid elements, preventing potential
issues down the line.

It is underspecified (unclear)
what “valid elements” means.

Table 8: Guidelines for coding accuracy of pseudo-references with example pseudo-references falling within each
category and explanations for why they fall in that category.

LSTM reviewer: We train a single hidden layer
encoder-decoder seq2seq LSTM model with Bah-
danau attention (Bahdanau, 2014) from scratch on
the CodeReviewer training data. We train it with
an Adam optimizer, and negative log-likelihood
loss for about 10 epochs, saving the model with the
least loss on the CodeReviewer validation set.

D.4 LLM-as-a-judge Prompting

The system prompt is as follows:

You are a highly skilled software engineer who has a
lot of experience reviewing code changes. Your task
is to rate the relevance of any given code change

The task-specific, review comment evaluation

9067

prompt is as follows:

TASK PROMPT: You will be asked to rate the
relevance of reviews for given Python, Java, or
Javascript code changes. A relevant review is one
which is both concise and comprehensive. A concise
review contains very little text not related to the
code change. A comprehensive review contains all
the information about a code change that should be
covered by a review. A relevant review is
comprehensive while being concise.

Now look at the {lang} code change and review
below and score the relevance of the review on a
scale of 1 to 5

Code Change: {code_change}

Review: {review}

Your score:

D.5 Dataset Statistics

We perform all our annotations on the test set of
the CodeReviewer dataset, which contains 10169
samples in total and is publicly available with the
Apache 2.0 license11. The license is permissive and
allows us to use the dataset for research purposes.
We randomly sampled 300 samples, with 100 sam-
ples across Python, Java, and Javascript – the lan-
guages we have code smell detectors. We found
a few mislabeled code changes for each language
that belonged to a different language, which we
discarded. This led to a final dataset of 99, 98, and
96 code changes for Python, Java, and Javascript re-
spectively. Also, we end up with 416, 416, and 399
claims that are evaluated as correct, incorrect, or un-
verifiable. For the review dataset, we annotate 2.9k
reviews (9 systems + ground truth) for each code
change from the previous annotation stage. For all
the correlation experiments we exclude the ground
truth review annotations around (300), giving us a
dataset of roughly 2.6k reviews corresponding to
the automated review generation systems. As men-
tioned before we excluded the ground truth while
computing correlations and system rankings be-
cause reference-based metrics by definition would
favor (and perfectly rate) the ground truth, unfairly
disadvantaging them for computing correlations.

D.6 Computational Budget

For running all the systems mentioned in sec-
tion 4.4 we utilize an 80 GB A100 for the LLM
systems, running them on the 10k CodeReviewer
test instances. For running GPT-3.5 (unfortunately

11https://huggingface.co/microsoft/codereviewer

no longer publicly available) we utilized around
10k API calls. For the synthetic dataset creation for
Magicoder for pseudo-reference generation mod-
eling, we called the GPT-4 model (gpt-4-0613) for
1000 CodeReviewer validation instances. For the
Magicoder model training, we also use an A100
GPU, for 5 epochs (or approximately 8-10 hrs).

D.7 Annotator Information
We hired a graduate student and an undergraduate
student with experience in writing Java, Python,
and Javascript code. The annotation process took
several weeks with additional training provided
about code review quality, especially about code
smells. The annotation guidelines were also iter-
atively improved till the high level of reliability
reported here was achieved. For the compensation,
the annotators took up this project for research
credits and thus weren’t compensated monetarily.
They are also co-authors of this project. They were
extensively briefed about the research project and
how their data would be used as preference data
for comparing evaluation metrics and would be
publicly released after anonymization.

D.8 Ethics Review for Data Collection
The data collection protocol used in this work was
approved by the institutional review board (IRB)
of the university the authors are affiliated with.

D.9 Does Including the Pseudo-References in
the Review Quality Dimension Rating
Lead to Biased Annotations?

