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Abstract

A small subset of dimensions within language
Transformers’ representation spaces emerge as
"outliers" during pretraining, encoding critical
knowledge sparsely. We extend previous find-
ings on emergent outliers to Encoder-Decoder
Transformers and instruction-finetuned mod-
els, and tackle the problem of distilling a stu-
dent Transformer from a larger teacher Trans-
former. Knowledge distillation reduces model
size and cost by transferring knowledge from a
larger teacher to a smaller student, necessitating
a trade-off among representation dimensions.
We show that emergent outlier dimensions con-
tribute significantly more to zero-shot perfor-
mance than non-outlier dimensions. Based on
this, we propose the Emergent Outlier Focused
Distillation (EOFD) method, which prioritizes
critical outlier dimensions in distillation using
a weighted MSE loss. We empirically demon-
strate that EOFD outperforms state-of-the-art
distillation methods and generalizes well across
Encoder-only BERT, Decoder-only GPT-2, and
Encoder-Decoder T5 architectures.

1 Introduction and Background

Emergent properties in large language models
(LLMs) have recently garnered great interest (Wei
et al., 2022b; Srivastava et al., 2023; Schaeffer
et al., 2023). They have been shown to elicit
complex capabilities in LLMs. Emergent prop-
erties and features arise spontaneously in these
models during self-supervised pretraining, with-
out being explicitly optimized for specialized tasks.
Specifically, it has been shown (Kovaleva et al.,
2021; Puccetti et al., 2022; Dettmers et al., 2022)
that, in Encoder-only BERT family (Devlin et al.,
2019) and in Decoder-only GPT family (Radford
et al., 2019, 2021; Brown et al., 2020; Zhang et al.,
2022) models, a small subset of dimensions within
the high-dimensional representation spaces of lan-
guage Transformers emerge as "outliers" during

pretraining: weight or neuron activations with un-
usually large magnitudes out of several standard
deviations from the mean. Interestingly, these emer-
gent outlier features seem to encode critical linguis-
tic knowledge in a sparse way: muting only a few
outlier dimensions significantly deteriorates lan-
guage modeling performance.

In this work, we begin by systematically extend-
ing previous findings about emergent outlier proper-
ties on pretrained Encoder-only and Decoder-only
models to Encoder-Decoder T5 models (Raffel
et al., 2020) and to instruction-finetuned Flan-T5
models (Chung et al., 2024) at scale, for the first
time. We discover that T5-11B exhibits emergent
activation outliers with surprising magnitudes ex-
ceeding 105, much larger than the BERT outliers
observed by Kovaleva et al. (2021); Puccetti et al.
(2022). Furthermore, unlike the rapid emergence
of GPT outliers around a model size of 6.7B as
found by Dettmers et al. (2022), we notice that the
growth in outlier magnitude primarily comes with
increasing layer depth rather than model size: from
T5-Large to T5-3B and to T5-11B, all with a same
number of layers, the outlier magnitudes actually
decrease as model size increases. We further find
that, agreeing with previous work, outlier dimen-
sions are consistent across layers within either the
Encoder or Decoder stack; but, contrary to previous
knowledge, the outlier dimensions in the Encoder
differ from those in the Decoder.

Moreover, consistent with Dettmers et al. (2022),
we notice that outlier features suddenly become cru-
cial to performance when the model size exceeds
6.7B in T5: zeroing out only 4 outlier dimensions
out of its 1024 total dimensions (only 192 of its
total 11B parameters) in T5-11B degrades absolute
performance by 14.7%. However, despite this and
Dettmers et al. (2022), for instruction-finetuned
Flan-T5, we notice that larger models like Flan-T5-
XXL are relatively less sensitive to interventions
on outliers than smaller models. Nevertheless, we
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confirm that disabling outlier dimensions hinders
performance significantly more than disabling the
same number of non-outlier dimensions, for all our
different settings. For instance, muting as much as
512 non-outlier dimensions in Flan-T5-XXL only
drops its performance by 0.64%.

Leveraging our findings on emergent outlier
properties, we further tackle the challenging prob-
lem of distilling a student language model from a
larger and stronger teacher model, by focusing on
these critical properties. Training massive models
is computationally demanding and requires a vast
treasure trove of varied data, both of which are not
easily available. Additionally, at inference, hosting
such large models also gets progressively expen-
sive. To mitigate this, knowledge distillation (KD)
(Hinton et al., 2015) aims at reducing model size
without significantly compromising performance
by transferring knowledge from a stronger teacher
to a smaller student by minimizing the divergence
of their soft responses and intermediate features
(Gou et al., 2021). For distilling these intermedi-
ate features, conventional methods treat different
dimensions equally (Jiao et al., 2020a; Fang et al.,
2021; Liang et al., 2023a; Wu et al., 2023a).

However, matching student’s intermediate fea-
tures to teacher’s is inherently imperfect, as student
Transformers typically have fewer dimensions of
representation than teachers, necessitating a trade-
off among these dimensions. Given our discovery
that emergent outlier dimensions contribute much
more to performance than non-outlier dimensions,
when distilling these intermediate representations,
we propose Emergent Outlier Focused Distillation
(EOFD). This approach prioritizes these critical
outlier dimensions and deprioritizes the less impact-
ful non-outlier dimensions, addressing the dimen-
sion trade-off in distillation. Specifically, EOFD
computes a weighted MSE loss to weight more on
the emergent outlier dimensions, recognized by the
standard deviations of neuron activations.

On the standard benchmark of distilling BERT
on the 8 tasks and datasets in the General Language
Understanding Evaluation (GLUE) (Wang et al.,
2019) benchmark, we outperform state-of-the-art
distillation methods by a large margin. On the
relatively larger datasets in GLUE, student models
distilled with EOFD outperform the teacher models.
Beyond distilling Encoder-only BERT models, we
further demonstrate that EOFD generalizes well to
other architectures, including Decoder-only GPT-2
and Encoder-Decoder T5 models. We also provide

detailed ablation and analysis. We discuss further
related works in Appendix A.

Our contributions are two-fold: (1) For the first
time, we extend previous findings on emergent
outliers to Encoder-Decoder Transformers and to
instruction-finetuned models at scale. We further
systematically study their zero-shot performance
with interventions on muting representation dimen-
sions by factors of different numbers of disabled
outlier/non-outlier dimensions, varying model size,
and whether or not the pretrained model is fur-
ther instruction-finetuned. (2) Leveraging our find-
ings on emergent outlier properties, we propose
the Emergent Outlier Focused Distillation (EOFD)
method prioritizing these critical outlier dimen-
sions to address the dimension trade-off in knowl-
edge distillation. We empirically show that EOFD
outperforms state-of-the-art distillation methods.
We further show that EOFD generalizes well across
the tasks of distilling Encoder-only BERT, Decoder-
only GPT-2, and Encoder-Decoder T5 models.

2 A Closer Look at Emergent Outliers in
Pre-trained Language Models

In this paper, we use plain lower case letters x for
scalars, bold lower case letters x for vectors, bold
upper case letters X for matrices, and XT for trans-
poses. We index each Transformer block/layer in
a given Transformer by l ∈ {1, · · · , L}, and each
token in token sequence by i ∈ {1, · · · , N}, as
illustrated in Fig. 3. Typically, each Transformer
block/layer contains a Multi-Head Attention mod-
ule, a Feed Forward Network (FFN), and some
Layer-Norm (LN) transformations. Denote the di-
mension of a Transformer as dmodel as illustrated in
Fig. 3; specifically, denote dt and ds for the dimen-
sions of a teacher and a student model, respectively.
We consider for only one data sample (not batched)
for notation simplicity unless otherwise specified.

