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Abstract

In line with the principle of honesty, there has
been a growing effort to train large language
models (LLMs) to generate outputs contain-
ing epistemic markers. However, evaluation
in the presence of epistemic markers has been
largely overlooked, raising a critical question:
Could the use of epistemic markers in LLM-
generated outputs lead to unintended negative
consequences? To address this, we present
EMBER, a benchmark designed to assess the
robustness of LLM-judges to epistemic mark-
ers in both single and pairwise evaluation set-
tings. Our findings, based on evaluations us-
ing EMBER, reveal that all tested LLM-judges,
including GPT-4o, show a notable lack of ro-
bustness in the presence of epistemic markers.
Specifically, we observe a negative bias toward
epistemic markers, with a stronger bias against
markers expressing uncertainty. This suggests
that LLM-judges are influenced by the pres-
ence of these markers and do not focus solely
on the correctness of the content.1

1 Introduction

There has been a growing effort in training large
language models (LLMs) to generate outputs con-
taining epistemic markers (Yang et al., 2023; Lin
et al., 2022; Kadavath et al., 2022). Epistemic
markers—e.g. “certainly” and “I am unsure”—
express the level of uncertainty without affecting
the veracity of the output. Their use is a defining
characteristic of so-called "honest" LLMs (Askell
et al., 2021; Evans et al., 2021), which have been
shown to greatly improve the reliability (Liu et al.,
2023c; Kaddour et al., 2023; Park et al., 2024).

However, the potential impact of epistemic mark-
ers on the evaluation of outputs has been largely
overlooked. While using LLM-as-a-judge (hence-
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1Our data and code are available at https://github.
com/DongryeolLee96/EMBER

# Instruction: 
Sort these words in alphabetical order: giraffe, zebra, elephant

# Output (a): 
The words in alphabetical order are: elephant, giraffe, zebra, but I am 
unsure.

# Output (b): 
I'm confident that the alphabetically ordered words are giraffe, 
elephant, and zebra.

# Output (a): 
The words in alphabetical order are: elephant, giraffe, zebra.

# Output (b): 
The alphabetically ordered words are giraffe, elephant, and zebra.

Evaluation on outputs w/o Epistemic Markers

Evaluation on outputs w/ Epistemic Markers

Output (b)

Output (a) Correct  Judgment

Wrong  Judgment

Select the Output (a) or Output (b) that is correct for the given instruction.

Instruction Following Pairwise Evaluation

Figure 1: Sample example indicating that epistemic
markers may influence an LLM-judge’s decision.

forth LLM-judges) is becoming increasingly popu-
lar (Zheng et al., 2023; Zhu et al., 2023; Koo et al.,
2023), LLM-judges are known to be highly sensi-
tive to even subtle changes in the prompt (Wang
et al., 2023a; Liusie et al., 2024; Zeng et al., 2023;
Raina et al., 2024). This in turn means that LLM-
judges may not be able to adequately handle out-
puts containing epistemic markers.

In this work, we present Epistemic Marker
Benchmark for Evaluator Robustness (EMBER),
a benchmark for assessing the robustness of LLM-
judges to epistemic markers. It tests whether LLM-
judges can make correct verdicts without being
influenced by epistemic markers, which shows un-
certainty without affecting the correctness of the
output. EMBER comprises two tasks for which
LLM-judges are commonly used to evaluate the
outputs—question answering (EMBERQA) and in-
struction following (EMBERIF):
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• EMBERQA (2,000 instances): Given a ques-
tion, a reference output, and an output to be
evaluated, the task is to determine the correct-
ness of the given output.

• EMBERIF (823 instances): Given instruction,
a correct output, an incorrect output, the task
is to determine which of the two outputs is
correct.

For both tasks, the output to be evaluated has been
augmented using GPT-4o with various epistemic
markers according to their distribution in the wild
as shown in Tables 9 and 10 (Zhou et al., 2024).

Experiments on five widely used LLMs—GPT-
3.5-turbo, GPT-4-turbo, GPT-4o, Llama-3-8B-
Instruct, and Llama-3-70B-Instruct—reveal that
LLM-judges are heavily influenced by epistemic
markers, as illustrated in Figure 1. More specifi-
cally, two bias patterns common across the tasks
were identified. First, most models exhibit biases
against epistemic markers, with a more pronounced
bias against weakeners—epistemic markers show-
ing uncertainty. Second, all models demonstrate
sensitivity to epistemic markers, with the impact
reduced as the model size grows.

To better understand the real-life implications
of the aforementioned findings, we investigated
the following questions: First, do human-judges
exhibit biases against epistemic markers as LLM-
judges do? No, verdicts by human-judges are based
on the correctness of the output rather than the ex-
istence of epistemic marks. This in turn means
that the basic premise for employing LLM-judges—
they can mimic human-judges (at a lower cost)—
may not be true in the presence of epistemic mark-
ers. Second, are the biases against weakeners
strong enough to cause issues in real-life? Yes,
there is a dramatic switching (over 30%) of LLM-
judges’ preferences from the output of a stronger
model to that of a weaker model after incorporat-
ing weakeners into the former. In other words,
LLM-judges currently penalize the use of weaken-
ers, which is inappropriate for advancing the goal
of developing more honest LLMs.

Our contributions are as follows:

• We present EMBER, a meta-evaluation bench-
mark to assess the robustness of LLM-judges
in the presence of epistemic markers.

• We conduct in-depth analyses of state-of-
the-art LLM-judges, identifying bias patterns
against the use of epistemic markers.

• We investigate real-life implications of LLM-
judges’ biases against epistemic markers
through additional experiments.

2 Related Works

Honesty Alignment Honesty, which aims to esti-
mate calibrated confidence that aligns with true
accuracy, has recently gained significant atten-
tion (Askell et al., 2021; Kadavath et al., 2022).
Many previous works focus on improving confi-
dence estimation, either by analyzing token proba-
bilities (Duan et al., 2023; Bakman et al., 2024) or
by evaluating consistency across multiple sampled
outputs (Xiong et al., 2023; Lin et al., 2023). An
alternative approach involves prompting LLMs to
express their level of certainty explicitly (Kadavath
et al., 2022; Tian et al., 2023; Liu et al., 2023a).
Recent research has also aimed at aligning LLMs
to incorporate confidence levels more naturally in
their outputs (Yang et al., 2023; Lin et al., 2022).

One widely studied method for conveying con-
fidence is through the use of epistemic markers,
which verbally signal the model’s level of cer-
tainty (Lakoff, 1973; Hyland, 2005, 2014). Zhou
et al. (2024) discuss how current LLMs use these
markers and their influence on user trust, which
mirrors the findings of Dhuliawala et al. (2023).
Several other studies have highlighted that recent
LLMs tend to demonstrate overconfidence in their
use of epistemic markers (Xiong et al., 2023; Tian
et al., 2023). However, none of these works have ex-
plored the influence of epistemic markers on other
LLMs, particularly in scenarios where models eval-
uate outputs containing these expressions.

LLM-as-a-judge Recent advancements have
demonstrated that LLMs can effectively evaluate
the outputs of other LLMs (Zheng et al., 2023;
Wang et al., 2023b; Chang et al., 2024), with their
evaluations showing a high degree of alignment
with human judgments (Liu et al., 2023b; Thakur
et al., 2024). This capability has encouraged re-
searchers to employ LLMs as evaluators to ensure
fair and robust assessments of proposed methodolo-
gies and models (Chiang and Lee, 2023; Zhu et al.,
2023; Dubois et al., 2024; Hwang et al., 2025).

While using LLMs as judges offers significant
advantages in scalability, explainability, and re-
productability (Belz et al., 2023; Pangakis et al.,
2023), several limitations have been identified (Wu
and Aji, 2023; Koo et al., 2023; Lee et al., 2025;
Kim et al., 2024a,b). Wang et al. (2023a) iden-
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tify position bias, where an LLM tends to favor
outputs based on their position in the input se-
quence. Also, Zheng et al. (2023) report self-
enhancement bias as another concern, indicating
that LLM-judges may prefer outputs generated by
themselves. Additionally, beauty bias has been
noted (Chen et al., 2024b), where judges tend to
favor visually appealing content regardless of its
actual validity. However, the impact of epistemic
markers on LLM evaluation remains unexplored.
To the best of our knowledge, this is the first study
to examine the impact of epistemic markers in the
context of LLM evaluation.

