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Abstract

Training large language models (LLMs) heav-
ily relies on distributed training strategies,
among which pipeline parallelism (PP) plays
a crucial role. As training sequences extend
to 32k or even 128k tokens, current PP meth-
ods face severe bottlenecks, including substan-
tial pipeline bubbles and high memory foot-
print, greatly hindering training throughput
and model scalability. This paper introduces
a sequence-level one-forward-one-backward
(1F1B) PP method, named Seq1F1B, tailored
for training LLMs on long sequences with high
training throughput and memory efficiency. Un-
like typical PP methods, which adopt batch-
level pipeline schedule, Seq1F1B schedules
the pipeline of training LLMs at the sequence
level. It uses a computational strategy to parti-
tion sequences appropriately, significantly re-
ducing pipeline bubbles and memory footprint.
Compared to competitive PP baselines such as
Megatron 1F1B PP, Seq1F1B achieves 1.14×
training throughput with half memory footprint.
Notably, Seq1F1B trains an LLM with 30B pa-
rameters on sequences up to 64k tokens using
64×NVIDIA A100 GPUs without using recom-
putation strategies, a feat unachievable with
existing methods. We have released our code
on GitHub to facilitate further research and de-
velopment in LLM training on long sequences:
https://github.com/thunlp/Seq1F1B.

1 Introduction

Efficient distributed strategies (Shoeybi et al.,
2019; Li et al., 2020; Narayanan et al., 2021b) play
a crucial role in training large language models
(LLMs), and these LLMs have revolutionized vari-
ous NLP tasks in recent years (Touvron et al., 2023;
Reid et al., 2024; Jiang et al., 2024; Anil et al.,
2023). Among these strategies, pipeline parallelism
(PP) (Huang et al., 2019; Narayanan et al., 2021b)

* indicates equal contribution.
† indicates corresponding authors.

stands out due to its low communication bandwidth
requirement and great computing resource scala-
bility, and it can be easily integrated with other
strategies such as data parallelism (DP) (Li et al.,
2020; Rasley et al., 2020) and tensor parallelism
(TP) (Shoeybi et al., 2019; Korthikanti et al., 2023).

PP involves partitioning a model into multiple
stages, with each computing device processing
a stage consisting of consecutive layers. This
paradigm inherently leads to “bubbles”—the idle
time caused by the execution topology between
the sharded layers. Several ingenious pipeline
schedule strategies have been proposed to address
this bubble problem. GPipe (Huang et al., 2019)
reduces bubbles by splitting each batch of train-
ing sequences into micro-batches, coming at the
cost of increased memory usage, as each pipeline
stage must store the intermediate states of all
micro-batches generated during forward passes un-
til backward passes are completed. To address
the high memory demand of GPipe, one-forward-
one-backward (1F1B) methods are proposed (Har-
lap et al., 2018; Fan et al., 2021; Narayanan et al.,
2021b). 1F1B methods make backward passes have
higher execution priority than forward passes and
schedule backward passes in advance without af-
fecting final results. Owing to this, the memory
demand for storing intermediate states can be re-
duced without adding extra bubbles. Generally,
optimizing PP relies on handling the trade-off be-
tween bubble ratio and memory footprint.

Recent studies (Buckman and Gelada; Reid et al.,
2024) have highlighted the advantages of long-
sequence training for LLMs in various aspects.
However, training LLMs on long sequences re-
mains challenging due to the quadratic time and
memory complexities with respect to the input se-
quence in Transformer attention modules (Vaswani
et al., 2017). Some works, such as (Liu et al.,
2023; Ao et al., 2024), propose parallelizing atten-
tion computation across workers in a distributed
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cluster to enable efficient training of LLMs on long
sequences. In this approach, each worker must
communicate activations during attention compu-
tation and synchronize the model’s weights. Con-
sequently, these approaches exhibit poor perfor-
mance when communication bandwidth is limited.
Compared to these methods, PP incurs significantly
lower communication overhead and is thus a more
suitable choice when communication bandwidth is
constrained. However, long sequence data presents
new challenges, such as increased memory de-
mands and higher bubble ratios, making it difficult
to achieve effective training with PP methods. For
GPipe and existing 1F1B methods, whose minimal
schedulable unit is micro-batch, inevitably face the
memory overflow caused by just a single micro-
batch, as training sequences extend to extremely
long lengths. Long sequences make balancing bub-
ble ratio and memory footprint more challenging
for PP methods.