While at the first glance it might seem that giving
the annotators access to the pseudo-reference could
bias their operationalization of the review quality
dimensions in the favor of CRScore, we believe
this is not likely. Since this study uses a modi-
fied set of pseudo-references which is edited by
the human annotators to remove incorrect claims
and add correct or add missing claims, the set of
pseudo-references used by the human annotators is
actually different from the automatically generated
pseudo-references used by CRScore. In fact the re-
sults demonstrate that the LaaJ-GPT metric which
doesn’t rely on the pseudo-references can obtain
a greater correlation than CRScore with the hu-
man review quality dimension annotations despite
not having access to the pseudo-references. This
demonstrates that the annotations aren’t biased to-
wards CRScore. Finally the pseudo-references play
a crucial role in helping the annotators concretely

9068

https://huggingface.co/microsoft/codereviewer

assess the dimension of comprehensiveness, since
judging the coverage of a review is very hard with-
out a list of things that it should cover. Thus we
believe it contributes to the high reliability of the
annotations.

E Additional Results and Analysis

E.1 Finding Failure Cases of CRScore
We divide the scores spanned by our metric into 5
equally sized bins (Q1, Q2, Q3, and Q4 being the
quantiles) and then find reviews where the metric
underestimates the Rel value (value less than Q1
but a human rating of 5) and overestimates the Rel
value (value greater than Q4 but a human rating of
1). We find 16 (0.61%) and 98 (3.74%) cases re-
spectively for underestimation and overestimation,
moreover, without these cases, our metric (τbest) at-
tains correlations of τ = 0.5462 and rs = 0.6431
and τ = −0.5403 and rs − 0.6131 = for these
cases, indicating their influence despite being less
than 4% of the data.

E.2 Impact of Varying STS Threshold (τ)

9069

Human Annotations
Metric

Con (τ) Comp (τ) Rel (τ) Con (rs) Comp (rs) Rel (rs)

BLEU 0.0306 -0.0227 0.001 0.0358 -0.0293 -0.0001
BLEU
(without stopwords)

0.0632 0.0221 0.0425 0.0776 0.0293 0.0542

BERTScore 0.1035 0.0622 0.081 0.1378 0.0813 1.083
Normalized
Edit Distance

-0.0146 0.0443 0.0193 -0.0218 0.0584 0.0249

ROUGE-L
F-measure

0.0921 0.0577 0.0757 0.1173 0.0758 0.0989

chrF 0.1236 0.1431 0.1484 0.1628 0.1874 0.1966
chrF++ 0.1294 0.1496 0.1555 0.1707 0.1959 0.2057
Con (τGT) ours 0.4168 0.475
Comp (τGT) ours 0.4982 0.5832
Rel (τGT) ours 0.4437 0.5405
Con (τbest) ours 0.4491 0.5049
Comp (τbest) ours 0.4974 0.5754
Rel (τbest) ours 0.4567 0.5431

Table 9: Kendall and Spearman rank correlations between human annotation for all dimensions: conciseness (Con),
comprehensiveness (Comp), and relevance (Rel) and all metrics including our proposed Con, Comp and Rel metrics
for both threshold values τGT and τbest.

Model Human Annotations Our Metric

Con Comp Rel Con Comp Rel

BM-25 retriever 0.0301 0.0112 0.0163 0 0 0
LSTM 0.1048 0.0361 0.0515 0.0372 0.0123 0.0179
CodeReviewer 0.5146 0.1692 0.2311 0.4639 0.2413 0.2974
Stable-Code-3B 0.3222 0.1383 0.1718 0.3353 0.2091 0.2319
DeepSeekCoder-6.7B-Instruct 0.6108 0.3153 0.3797 0.5037 0.3989 0.4043
Magicoder-S-DS-6.7B 0.4915 0.3127 0.3351 0.4381 0.4746 0.4032
LLaMA-3-8B-Instruct 0.6091 0.3368 0.4046 0.3503 0.3967 0.3404
CodeLLaMA-13B 0.1985 0.1546 0.1564 0.2493 0.2528 0.2309
GPT-3.5 0.6564 0.4132 0.4759 0.5622 0.6301 0.5507
Ground Truth 0.5129 0.219 0.2819 0.251 0.1598 0.1741

Table 10: Comparison of our proposed metrics with human annotations for the review quality dimensions. We
normalize the human annotated Likert scores per dimension (DimV al) from 1 to 5 to 0 to 1 (NormDimV al)
as: NormDimV al = DimV al−1

4 . The results are reported on the subset of 300 annotated CodeReviewer test
instances. We highlight the best-performing model (bold) and the worst-performing model (underlined) according
to the human annotations and our metric.