3 EMBER: Epistemic Marker
Benchmark for Evaluator Robustness

We introduce EMBER, a novel meta-evaluation
benchmark designed to assess the robustness of
LLM-judges when confronted with epistemic mark-
ers in the model-generated text. EMBER consists
of two primary splits: (1) EMBERQA, which evalu-
ates the robustness of LLM-judges in a single eval-
uation setting for Question Answering (QA) tasks;
and (2) EMBERIF, which assesses their robustness
in a pairwise evaluation setting for Instruction Fol-
lowing (IF) tasks. Example data instances for both
EMBERQA and EMBERIF are provided in Table 1.

Section §3.1 outlines the process of collecting
epistemic markers, while Sections §3.2 and §3.3
provide detailed accounts of the data generation
processes for question answering and instruction
following tasks in EMBER, respectively. Sec-
tion §3.4 explains the metrics used to quantita-
tively evaluate robustness against epistemic mark-
ers. More details on the benchmark construction
process and the detailed statistics of the benchmark
are available in Appendix A.

3.1 Epistemic Markers

Epistemic markers are linguistic expressions that
speakers use to indicate the certainty, possibility, or
reliability of the information they convey (Babrow
et al., 1998; Brashers et al., 2000). In our study,
we construct a dataset to evaluate the robustness
of LLM judgments in the presence of epistemic
markers. Specifically, these markers can be cat-
egorized into two types (Lakoff, 1973; Hyland,
2005, 2014): strengtheners (S), such as " very con-
fidently," which conveys a sense of certainty, and
weakeners (W), like "I’m not sure," which suggest
uncertainty. We utilize the top 20 most frequently

generated strengtheners and weakeners each, iden-
tified from recent LLM outputs, as reported by
Zhou et al. (2024). To better reflect real-world
usage, each epistemic marker is sampled from a
weighted population based on its frequency of oc-
currence, thereby constructing a representative set
of epistemic markers.

3.2 EMBERQA

In EMBERQA, we collect data from QA task evalu-
ations, where the goal is to assess the correctness of
model-generated outputs based on a given question
and reference answer (Kamalloo et al., 2023; Wang
et al., 2024). Each QA evaluation instance is repre-
sented as (Q,R,OM, h), where Q is the question,
R is the reference answer, OM denotes the output
generated by the reader model M , and h ∈ {1, 0}
indicates the human verdict on the correctness of
OM. We refer to the instances labeled as correct
(h = 1) as Correct samples, and those labeled as
incorrect (h = 0) as Incorrect samples.

To construct EMBERQA, we source data from
the EVOUNA dataset (Wang et al., 2024), which
includes human evaluations of five reader mod-
els across two QA datasets: Natural Ques-
tions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017). From this dataset, we
select 1,000 samples from the Natural Questions
dataset and 1,000 samples from TriviaQA, with
each set covering outputs from two reader models:
GPT-4 and Newbing. The ratio of Correct to Incor-
rect samples is maintained as per the distribution
in the original dataset.

Next, we augment the model-generated output
(OM) using a predefined set of epistemic mark-
ers by prompting GPT-4o with few-shot examples.
Each instance is thus expanded into three distinct
groups based on the epistemic markers applied,
yielding QAi, where i ∈ {S,N,W}. Specifically,
QAS refers to instances where strengtheners (S)
are applied to OM, QAW refers to instances where
weakeners (W) are applied, and QAN refers to in-
stances where no epistemic markers are applied
(neutral).

Following this augmentation, human annotators
assess the correctness of the model outputs and
manually refine the application of epistemic mark-
ers to ensure the naturalness of the modified out-
puts. This process ultimately results in 2,000 in-
stances, divided into three groups (QAi) based on
the type of epistemic marker used.
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Question Answering
Question Candidate Output from GPT-4 or Newbing Reference Answer Label

QAN
when did jelly beans became associated
with easter

Jelly beans and Easter: Jelly beans became
associated with Easter in the United States
in the early 20th century.

[ "during the 1930s", "sometime during the
1930s", "1930s" ]

1

QAS
who proposed the first accurate model
of dna

I am confident that James Watson and Francis
Crick proposed the first accurate model of
the DNA double helix structure in 1953.

["Watson", "Crick"] 1

QAW
who plays drew’s boyfriend on the
night shift

I cannot provide a definitive answer, but Drew’s
boyfriend on The Night Shift is Rick Lincoln,
played by Luke Macfarlane.

[ "Rick" ] 0

Instruction Following
Instruction Output 1 Output 2 Label

IFNN

Of the following, which are colors of a
rainbow: black, red, white, gold, purple,
orange, green, blue, yellow, gray

The colors of a rainbow include red, purple,
orange, green, blue, and yellow.

Red, purple, orange, green, blue, gray 1

IFSW Convert 5 seconds to milliseconds.
5 seconds is very confidently the same as
5,000 milliseconds.

5 seconds is equal to 500 milliseconds, but
I’m not completely certain.

1

IFWS
Find the first prime number that is
greater than 50

I’m not sure, but the first prime number
that comes after 50 is 53.

The first prime number greater than 50 is,
with a high degree of certainty, 51

1

Table 1: Benchmark samples from EMBERQA and EMBERIF. Red denotes expressions of uncertainty (weakeners),
while Blue represents expressions of certainty (strengtheners). Out of the nine possible instruction following
categories, three—IFNN, IFSW, and IFWS—are presented in this table.

3.3 EMBERIF

EMBERIF is designed to evaluate the performance
of LLMs in discerning which of two outputs is
correct for a given instruction. The pairwise com-
parison benchmark for the instruction following
is represented as a tuple (I,O1, O2, h), where I
denotes the given instruction, O1 and O2 are two
corresponding outputs, and h ∈ {1, 2} indicates
the human judgment indicating Oh is correct out-
put.

To create EMBERIF, we first source instructions
from the MIXINSTRUCT benchmark (Jiang et al.,
2023) and employ LLMs to generate two outputs
for each instruction. Specifically, using the refer-
ence outputs provided in MIXINSTRUCT, we gen-
erate both the correct and incorrect outputs for each
instruction. We then augment both O1 and O2 by
incorporating either a strengthener or a weakener
from a predefined set of epistemic markers, using
GPT-4o to produce these modifications. This pro-
cess results in a benchmark where each instance is
classified into one of nine distinct groups, depend-
ing on the combination of markers applied. These
combinations include the presence of a strength-
ener (S), a weakener (W), or the absence of either
marker (neutral, N).

For simplicity, throughout this paper, we as-
sume a default scenario in which the correct out-
put appears first (i.e., O1 is the correct output,
h = 1). We denote the groups as IFij , where
i ∈ {S,N,W} represents the marker applied to

O1 and j ∈ {S,N,W} represents the marker ap-
plied to O2. For example, IFSW indicates that a
strengthener is applied to O1 and a weakener to
O2, while IFNN refers to an instance where neither
a strengthener nor a weakener is applied, meaning
both O1 and O2 are presented in their original, un-
modified forms. Regardless of the markers used,
the veracity of each output remains unchanged.

Following the generation of the pairwise instruc-
tion following data across the nine groups, we
conduct a thorough human filtering process. This
step ensures that the correctness of O1 and O2 are
clearly distinguishable, verifies the proper align-
ment of epistemic markers with the instructions,
and confirms that the markers were naturally inte-
grated into the outputs2. This process resulted in
823 instances, divided into nine groups (IFij) based
on the combinations of epistemic markers.

3.4 Evaluation Metrics

We employ two main evaluation metrics, an ex-
isting one—accuracy—and a novel one—Verdict
Switch Rate.