In this paper, we introduce a Sequence-Level
1F1B (Seq1F1B) PP method. This method cap-
italizes on the causal self-attention mechanism
of LLMs to schedule pipeline stages at the se-
quence level. In contrast to existing 1F1B meth-
ods (Narayanan et al., 2021b; Qi et al., 2024),
Seq1F1B offers significant efficiency and mem-
ory benefits. Specifically, splitting sequences into
sub-sequences allows for a significant reduction
in memory footprint since only the intermediate
states of sub-sequences rather than micro-batches
need to be retained. Scheduling the pipeline at the
sequence level yields more stages and thus reduces
the bubble ratio. While, the causal nature of LLMs
also causes a dependency between the forward
and backward passes of different sub-sequences,
i.e., the forward passes of later sub-sequences rely
on earlier ones, and vice versa for the backward
passes of early sub-sequences, bringing the chal-
lenge for the pipeline schedule. To this end, we
introduce a partially ordered queue in Seq1F1B to
replace the first-in-first-out (FIFO) queue used in
existing 1F1B methods and reorganize the pipeline
schedule, so that we can preserve the exact execu-
tion dependencies between forward and backward
passes while providing synchronous parallelism.
To further improve Seq1F1B, we propose a strategy
for balancing the workload across sub-sequences
rather than simply splitting sequences evenly along
the sequence dimension.

Sufficient experiments demonstrate that
Seq1F1B significantly outperforms recent popular

1F1B methods (Narayanan et al., 2021b; Fan
et al., 2021) in terms of memory efficiency and
training throughput for training LLMs, with the
sequence length ranging from 16k to 128k and
the model size ranging from 2.7B to 32B. As
the sequence length increases, the efficiency of
Seq1F1B becomes more pronounced. Seq1F1B
supports efficiently training an LLM with 30B
parameters on sequences up to 64k tokens
using 64×NVIDIA A100 GPUs without using
recomputation strategies, which is unachievable
with existing PP methods.

2 Related Work

Training LLMs requires using a mixture of paral-
lelism strategies, the most important of which are
DP, TP, and PP (Han et al., 2021). For PP, pipeline
schedules can be broadly categorized into two main
types: synchronous schedules and asynchronous
schedules. Asynchronous schedules such as asyn-
chronous PipeDream (Harlap et al., 2018) and
PipeMare (Yang et al., 2021) can achieve bubble-
free results but suffer from the performance degra-
dation of final trained models because they use
outdated parameters to compute gradient updates.
As for synchronous schedules, GPipe (Huang et al.,
2019; Li et al., 2021) and 1F1B (Fan et al., 2021;
Narayanan et al., 2021b,a) are the most commonly
used pipeline schedules following synchronous set-
tings. They achieve much fewer bubbles as the
number of micro-batch increases and guarantee
mathematical equivalent to the original training
process. Given this, our work focuses on improv-
ing synchronous pipeline schedules as they ensure
consistent semantics across different parallelism
strategies.

The original GPipe (Huang et al., 2019) simply
divides a batch into several micro-batches, and its
scheduling process has only two phases: the for-
ward phase and the backward phase. The backward
passes are executed only after the forward passes
of all micro-batches within a batch are completed.
During the forward phase, the intermediate states of
each micro-batch are enqueued into a FIFO queue
Q. During the backward phase, these interme-
diate states are dequeued for their corresponding
backward passes. Since the backward phase hap-
pens after all intermediate states are queued, GPipe
exhibits an O(M) memory consumption, where
M represents the number of micro-batches. Ter-
aPipe (Li et al., 2021) relies on the observation of
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Figure 1: Execution timeline for the 1F1B and Seq1F1B schedules. Blank spaces represent idle time, i.e. bubbles.
The upper figure illustrates the original 1F1B schedule, where each micro-batch is labeled with an ID and bottom
interval line indicates the schedule phase of last device in the pipeline. The lower figure illustrates our Seq1F1B
schedule, where the input is split into two sequences for better illustration. In Seq1F1B’s illustration, light-colored
areas represent the first sequence, while dark-colored areas represent the second sequence. Notice that the forward
pass for the dark-colored sequence follows the light-colored sequence, whereas, for the backward pass, the dark-
colored sequence precedes the light-colored sequence.

causal language modeling, where the computation
of a given input token only depends on its previous
tokens, divides GPipe’s micro-batch into multiple
token spans, and replaces the FIFO queue with a
last-in-first-out (LIFO) queue to ensure the correct
computation of gradients in backward. By using
finer schedulable units (token spans), TeraPipe re-
duces the bubble ratio and improves memory ef-
ficiency. Chimera (Li and Hoefler, 2021) adopts
a bidirectional schedule, where each device is re-
sponsible for processing multiple stages. While
Chimera reduces the bubble ratio, each device has
to store redundant parameters (as stages are not
evenly distributed across devices), leading to in-
creased memory usage.