2.1 Recognizing Emergent Outliers by
Magnitude in Pre-trained T5 Models

Emergent outliers are the weight entries and the
neuron activations emerged in pretrained Trans-
formers which exhibit surprisingly large magni-
tudes out of several standard deviations (Kovaleva
et al., 2021; Puccetti et al., 2022). In Fig. 1 (b-e),
we plot some typical histograms of weight/activa-
tion magnitudes distributions for some layers in T5-
11B model. We refer "weights" as the pretrained
parameters, and "activations" as the intermediate
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Figure 1: (a) T5 activation outlier magnitude by layer depth and model size; (b) A typical T5-11B weight histogram
without outliers; (c) A T5 Layer-Norm weight γ histogram with outliers; (d) A T5-11B Encoder hidden state
activation histogram with asymmetric outliers and multiple modes; (e) A typical T5-11B Encoder hidden state
activation long-tailed histogram with outliers up to a magnitude of 150000. Y-axis is log-scaled. Each of (b-e) is a
histogram of weight/activation magnitudes within one layer. More systematic plots are presented in Appendix E.

features / hidden states in pretrained Transform-
ers for some fixed tokenized text input, e.g. as in
Appendix F. Specifically, for activations, we inves-
tigate the intermediate presentations between each
Transformer block, as the purple boxes in Fig. 3:
For a given layer l, we denote hl,i ∈ Rdmodel for the
intermediate feature vector of the i-th token. For
each layer l, we analyze the activation magnitude
distribution of each neuron entry in the intermedi-
ate feature vectors for all tokens {hl,i}i=1,··· ,N .

In Fig. 1 (a), we analyze activation outlier scales
by model size ranging from T5-Small (60M) to T5-
11B, by Encoder/Decoder, and by layer depth (0-th
layers are token embeddings). Architecture details
of these models are reported in Appendix D. De-
spite a rapid emergence of GPT-3 outliers at around
the model size of 6.7B found by Dettmers et al.
(2022), here the plot shows that this growth primar-
ily comes with the increasing layer depth rather
than model size: For a given model size, outlier
magnitudes increase by layer depth; While from
T5-Large to T5-3B and to T5-11B model, the mag-
nitude of outliers actually decreases as model size
increases, for both Encoder and Decoder stacks,
given that the 3 models all have the same depth of
24+24 layers with different dmodel.

2.2 Emergent Outlier Dimensions are Shared
across Layers in T5 and Flan-T5 Models

In the last subsection, we show that outliers with
surprisingly large magnitudes emerge in pretrained
language models, here we further analyze the pat-

terns of how these outliers are structured through-
out the Transformers. For the intermediate feature
vectors for all tokens {hl,i}i=1,··· ,N (purple boxes
in Fig. 3) in the l-th layer, we refer a "dimension
#j" to the j-th entries {hl,i,j}i=1,··· ,N of these vec-
tors. Previous work found that outlier dimensions
are shared across different tokens and layers in
Encoder-only BERT models (Kovaleva et al., 2021;
Puccetti et al., 2022) and in Decoder-only GPT-3
models larger than 6.7B (Dettmers et al., 2022), so
we call a dimension #j either an "outlier dimen-
sion #j" (green box in Fig. 3) or a "non-outlier
dimension #j" (orange box in Fig. 3). For weights
instead of activations, they found that, for a given
layer l, the j-th weight outlier dimension γl,j in the
Layer-Norm directly connected to {hl,i,j}i=1,··· ,N
is closely related to the j-th activation outlier di-
mension, as γl,j determines the multiplication scale
of that activation dimension:

BERT: hl,i,j =
xl,i,j − ul,i√

σ2
l,i + ϵ

· γl,j + βl,j (1)

T5: xl+1,i,j =
hl,i,j√
σ2
l,i + ϵ

· γl,j (2)

where xl,i,j denotes the intermediate feature within
the l-th Transformer block (blue box in Fig. 3); and
for the l-th block, (ul,i, σ2

l,i) denote the mean and
variance of activations for all dimensions within
the i-th token, (γl,j , βl,j) denote the learnable scale
and bias parameters for each dimension j, and ϵ
denotes a small number. Note that BERT is of Post-
LN (Post Layer-Norm) style, while T5 and GPT
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Figure 2: Average zero-shot performance of pretrained T5 and further instruction-finetuned Flan-T5 by model size
and by number of disabled outlier/non-outlier dimensions. Full results on each task with standard errors are reported
in Table 1 and in Appendix B. X-axis is log-scaled for both subfigures.

models are of Pre-LN style; for their difference, we
refer readers to Xiong et al. (2020).

Here, we extend the findings in previous work to
Encoder-Decoder T5 and to instruction-finetuned
(Ouyang et al., 2022; Wei et al., 2022a; Sanh et al.,
2022) Flan-T5 (Chung et al., 2024) models with
some correction. Because of the close relationship
between Layer-Norm weight outliers and interme-
diate activation outliers, for each layer l, we iden-
tify its outlier dimensions #j where γl,j is out of
3 standard deviations (3-std) of the distribution of
{γl,j}j=1,··· ,dmodel as in Puccetti et al. (2022). We
report the full list of observed outlier dimensions
#j grouped by how many times they are recognized
as outlier dimensions across all the L layers for a
given Transformer in Appendix H, for T5-Small
and Flan-T5-Small to T5-11B and Flan-T5-XXL
models. In short, we find that there are some com-
mon outlier dimensions within either the Encoder
or Decoder stack; but generally, the outlier dimen-
sions in the Encoder stack are different from those
dimensions in the Decoder stack. For instance,
dim #550 is recognized 23 times as an outlier di-
mension across all 24 Decoder layers in Flan-T5
XXL; but is never recognized as an outlier dimen-
sion in the Encoder layers. This might be caused by
how residual connection is implemented within and
across the Encoder/Decoder stack. We also find
that Decoders tend to have more outlier dimensions
than Encoders. Note that, despite (Dettmers et al.,
2022), we also observe systemic outlier dimensions
in small models: e.g., dim #275 is recognized 5
times as an outlier dimension across all 6 Encoder

layers in T5-Small.

2.3 Zero-shot Performance of T5 and Flan-T5
Models with Disabled Emergent Outliers

Another defining characteristics for outliers is their
surprisingly large contribution to model perfor-
mance: muting the outlier dimensions, which are
only a very small proportion of total dimensions,
harm performance seriously (Kovaleva et al., 2021;
Dettmers et al., 2022). We study this effect more
systematically at scale by factors of different num-
ber of disabled outlier/non-outlier dimensions, dif-
ferent model size, and whether or not the pretrained
model is further instruction-finetuned.

As supported by previous subsection that out-
lier dimensions are shared across tokens and layers
within the Encoder or within the Decoder stack, we
disable common dimensions within Encoder/De-
coder stack, but treat Encoder and Decoder inde-
pendently. To disable dim #j, we zero out the
scaling factor for the j-th dimension in Layer-
Norm for all layers for pretrained T5 and for pre-
trained and instruction-finetuned Flan-T5 models:
γl,j ← 0, l ∈ {1, · · · , L}; As in Eq. (1), for
models in T5 family, this will result in muting
dim #j in activations for all layers and tokens:
xl,i,j ← 0, l ∈ {2, · · · , L}, i ∈ {1, · · · , N}. In
Fig. 2a and in Table 5, we first sort the dimensions
decreasingly by how many times they are recog-
nized as outlier dimensions across different layers
as in Appendix H, then disable the first 4 outlier
dimensions for T5-Small to T5-11B models (green
line); As control comparisons, we also randomly
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Model Configuration MNLI QNLI RTE SST-2 Avg (%)