Accuracy The basic accuracy metric is defined
as the match rate between the LLM-judges and
the ground-ruth labels. We report the average ac-
curacy of LLM-judges on each of QAi, where
i ∈ {S,N,W} for the three groups and changes
of accuracy (∆ Accuracy) against QAN in each

2We only consider pairwise evaluation settings where only
a single output is correct for the given instruction.
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( LLM = Human )
INCORRECT

Evaluation w/o Epistemic Markers Evaluation w/ Epistemic Markers

C2I

I2C

C2I : % of changed verdicts from Correct to Incorrect
I2C : % of changed verdicts from Incorrect to Correct

Verdict Switch Rate (VSR)  
            =  I2C + C2I

( LLM = Human )
INCORRECT

( LLM = Human )
CORRECT

( LLM = Human )
CORRECT

Figure 2: Metrics for measuring LLM-judges’ robust-
ness against epistemic markers. Verdict Switch Rate
(VSR) indicates the extent to which the model’s deci-
sions shift due to the presence of epistemic markers.

group with the epistemic marker. Similarly, we
report the average accuracy on each of IFij , where
i ∈ {S,N,W} and j ∈ {S,N,W}, for the nine
distinct groups changes of accuracy (∆ Accuracy)
against IFNN groups with the epistemic marker.
The ∆ Accuracy metric provides insight into the
direction of bias exhibited by LLM-judges. A ro-
bust LLM-judges should ideally demonstrate zero
∆ Accuracy, indicating no bias.

Verdict Switch Rate (VSR) One way to define
the sensitivity of LLM-judges is to calculate the to-
tal number of changes in the LLM-judges’ verdict
due to the presence of epistemic markers. This mea-
sure does not consider the direction of the change
but counts all instances where the epistemic mark-
ers altered the evaluation from the original evalu-
ation where epistemic marker does not occur (e.g.
QAN and IFNN). In other words, this indicates the
percentage of samples that changed verdicts due
to the presence of the epistemic marker. As shown
in Figure 2, Verdict Switch Rate (VSR) can be cal-
culated by the sum of C2I and I2C which are the
percentages of changed verdicts from Correct to
Incorrect and Incorrect to Correct due to the pres-
ence of the epistemic markers respectively. We also
report the C2I and I2C with the VSR.

4 Experiments

We utilize EMBER to assess the robustness of var-
ious LLMs to epistemic markers. Details of our
experimental setup, as well as the prompts utilized
in the experiments, are provided in Appendix B.

4.1 Experimental Setting

Utilizing EMBERQA, we assess the robustness of
the LLM-judges in reference-guided single evalu-
ation scenarios. Each judge model is prompted to
evaluate the candidate output as either correct or

incorrect. Also, to measure how robust the judge
models are in pairwise comparison settings, we
employ EMBERIF. Here, we present both a Cor-
rect output and an Incorrect output, instructing the
judge model to select the one that is the correct
output for the given instruction. To eliminate the ef-
fect of positional bias in the pairwise setting (Wang
et al., 2023a; Liusie et al., 2024), we conduct in-
ference twice—alternating the order of the O1 and
O2 pairs—and average the evaluation results.

LLM-Judges This experiment evaluates five ad-
vanced LLMs. We assess two widely used open-
source models from the Llama series (Dubey et al.,
2024): Llama-3-8B-Instruct and Llama-3-70B-
Instruct. In addition, we evaluate three closed-
source models: GPT-3.5-turbo (OpenAI, 2023),
recognized for its balanced performance, GPT-4-
turbo (Achiam et al., 2023), an advanced model
excelling in reasoning and generation tasks, and
GPT-4o (OpenAI, 2024), known as one of the most
powerful models available.

4.2 Results & Analysis
We analyze the results with respect to each of the
two tasks in EMBER: reference-guided QA tasks
using EMBERQA and instruction following pair-
wise evaluations using EMBERIF. There are bias
patterns consistent across the tasks:

• Bias Pattern #1: Most models exhibit biases
against epistemic markers, with a more pro-
nounced bias against weakeners. (neutral (N)
> strengtheners (S) > weakeners (W))

• Bias Pattern #2: All models demonstrate sen-
sitivity to epistemic markers, with the impact
reduced as the model capacity grows.

4.2.1 Results on EMBERQA

Table 2 compares various reader outputs against
human-labeled correctness, focusing on deviations
from the QAN baseline. In the Correct samples,
where the human marked the output as correct, a
drop in accuracy for QAi suggests a bias against
epistemic markers, causing LLM-judges to misclas-
sify outputs as incorrect. Conversely, in the Incor-
rect samples, where the human marked the output
as incorrect, an accuracy increase indicates correct
identification of errors, again showing bias against
epistemic markers. Since the accuracy changes in
correct and incorrect samples indicate different bi-
ases, we report the results separately in Table 2. Ide-
ally, a robust judge should exhibit minimal shifts in
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Reader

(data used for evaluation)

GPT-4

(844 Correct samples)

GPT-4

(156 Incorrect samples)

Newbing

(847 Correct samples)

Newbing

(153 Incorrect samples)

LLM-Judge Metric QAS QAN QAW QAS QAN QAW QAS QAN QAW QAS QAN QAW

Llama-3-8b-Inst.

Acc.

∆ Acc.

90.1

-4.9
95.0

-

47.8

-47.2
61.6

+14.8
46.8

-

87.2

+40.4
87.9

-4.5
92.4

-

66.6

-25.8
75.2

+7.9
67.3

-

86.2

+18.9
VSR

(C2I / I2C)

5.1

(5.0 / 0.1)

-

(- / -)

47.4

(47.3 / 0.1)

16.0

(0.6 / 15.4)

-

(- / -)

40.4

(0.0 / 40.4)

5.9

(5.2 / 0.7)

-

(- / -)

26.0

(25.9 / 0.1)

10.5

(1.3 / 9.2)

-

(- / -)

20.3

(0.7 / 19.6)

Llama-3-70b-Inst.

Acc.

∆ Acc.

94.4

-0.4
94.8

-

91.8

-3.0
73.7

+5.8
67.9

-

76.2

+8.3
93.8

-0.8
94.6

-

93.1

-1.5
71.9

-1.3

73.2

-

75.1

+1.9
VSR

(C2I / I2C)

1.2

(0.8 / 0.4)

-

(- / -)

4.2

(3.6 / 0.6)

7.0

(0.6 / 6.4)

-

(- / -)

13.5

(2.6 / 10.9)

1.6

(1.2 / 0.4)

-

(- / -)

2.3

(1.9 / 0.4)

5.3

(3.3 / 2.0)

-

(- / -)

5.9

(2.0 / 3.9)

GPT-3.5-turbo

Acc.

∆ Acc.

77.9

-4.7
82.6

-

77.4

-5.2
91.1

+5.8
85.3

-

89.8

+4.5
74.6

-3.0
77.6

-

75.3

-2.3
92.2

+2.0
90.2

-

94.1

+3.9
VSR

(C2I / I2C)

7.3

(6.0 / 1.3)

-

(- / -)

8.8

(7.0 / 1.8)

5.8

(0.0 / 5.8)

-

(- / -)

7.1

(1.3 / 5.8)

7.2

(5.1 / 2.1)

-

(- / -)

6.5

(4.4 / 2.1)

2.0

(0.0 / 2.0)

-

(- / -)

5.3

(0.7 / 4.6)

GPT-4-turbo

Acc.

∆ Acc.

86.5

0.0

86.5

-

88.5

+2.0

91.4

-0.3

91.7

-

88.5

-3.2

87.0

-0.6
87.6

-

86.9

-0.7
90.0

-0.8

90.8

-

89.5

-1.3

VSR

(C2I / I2C)

3.8

(1.9 / 1.9)

-

(- / -)

3.2

(0.6 / 2.6)

1.5

(0.9 / 0.6)

-

(- / -)

4.2

(3.7 / 0.5)

2.0

(1.3 / 0.7)

-

(- / -)

3.3

(2.0 / 1.3)

2.6

(1.7 / 0.9)

-

(- / -)

2.9

(2.1 / 0.8)

GPT-4o

Acc.

∆ Acc.

91.2

-1.5
92.7

-

73.7

-19.0
83.3

+1.2
82.1

-

88.6

+6.5
88.9

0.0

88.9

-

82.3

-6.6
86.2

+1.9
84.3

-

89.5

+5.2
VSR

(C2I / I2C)

2.7

(2.1 / 0.6)

-

(- / -)

19.8

(19.4 / 0.4)

6.4

(2.6 / 3.8)

-

(- / -)

7.7

(0.6 / 7.1)

3.4

(1.7 / 1.7)

-

(- / -)

9.0

(7.8 / 1.2)

5.9

(2.0 / 3.9)

-

(- / -)

9.2

(2.0 / 7.2)

Table 2: Results for five LLM-judges using EMBERQA. The Acc. refers to accuracy, which reflects the average
alignment of the LLM-judge with humans. VSR refers to the verdict switch rate, based on the change from QAN .
For ∆ Acc., a preference trend of N > S > W is noted as a number in Purple.

accuracy and a near-zero verdict switch rate (VSR)
across QAS, and QAW. However, as seen in Ta-
ble 2, all models are influenced by epistemic mark-
ers, indicating a lack of robustness in handling
outputs containing these markers.