9070

Figure 7: The stages of the annotation pipeline. For the first stage — Rating Pseudo-Reference Quality the annotators
mark correct, incorrect, and unverifiable claims, while also adding any missing claims. In the second stage — Rating
Review Quality Dimensions the annotators are given the updated set of pseudo-references from the first stage along
with any pseudo-references generated by the code smell analysis tools to rate candidate reviews on the quality
dimensions — conciseness, comprehensiveness, and relevance on a Likert scale using the pseudo-references.

9071

Figure 8: Monotonicity of metric values for reviews of various quality based on the Likert scale human annotations.
The Rel metric exhibits the most variation across reviews of different quality while the other metrics have flat plots
indicating that they fail to distinguish between reviews of varying quality meaningfully

Metric Python Java Javascript

τ rs τ rs τ rs

BLEU -0.0017 -0.0006 -0.0101 -0.015 0.007 0.009
BLEU
(without stopwords)

0.0532 0.0665 0.035 0.0442 0.0313 0.0405

BERTScore 0.0696 0.0942 0.0808 0.1081 0.0846 0.1128
Normalized
Edit Distance

0.0367 0.046 0.0161 0.0217 0.0109 0.0129

ROUGE-L
F-measure

0.0935 0.1201 0.0553 0.0724 0.075 0.0981

chrF 0.1309 0.1746 0.1573 0.2077 0.1497 0.1982
chrF++ 0.1387 0.1848 0.1676 0.2208 0.1531 0.2021
Rel (τGT) (Ours) 0.4742 0.5788 0.3889 0.4738 0.473 0.5738
Rel (τbest) (Ours) 0.4746 0.5666 0.4093 0.4849 0.4904 0.5816

Table 11: Comparing Kendall-Tau (τ) and Spearman Rank (rs) correlation of reference-based evaluation metrics
across each language annotated (Python, Java and Javascript) and our reference-free relevance score (Rel (F)) with
human annotations for relevance. Correlations that are not statistically significant (p-value < 0.05) are grayed out.

9072

Error Type Description Incorrect
Reference

Corrected
Reference Frequency (%)

Knowledge Error
Pseudo-reference exhibits
incorrect domain knowledge

The ’optparse’ module is being
imported with a comment
indicating that it is being disabled
due to its deprecation.

The ’optparse’ module is being
imported with a comment
disabling a pylint
deprecated-module warning

6.52

Reasoning Error
Pseudo-reference exhibits
wrong logic applied by the
pseudo-reference generator

Now, the ’can_edit_record’ variable
is only true if the function
’check_user_can_edit_record’ returns
true and the ’format’ variable does
not start with ’t’ (in lowercase).

Now, the ’can_edit_record’ variable
is only true if the function
’check_user_can_edit_record’ returns
true and the ’format’ variable does
not start with ’t’ (in any lower or
uppercase).

10.87

Localization Error
The pseudo-reference generator
misunderstands where a
code change has taken place

The assertion in the test method
"test_idxmapping_add_dimension"
has been modified.

The assertion in the test method
"test_idxmapping_redim"
has been modified.

4.35

Over-generalization
Error

The pseudo-reference
generator makes an incorrect
assumption/generalization from
the code change

The addition of these import
statements suggests that the code
in this file will now be using the
ResLayer and SimplifiedBasicBlock
classes from the mmdet.models.utils
package.

19.57

Comprehension
Error

The pseudo-reference seems
to "misread" the code change
(like thinking removed lines
are added, etc.)

The import statement for ’filter’,
’range’, and ’zip’ has been moved
from ’scapy.modules.six.moves’ to
’scapy.modules.six’.