Flan-T5-Small

full model 0.4243 ± 0.0050 0.7403 ± 0.0059 0.6029 ± 0.0295 0.8727 ± 0.0113 66.00

non-outlier disabled: 4 dims 0.4092 ± 0.0050 0.7219 ± 0.0061 0.6065 ± 0.0294 0.8704 ± 0.0114 65.20
non-outlier disabled: 20 dims 0.4254 ± 0.0050 0.6720 ± 0.0064 0.6173 ± 0.0293 0.8681 ± 0.0115 64.57
non-outlier disabled: 100 dims 0.3749 ± 0.0049 0.7095 ± 0.0061 0.5054 ± 0.0301 0.8234 ± 0.0129 60.33
non-outlier disabled: 256 dims 0.3428 ± 0.0048 0.5102 ± 0.0068 0.5054 ± 0.0301 0.5459 ± 0.0169 47.61

outlier disabled: 4 dims 0.3817 ± 0.0049 0.6061 ± 0.0066 0.5162 ± 0.0301 0.8509 ± 0.0121 58.87
outlier disabled: 20 dims 0.3332 ± 0.0048 0.5266 ± 0.0068 0.4585 ± 0.0300 0.6709 ± 0.0159 49.73
outlier disabled: 100 dims No enough outliers -

Flan-T5-Base

full model 0.6674 ± 0.0048 0.8774 ± 0.0044 0.7870 ± 0.0246 0.9232 ± 0.0090 81.37

non-outlier disabled: 4 dims 0.6556 ± 0.0048 0.8772 ± 0.0044 0.7653 ± 0.0255 0.9209 ± 0.0091 80.48
non-outlier disabled: 20 dims 0.6806 ± 0.0047 0.8741 ± 0.0045 0.7653 ± 0.0255 0.9186 ± 0.0093 80.97
non-outlier disabled: 100 dims 0.4724 ± 0.0050 0.8336 ± 0.0050 0.6787 ± 0.0281 0.8991 ± 0.0102 72.10
non-outlier disabled: 384 dims 0.3285 ± 0.0047 0.5135 ± 0.0068 0.4946 ± 0.0301 0.6594 ± 0.0161 49.90

outlier disabled: 4 dims 0.6513 ± 0.0048 0.7948 ± 0.0055 0.7834 ± 0.0248 0.9197 ± 0.0092 78.73
outlier disabled: 20 dims 0.3187 ± 0.0047 0.5054 ± 0.0068 0.5018 ± 0.0301 0.8647 ± 0.0116 54.77
outlier disabled: 100 dims No enough outliers -

Flan-T5-Large

full model 0.7238 ± 0.0045 0.9043 ± 0.0040 0.8737 ± 0.0200 0.9404 ± 0.0080 86.05

non-outlier disabled: 4 dims 0.7292 ± 0.0045 0.9050 ± 0.0040 0.8773 ± 0.0198 0.9381 ± 0.0082 86.24
non-outlier disabled: 20 dims 0.7323 ± 0.0045 0.8960 ± 0.0041 0.8773 ± 0.0198 0.9415 ± 0.0080 86.18
non-outlier disabled: 100 dims 0.6930 ± 0.0047 0.8720 ± 0.0045 0.8664 ± 0.0205 0.9335 ± 0.0084 84.12
non-outlier disabled: 512 dims 0.3579 ± 0.0048 0.4946 ± 0.0068 0.5235 ± 0.0301 0.6112 ± 0.0165 49.68

outlier disabled: 4 dims 0.7209 ± 0.0045 0.9033 ± 0.0040 0.8700 ± 0.0202 0.9415 ± 0.0080 85.89
outlier disabled: 20 dims 0.6935 ± 0.0047 0.9074 ± 0.0039 0.8267 ± 0.0228 0.9300 ± 0.0086 83.94
outlier disabled: 100 dims 0.3290 ± 0.0047 0.5312 ± 0.0068 0.5415 ± 0.0300 0.5803 ± 0.0167 49.55

Flan-T5-XL

full model 0.7279 ± 0.0045 0.9422 ± 0.0032 0.8628 ± 0.0207 0.9472 ± 0.0076 87.00

non-outlier disabled: 4 dims 0.7284 ± 0.0045 0.9422 ± 0.0032 0.8664 ± 0.0205 0.9484 ± 0.0075 87.14
non-outlier disabled: 20 dims 0.7404 ± 0.0044 0.9411 ± 0.0032 0.8628 ± 0.0207 0.9484 ± 0.0075 87.32
non-outlier disabled: 100 dims 0.7313 ± 0.0045 0.9378 ± 0.0033 0.8628 ± 0.0207 0.9472 ± 0.0076 86.98
non-outlier disabled: 512 dims 0.6220 ± 0.0049 0.8935 ± 0.0042 0.7978 ± 0.0242 0.9255 ± 0.0089 80.97

outlier disabled: 4 dims 0.6666 ± 0.0048 0.9054 ± 0.0040 0.8448 ± 0.0218 0.9461 ± 0.0077 84.07
outlier disabled: 20 dims 0.6553 ± 0.0048 0.8951 ± 0.0041 0.8412 ± 0.0220 0.9392 ± 0.0081 83.27
outlier disabled: 100 dims 0.3307 ± 0.0047 0.5059 ± 0.0068 0.4982 ± 0.0301 0.6743 ± 0.0159 50.23

Flan-T5-XXL

full model 0.7462 ± 0.0044 0.9279 ± 0.0035 0.8989 ± 0.0181 0.9587 ± 0.0067 88.29

non-outlier disabled: 4 dims 0.7467 ± 0.0044 0.9288 ± 0.0035 0.8989 ± 0.0181 0.9587 ± 0.0067 88.33
non-outlier disabled: 20 dims 0.7445 ± 0.0044 0.9259 ± 0.0035 0.8953 ± 0.0184 0.9576 ± 0.0068 88.08
non-outlier disabled: 100 dims 0.7243 ± 0.0045 0.9303 ± 0.0034 0.8953 ± 0.0184 0.9587 ± 0.0067 87.72
non-outlier disabled: 512 dims 0.7522 ± 0.0044 0.9154 ± 0.0038 0.8809 ± 0.0195 0.9576 ± 0.0068 87.65

outlier disabled: 4 dims 0.6994 ± 0.0046 0.9226 ± 0.0036 0.8953 ± 0.0184 0.9587 ± 0.0067 86.90
outlier disabled: 20 dims 0.7030 ± 0.0046 0.9248 ± 0.0036 0.8881 ± 0.0190 0.9599 ± 0.0067 86.90
outlier disabled: 100 dims 0.6518 ± 0.0048 0.9105 ± 0.0039 0.8195 ± 0.0232 0.9530 ± 0.0072 83.37

Table 1: Detailed zero-shot performance on each evaluation dataset with standard error of pretrained and instruction-
finetuned Flan-T5 models (Chung et al., 2024) by model size and by our interventions with different numbers of
disabled outlier/non-outlier dimensions. We sometimes observe even better performance of the models when some
of their non-outlier dimensions are disabled than the full models, especially for the larger models.

disable 4 non-outlier dimensions (orange line) in-
stead. In Fig. 2b and in Table 1, we sort and disable
the first 4 / 20 / 100 outlier dimensions for Flan-T5-
Small to Flan-T5-XXL models, or disabling same
or more non-outlier dimensions instead. If there
are not enough outliers in either Encoder or De-
coder out of 3-std in magnitudes, we only disable
those out of 3-std. We evaluate and plot the aver-
age zero-shot performance of these models with
interventions over several language understanding

tasks in Fig. 2. We measure model performance
by EleutherAI language model evaluation harness
(Gao et al., 2023).