Different from GPipe, 1F1B (Narayanan et al.,
2021b; Fan et al., 2021) alternates between forward
and backward passes (adopting a 1F1B pattern)
to keep the number of intermediate states in the
FIFO queue Q constant. Regardless of the number
of micro-batches, 1F1B mitigates excessive mem-
ory usage. Based on 1F1B, 1F1B with interleaved
stages (1F1B-I) (Narayanan et al., 2021b) enlarges
the number of pipeline stages and assigns each de-
vice multiple stages. By interleaving stages among
devices, 1F1B-I reduces the bubble ratio at the

cost of adding more communication operators and
slightly increasing memory consumption. Zero-
bubble-pipeline (ZB1P) (Qi et al., 2024) divides the
backward pass into weight gradient computation
and input gradient computation separately. This
approach achieves higher pipeline efficiency by de-
laying weight gradient computation and optimizing
the schedule using dynamic programming. ZB1P
nearly achieves zero-bubble pipeline efficiency but
brings more memory footprint caused by delay-
ing memory release. 1F1B methods are the most
popular for training LLMs, yet still suffer from
difficulties in balancing bubble ratio and memory
footprint, which is the issue we want to solve.

3 Methodology

In this section, we first give a preliminary overview
to introduce the characteristics of the 1F1B sched-
ule and language modeling. Then, we prove why
it is feasible to schedule the pipeline of training
LLMs at the sequence level for micro-batches in
1F1B. Finally, we explain how Seq1F1B works
in detail and how it meets the exact semantics of
original language modeling.
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Figure 2: Execution timeline for the 1F1B-I and Seq1F1B-I. The upper figure illustrates the 1F1B-I schedule, where
each micro-batch is labeled with an ID, and distinct colors represent the forward and backward passes of different
stages. The lower figure shows the Seq1F1B-I schedule, where the input is split into two sequences. In Seq1F1B-I,
the light-colored areas represent the first sequence, and the dark-colored areas represent the second sequence.

3.1 Preliminary

As shown in Figure 1, 1F1B includes three phases
to train a batch of sequences: warm-up, steady,
and cooling-down phases. Given P devices (e.g.,
GPUs) to perform a 1F1B schedule to train M
micro-batches, with each device responsible for
one pipeline stage, the size of PP is P . After split-
ting the batch into M micro-batches, during the
warm-up phase, each device executes the forward
passes of the first few micro-batches, and the num-
ber of forward passes wi executed by the i-th device
is

wi =

{
P − i if M > P

M if M ≤ P
, i ∈ [1, P ], (1)

When M ≤ P , 1F1B degrades to the behavior
of GPipe and does not process the steady phase.
Otherwise, during the warm-up phase, a device
responsible for an earlier stage performs one more
forward pass than the device responsible for its
subsequent stage. Each forward pass results in
intermediate states enqueued in a FIFO queue Q
to be used later for the gradient computation of
backward passes.

During the steady phase, each device performs
one forward pass and enqueues the resulting inter-
mediate states into Q. After a device executes a
forward pass, the device dequeues specific inter-

mediate states from Q and immediately executes a
backward pass for gradient computation, where the
“1F1B” name comes from. Note that the bubble
ratio is minimal during the steady phase, and the
number of 1F1B passes in the steady phase is given
by M − wi. As M increases, the proportion of the
steady phase in the entire pipeline increases, which
reduces the bubble ratio. After the steady phase,
the 1F1B schedule enters the cooling-down phase,
which is symmetric to the warm-up phase and in-
volves executing the same number of backward
passes as in the warm-up phase.

The primary optimization of 1F1B is to en-
sure that the memory consumption of intermediate
states is independent of M . The peak memory con-
sumption for intermediate states is determined by
the number of items in the queue Q at the end of
the warm-up phase, where each device holds wi

intermediate states. Assuming the total memory
consumption of intermediate states is A, the peak
memory consumption of the i-th device is A×wi∑P

j=1 wj
.

During the steady and cooling-down phases, this
consumption does not increase since each back-
ward pass frees the storage space for its associated
intermediate states.