’filter’ is now also imported
from ’scapy.modules.six.moves’

58.7

Table 12: The various types of errors identified, their descriptions and examples (pseudo-references before and after
correction of the error are shown) as well as relative frequencies as percentages are shown here. For this analysis,
we annotated 46 erroneous pseudo-references

Model BLEU
BLEU

(without
stop)

BERTScore
Norm.
Edit

Distance

ROUGE
L

f-score
chrF chrF++ Con

(τbest)
Comp
(τbest)

Rel
(τbest)

BM-25 kNN 0.036 0.043 0.718 0.805 0.069 0.134 0.113 0.002 0.001 0.001
LSTM 0.047 0.051 0.716 0.802 0.102 0.12 0.105 0.02 0.006 0.009

Transformer† 0.048
T5† 0.044
CodeT5† 0.048
CodeReviewer 0.054 0.071 0.718 0.811 0.102 0.116 0.1 0.412 0.208 0.26

Stable-Code-Instruct-3B 0.042 0.04 0.733 0.784 0.091 0.16 0.133 0.34 0.199 0.228
Magicoder-S-DS-6.7B 0.035 0.041 0.72 0.815 0.101 0.175 0.151 0.445 0.491 0.42
DeepSeekCoder-Instruct-6.7B 0.045 0.054 0.734 0.782 0.112 0.183 0.157 0.513 0.418 0.422

CodeLLaMA-Instruct-7B 0.023 0.026 0.71 0.843 0.071 0.171 0.145 0.156 0.151 0.14
Llama-3-8B-Instruct 0.014 0.016 0.699 0.898 0.058 0.14 0.122 0.347 0.425 0.352
LLama-Reviewer† 0.057
CodeLLaMA-Instruct-13B 0.025 0.029 0.715 0.839 0.079 0.179 0.152 0.274 0.272 0.253

GPT-3.5-Turbo 0.037 0.044 0.734 0.812 0.1 0.2 0.171 0.563 0.635 0.558

Table 13: Results of all eval. metrics and models on the entire test set. All metrics have been normalized to be
between 0 and 1. † signifies reported scores. The reference based metrics have a very narrow range of values.

9073

Smell Name Description

Long method There exist methods with too many lines (more lines than a set threshold).
Long parameter list There exist methods with more than “n” parameters (n = 6 is used in this study).
Long branch When conditional statement branches extend too long or are too nested.
Many attributes When a single class has too many methods or attributes.
Many methods When a single class has too many methods.
Shotgun surgery When a single functionality is fragmented across various classes.
Class cohesion There are some classes with low cohesion (C.2.1).

Code complexity
The code includes blocks with cyclomatic complexity (section C.2.2) of rank-C
or worse (moderate to slightly complex blocks). Please read through the
cyclomatic complexity and ranks section for more details.

Long lambda
The code includes lambda functions that exceed a threshold on length
(number of characters).

Long list comprehension
The code includes list comprehensions that exceed a threshold on length
(number of characters).

Table 14: Python code smells detected by the PyScent code smell static analysis tool

Rank
Human Annotated
Relevance

Rel (ours)
chrF++ (best reference
based metric)

1 GPT-3.5 GPT-3.5 GPT-3.5
2 LLaMA-3-8B-Instruct DeepSeekCoder-6.7B-Instruct DeepSeekCoder-6.7B-Instruct
3 DeepSeekCoder-6.7B-Instruct Magicoder-S-DS-6.7B CodeLLaMA-13B
4 Magicoder-S-DS-6.7B LLaMA-3-8B-Instruct Magicoder-S-DS-6.7B
5 CodeReviewer CodeReviewer Stable-Code-3B
6 Stable-Code-3B Stable-Code-3B LLaMA-3-8B-Instruct
7 CodeLLaMA-13B CodeLLaMA-13B BM-25 retriever
8 LSTM LSTM CodeReviewer
9 BM-25 retriever BM-25 retriever LSTM

Table 15: Rankings of the systems over the 300 human-annotated CodeReviewer instances according to the human-
annotated relevance and our relevance metric. The rankings reveal that our method gets the rankings exactly right
except for the LLaMA-3-8B-Instruct model (grayed out) which is ranked lower than Magicoder and DeepSeekCoder
by our metric but preferred more by humans.