Figure 2a and Table 5 show that, when disabled
only 4 outlier dimensions (green), T5 models of all
sizes perform significantly worse than full model
(blue). Meanwhile, disabling the same number
of non-outlier dimensions (orange) do not make
significant difference in zero-shot performance for
all model sizes. Besides, aligning with Dettmers
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et al. (2022), this performance degrading phenom-
ena emerges especially for very large models: dis-
abling only 4 out of 1024 total dimensions (only
192 of its total 11B parameters) in T5-11B results
in a 14.7% absolute performance drop from the full
model. Figure 2b and Table 1 further show that,
muting outlier dimensions (green) hinder the perfor-
mance of Flan-T5 models significantly more than
disabling the same number of non-outlier dimen-
sions (orange), for all model sizes and for different
numbers of disabling dimensions. Note that, in
contrast to the findings on T5 models and despite
Dettmers et al. (2022), for instruction-finetuned
Flan-T5 models, larger models like Flan-T5-XXL
are relatively less sensitive to outliers than smaller
models. Furthermore, Flan-T5-XXL is very robust
to non-outliers: disabling 512 non-outlier dimen-
sions in Flan-T5-XXL only drops its performance
by 0.64%.

3 Distilling Transformers: Background

For distilling Transformers, LPRED, LATT, and
LHID are commonly applied to transfer knowledge
from the teacher t to the student s. The predic-
tion logits distillation loss LPRED minimizes the
divergence between the soft response from t and
s: LPRED = CE(zs/τd, zt/τd), where τd denotes
the temperature, zs and zt refer to the classification
logits (commonly over the tokens in vocabulary)
from s and t, and CE denotes Cross Entropy, i.e.
pj =

exp(zj/τd)∑
k exp(zk/τd)

and LPRED =
∑

j p
t
j · log(psj).

The attention map distillation loss LATT mini-
mizes the average Mean Squared Error (MSE) be-
tween the attention matrices of each head of t and
s: LATT = 1

H

∑H
h=1 MSE(As

h,A
t
h) (Jiao et al.,

2020a), where H denotes the number of attention
heads, Ah ∈ RN×N denotes the attention map
of the h-th head, and N refers to the sequence
length of tokens. The intermediate representation
distillation loss LHID minimizes the divergence be-
tween the hidden state matrices for each Trans-
former block, as in Eq. (3), and we will investigate
this loss by outlier or non-outlier dimensions.

4 Emergent Outlier Focused Distillation

We have just shown that different representation di-
mensions in pretrained language models do not con-
tribute equally to performance: Muting the outlier
dimensions harm performance significantly, while
disabling as much as 512 non-outlier dimensions
do not for Flan-T5-XXL. Therefore, when distill-

ing intermediate representations, we propose to
focus on these more important outlier dimensions
and pay relatively less attention to the non-outlier
dimensions.

For notation clarity, we consider for a single
data sample (not batched) unless specified other-
wise. As in Fig. 3, for the l-th layer, denote Ht

l ∈
RN×dt for the teacher’s representations comprised
of {(ht

l,i)
T }i=1,··· ,N , and denote Hs

l ∈ RN×ds for
the student’s. Conventional intermediate represen-
tation distillation loss computes the Mean Squared
Error (MSE) as below, where Wproj ∈ Rds×dt is
a learnable projection from the student’s hidden
space to the teacher’s:

LHID =

L∑

l=1

MSE(Hs
lW

proj,Ht
l) (3)

We propose to compute a weighted MSE loss,
the Emergent Outlier Focused Distillation loss
LEOFD, instead, weighting more on the outlier di-
mensions and weighting less on other dimensions,
recognized by the standard deviations of activations
of these dimensions in the teacher:

LEOFD =
1

Ndt

L∑

l=1

dt∑

j=1

(
weofd

l,j

N∑

i=1

(
(Hs

lW
proj)ij−(Ht

l)ij
)2)

(4)

where (X)ij ∈ R denotes the entry of the i-th
row and the j-th column in a matrix X; and for
the l-th layer, for each teacher hidden dimension
#j ∈ {1, · · · , dt}, its emergent outlier focused dis-
tillation weight weofd

l,j ∈ R is determined by the ac-
tivation standard deviations (std) of that dimension.
Dimensions with larger std are assigned with larger
weights and vice versa. Note that as in Eq. (1),
a dimension #j with a large std in activations is
closely related to a large scale factor of that dimen-
sion #j in Layer-Norm: γl,j ; and we have shown in
the previous section that these kind of dimensions
contribute more to model performance. Formally,
we compute weofd

l,j as follows:
For a given layer l, we first compute the activa-

tion standard deviation σl,j for each teacher hid-
den dimension #j. σl,j is computed across all the
tokens in the sequence and across all the data in-
stances in the mini-batch: σl,j = σ({(bHt

l)i,j |i ∈
{1, · · · , N}, b ∈ {1, · · · , batch size}}).

To compute weofd
l,j , we normalize σl,j by dividing

it by the mean of these standard deviations for the
given layer l, so that the normalized σl,j for a given
layer l has a mean of 1. We then raise its quotient
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Figure 3: An illustration of the proposed Emergent Outlier Focused Distillation method.

to the power of p to tune the strength of weighting.
We use p ∈ {0.5, 1} for our experiments. Note that
when p = 0, with uniform weighting of weofd

l,j ≡ 1,
the EOFD loss in Eq. (4) will be degraded to the
vanilla MSE loss in Eq. (3):

weofd
l,j =

( σl,j∑dt
k=1 σl,k/dt

)p
(5)

We provide PyTorch (Paszke et al., 2019) code
for the proposed EOFD loss in Appendix I.

5 Experiments on EOFD

We distill BERT (Devlin et al., 2019), GPT-2 (Rad-
ford et al., 2019) and T5 (Radford et al., 2019)
models and evaluate on the General Language Un-
derstanding Evaluation (GLUE) (Wang et al., 2019)
benchmark. We report model architectures and
dataset details in Appendix D.

5.1 Distilling BERT on the GLUE benchmark
For fair comparison with state-of-the-art knowl-
edge distillation methods, we first distill BERT-
base (Devlin et al., 2019) to a 6-layer small BERT
model EOFD-BERT6 and a 4-layer tiny BERT
model EOFD-BERT4 on the GLUE benchmark.
We build our code upon TinyBERT (Jiao et al.,
2020a) 1. We initiate our student models with
their pretrained parameters and conduct finetun-
ing distillation with our proposed EOFD method.
In finetuning distillation, we adopt the same data
pre-processing and two-step distillation pipeline as
in TinyBERT. As them, in the first step, we dis-
till the intermediate representations by applying
the attention-map distillation loss LATT and our
proposed loss LEOFD on all student layers (all pur-
ple boxes in Fig. 3). Note that BERT-base has
12 layers, so as Jiao et al. (2020a), we distill the

1https://github.com/huawei-noah/Pretrained-Language-
Model/tree/master/TinyBERT

#{2, 4, 6, 8, 10, 12} layers in the teacher to the 6
layers in EOFD-BERT6 respectively, and distill
the #{3, 6, 9, 12} layers to the 4 layers in EOFD-
BERT4 respectively. We also distill the token em-
bedding layer, as in Jiao et al. (2020a), with LEOFD.
In the second step, we distill the prediction log-
its by applying LPRED to match the final output
logits between teachers and students. As in Liang
et al. (2023a), on the tiny datasets of RTE, MRPC,
and STS-B, we initiate our models from our MNLI
step-1 finetuned models. We report further details
for training our teacher and student models, e.g.
hyper-parameters, seeds, hardware platforms, etc.
in Appendix G. We compare with baseline models
and recent state-of-the-art knowledge distillation
methods of the two student size settings in Table 2.
We report the performance of Sanh et al. (2019),
Wang et al. (2020a), Wang et al. (2021), Liang et al.
(2023a) as was reported in Liang et al. (2023a). Our
distilled models outperform state-of-the-art perfor-
mance by a large margin in average score and on
most of the datasets individually for both student
size settings.