Language modeling is the most common un-
supervised objective in training LLMs. In lan-
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guage modeling, each token is predicted sequen-
tially while conditioned on the preceding tokens,
embodying the principles of sequential generation,
as formulated as

P (x) =
T∏

t=1

P (xt | x1, x2, . . . , xt−1), (2)

where T is the sequence length. In the context of
language modeling using Transformers, the causal
attention mechanism ensures that each token in a
sequence can only see its predecessors to process
hidden states, including itself. Given a sequence of
input token states {x1,x2, . . . ,xT }, the output of
the attention mechanism for each token can be com-
puted as follows. Each token’s state xi is mapped
into a query vector qi, a key vector ki, and a value
vector vi, and output for each token oi is computed
by attending over all previous tokens as follows,

Oi = softmax
(
q⊤
i · [k1, . . . ,ki]√

dk

)
[v0, . . . ,vi], (3)

where dk is the vector dimension. Based on these
characteristics, it is clear that to partition the Trans-
former computation across the sequence dimension
must retain the key and value vectors of all pre-
ceding tokens. The forward and backward passes
also need to maintain a specific order. The for-
ward pass of each token must follow the completion
of its predecessor’s computation, while the back-
ward pass requires the subsequent token’s gradients
to complete its computation. This computational
dependency needs to be fully considered in the
sequence-level pipeline schedule.

3.2 Framework of Seq1F1B

From Figure 1, we observe that the original 1F1B
schedule cannot accommodate the splitting of
micro-batches along the sequence dimension be-
cause the last stage needs to immediately execute
a backward pass after forwarding a micro-batch.
A straightforward adaptation method is to divide
each original 1F1B micro-batch into k segments
and then execute a kFbB pipeline (Li et al., 2021).
Although this schedule can reduce some bubbles in
1F1B, it does not save memory usage.

To achieve a more efficient sequence-level 1F1B
pipeline schedule, we propose Seq1F1B. Similar to
1F1B, the schedule of Seq1F1B is also divided into
three phases: warm-up phase, steady phase, and
cooling-down phase. During the warm-up phase,
the number of sub-sequences of the i-th device is

computed according to

wi =

{
P − i− 1 + k if M > P

M if M ≤ P
, i ∈ [1, P ], (4)

where P is the size of the PP and k indicates the
number of divisions of the sequence. This equation
ensures that the last stage can perform a backward
pass on the last sub-sequence of the first micro-
batch when entering the steady phase, and the de-
vice responsible for each stage performs one more
forward pass than the device responsible for the
subsequent stage. Here, we construct a partially
ordered queue Qs, where each pop returns the tail
sequence from the earliest enqueued intermediate
states. This satisfies the FIFO principle in the batch
dimension and the first-in-last-out (FILO) princi-
ple in the sequence dimension. In each step of the
warm-up phase, devices execute one forward pass
and enqueue the corresponding intermediate states
of sub-sequences into Qs. During the steady phase,
after each device completes a forward pass, it de-
queues intermediate states from Qs and performs a
backward pass, following the standard 1F1B pro-
cess, except that the units for forward and back-
ward passes become a sub-sequence. During the
cooling-down phase, devices dequeue the remain-
ing intermediate states from Qs, perform backward
passes for remaining subsequences and accumulate
the gradient to ensure mathematical equivalent with
other synchronous schedules.

From the timeline shown in Figure 1, it is evident
that the The Seq1F1B schedule offers a shorter ex-
ecution time and significantly fewer bubbles com-
pared to the original 1F1B schedule. Meanwhile,
it can be seen that each device now has less mem-
ory consumption since the sub-sequence is smaller
than the micro-batch.

3.3 Framework of Seq1F1B-I

As shown in Figure 2, 1F1B-I (Narayanan et al.,
2021b) achieves better efficiency by modifying the
1F1B schedule to support interleaved stages among
devices. In 1F1B-I, each device is assigned mul-
tiple stages. Suppose we have P devices and V
stages {s1, s2, . . . , sV } in our pipeline, where V
is a multiple of P . The i-th device will handle
n stages {si, si+P , si+2P , . . . , si+(n−1)P }, where
n = V

P . The number of warm-up micro-batches of
each device i in 1F1B-I is as follows,

wi = (P − i)× 2 + (n− 1)× P, i ∈ [1, P ], (5)
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Figure 3: Peak Memory consumption of training a se-
ries of models under varying sequence lengths and fixed
batch settings. “X” means experiments ran out of mem-
ory. We take the maximum memory consumption be-
tween all devices for better clarification.