9074

Language Code Change Claims Review

Python
@@ -24,6 +24,7 @@ CREATE_TABLE = """

‘complete_time‘ datetime DEFAULT NULL,
‘status‘ enum(’SUCCESS’,’RUNNING’,
’FAILURE’,
’PARTIAL_SUCCESS’,’TIMEOUT’)
DEFAULT NULL,
+ ‘has_all_data‘ bool DEFAULT NULL,
‘schema_version‘ varchar(255)
DEFAULT NULL,
‘cycle_timestamp‘ varchar(255)
DEFAULT NULL,
PRIMARY KEY (‘id‘),

A new column named ‘has_all_data‘
has been added to the table. This
column is of boolean data type and
allows NULL values by default.

Magicoder: This column is
not being used anywhere
in the codebase. It’s a waste
of space.The addition of the ‘has_all_data‘

column implies that there might be
a need to track whether all the data
has been processed or not in the
table.This could be used for further
data processing or analysis.

Existing rows in the table will not
have a value for this new column.
Therefore, it might require additional
data updates or data entry processes
to populate this column.

Python
@@ -14,7 +14,9 @@

import abc
import logging
+import datetime
import parameter
+import target
import warnings
import traceback
import pyparsing as pp

Two new import statements have
been added to the code. The first
one imports the datetime module,
and the second one imports the
target module.

CodeReviewer: Why do
we need these imports?

The addition of the datetime module
suggests that the code may now
involve operations related to date
and time. This could be for logging
purposes, tracking the execution
time of the code, or handling
dates/times in the program.

The addition of the target module
indicates that the code may now
involve operations related to the
target environment or system.
This could be for interacting with
the target system, or for handling
target-specific tasks.

Table 16: Cases where our metric underestimates the relevance of a review by scoring it as zero while the human
scores it as 5 (max relevance). We observed that these cases tend to have fewer claims associated with the code
change, briefer reviews with few relevant tokens, and fewer inline code snippets.

Language Code Change Claims Review

Python

@@ -971,7 +971,7 @@ class JobTask(BaseHadoopJobTask):
if self.__module__ == ’__main__’:

d = pickle.dumps(self)
module_name = os.path.basename(
sys.argv[0]).rsplit(‘.’, 1)[0]

- d = d.replace(b‘(c__main__’, “(c” + module_name)
+ d = d.replace(b‘c__main__’, b’c’ + \

module_name.encode(‘ascii’))
open(file_name, “wb”).write(d)

else:

The code change is in the replacement
of a part of the byte string ’c__main__’
with ’c’ followed by the encoded
ASCII representation of
’module_name’.

CodeReviewer: Shouldn’t this be
‘module_name.encode(’ascii’)‘?

The original code was replacing
’(c__main__’ with ’(c’ followed by
’module_name’.

The new code change corrects this
by encoding ’module_name’ to
ASCII before replacing ’c__main__’
with ’c’ followed by the encoded
’module_name’.

StableCode: This seems
unnecessary, the pickle
module already encodes
the module name.This change could potentially affect

the behavior of the code if
’module_name’ contains non-ASCII
characters.

Table 17: Cases where our metric overestimates the relevance of a review by assigning it the maximum score
while the human scores it at the lowest Likert score value of 1. We observed that these cases tend to have far more
inline-code snippets than the rest of the data and underestimation cases.

9075

STS Threshold (τ) τ rs

τ=0.6 0.3975 0.4874
τ=0.65 0.4572 0.5512
τGT=0.6576 0.4437 0.5405
τ=0.7 0.4433 0.5407
τbest=0.7314 0.4567 0.5431
τ=0.75 0.4473 0.5277
τ=0.8 0.3946 0.4539

Table 18: Effect of varying STS threshold (tau) on the
Kendal-Tau and Spearman Rank correlation of CRScore
relevance measure (Rel) with human-annotated rele-
vance. We note that our approach is robust to slight
variations in the threshold making it robust.

Table 19

9076