5.2 Analysis and Ablation on BERT

We first analyze our outlier-focused distillation
weights weofd

l,j in Eq. (5) for the BERT distilla-
tion experiments in the previous subsection. Take
the final layer l = 6 for instance, as expected,
the proposed method focuses more on distilling
the outlier dimensions: dim #308, #381, #251,
#539 are assigned with the largest weights weofd

6,j

of 8.42, 1.61, 1.58, 1.58, respectively; due to the
largest standard deviations σ6,j of activation mag-
nitudes of these dimensions: 5.04, 0.96, 0.95, 0.94,
compared with the medium std of all dimensions
around 0.58. This also aligns with the reported
BERT-base outlier dimensions of #308 and #381 in
Kovaleva et al. (2021); Puccetti et al. (2022).
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BERT Models (Devlin et al., 2019)
Params MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B Avg

(M) Acc (m/mm) Acc/F1 Acc Acc Acc Acc Acc/F1 P/S Score

BERT-base (teacher) 109 84.6/85.1 91.3/88.2 91.8 93.2 59.1 81.6 89.2/92.3 89.3/89.0 85.0

DistilBERT6 (Sanh et al., 2019) 66 82.4/82.5 90.4/87.1 89.2 90.9 53.5 75.5 86.5/90.5 87.9/87.8 82.1
TinyBERT6-GD (Jiao et al., 2020a) 66 83.5/- 90.6/- 90.5 91.6 42.8 77.3 88.5/91.6 89.0/88.9 81.9
TinyBERT6-GD+TD (Jiao et al., 2020a) 66 84.5/84.5 91.1/88.0 91.1 93.0 54.0 73.4 86.3/90.6 90.1/89.6 83.0
MiniLM6 (Wang et al., 2020a) 66 84.0/- 91.0/- 91.0 92.0 49.2 - -/- -/- -
MiniLMv26 (Wang et al., 2021) 66 84.0/- 91.1/- 90.8 92.4 52.5 78.0 88.7/92.0 89.3/89.2 83.6
HomoBERT-base (Liang et al., 2023a) [ICLR] 65 84.2/84.3 91.2/87.9 90.7 92.7 55.9 77.6 89.0/91.9 89.5/89.2 83.8
TED-BERT6 (Liang et al., 2023b) [ICML] 66 83.4/84.0 -/- - 91.7 - 68.8 -/- -/- -
SKDBERT6 (Ding et al., 2023a) [AAAI] 66 84.1/83.7 91.0/87.9 91.4 92.9 - 75.5 89.0/92.1 89.2/88.7 -
AD-KD (Wu et al., 2023b) [ACL] 66 83.4/84.2 91.2/- 91.2 91.9 58.3 70.9 -/91.2 89.2/- 83.5
WID (Wu et al., 2024b) [NAACL] 55 82.9/- 91.0/- 90.1 92.4 61.7 70.4 88.2/- 87.9/- -

Ours EOFD-BERT6 66 84.9/85.2 91.5/88.7 91.7 92.3 56.3 80.1 88.5/91.9 89.9/ 89.7 84.4

BERT-small (Devlin et al., 2019) 28.6 78.8/78.9 89.9/86.5 87.0 88.2 36.1 70.8 85.8/90.1 87.7/87.7 78.1
MiniLM3 (Wang et al., 2020a) 17.0 78.8/- 88.8/85.0 84.7 89.3 15.8 66.4 81.9/88.2 85.4/85.5 74.1
TinyBERT4-GD (Jiao et al., 2020a) 14.5 80.4/80.9 88.7/85.3 85.7 89.7 18.6 71.1 84.6/89.1 87.0/87.2 75.8
TinyBERT4-GD+TD (Jiao et al., 2020a) 14.5 82.8/82.9 -/- - - 50.8 - 85.8/- -/- -
HomoBERT-tiny (Liang et al., 2023a) [ICLR] 14.1 81.2/81.3 89.9/86.6 87.8 90.1 37.0 70.8 87.3/90.7 87.6/87.5 79.0
HomoBERT-xsmall (Liang et al., 2023a) [ICLR] 15.6 81.5/81.8 90.0/86.7 88.0 90.3 40.8 71.5 87.7/91.0 88.3/88.0 79.8

Ours EOFD-BERT4 14.5 82.6/83.1 90.6/87.5 89.3 92.2 38.2 76.9 88.4/ 91.9 88.4/ 88.2 80.9

Table 2: Distillation benchmark performance of BERT models on GLUE test-dev set.

Figure 4: Ablation on BERT4 with dmodel = 312, only
distilling dimensions with largest or smallest σl,j .

We also visualize the representation activation
histograms of our distilled EOFD-BERT6 model
on the MNLI dataset, in comparison with that of
the TinyBERT (Jiao et al., 2020a) distilled BERT6

model in Appendix C. The activation histogram
of our distilled model exhibits a more long-tailed
distribution with some outliers.

Another question is that, if the outlier dimen-
sions contribute much more to performance than
non-outlier dimensions, and if weighting the out-
liers more while distilling can boost performance,
then how will it perform if we only distill the out-
lier dimensions or only distill the non-outlier di-
mensions? To answer this, we conduct another
ablation in Fig. 4. In the green line, for each layer
l, we only distill the representation dimensions
{j|σl,j > α} with the largest x(%) standard devia-

tion σl,j among all dimensions; while in the orange
line, we only distill the dimensions {j|σl,j < β}
with the smallest x(%) std. The X-axis represents
the threshold ratio x. When x = 0.0 we do not
distill any dimension, and when x = 1.0 we dis-
till all dimensions. No weighting is applied in the
MSE loss, so each dimension is treated equally. We
always apply LPRED and do not apply LATT in this
ablation. We ablate on the SST-2 (Socher et al.,
2013) dataset, keep other settings the same as in
the previous subsection, and report the test-dev ac-
curacy. Fig. 4 shows that (x = 0.05, green): only
distilling 5% of the dimensions with the largest
standard deviations (the outlier dimensions) can re-
cover most of the distilling performance; while dis-
tilling the same number of non-outlier dimensions
(x = 0.05, orange) do not boost performance. Be-
sides, distilling dimensions with larger std (green)
consistently outperforms distilling a same number
of dimensions with smaller std (orange).

5.3 Generalization and Ablation on Distilling
GPT-2 and T5 Models

To evaluate how our proposed method generalizes
to other model families and for further ablation, we
also distill the Decoder-only GPT-2-medium (Rad-
ford et al., 2019) to GPT-2 and distill the Encoder-
Decoder T5-base (Raffel et al., 2020) to T5-small
on several datasets in the GLUE benchmark. We
ablate on the effect of ground-truth (GT) supervi-
sion without distillation, prediction logits distilla-
tion LPRED, conventional hidden state distillation
LHID, our proposed LEOFD, and the effect of proxy
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GPT-2 (Radford et al., 2019)
Params GT LPRED LHID LEOFD LN-KD PT-KD MNLI Acc QQP QNLI CoLA Avg

(M) (Ours) (Ours) (Ours) m mm Acc F1 Acc Acc Score

GPT-2-medium (teacher) 345 ✓ 84.6 85.3 91.0 88.1 90.4 52.9 79.4

GPT-2 117 ✓ 81.6 82.4 89.7 86.3 87.4 41.9 74.8
GPT-2 reported by Li et al. (2021) 117 ✓ 82.3 - 89.5 - 88.6 43.2 -
Distilled GPT-2 117 ✓ 81.8 82.9 90.0 86.8 89.0 43.7 75.9
Distilled GPT-2 117 ✓ ✓ 82.4 82.9 90.3 87.1 88.9 43.7 76.0
Distilled GPT-2 w/ our EOFD 117 ✓ ✓ 83.0 83.1 90.4 87.2 88.8 44.2 76.2
Distilled GPT-2 w/ our EOFD 117 ✓ ✓ ✓ 83.2 83.6 90.5 87.3 89.4 44.7 76.6
Distilled GPT-2 w/ our EOFD 117 ✓ ✓ ✓ ✓ 83.4 83.8 90.5 87.3 89.1 47.4 77.3

Table 3: Ablation performance of distilling GPT-2 (Radford et al., 2019) on GLUE test-dev set.