After completing P iterations of forward and back-
ward passes, each device switches its context to
the next stage for which the device is responsi-
ble. From Figure 2, the above part shows a 1F1B-I
pipeline with P = 4 and V = 8, in which each de-
vice handles 2 stages. The 1F1B-I schedule reduces
the bubble ratio by interleaving stages among de-
vices. However, this interleaving slightly increases
memory consumption, as the number of warm-up
micro-batches wi is greater than that of 1F1B.

Similar to 1F1B-I, Seq1F1B-I further modifies
1F1B-I to achieve a sequence-level schedule. From
Figure 2, Seq1F1B-I effectively reduces pipeline
bubbles and the memory footprint of intermediate
states compared to 1F1B-I. Seq1F1B-I defines the
number of warm-up sub-sequences as

wi = (P − i)× 2 + (n− 1)× P + k − 1, i ∈ [1, P ], (6)

where P is the size of the PP and k indicates the
number of divisions of the sequence. Using the
partially ordered queue, Seq1F1B-I maintains a
strict order of forward and backward passes and en-
sures the consistent semantics of gradient updates.
In terms of reducing pipeline bubbles, Seq1F1B-I
outperforms both Seq1F1B and 1F1B-I. Besides,
Seq1F1B-I requires slightly more memory than
Seq1F1B but significantly less than 1F1B-I.

3.4 Workload Balance
In this section, we detail the strategy of sequence
partition and workload balance consideration. Pre-
vious works, such as (Li et al., 2021), have dis-

7B x 128k
32 GPUs

30B x 64k
64GPUs

Experimental Settings

0%

10%

20%

30%

40%

50%

M
FU

(%
)

FSDP w. RingAttention Seq1F1B

Figure 4: Comparison of model FLOPS utilization
(MFU) between Seq1F1B and FSDP with RingAtten-
tion for long sequence training across various settings.

cussed strategies for sequence partitioning. To
achieve an efficient pipeline schedule, the process-
ing cost for each sub-sequence must be balanced to
minimize pipeline bubbles. To this end, we design
a computation-wise partition strategy by estimating
the FLOPs of sequences and constructing a theo-
retical solution aiming to make the FLOPs of all
sub-sequences as closely as possible. For a input
sequence S = {x1, x2, · · · , xn}, we devide it into
k segments S = {S1, S2, · · · , Sk}. Each segment
has a length of ni, where

∑k
i=1 ni = n. We expect

the computational amount of each segment to be
roughly the same, that is

FLOPs(S1) = FLOPs(S2)

= · · · = FLOPs(Sk)

=
FLOPs(S)

k
.

(7)

Specifically, we use the method proposed in (Hoff-
mann et al., 2022) to estimate the FLOPs for each
subsequence, formulated as

FLOPs(Si) = 2niP + 2Lni

(
i∑

j=0

nj

)
d,∀i ∈ [1, k],

FLOPs(S) = 2nP + 2Ln2d,

(8)

in which, L is the number of layers, d is the di-
mension of the model, and P is the total number
of parameters in the model. We have k variables in
Eq. (8) and k equations in Eq. (7), and thus we can
set up the equation to get the optimal segmentation.

3.5 Integration with Zero-bubble-pipeline
Optimizations similar to ZB1P can also be applied
to Seq1F1B by delaying the gradient computation
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Model Size 2.7b

Sequence Length 16k 24k 32k

Micro-batch 16 32 16 32 16 32

Throughput 1F1B 32.0±0.0 37.1±0.0 27.0±0.0 31.4±0.0 OOM OOM

(Thousands 1F1B-I 36.4±0.0 39.7±0.0 OOM OOM OOM OOM

Tokens/s) Seq1F1B 37.3±0.0 38.9±0.3 32.6±0.0 34.2±0.0 28.8±0.0 30.1±0.2
Seq1F1B-I 38.0±0.0 38.9±0.0 33.3±0.0 34.3±0.0 29.5±0.0 30.3±0.0

TFLOPS 1F1B 96.9±0.0 112.3±0.0 95.5±0.1 111.1±0.1 OOM OOM

per device 1F1B-I 110.3±0.1 120.2±0.1 OOM OOM OOM OOM
Seq1F1B 113.1±0.0 117.8±0.8 115.2±0.1 120.9±0.1 116.5±0.1 122.0±1.0
Seq1F1B-I 115.2±0.0 118.0±0.0 118.0±0.1 121.3±0.1 119.4±0.0 122.7±0.0

Table 1: 2.7B GPT training experiments with PP size of 8 under 8× A100 setting.