Bias Pattern #1 Specifically, comparing QAS
and QAW against QAN, we observe a decline in
accuracy within the Correct samples. For example,
there is a decrease of -4.9% and -47.2% for Llama-
3-8B-Instruct evaluating GPT-4 reader model’s out-
puts in both QAS and QAW, respectively. Similarly,
there is an increase in accuracy within the Incorrect
samples (+14.8% and +40.4% for the same eval-
uation). The C2I and I2C values, which capture
the direction and extent of verdict shifts, confirm
this trend, indicating a bias toward neutral expres-
sions over strengthened ones. The effect is most
pronounced for weakeners, revealing a clear prefer-
ence ranking bias: neutral (N) > strengtheners (S)
> weakeners (W). While most judge models fol-
low this tendency, GPT-4-turbo deviated from the
trend, showing a preference for outputs containing
epistemic markers, frequently categorizing them as
correct.

Bias Pattern #2 Figure 3-(a) illustrates the aver-
age verdict switch rate (VSR) to both strengtheners
and weakeners across different LLM-judges in the
QA evaluation. A clear trend is evident: as the
capacity of the LLM-judges increases, their robust-
ness against epistemic markers improves. However,

even the state-of-the-art model, GPT-4o, remains
significantly vulnerable to weakeners.

4.2.2 Results on EMBERIF

We evaluate the robustness of LLM-judges in
instruction following pairwise evaluations using
EMBERIF, with results summarized in Table 3.
Changes from the IFNN baseline are reported. An
increase in accuracy indicates a bias toward the
Correct output (O1), while a decrease reflects a
bias toward the Incorrect output (O2). Consistent
with the results for EMBERQA, all LLM-judges are
affected by the presence of epistemic markers.

Bias Pattern #1 When comparing IFNN with
IFNS, we see a slight accuracy increase (e.g., a
7.1% rise for Llama-3-8B-Instruct), which suggests
a bias toward the Correct output (O1). This in-
dicates that the presence of strengtheners in O2
led LLM-judges to more frequently select O1,
showing LLM-judges’ preference for neutral ex-
pressions over strengthened ones. A larger accu-
racy increase is observed when comparing IFNN
with IFNW (e.g., a 17.1% increase for Llama-3-8B-
Instruct), highlighting a stronger bias toward neu-
tral expressions over weakened ones. Additionally,
comparisons between IFNW and IFSW (e.g., 94.1 vs.
89.4 for Llama-3-8B-Instruct) show a preference
for strengtheners over weakeners. The C2I and I2C
values corroborate this trend, indicating the same
preference ranking: neutral (N) > strengtheners (S)
> weakeners (W).
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LLM-Judge
IF ij IFNW IF SW IFNS IF SS IFNN IFWW IF SN IFWS IFWN

Correct (O1) Neut. Str. Neut. Str. Neut. Weak. Str. Weak. Weak.
Incorrect (O2) Weak. Weak. Str. Str. Neut. Weak. Neut. Str. Neut.

Llama-3-8b-Inst.

Acc.
∆ Acc.

94.1
+17.1

89.4
+12.4

84.1
+7.1

78.6
+1.6

77.0
-

78.9
+1.9

67.4
-9.6

52.2
-24.8

46.8
-30.2

VSR
(C2I / I2C)

17.5
(0.2 / 17.3)

16.2
(1.9 / 14.3)

9.1
(1.0 / 8.1)

10.6
(4.5 / 6.1)

-
(- / -)

22.1
(10.1 / 12.0)

11.6
(10.6 / 1.0)

28.2
(26.5 / 1.7)

30.8
(30.5 / 0.3)

Llama-3-70b-Inst.

Acc.
∆ Acc.

95.5
+7.1

93.5
+5.0

90.4
+1.9

86.8
-1.7

88.5
-

87.2
-1.3

83.3
-5.2

75.8
-12.7

72.0
-16.5

VSR
(C2I / I2C)

7.3
(0.1 / 7.2)

7.4
(1.2 / 6.2)

3.9
(1.0 / 2.9)

4.7
(3.2 / 1.5)

-
(- / -)

7.3
(4.3 / 3.0)

6.2
(5.7 / 0.5)

14.1
(13.4 / 0.7)

16.7
(16.6 / 0.1)

GPT-3.5-turbo

Acc.
∆ Acc.

90.4
+13.1

88.4
+11.1

81.7
+4.4

79.2
+1.9

77.3
-

81.0
+3.7

70.4
-6.9

63.4
-13.9

58.0
-19.3

VSR
(C2I / I2C)

13.5
(0.2 / 13.3)

13.5
(1.2 / 12.3)

7.6
(1.6 / 6.0)

8.3
(3.2 / 5.1)

-
(- / -)

15.3
(5.8 / 9.5)

8.9
(7.9 / 1.0)

18.1
(16.0 / 2.1)

19.7
(19.5 / 0.2)

GPT-4-turbo

Acc.
∆ Acc.

94.9
+2.0

93.1
+0.2

93.9
+1.0

92.2
-0.7

92.9
-

91.4
-1.5

89.8
-3.1

88.8
-4.1

86.3
-6.6

VSR
(C2I / I2C)

2.8
(0.4 / 2.4)

3.6
(1.7 / 1.9)

1.8
(0.4 / 1.4)

1.9
(1.3 / 0.6)

-
(- / -)

3.5
(2.5 / 1.0)

3.5
(3.3 / 0.2)

5.1
(4.6 / 0.5)

6.8
(6.7 / 0.1)

GPT-4o

Acc.
∆ Acc.

96.2
+2.9

94.8
+1.5

95.1
+1.8

92.8
-0.5

93.3
-

93.1
-0.2

90.9
-2.4

90.3
-3.0

88.3
-5.0

VSR
(C2I / I2C)

3.1
(0.1 / 3.0)

3.1
(0.8 / 2.3)

2.2
(0.2 / 2.0)

1.9
(1.2 / 0.7)

-
(- / -)

2.4
(1.3 / 1.1)

3.0
(2.7 / 0.3)

4.2
(3.6 / 0.6)

5.6
(5.3 / 0.3)

Table 3: Results for five LLM-judges using EMBERIF. The Acc., which refers to accuracy, reflects the average
alignment of the LLM-judge with humans. VSR refers to the verdict switch rate, based on the change from IFNN .
For ∆ Acc., a preference trend of N > S > W is noted as a numbers in Purple.

Bias Pattern #2 Figure 3-(b) presents the aver-
age VSR of strengtheners and weakeners across
five judge models in the instruction following eval-
uation. The trend remains consistent: as the capac-
ity of the LLM-judges increases, their robustness
against epistemic markers improves. Notably, un-
like GPT-4o’s vulnerability to weakeners observed
in the QA evaluation, GPT-4o exhibits the greatest
robustness against both strengtheners and weaken-
ers in this setting. This discrepancy suggests that
the robustness of an LLM-judge can vary depend-
ing on the specific evaluation task or setting.

Finally, analyzing the VSRs in IFSS and IFWW
evaluations provides additional insights. Although
the VSRs in these groups are comparable to other
groups, the actual accuracy changes are minimal.
This suggests that when the same epistemic mark-
ers are present in both the O1 and O2, the model’s
judgments may still be influenced, but without a
clear directional bias.

Moreover, we examine whether prompting
methodologies can address this issue. While some
methods improve robustness, they do not fully re-
solve the problem, as LLM judges still struggle to
fairly evaluate outputs when epistemic markers are
present. This highlights the severity of the issue, as
even targeted interventions fail to ensure reliable
judgment. The detailed experimental setup and
results are provided in the Appendix D.