T5 Models (Radford et al., 2019)
Params GT LPRED LHID LEOFD MNLI Acc QQP QNLI SST-2 CoLA Avg

(M) (Ours) m mm Acc F1 Acc Acc Acc Score

T5-base reported by Raffel et al. (2020) 220 ✓ 87.1 86.2 89.4 72.6 93.7 95.2 51.1 82.2
T5-base reproduced (teacher) 220 ✓ 86.8 87.1 91.8 89.0 92.8 94.7 58.0 85.7

T5-small reported by Raffel et al. (2020) 60 ✓ 82.4 82.3 88.0 70.0 90.3 91.8 41.0 78.0
T5-small reproduced 60 ✓ 82.2 82.9 89.4 85.7 89.1 91.4 39.5 80.0
Distilled T5-small 60 ✓ 82.9 83.6 90.1 86.5 89.8 91.5 42.2 80.9
Distilled T5-small 60 ✓ ✓ 83.4 83.7 90.7 87.4 90.1 91.9 42.6 81.4
Distilled T5-small w/ our EOFD 60 ✓ ✓ 83.5 84.4 90.8 87.6 90.5 92.5 43.1 81.8

Table 4: Ablation performance of distilling T5 (Raffel et al., 2020) on GLUE test-dev set.

pretraining distillation (PT-KD) with EOFD, in Ta-
ble 3 and Table 4. For proxy pretraining, we initi-
ate from the Hugging Face (HF) pretrained GPT-2
model and continue pretrain it with causal language
modeling logits distillation loss and the proposed
EOFD loss on the HF BookCorpus dataset (Zhu
et al., 2015) (3GB) for 3 epochs. We build our code
upon the HF Transformers repository 2 (Wolf et al.,
2020). We report training details in Appendix G.

Note that unlike BERT models, T5 and GPT-2
are pre-Layer-Norm (pre-LN) Transformers (Xiong
et al., 2020): their intermediate representations
Hl (purple boxes in Fig. 3) between Transformer
blocks are not normalized. Hence, as we analyzed
in Section 2.1, they may contain activation outliers
of very large magnitude to the scale over 104, as
shown in Fig. 1a; and the scale between the teacher
features Ht

l and the student features Hs
l may differ

significantly. Therefore, specially for computing
the distilling loss, in some ablative settings, for
each layer l, we propose to apply an additional
learnable Layer-Norm (LN-KD) on Hs

l and an ad-
ditional frozen Layer-Norm on Ht

l , to match the
scale difference before applying EOFD:

h̃s
l,i,j =

hs
l,i,j − us

l,i√
(σs

l,i)
2 + ϵ

·γl,j +βl,j ; h̃t
l,i,j =

ht
l,i,j − ut

l,i√
(σt

l,i)
2 + ϵ

(6)

2https://github.com/huggingface/transformers/
tree/main/examples/pytorch/text-classification

6 Conclusion

We have analyzed the emergent outlier phe-
nomenon and its effect on performance for pre-
trained T5 and instruction-finetuned Flan-T5 mod-
els of size varying from 60M to 11B. Based on the
analysis, we have proposed, for the first time, to
leverage these findings on outliers for more effec-
tive knowledge distillation methods, and have em-
pirically shown that our proposed EOFD method
achieves SOTA performance.

7 Limitations

Due to constraint of computational resource, our
distillation experiments are limited within 345M
parameters. Apart from the emergent outlier phe-
nomena, recent researches have also found sponta-
neously emerged sparsity Li et al. (2022b), token-
specific large magnitude activation (Sun et al.,
2024), and low-rank memory storage/editing mech-
anisms in FFN (Meng et al., 2022; Sharma et al.,
2024) for Transformers. It still remains an open
question whether these phenomena are related; and
the dynamics of how outliers are formed during
pretraining is still unveiled theoretically. We hope
to address these limitations of our current research
in future work.
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A Appendix: Further Related Works

Emergent Outliers in Pre-trained Language
Transformers. Although previous studies have
shown that Transformers (Vaswani et al., 2017) are
robust to pruning (Michel et al., 2019; Ganesh et al.,
2021), Kovaleva et al. (2021); Puccetti et al. (2022)
show that, in contrary, pretrained Transformers are
surprisingly fragile to the removal of a very small
number of particular features in the layer outputs.
They observe this phenomena in BERT-family mod-
els, including BERT (Devlin et al., 2019), BART
(Lewis et al., 2020), XLNet (Yang et al., 2019),
ELECTRA (Clark et al., 2020); and also in GPT-2
model (Radford et al., 2019). They identify that
these features are outliers of the scaling factors and
biases in Layer-Norm of high-magnitude. Koval-
eva et al. (2021) show that, in BERT, these out-
liers emerge during pretraining and remain in the
same dimensional position throughout the model.
Puccetti et al. (2022) further show that, in BERT,
the magnitudes of these outlier dimensions corre-
late with the frequency of tokens in the pretrain-
ing corpus, and they also contribute to the self-
attention pattern to focus on some special tokens.
These two works both study outliers in Transform-
ers at the scale around 100M parameters. Dettmers
et al. (2022) scale up the study of outliers to 175B
Decoder-only OPT models (Zhang et al., 2022),
and observe that outlier magnitude and influence
systematically emerge for all layers at and beyond
6.7B parameters. They propose to quantize these
outliers separately for quantization precision. Wei
et al. (2022c, 2023), alternatively, manage to sup-
press outliers for quantizing large Transformers.
Knowledge Distillation. Knowledge distillation
(KD) is widely applied for training more compact
vision models (Zagoruyko and Komodakis, 2017;
Peng et al., 2019; Tung and Mori, 2019; Yang et al.,
2022; Chen et al., 2022; Wu et al., 2022b; Ando-
nian et al., 2022; He et al., 2022; Wu et al., 2022a),
language models (Sanh et al., 2019; Wang et al.,
2020b; Jiao et al., 2020b; Sun et al., 2020; Liang
et al., 2021; Li et al., 2022a; Ding et al., 2023b), and
vision-language models (Fang et al., 2021; Wang
et al., 2022; Gu et al., 2021; Ma et al., 2022; Zhao
et al., 2024). With the recent emergence of large
language models (Touvron et al., 2023; Anil et al.,
2023; OpenAI et al., 2024; AI@Meta, 2024; An-
thropic, 2024), great efforts have been made to
distill some of these LLMs into smaller ones (Zhu
et al., 2023; Hsieh et al., 2023; Magister et al., 2023;

Wu et al., 2023a; Tan et al., 2023; Kang et al., 2023;
Jha et al., 2023; Li et al., 2023; Jiang et al., 2023;
Wu et al., 2024a; Gu et al., 2024; Agarwal et al.,
2024), for faster inference, lower memory footprint,
and lower cost.