Model Size 7b

Sequence Length 32k 64k 128k

Micro-batch 8 16 8 16 8 16

Throughput 1F1B 48.2±0.1 55.3±0.2 37.3±0.0 43.1±0.0 OOM OOM

(Thousands 1F1B-I 53.0±0.3 56.3±0.4 41.7±0.1 44.7±0.0 OOM OOM

Tokens/s) Seq1F1B 53.5±0.3 55.8±0.1 43.3±0.0 45.0±0.1 30.4±0.0 31.6±0.0
Seq1F1B-I 47.2±0.9 46.2±0.8 40.9±0.4 41.0±0.3 30.0±0.0 30.4±0.0

TFLOPS 1F1B 99.7±0.2 114.5±0.4 107.5±0.0 124.0±0.1 OOM OOM

per device 1F1B-I 109.5±0.7 116.5±0.8 120.0±0.2 128.7±0.1 OOM OOM
Seq1F1B 110.6±0.5 115.3±0.2 124.6±0.1 129.7±0.5 136.7±0.1 142.1±0.0
Seq1F1B-I 97.7±1.8 95.5±1.6 117.8±1.3 118.0±0.8 135.1±0.2 136.6±0.2

Table 2: 7B GPT training experiments with PP size of 4 and TP size of 8 under 32×A100 setting.

associated with weights in the backward pass. In
this way, Seq1F1B can integrate with the ZB1P
method and further reduce bubbles while reducing
memory demands by splitting the sequence. Such
integration outperforms simple ZB1P in both mem-
ory demands and pipeline bubbles since sequence-
level pipelines naturally have fewer bubbles. Fur-
thermore, Seq1F1B can integrate with ZB2P and
ZBV methods too. Theoretically, introducing a
zero-bubble-pipeline to Seq1F1B should be more
efficient. Even so, such a fine-grained handcraft
schedule may cause performance degradation in
some settings. We provide a detailed timeline of
Seq1F1B integrated with Zero-bubble-pipeline in
Appendix A.2. We hope our work inspires future
work to solve this problem.

4 Experiments

4.1 Experimental Settings

In experiments, we measure Seq1F1B, Seq1F1B-
I, 1F1B, and 1F1B-I under variable sequence
lengths, different numbers of micro-batches, dif-
ferent numbers of GPUs, and different PP and
TP sizes. Additionally, we assess the perfor-
mance of Seq1F1B and Seq1F1B-I without employ-
ing the computation-wise sequence partition strat-

egy. Furthermore, we examine the performance of
FSDP with RingAttention and compare it against
Seq1F1B. Compared methods are as follows:

(1) Seq1F1B: Seq1F1B with computation-wise
sequence partition strategy.

(2) Seq1F1B-I: Seq1F1B with interleaved stages
and computation-wise sequence partition strategy.

(3) 1F1B/1F1B-I: 1F1B and 1F1B with inter-
leaved stages in Megatron implementation.

(4) Seq1F1B w/o cwp: Seq1F1B without
computation-wise sequence partition strategy.

(5) Seq1F1B-I w/o cwp: Seq1F1B-I without
computation-wise sequence partition strategy.

(6) FSDP w. RingAttention: Fully Sharded Data
Parallel with RingAttention.

All assessments are based on the GPT model
and focus on long-sequence training since a lot of
work has mentioned its importance. For Seq1F1B
and Seq1F1B-I, we set the number of sequence
splits to 4, and each device manages two stages in
interleaved settings. We provide detailed configu-
rations of the hardware and other hyperparameters
in Appendix A.1.

4.2 Main Results
In Figure 3, we compare the memory consumption
of our method with that of 1F1B and 1F1B-I. As

9004



Model Size 13b

Sequence Length 32k 48k 64k

Micro-batch 8 16 8 16 8 16

Throughput 1F1B 28.9±0.1 33.4±0.1 25.3±0.1 29.3±0.1 22.6±0.1 30.0±0.0

(Thousands 1F1B-I 32.2±0.2 34.4±0.1 28.2±0.2 30.6±0.1 OOM OOM

Tokens/s) Seq1F1B 32.9±0.1 34.3±0.1 29.5±0.1 30.8±0.0 26.7±0.0 27.8±0.0
Seq1F1B-I 29.7±0.4 29.8±0.3 28.0±0.2 28.3±0.1 26.4±0.1 26.8±0.1

TFLOPS 1F1B 106.7±0.2 123.0±0.5 109.5±0.5 126.2±0.6 111.9±0.5 135.1±0.2

per device 1F1B-I 118.6±0.6 126.9±0.4 121.9±0.7 132.2±0.4 OOM OOM
Seq1F1B 121.2±0.2 126.6±0.3 127.3±0.4 133.1±0.2 132.5±0.0 137.9±0.0
Seq1F1B-I 109.7±1.4 110.0±1.1 121.0±1.1 122.1±0.4 130.6±0.3 132.8±0.3

Table 3: 13B GPT training experiments with PP size of 4 and TP size of 8 under 32× A100 setting.