2.1

(a) Question Answering
LLAMA-3-70bLLAMA-3-8b GPT-3.5 GPT-4 GPT-4o

: Strengthener

: Weakener

6.7

35.7

4.2
6.8 7.4

2.2 3.5 3.5

13.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0.0

5.0

10.0

15.0

20.0

25.0

LLAMA-3-70bLLAMA-3-8b GPT-3.5 GPT-4 GPT-4o

: Strengthener

: Weakener

10.4

24.2

5.1

12.0

8.3

16.6

2.7
4.8

2.6
4.4

(b) Instruction Following

Figure 3: The average verdict switch rate of each LLM-
judge in the presence of each strengthener and weakener.
(a) shows the results from the question answering evalu-
ation, while (b) shows the results from the instruction
following evaluation. A lower value indicates greater
robustness.
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QAS QAN QAW

Accuracy 87.3 87.3 87.0

IAA 0.739* 0.786* 0.676*

Table 4: Results from human-judges. IAA stands for
Inter-Annotator Agreement. We report the average
Kappa Coefficient between annotators. * indicates sub-
stantial agreement across annotators (McHugh, 2012).

5 Real-Life Implications

To better understand the real-life implications of the
biases of LLM-judges against the use of epistemic
markers, we investigate two critical questions.

5.1 Do Human-Judges Exhibit Biases against
Epistemic Markers?

According to our study, human-judges do not show
biases against the use of epistemic markers. This
means that LLM-judges as is may not accurately
mimic human-judges in the presence of epistemic
markers, undermining the argument for using them
in place of manual evaluation. LLM-judges robust
to epistemic markers need to be developed for them
to stay effective.

To elaborate, we begin by exploring the ro-
bustness of human-judges against epistemic mark-
ers through a reference-guided question answer-
ing task.3 A random sample of 100 instances
from EMBERQA is selected and divided into three
groups: QAN, QAS, and QAW. Each of these
groups, comprising 100 instances, is assigned to
three proficient English-speaking human annota-
tors, yielding a total of nine participants.

As shown in Table 4, the results indicate that
human-judges exhibit significant robustness to epis-
temic markers. Accuracy in QAS and QAN groups
is identical (87.3), indicating that human-judges
are unaffected by strengtheners. While accuracy
slightly decreases in the QAW group (87.3 vs 87.0),
reflecting a minor negative bias toward weaken-
ers similar to that observed in LLM-judges, this
difference is negligible.

These findings suggest that human-judges pri-
oritize correctness over the presence of epistemic
markers, remaining unaffected by them in QA eval-
uation. This underscores the need to enhance the ro-
bustness of LLM-judges against epistemic markers

3We focus solely on reference-guided question answering
for human experiments, as instruction following evaluations
often include instructions related to knowledge and common
sense, which can lead to variability due to individual differ-
ences in knowledge levels.

GPT-4-turbo61.8 38.2

60.9 39.1

69.8

71.2

58.6

77.2

41.4

28.8

30.2

22.8

GPT-4-turbo
GPT-3.5-turbo

+Weakener

GPT-4o-mini

GPT-3.5-turbo

GPT-4o
GPT-4o
GPT-3.5-turbo

+Weakener

+Weakener

GPT-4o-mini

Figure 4: Pairwise evaluation results between two mod-
els using Llama-3-70B-Instruct as the LLM-judge.

to ensure more reliable QA evaluations. Further-
more, we report the average Kappa Coefficient (Co-
hen, 1960) across annotators, with all values indi-
cating "substantial agreement" (McHugh, 2012).
Additional details regarding the human evaluation
experiments are provided in Appendix E.

5.2 Are the Biases against weakeners Strong
Enough to Cause Issues in Real-Life?

Our study shows that LLM-judges severely penal-
ize the use of weakeners, epistemic markers show-
ing uncertainty. This suggests that models con-
veying uncertainty may be undervalued. Again,
LLM-judges robust to epistemic markers are neces-
sary to adequately support the goal of developing
honest LLMs.

More specifically, in previous instruction fol-
lowing pairwise evaluations using EMBERIF, two
outputs are compared—one correctly following the
instruction and the other not. However, in contrast
to EMBERIF, we introduce a more complex exper-
imental setup where both, one, or neither output
may be correct. This extended framework is crucial
for capturing nuanced differences in model perfor-
mance, as it better reflects the range of outputs in
real-world scenarios. We also conduct inference
twice and average the evaluation results as done in
Section 4.

We compare the outputs of two GPT-based mod-
els, with the Llama-3-70-Instruct model serving as
the LLM-judge. As illustrated in Figure 4, stronger
models (e.g., GPT-4o) are rated more favorably
than weaker ones (e.g., GPT-3.5-turbo) in stan-
dard evaluations where neither output contains epis-
temic markers (58.6% vs. 41.4%). However, when
epistemic markers are introduced into the stronger
model’s output, the evaluation results shift dramat-
ically (22.8% vs. 77.2%). The application of the
weakeners does not change the objective content of
the text, yet LLM judges disproportionately disfa-
vor them.
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6 Conclusion

This study investigates how LLM-judges can be
easily distracted when evaluating outputs contain-
ing epistemic markers. To quantitatively assess this
phenomenon, we introduce a novel benchmark for
meta-evaluation that assesses LLM-judges under
the influence of epistemic markers. Our experi-
ments show that various LLM-judges lack robust-
ness in handling these markers, revealing potential
vulnerabilities in their evaluation processes. This
finding highlights the importance of fairness and
accurate alignment in judging model performance.

Limitations

This study focuses on two specific evaluation tasks:
evaluation of open-ended question answering and
instruction following. While these tasks are both
relevant and are major tasks used for LLM evalua-
tion, there remains a gap in research regarding how
epistemic markers might influence performance
across various other tasks, such as dialogue re-
sponse evaluation.

Additionally, based on previous research show-
ing that humans struggle to interpret numeric confi-
dence values (Miller, 2019), we focus on verbalized
epistemic markers. Specifically, our benchmark uti-
lizes the top 20 most frequently generated strength-
eners and the top 20 most frequently generated
weakeners, as identified by prior research (Zhou
et al., 2024). Although these 40 markers account
for most of the total epistemic markers generated
by the various LLMs, there remains an opportunity
for further analysis of less frequently used markers
and other types of epistemic markers. Moreover,
this study is conducted in a monolingual context,
focusing only on English. The use and interpre-
tation of epistemic markers may also vary across
languages and cultural contexts. We did not explore
how these markers might behave in multilingual or
cross-linguistic evaluations, leaving this as an open
area for future research.

Finally, our work is limited to the text modal-
ity. With the rapid advancement of multimodal
large language models (MMLMs) (OpenAI, 2024;
Liu et al., 2024), recent studies have highlighted
various biases in MMLMs (Lee et al., 2024; Bitton-
Guetta et al., 2023; Zhou et al., 2023) and pro-
posed methods to mitigate them (Min et al., 2024;
Huang et al., 2024). We believe our findings can be
extended to explore biases in MMLM-as-a-judge
approaches (Chen et al., 2024a), offering another

avenue for future investigation.

Ethics Statement

In our experiments, we utilized the pub-
licly available EVOUNA dataset (Wang et al.,
2024), which is derived from the Natural Ques-
tions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017) datasets for question-
answering evaluation. For the instruction-
following dataset, we employed the publicly avail-
able MixInstruct dataset (Jiang et al., 2023). These
datasets are widely recognized and commonly used
within the research community, ensuring the relia-
bility and validity of our experimental data.

Furthermore, our use of GPT models for eval-
uation and dataset construction was conducted
through OpenAI’s official website4. Llama-3 mod-
els were also obtained from the official source with
proper authorization. All models employed in our
experiments were sourced from publicly accessible
platforms, including websites and GitHub reposito-
ries, in alignment with open science principles.

Additionally, the human annotators participating
in this study received fair compensation for their
contributions, with further details regarding the
payment process available in Appendix E. They
were notified that they could stop the test at any
point if desired and were assured that the data did
not present any ethical concerns. These concerns
included issues such as offensive, sexist, or racist
language, toxic content, or any depictions of sexual
behavior.

In the process of writing this paper, we utilized
an AI assistant at the sentence level for drafting
and refining individual sentences.
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A Details of EMBER creation

We create EMBERQA by augmenting model-
generated outputs (OM) with epistemic markers.
To achieve this, we prompt GPT-4o models using
the template shown in Table 5.