B Appendix: Detailed T5 Performance
with Standard Error

C Appendix: Activation Magnitude
Histograms for Distilled BERT Models
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Model Configuration MNLI QNLI RTE SST-2 Avg (%)

T5-Small
full model 0.3544 ± 0.0048 0.5404 ± 0.0067 0.5343 ± 0.0300 0.7099 ± 0.0154 53.47
non-outlier disabled: 4 dims 0.3554 ± 0.0048 0.5248 ± 0.0068 0.5018 ± 0.0301 0.7959 ± 0.0137 54.45
outlier disabled: 4 dims 0.3303 ± 0.0047 0.4843 ± 0.0068 0.4729 ± 0.0301 0.7385 ± 0.0149 50.65

T5-Base
full model 0.5673 ± 0.0050 0.5038 ± 0.0068 0.6137 ± 0.0293 0.5734 ± 0.0168 56.45
non-outlier disabled: 4 dims 0.5671 ± 0.0050 0.5039 ± 0.0068 0.6209 ± 0.0292 0.5757 ± 0.0167 56.69
outlier disabled: 4 dims 0.5142 ± 0.0050 0.5028 ± 0.0068 0.5596 ± 0.0299 0.6353 ± 0.0163 55.30

T5-Large
full model 0.6129 ± 0.0049 0.5061 ± 0.0068 0.7978 ± 0.0242 0.5023 ± 0.0169 60.48
non-outlier disabled: 4 dims 0.6159 ± 0.0049 0.5059 ± 0.0068 0.8014 ± 0.0240 0.5046 ± 0.0169 60.70
outlier disabled: 4 dims 0.6122 ± 0.0049 0.5070 ± 0.0068 0.7617 ± 0.0256 0.5011 ± 0.0169 59.55

T5-3B
full model 0.5060 ± 0.0051 0.5717 ± 0.0067 0.6679 ± 0.0283 0.8750 ± 0.0112 65.51
non-outlier disabled: 4 dims 0.5046 ± 0.0050 0.5783 ± 0.0067 0.6498 ± 0.0287 0.8750 ± 0.0112 65.19
outlier disabled: 4 dims 0.3780 ± 0.0049 0.5596 ± 0.0067 0.6606 ± 0.0285 0.8498 ± 0.0121 61.20

T5-11B
full model 0.5703 ± 0.0050 0.5819 ± 0.0067 0.6246 ± 0.0292 0.8762 ± 0.0112 66.32
non-outlier disabled: 4 dims 0.5530 ± 0.0050 0.5770 ± 0.0067 0.6137 ± 0.0293 0.8761 ± 0.0112 65.50
outlier disabled: 4 dims 0.4000 ± 0.0049 0.4523 ± 0.0067 0.5307 ± 0.0300 0.6823 ± 0.0158 51.63

Table 5: Detailed zero-shot performance on each evaluation dataset with standard error of pretrained T5 models
(Raffel et al., 2020) by model size and by whether or not with our interventions of disabled outlier/non-outlier
dimensions. Corresponding performance of Flan T5 models are reported in Table 1.

(a) (b)

Figure 5: Neural activation magnitude histograms for distilled BERT models, w/o EOFD and w/ EOFD, respectively.
(a) The activation magnitude histogram for BERT6 after pre-training distillation by TinyBERT (Jiao et al., 2020a),
without EOFD; (b) The activation magnitude histogram for our EOFD-BERT6 model with Emergent Outlier
Focused Distillation on the MNLI dataset. The activation magnitude histogram of the model distilled with our
EOFD exibihits a more long-tailed distribution.
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D Appendix: Model and Dataset Details

The Hugging Face T5 (Raffel et al., 2020),
Hugging Face Flan-T5 (Chung et al., 2024),
and Hugging Face BERT (Devlin et al.,
2019) models are with Apache 2.0 License
http://www.apache.org/licenses/; Hugging Face
GPT-2 (Radford et al., 2019) models is with modi-
fied MIT License https://github.com/openai/gpt-
2/blob/master/LICENSE. The TinyBERT (Jiao
et al., 2020a) model is with Apache 2.0 License.

E Appendix: Emergent Outliers in T5
Activation Magnitude Histograms
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Model Parameters # layers dmodel dff dkv # heads

T5-Small 60M 6 + 6 512 2048 64 8
T5-Base 220M 12 + 12 768 3072 64 12
T5-Large 770M 24 + 24 1024 4096 64 16
T5-3B 3B 24 + 24 1024 16384 128 32
T5-11B 11B 24 + 24 1024 65536 128 128

Flan-T5-Small 80M 8 + 8 512 1024 64 6
Flan-T5-Base 250M 12 + 12 768 2048 64 12
Flan-T5-Large 780M 24 + 24 1024 2816 64 16
Flan-T5-XL 3B 24 + 24 2048 5120 64 32
Flan-T5-XXL 11B 24 + 24 4096 10240 64 64

BERT4 14.5M 4 312 1200 - 12
BERT6 66M 6 768 3072 - 12
BERT-Base 109M 12 768 3072 - 12

GPT-2-Medium 345M 24 1024 4096 - 16
GPT-2 117M 12 768 3072 - 12

Table 6: Model size variants

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)

CoLA (Warstadt et al., 2019) Acceptability 8.5k 1k 1k 2 Matthews corr

SST-2 (Socher et al., 2013) Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)

MNLI (Williams et al., 2018) NLI 393k 20k 20k 3 Accuracy

RTE (Bentivogli et al., 2009) NLI 2.5k 276 3k 2 Accuracy

QQP (Chen et al., 2017) Paraphrase 364k 40k 391k 2 Accuracy/F1

MRPC (Dolan and Brockett, 2005) Paraphrase 3.7k 408 1.7k 2 Accuracy/F1

QNLI (Rajpurkar et al., 2016) QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)

STS-B (Cer et al., 2017) Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 7: Summary of the eight datasets in the GLUE benchmark. This table is revised from (Liang et al., 2023a).
The License is customised at this webpage https://gluebenchmark.com/faq.
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(a) (b) (c)

(d) (e) (f)

Figure 6: T5-Small Encoder hidden-state activation magnitude histograms from shallower layers to deeper layers.
We visualize the 0th (embedding), 1st, 2nd, 3rd, 4th, 5th layer, respectively, in subfigure (a-f); The 6th layer is
applied with an additional final LayerNorm transformation thus has a much smaller scale of magnitudes. Emergent
outliers get larger in magnitudes as layer depth increases.

(a) (b) (c) (d)

(e) (f) (g)

Figure 7: T5-Small Decoder hidden-state activation magnitude histograms from shallower layers to deeper layers.
We visualize the 0th (embedding), 1st, 2nd, 3rd, 4th, 5th, 6th layer, respectively, in subfigure (a-g); The 6th layer is
applied with an additional final LayerNorm transformation thus has a much smaller scale of magnitudes. Emergent
outliers get larger in magnitudes as layer depth increases.
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(a) (b) (c)

(d) (e) (f)

Figure 8: T5-Large Encoder hidden-state activation magnitude histograms from shallower layers to deeper layers.
We visualize the 0th (embedding), 5th, 10th, 15th, 20th, 23rd layer, respectively, in subfigure (a-f); The 24th layer is
applied with an additional final LayerNorm transformation thus has a much smaller scale of magnitudes. Emergent
outliers get larger in magnitudes as layer depth increases.

(a) (b) (c)

(d) (e) (f)

Figure 9: T5-Large Decoder hidden-state activation magnitude histograms from shallower layers to deeper layers.
We visualize the 0th (embedding), 5th, 10th, 15th, 20th, 23rd layer, respectively, in subfigure (a-f); The 24th layer is
applied with an additional final LayerNorm transformation thus has a much smaller scale of magnitudes. Emergent
outliers get larger in magnitudes as layer depth increases.
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(a) (b) (c)

(d) (e) (f)

Figure 10: T5-11B Encoder hidden-state activation magnitude histograms from shallower layers to deeper layers.
We visualize the 0th (embedding), 5th, 10th, 15th, 20th, 23rd layer, respectively, in subfigure (a-f); The 24th layer is
applied with an additional final LayerNorm transformation thus has a much smaller scale of magnitudes. Emergent
outliers get larger in magnitudes as layer depth increases.