Model Size 30b

Sequence Length 32k 48k 64k

Micro-batch 8 16 8 16 8 16

Throughput 1F1B 26.4±0.1 31.2±0.2 OOM OOM OOM OOM

(Thousands 1F1B-I OOM OOM OOM OOM OOM OOM

Tokens/s) Seq1F1B 31.3±0.1 33.1±0.2 28.2±0.1 29.6±0.1 25.5±0.0 26.8±0.0
Seq1F1B-I 28.0±0.4 28.4±0.2 26.5±0.2 27.1±0.2 24.8±0.1 25.2±0.1

TFLOPS 1F1B 104.8±0.3 123.9±0.7 OOM OOM OOM OOM

per device 1F1B-I OOM OOM OOM OOM OOM OOM
Seq1F1B 124.5±0.2 131.5±0.6 129.4±0.3 135.6±0.3 132.6±0.0 139.2±0.0
Seq1F1B-I 111.1±1.6 113.0±1.0 121.5±1.1 124.2±0.8 128.6±0.3 130.9±0.6

Table 4: 30B GPT training experiments with PP size of 8 and TP size of 8 under 64× A100 setting.

Method TFLOPS/device SpeedUp

Seq1F1B w/o cwp 94.8±0.1 -
Seq1F1B 122.0±1.0 1.28 ×
Seq1F1B-I w/o cwp 103.5±0.1 -
Seq1F1B-I 122.7±0.0 1.18×

Table 5: The Ablation experiments are based on 2.7B
GPT of sequence partitioning strategies, where “w/o
cwp” indicates the absence of a computation-wise parti-
tioning strategy.

can be seen, our method consistently requires less
memory across all settings. Notably, it can support
training a 30B model on a 64× A100 cluster, which
is impossible for the traditional combination of PP
and TP. Additionally, we recorded TFLOPS (ter-
aFLOPS) per GPU in our experiments to measure
the hardware utilization of different methods. From
Table 1, 2, 3 and 4, our method Seq1F1B outper-
forms 1F1B and 1F1B-I under almost all settings
in both training throughput and teraFLOPS.

However, as observed in Table 2, 3, and 4, the
Seq1F1B-I may have a performance degradation
under multi-node settings. This could be due to
the overly fine-grained interleaving of stage par-
titioning and input sequence partitioning, which

Settings k Memory (GB) Throughput(TGS)

2.7B× 32k
4 51.9 3655.10
8 40.5 3449.26

16 39.7 3262.12

7B× 128k
4 67.2 987.43
8 59.5 968.75

16 56.5 918.77

13B × 64k
4 53.5 868.72
8 45.8 824.97

16 43.5 750.01

30B× 64k
4 68.0 418.71
8 48.2 387.51

16 48.2 364.09

Table 6: Memory performance(GB) and throughput
performance(Tokens/GPU/Second) of Seq1F1B with
varying k values across the experimental configurations
detailed in Table 7

also implies that more communication calls in TP
(although the total communication volume remains
unchanged) potentially leads to a decrease in perfor-
mance. Another observation is that the efficiency
of Seq1F1B becomes more pronounced as the se-
quence length increases. This is because the com-
putation time for each micro-sequence extends with
longer sequences, thereby enhancing the benefits
derived from sequence partitioning.
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To better assess Seq1F1B’s performance in
long sequence training, we evaluated the training
throughput of both Seq1F1B and FSDP w. RingAt-
tention under two scenarios: training a 7B model
with a 128k sequence length and training a 30B
model with a 64k sequence length. As illustrated in
Figure 4, Seq1F1B demonstrates superior training
throughput compared to FSDP with RingAttention
across both settings. Such performance advantage
arises from Seq1F1B’s significantly lower commu-
nication overhead compared to FSDP.