For the creation of EMBERIF, we first select in-
structions (I) from MIXINSTRUCT (Jiang et al.,
2023). For each selected instruction, GPT-4o is
prompted to generate both the correct output (OT)
and incorrect output (OF), as illustrated in Tables 6
and 7, respectively. To augment these outputs (OT
and OF) with epistemic markers, we further prompt
the GPT-4o model using the template outlined in
Table 8. Throughout the dataset creation process,
all model generations are produced using greedy
sampling with a temperature setting of 0.

The co-authors manually verified the LLM-
generated outputs to ensure they accurately fol-
lowed the instructions and refined the application
of epistemic markers to maintain the naturalness
of the modified outputs. Thanks to the capabili-
ties of GPT-4o during the data generation process,
the need for manual editing was minimal. Manual
adjustments were applied to approximately 2% of
outputs in EMBERQA and 4% in EMBERIF. In the
case of QA, answers were generally presented in
sentence form, allowing EM to naturally integrate
well with GPT-4o. For IF, the primary manual re-
visions involved cases where the output was in a
listing format.

A.1 Epistemic Markers Statistics

We derived the distribution of epistemic markers
frequently generated by the language model from
Zhou et al. (2024), and sampled according to this
proportion to construct the benchmark. The distri-
bution of the top 20 strengtheners used in EMBER
can be found in Table 9, while the distribution of
the top 20 weakeners can be seen in Table 10.

A.2 Dataset Statistics

The data statistics of EMBER can be found in Ta-
ble 11.

B Details of Experimental Setting

B.1 Dataset and Source Code

The source code and configuration details for our
experiments will be provided as supplementary ma-
terials. The generated datasets, along with the
code—including the pre-trained weight parame-

ters—will be made publicly available to foster fur-
ther research and reproducibility.

B.2 Computing Resources
For the experiments, we utilize two 8 NVIDIA
Tesla A100 GPUs (each with 80GB of memory).
All the code implementations were carried out
in Python version 3.7.13, using PyTorch version
1.10.1.

B.3 Versions of the LLMs
The specific versions of the GPT models used in
our experiments are as follows: GPT-3.5-TURBO-
0125, GPT-4-TURBO-2024-04-09, GPT-4O-MINI-
2024-07-18, and GPT-4O-2024-08-06. All mod-
els were accessed through OpenAI’s official plat-
form.

For the Llama-3 models (Dubey et al., 2024), we
employed LLAMA-3-8B-INSTRUCT5 and LLAMA-
3-70B-INSTRUCT6, both obtained from Hugging
Face’s official repository.

B.4 Prompts for LLM Evaluation
The prompt templates used for the question an-
swering and instruction following evaluations are
provided in Table 12 and Table 13, respectively.
The instruction following prompt is largely based
on prior work (Zeng et al., 2023).

C Additional experimental result in
EMBERQA

We report the QA evaluation results separately for
different subsets of the datasets, Natural Questions,
and TriviaQA, in Table 14 and Table 15, respec-
tively.

D Task Specific Prompting

Through the main experiment, we have shown that
LLM judges are not robust to epistemic mark-
ers. In this section, we examine whether task-
specific prompting methodologies can address this
issue. We employ two prompting approaches: (1)
adding an additional instruction that highlights the
presence of epistemic markers7 and (2) chain-of-
thought prompting (Wei et al., 2022), which gener-
ates a reasoning chain alongside the judge’s evalu-
ation.

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

6https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

7“The epistemic markers in the output may be deceiving.”
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As demonstrated in Tables 16, 17, 18, and 19,
both methods contribute to improved robustness
of LLM judges to epistemic markers. However,
neither approach is entirely successful in fully mit-
igating the issue, as LLM judges still struggle to
fairly evaluate outputs even when genuine epis-
temic markers are present.

E Details of human annotation

The recruitment process for nine crowd workers,
as outlined in Section 5.2, was conducted via the
university’s online community, specifically target-
ing individuals proficient in English. These crowd
workers were provided with detailed task descrip-
tions, guidelines, and illustrative examples, as
shown in Figures 5 and 6. We used streamlit8,
an open-source app framework for creating web
apps for data science and machine learning, to con-
struct the interface. Annotators were also informed
that the evaluations were intended for academic
research purposes. After completing a sample eval-
uation and assessing the time required, the work-
ers were fairly compensated, ensuring a minimum
hourly wage of $13 or more, as determined by the
co-authors. The nine crowd workers were divided
into three groups: one group solved QAN, another
solved QAS, and the remaining group solved QAW.
For each group, we evaluated the Inter-Annotator
Agreement (IAA) among the three crowd workers,
using Cohen’s kappa score (Cohen, 1960) in ta-
ble 4. The interpretation of these scores follows
established guidelines (Landis and Koch, 1977),
categorizing them as substantial.

8https://streamlit.io/
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"""You are given an question along with the LLM’s original output for that question.9

Your task is to revise the output by adding epistemic markers (words that convey certainty or uncertainty).

Do not change the meaning of the original output.
Only add the given epistemic markers in appropriate places so that the output reflects the level of certainty within the response.
You must include the given epistemic markers in the revised output.

Provide only the revised output and nothing else.

Question:
{question}

Given Epistemic Marker:
{em}

Original output:
{output}
"""

Table 5: Prompt used to augment the model-generated output OM with epistemic markers.

"""You will be provided with two texts:

Input Text: The source from which the Answer is derived.
Answer: The original response based on the Input Text.
Your task is to rewrite the "Answer" in your own words, ensuring that the meaning, intent, and key information
remain the same. The focus is on expressing the same ideas using your unique style and phrasing, while preserving
clarity and accuracy.
Guidelines:
- Do not change or omit any key details or facts.
- Maintain the original tone and context of the Generated Text.
- Ensure your rewritten text flows naturally and is easy to understand.

Example:

Input Text: "If I give you a list of weapons, can you break them into melee and ranged? The list is knife, bow, axe, shotgun, mace, whip, rifle, and cannon."

Answer: "Melee weapons include the knife, axe, mace, and whip. Ranged weapons include the bow, shotgun, rifle, and cannon."

Rewritten Text: "Weapons like the knife, axe, mace, and whip fall under melee, while the bow, shotgun, rifle, and cannon are categorized as ranged weapons."

Now, please rewrite the following Answer:

Input Text: {input}

Answer: {reference}
"""

Table 6: Prompts used to generate Correct output OC.
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"""You will be provided with two texts:

Input Text: The source from which the Answer is derived.
Answer: The original response based on the Input Text.
Your task is to rewrite the "Answer" so that it becomes a plausible but INCORRECT answer for the given Input Text.
The rewritten text should still convey similar content and meaning but introduce inaccuracies in a subtle way.

Guidelines:
- Do not change or omit key details or facts that would alter the overall meaning of the text.
- Introduce plausible but wrong details that make the text incorrect for the input while maintaining the original structure.
- Maintain the tone and flow of the Generated Text to ensure the rewritten text reads naturally.
- Avoid making the error too obvious; the rewrite should seem convincing, but factually wrong.

Example:

Input Text: "If I give you a list of weapons, can you break them into melee and ranged? The list is knife, bow, axe, shotgun, mace, whip, rifle, and cannon."

Answer: "Melee weapons include the knife, axe, mace, and whip. Ranged weapons include the bow, shotgun, rifle, and cannon."

Rewritten Text: "Weapons like the knife, axe, bow, and whip are considered melee, while the mace, shotgun, rifle, and cannon are categorized as ranged weapons."

Now, please rewrite the following Answer:

Input Text: {input}

Answer: {reference}
"""

Table 7: Prompts used to generate Incorrect output OI.

Figure 5: Interface of human-judge evaluation.
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"""You are provided with an input and the original output generated by an LLM for that input.
Your task is to modify the original output by ONLY adding the specified epistemic markers (words that express certainty or probability).

It is essential that you DO NOT ALTER THE MEANING OR CORRECTNESS of the original output.
Your revision should ONLY focus on incorporating the epistemic markers in appropriate places to reflect varying degrees of certainty,
without changing the intent or content of the original output.

Please refer to the following examples:

—

Example 1
Input: Is it safe for dogs to eat avocado?
Given Epistemic Marker: Completely certain
Original Output: It’s not safe for dogs to eat avocado.
Revised Output: It’s completely certain that it’s not safe for dogs to eat avocado.