4.3 Ablation Results

To assess the efficiency of our computation-wise
partition strategy, we conducted all experiments
using Seq1F1B without computation-wise par-
titioning (Seq1F1B w/o cwp) and Seq1F1B-I
without computation-wise partitioning (Seq1F1B-
I w/o cwp) to evaluate the effectiveness of our
computation-wise partition strategy. Under identi-
cal settings, employing the computation-wise par-
tition strategy leads to performance enhancements
ranging from approximately 10-30% for Seq1F1B
compared to simply splitting the sequence evenly.

Across all experimental scales, Seq1F1B consis-
tently surpassed Seq1F1B w/o cwp in performance.
Table 5 highlights the ablation performance for a
2.7B model with a sequence length of 32k, demon-
strating a performance boost of approximately 28%
due to the computation-wise partitioning.

Also, we evaluate Seq1F1B’s performance under
different k settings, and the experiment results are
shown in Table 6. As can be seen, the memory
consumption decreases as k increases since each
device has fewer memory requirements for each
sub-sequence. However, the throughput decreases
as k increases from 4 to 16 because overly fine-
grained sequence partitioning can lead to perfor-
mance degradation due to low hardware utilization.

5 Conclusion

In this paper, we present Seq1F1B, an efficient
1F1B pipeline parallel schedule orienting to train-
ing Transformer-based LLMs on long sequences
by decomposing the batch-level schedulable units
used by typical 1F1B methods into more fine-
grained sequence-level units. To achieve a better
workload balance of the sequence-level pipeline,
we design a computation-wise sequence partition
strategy to partition the sequences that evenly dis-
tribute computational load across devices. Mean-

while, Seq1F1B can integrate with other pipeline
parallel methods such as 1F1B with interleaved
stage or zero-bubble-pipeline. Our evaluations
demonstrate that Seq1F1B outperforms the 1F1B
and 1F1B-I schedules regarding memory efficiency
and training throughput under variable sequence
lengths and model sizes. Moreover, Seq1F1B can
support the efficient training of a 30B GPT model
on sequences up to 64k in length using 64× A100
GPUs without recomputation strategies, which is
unachievable with existing pipeline parallel meth-
ods. In the future, we will thoroughly combine our
method with other distributed methods to achieve
better LLM training acceleration.

Limitations

The current implementation of Seq1F1B is opti-
mized for long-context training in LLMs, which
may result in performance degradation when deal-
ing with short context such as 4k/8k. We recom-
mend using Seq1F1B in environments with limited
communication bandwidth, as the PP incurs fewer
communication costs compared to other parallel
strategies.
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Model Number of Attention Hidden Sequence PP TP Number of
Size Layers Heads Size Length Size Size Micro-batches

2.7B 32 32 2560 16k / 24k / 32k 8 1 32 / 64
7B 32 32 4096 32k / 64k / 128k 4 8 16 / 32

13B 40 40 5120 32k / 64k / 128k 4 8 16 / 32
30B 64 64 6144 32k / 48k / 64k 8 8 32 / 64

Table 7: Settings used in experiments for training LLMs.

A Appendix

A.1 Hyperparameters settings and Hardware configurations
For the hyperparameter settings, we provide a detailed list of all model configurations used in our
experiments, along with their corresponding hyperparameters, in Table 7. Our implementation is based on
the open-source Megatron-LM project (Narayanan et al., 2021b) and ensures reproducibility. We adopt
Megatron-V3 (Korthikanti et al., 2023)’s tensor parallelism in all experiments since it is necessary for
long sequence training.

Our experiments include three cluster settings: 1) 1 node with 8 NVIDIA A100 SXM 80G GPUs
interconnected by NvLink. 2) 4 nodes interconnected by a RoCE RDMA network, and each node has
8 NVIDIA A100 SXM 80G GPUs interconnected by NvLink. 3) 8 nodes interconnected by a RoCE
RDMA network,k and each node has 8 NVIDIA A100 SXM 80G GPUs interconnected by NvLink. Each
measurement in the experiment is repeated 100 times, and the standard deviation is recorded. Our method’s
loss curve remains the same with Megatron’s 1F1B and 1F1B-I under the same model initialization setting

A.2 Seq1F1B’s timeline integrated with ZB-1P

Seq1F1B intergrated with ZB-1P
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Figure 5: Execution timeline for the zero-bubble-pipeline’s ZB1P and Seq1F1B schedule intergrated with zero-
bubble-pipeline’s ZB1P. Each micro-batch is labeled with an ID and different colors to distinguish the for-
ward/backward/weight computation of different stages.
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