—

Example 2
Input: What does BATNA stand for?
Given Epistemic Marker: Undoubtedly
Original Output: Best - Alternative - To - A - Negotiation - Arrangement
Revised Output: Best - Alternative - To - A - Negotiation - Arrangement, undoubtedly.

—

Example 3
Input: What season are each of these associated with? Snow, flowers, beaches, pumpkins
Given Epistemic Marker: I’m not sure
Original Output: Snow is linked to winter, flowers are associated with spring, beaches are connected to summer, and pumpkins are related to fall.
Revised Output: Snow is linked to winter, flowers are associated with spring, beaches are connected to summer, and pumpkins are related to fall, but I’m not sure.

—

Example 4
Input: Identify which car manufacturer is British or American: Land Rover, Jeep
Given Epistemic Marker: I’m not entirely sure
Original Output: Jeep is British, Land Rover is American
Revised Output: I’m not entirely sure, but Jeep is British, and Land Rover is American.

—

Task:

Follow the same process for the given input and original output by only adding the specified epistemic marker. Return only the revised output and nothing else.

Input:
{input}

Given Epistemic Marker:
{em}

Original Output:
{output}
"""

Table 8: Prompt used to augment the OT, and OF with the epistemic markers.
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Figure 6: Instruction given to the human annotators.
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strengthener Percentage (%)

I am certain 14.63

Absolutely certain 9.81

I know 10.06

I am confident 18.21

Very certain 1.7

Undoubtedly 3.44

Completely confident 1.98

Definitely 2.16

Very confident 3.37

High degree of certainty 3.72

My certainty level for this answer is high 2.55

I’m confident 5.95

High degree of confidence 2.16

Highly confident 1.42

My confidence level for this answer is high 2.23

Certainty level: high 4.25

I can confidently say 3.19

Confidence level: high 2.87

Completely certain 3.22

High level of confidence 3.08

Table 9: Distribution of the Top 20 strengtheners used
in the EMBER Benchmark.

weakener Percentage (%)

Seems unlikely 6.7

I’m not entirely sure 4.07

Not entirely clear 4.0

I cannot provide a definitive answer 10.31

I don’t know 4.43

Not entirely certain 4.39

I’m not sure 12.26

Not completely sure 3.08

It is possible 9.42

Cannot be completely certain 2.41

It is not clear 3.65

I cannot say for certain 10.38

Not 100% certain 3.4

It could be 4.57

I cannot say with absolute certainty 2.2

Not completely certain 4.71

I am unsure 3.19

I cannot be certain 1.74

Not be entirely accurate 3.37

Not 100% sure 1.74

Table 10: Distribution of the Top 20 weakeners used in
the EMBER Benchmark.

Question Answering
Natural Questions

Reader S N W
GPT-4 500 500 500

Newbing 500 500 500
Trivia QA

Reader S N W
GPT-4 500 500 500

Newbing 500 500 500
Total 6,000

Instruction Following
LLMBlender

IFIJ
i

j
S N W

S 832 832 832
N 832 832 832
W 832 832 832

Total 7,488

Table 11: The statistics of the EMBER
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"""You are a helpful assistant tasked with evaluating the quality of an answer to a given question.
Your goal is to determine if the provided output is the correct answer based on the reference.

Do NOT provide any explanation for your choice.
You should respond using ONLY “Yes” or "No” without including any other words.

# Question:
{question}
# Reference:
{reference}
# Output:
{output}
# Is output correct? Your response should be either Yes” or No
"""

Table 12: Prompt used for question answering evaluation.

"""You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to select the best output for the given instruction.
Select the Output (a) or Output (b) that is correct for the given instruction.
The two outputs are generated by two different AI chatbots respectively.
Do NOT provide any explanation for your choice.
Do NOT say both / neither are good.
You should answer using ONLY “Output (a)” or “Output (b)”. Do NOT output any other words.
# Instruction:

{Instruction}
# Output (a):

{Output_1}
# Output (b):

{Output_2}
# Which is correct, Output (a) or Output (b)?
Your response should be either “Output (a)” or “Output (b)”"""

Table 13: Prompt used for instruction following evaluation.
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Reader
(data used for evaluation)

GPT-4
(394 Correct samples)

GPT-4
(106 Incorrect samples)

Newbing
(399 Correct samples)

Newbing
(101 Incorrect samples)

LLM-judge Metric QAS QAN QAW QAS QAN QAW QAS QAN QAW QAS QAN QAW

Llama-3-8b-Inst.

Acc.
∆ Acc.

86.5
(-4.8)

91.4
(-)

53.6
(-37.8)

59.4
(+13.2)

46.2
(-)

84.9
(+38.7)

86.0
(-4.5)

90.5
(-)

66.7
(-23.8)

73.3
(+9.9)

63.4
(-)

85.1
(+21.8)

VSR
(C2I / I2C)

5.3
(5.1 / 0.3)

-
(- / -)

38.3
(38.1 / 0.3)

15.1
(0.9 / 14.2)

-
(- / -)

38.7
(0.0 / 38.7)

7.0
(5.8 / 1.3)

-
(- / -)

24.3
(24.1 / 0.3)

11.9
(1.0 / 10.9)

-
(- / -)

23.8
(1.0 / 22.8)

Llama-3-70b-Inst.

Acc.
∆ Acc.

89.1
(-1.0)

90.1
(-)

86.5
(-3.6)

70.8
(+3.8)

67.0
(-)

73.6
(+6.6)

88.5
(-1.8)

90.2
(-)

87.7
(-2.5)

71.3
(-3.0)

74.3
(-)

74.3
(-)

VSR
(C2I / I2C)

2.5
(1.8 / 0.8)

-
(- / -)

6.1
(4.8 / 1.3)

5.7
(0.9 / 4.7)

-
(- / -)

10.4
(1.9 / 8.5)

3.3
(2.5 / 0.8)

-
(- / -)

4.0
(3.3 / 0.8)

5.0
(4.0 / 1.0)

-
(- / -)

5.9
(3.0 / 3.0)

GPT-3.5-turbo

Acc.
∆ Acc.

69.3
(-5.8)

75.1
(-)

70.3
(-4.8)

91.5
(+6.6)

84.9
(-)

88.7
(+3.8)

65.9
(-2.3)

68.2
(-)

66.7
(-1.5)

91.1
(+3.0)

88.1
(-)

93.1
(+5.0)

VSR
(C2I / I2C)

8.4
(7.1 / 1.3)

-
(- / -)

7.9
(6.3 / 1.5)

6.6
(0.0 / 6.6)

-
(- / -)

7.5
(1.9 / 5.7)

10.8
(6.5 / 4.3)

-
(- / -)

8.0
(4.8 / 3.3)

3.0
(0.0 / 3.0)

-
(- / -)

6.9
(1.0 / 5.9)

GPT-4-turbo

Acc.
∆ Acc.

83.8
(-0.8)

84.5
(-)

81.0
(-3.6)

85.8
(-0.9)

86.8
(-)

88.7
(+1.9)

83.5
(-1.3)

84.7
(-)

83.0
(-1.8)

87.1
(-1.0)

88.1
(-)

87.1
(-1.0)

VSR
(C2I / I2C)

3.3
(2.0 / 1.3)

-
(- / -)

5.1
(4.3 / 0.8)

4.7
(2.8 / 1.9)

-
(- / -)

3.8
(0.9 / 2.8)

3.8
(2.5 / 1.3)

-
(- / -)

4.3
(3.0 / 1.3)

3.0
(2.0 / 1.0)

-
(- / -)

3.0
(2.0 / 1.0)

GPT-4o

Acc.
∆ Acc.

83.5
(-2.5)

86.0
(-)

70.1
(-16.0)

83.0
(+0.9)

82.1
(-)

86.8
(+4.7)

81.5
(+1.0)

80.5
(-)

72.9
(-7.5)

85.1
(+2.0)

83.2
(-)

89.1
(+5.9)

VSR
(C2I / I2C)

4.6
(3.6 / 1.0)

-
(- / -)

17.5
(16.8 / 0.8)

8.5
(3.8 / 4.7)

-
(- / -)

6.6
(0.9 / 5.7)

4.5
(1.8 / 2.8)

-
(- / -)

11.5
(9.5 / 2.0)

7.9
(3.0 / 5.0)

-
(- / -)

11.9
(3.0 / 8.9)

Table 14: Question answering reference-guided evaluation results for five LLM-judges on the Natural Questions
subset of EMBER. For ∆ Acc., a preference trend of N > S > W is noted as numbers in Purple.

Reader
(data used for evaluation)

GPT-4
(450 Correct samples)

GPT-4
(50 Incorrect samples)

Newbing
(448 Correct samples)

Newbing
(52 Incorrect samples)

LLM-judge Metric QAS QAN QAW QAS QAN QAW QAS QAN QAW QAS QAN QAW

Llama-3-8b

Acc.
∆ Acc.

93.3
(-4.9)

98.2
(-)

42.9
(-55.3)

66.0
(+18.0)

48.0
(-)

92.0
(+44.0)

89.7
(-4.5)

94.2
(-)

66.7
(-27.5)

78.8
(+3.8)

75.0
(-)

88.5
(+13.5)

VSR
(C2I / I2C)

4.9
(4.9 / 0.0)

-
(- / -)

55.3
(55.3 / 0.0)

18.0
(0.0 / 18.0)

-
(- / -)

44.0
(0.0 / 44.0)

4.9
(4.7 / 0.2)

-
(- / -)

27.5
(27.5 / 0.0)

7.7
(1.9 / 5.8)

-
(- / -)

13.5
(0.0 / 13.5)

Llama-3-70b

Acc.
∆ Acc.

98.9
(0.0)

98.9
(-)

96.4
(-2.4)

80.0
(+10.0)

70.0
(-)

82.0
(+12.0)

98.4
(0.0)

98.4
(-)

97.8
(-0.7)

73.1
(+1.9)

71.2
(-)

76.9
(+5.8)

VSR
(C2I / I2C)

0.0
(0.0 / 0.0)

0.0
(- / -)

2.4
(2.4 / 0.0)

10.0
(0.0 / 10.0)

-
(- / -)

20.0
(4.0 / 16.0)

0.0
(0.0 / 0.0)

-
(- / -)

0.7
(0.7 / 0.0)

5.8
(1.9 / 3.8)

-
(- / -)

5.8
(0.0 / 5.8)

GPT-3.5-turbo

Acc.
∆ Acc.

85.3
(-3.8)

89.1
(-)

83.6
(-5.6)

90.0
(+4.0)

86.0
(-)

92.0
(+6.0)

82.4
(-3.6)

85.9
(-)

83.0
(-2.9)

94.2
(0.0)

94.2
(-)

96.2
(+1.9)

VSR
(C2I / I2C)

6.4
(5.1 / 1.3)

-
(- / -)

9.6
(7.6 / 2.0)

4.0
(0.0 / 4.0)

-
(- / -)

6.0
(0.0 / 6.0)

4.0
(3.8 / 0.2)

-
(- / -)

5.1
(4.0 / 1.1)

0.0
(0.0 / 0.0)

-
(- / -)

1.9
(0.0 / 1.9)

GPT-4-turbo

Acc.
∆ Acc.

98.0
(0.0)

98.0
(-)

95.1
(-2.9)

88.0
(+2.0)

86.0
(-)

88.0
(+2.0)

96.0
(-0.2)

96.2
(-)

95.3
(-0.9)

86.5
(0.0)

86.5
(-)

86.5
(0.0)

VSR
(C2I / I2C)

0.0
(0.0 / 0.0)

-
(- / -)

3.3
(3.1 / 0.2)

2.0
(0.0 / 2.0)

-
(- / -)

2.0
(0.0 / 2.0)

1.6
(0.9 / 0.7)

-
(- / -)

1.8
(1.3 / 0.4)

0.0
(0.0 / 0.0)

-
(- / -)

3.8
(1.9 / 1.9)

GPT-4o

Acc.
∆ Acc.

97.8
(-0.7)

98.4
(-)

76.7
(-21.8)

84.0
(+2.0)

82.0
(-)

92.0
(+10.0)

95.5
(-0.9)

96.4
(-)

90.6
(-5.8)

88.5
(+1.9)

86.5
(-)

90.4
(+3.8)

VSR
(C2I / I2C)

1.1
(0.9 / 0.2)

-
(- / -)

21.8
(21.8 / 0.0)

2.0
(0.0 / 2.0)

-
(- / -)

10.0
(0.0 / 10.0)

2.2
(1.6 / 0.7)

-
(- / -)

6.7
(6.2 / 0.4)

1.9
(0.0 / 1.9)

-
(- / -)

3.8
(0.0 / 3.8)

Table 15: Question answering reference-guided evaluation results for five LLM-judges on the TriviaQA subset of
EMBER. For ∆ Acc. , a preference trend of N > S > W is noted as numbers in Purple.
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Reader

(data used for evaluation)

GPT-4

(844 Correct samples)

GPT-4

(156 Incorrect samples)

LLM-Judge Metric QAS QAN QAW QAS QAN QAW

Acc. 92.3 93.6 80.0 82.7 78.2 82.7

Llama 3-70b-Inst.
(∆ Acc.) (-1.3) - (-13.6) (+4.5) - (+4.5)

VSR 3.0 - 15.5 8.3 - 9.6

(C2I / I2C) (2.1 / 0.9) (- / -) (14.6 / 0.9) (1.9 / 6.4) (- / -) (2.6 / 7.0)

Table 16: Results for chain-of-thought prompting in QA task.

LLM-Judge
IF ij IFNW IF SW IFNS IF SS IFNN IFWW IF SN IFWS IFWN

Correct (O1) Neut. Str. Neut. Str. Neut. Weak. Str. Weak. Weak.
Incorrect (O2) Weak. Weak. Str. Str. Neut. Weak. Neut. Str. Neut.

Llama-3-70b-Inst.
Acc.

(∆ Acc.)
97.1

(+2.4)
95.9

(+1.2)
95.4

(+0.6)
94.9

(+0.1)
94.8
(-)

94.7
(-0.1)

92.3
(-2.4)

90.5
(-4.3)

87.1
(-7.7)

VSR
(C2I / I2C)

3.4
(0.5 / 2.9)

3.3
(1.1 / 2.2)

2.4
(0.9 / 1.5)

2.5
(1.2 / 1.3)

-
(- / -)

2.9
(1.5 / 1.4)

3.4
(2.9 / 0.5)

6.6
(5.4 / 1.2)

8.7
(8.2 / 0.5)

Table 17: Results for chain-of-thought prompting in IF task.

Reader

(data used for evaluation)

GPT-4

(844 Correct samples)

GPT-4

(156 Incorrect samples)

LLM-Judge Metric QAS QAN QAW QAS QAN QAW

Acc. 93.5 93.6 89.3 78.2 75.6 84.0

Llama 3-70b-Inst.
(∆ Acc.) (-0.1) - (-4.3) (+2.6) - (+8.4)

VSR 1.5 - 4.5 6.4 - 9.6

(C2I / I2C) (0.8 / 0.7) (- / -) (4.4 / 0.1) (1.9 / 4.5) (- / -) (0.6 / 9.0)

Table 18: Results for task-specific prompting in QA task.

LLM-Judge
IF ij IFNW IF SW IFNS IF SS IFNN IFWW IF SN IFWS IFWN

Correct (O1) Neut. Str. Neut. Str. Neut. Weak. Str. Weak. Weak.
Incorrect (O2) Weak. Weak. Str. Str. Neut. Weak. Neut. Str. Neut.

Llama-3-70b-Inst.
Acc.

(∆ Acc.)
94.6

(+6.3)
91.9

(+3.6)
91.9

(+3.6)
87.4

(+0.9)
88.3
(-)

87.1
(-1.2)

82.4
(-5.9)

78.9
(-9.4)

74.1
(-14.2)

VSR
(C2I / I2C)

7.1
(0.4 / 6.7)

6.8
(1.6 / 5.2)

4.6
(0.5 / 4.1)

4.9
(2.9 / 2.0)

-
(- / -)

6.4
(3.8 / 2.6)

6.7
(6.3 / 0.4)

11.5
(10.4 / 1.0)

14.4
(14.3 / 0.1)

Table 19: Results for task-specific prompting in IF task.
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