(a) (b) (c)

(d) (e) (f)

Figure 11: T5-11B Decoder hidden-state activation magnitude histograms from shallower layers to deeper layers.
We visualize the 0th (embedding), 5th, 10th, 15th, 20th, 23rd layer, respectively, in subfigure (a-f); The 24th layer is
applied with an additional final LayerNorm transformation thus has a much smaller scale of magnitudes. Emergent
outliers get larger in magnitudes as layer depth increases. The reason why we have a larger scale of frequency in
Encoders than Decoders is that in these cases, we are prompting T5 models with a Question-Answering (QA) task,
where the Encoders deals with a longer sequence length than the Decoders, and hence have more tokens.
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F Appendix: Input Text For Activation
Plots

question: What does increased oxygen concentra-
tions in the patient’s lungs displace? context: Hy-
perbaric (high-pressure) medicine uses special oxy-
gen chambers to increase the partial pressure of O
2 around the patient and, when needed, the medical
staff. Carbon monoxide poisoning, gas gangrene,
and decompression sickness (the ’bends’) are some-
times treated using these devices. Increased O 2
concentration in the lungs helps to displace carbon
monoxide from the heme group of hemoglobin.
Oxygen gas is poisonous to the anaerobic bacteria
that cause gas gangrene, so increasing its partial
pressure helps kill them. Decompression sickness
occurs in divers who decompress too quickly af-
ter a dive, resulting in bubbles of inert gas, mostly
nitrogen and helium, forming in their blood. In-
creasing the pressure of O 2 as soon as possible is
part of the treatment.

(Target answer: carbon monoxide)
We use the above input for the activation anal-

ysis and plots. This input is one of the T5 origi-
nal paper (Raffel et al., 2020) examples, without
cherry-picking. The input could be found in (Raf-
fel et al., 2020) Page 53, D.15, extracted from the
SQuAD dataset (Rajpurkar et al., 2016).

G Appendix: Training Details for
Distilling BERT, T5, and GPT-2
Models

All of our code are implemented with PyTorch
(Paszke et al., 2019). We conduct experiments
on 8 NVIDIA A100 GPUs. We provide training
details for distilling BERT, T5, and GPT-2 models
in the following tables, including training both our
teachers and students.
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Hyper-parameters MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B

Learning Rates 7e-5 7e-5 4e-5 5e-5 3e-5 3e-5 3.5e-5 2e-5
Batch Size 256 256 256 256 256 256 64 16
Training Epochs 3 3 6 6 40 30 50 3
Learning Rate Decay Linear
Learning Rate Warmup 0
Max Sequence Length 128
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Gradient Clipping 1.0
Initialization from MNLI ✓ ✓
Random Seed 42

Table 8: Best hyper-parameter configurations for fine-tuning our BERT teacher models on the GLUE benchmark.
We finetune by ourselves from the Hugging Face pretrained bert-base-uncased model https://huggingface.co/google-
bert/bert-base-uncased with this Hugging Face PyTorch script for all datasets except the STS-B:
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py. For
regression task STS-B, we use this community finetuned model instead of finetuning by ourselves:
https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb. Completing each finetuning training job takes
within one to two hours.

Hyper-parameters MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B

Learning Rates 8e-5
Batch Size 512
Training Epochs 10 10 15 20 20 30 30 30
Learning Rate Decay Warm-up Linear
Learning Rate Warmup 0.1
Max Sequence Length 128 128 128 64 64 128 128 128
Weight Decay 1e-4
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping 1.0
EOFD power p {0.5, 1.0}
Initialization from MNLI ✓ ✓ ✓
Random Seed 42

Table 9: Hyper-parameter configurations for step-1 fine-tuning distillation of our BERT6 models on the GLUE
benchmark. We build our code upon the open source code of TinyBERT (Jiao et al., 2020a) with minimal revisions,
and we follow their procedures of dataset pre-processing, data augmentation, and the 2-step distillation pipeline for
distilling all BERT models, for fair comparison. Same to them, no data augmentation is conducted on the STS-B
dataset. We conduct finetuning distillation after loading their released BERT6 pretrained model checkpoints for fair
comparison: https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D. A training job on a larger dataset
like MNLI takes around a day, and a training job on a smaller dataset takes within one to two hours.
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Hyper-parameters MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B

Learning Rates 3e-5
Batch Size 512 512 512 512 512 512 64 512
Training Epochs 3 3 6 9 20 20 40 50
Learning Rate Decay Warm-up Linear
Learning Rate Warmup 0.3
Max Sequence Length 128 128 128 64 64 128 128 128
Weight Decay 1e-4
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping 1.0
Temperature τd 1.0
Random Seed 42

Table 10: Hyper-parameter configurations for step-2 fine-tuning distillation of our BERT6 models on the GLUE
benchmark.

Hyper-parameters MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B

Learning Rates 7e-5
Batch Size 384
Training Epochs 10 10 15 20 20 30 30 30
Learning Rate Decay Warm-up Linear
Learning Rate Warmup 0.1
Max Sequence Length 128 128 128 64 64 128 128 128
Weight Decay 1e-4
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping 1.0
EOFD power p {0.5, 1.0}
Initialization from MNLI ✓ ✓ ✓
Random Seed 42

Table 11: Hyper-parameter configurations for step-1 fine-tuning distillation of our BERT4 models on the GLUE
benchmark. We build our code upon the open source code of TinyBERT (Jiao et al., 2020a) with minimal
revisions. We conduct finetuning distillation after loading their released BERT4 pretrained model checkpoint for
fair comparison: https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D.
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Hyper-parameters MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B

Learning Rates 3e-5
Batch Size 512 512 512 512 512 512 64 128
Training Epochs 3 3 6 6 20 20 40 50
Learning Rate Decay Warm-up Linear
Learning Rate Warmup 0.3
Max Sequence Length 128 128 128 64 64 128 128 128
Weight Decay 1e-4
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping 1.0
Temperature τd 1.0
Random Seed 42

Table 12: Hyper-parameter configurations for step-2 fine-tuning distillation of our BERT4 models on the GLUE
benchmark.

Hyper-parameters MNLI QQP QNLI CoLA

Learning Rates 1e-4 2e-4 5e-5 1e-4
Batch Size 512
Training Epochs 3 6 6 9
Learning Rate Decay Linear
Learning Rate Warmup 0
Max Sequence Length 128
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Gradient Clipping 1.0
Random Seed 42

Table 13: Best hyper-parameter configurations for fine-tuning our GPT-2 Medium teacher models on the
GLUE benchmark. We finetune by ourselves from the Hugging Face pretrained GPT-2-medium model
https://huggingface.co/openai-community/gpt2-medium with this Hugging Face PyTorch script for all datasets listed
below: https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py.
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Hyper-parameters MNLI QQP QNLI CoLA

Learning Rates 7e-5
Batch Size 64
Training Epochs 9 9 9 12
Hidden State Ratio λ 1e-4 1e-4 1e-4 1e-5
Learning Rate Decay Linear
Learning Rate Warmup 0
Max Sequence Length 128
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Gradient Clipping 1.0
EOFD power p 0.5
Temperature τd 1.0
Random Seed 42

Table 14: Hyper-parameter configurations for fine-tuning distillation of our GPT-2 student mod-
els on the GLUE benchmark. Our GPT-2 distillation code is revised from with this Hug-
ging Face PyTorch script: https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-
classification/run_glue_no_trainer.py. We conduct finetuning distillation from the Hugging Face pretrained GPT-2
model https://huggingface.co/openai-community/gpt2. For distilling GPT and T5 models, we conduct integrated
one step distillation, with the total loss of L = LPRED + λLEOFD (or L = LPRED + λLHID, or only L = LPRED, for
some ablations). λ is applied to match the scales between the losses.

Hyper-parameters MNLI QQP QNLI SST-2 CoLA

Learning Rates 1.5e-4 4e-4 3e-4 6e-4 7e-4
Batch Size 256 512 512 512 512
Training Epochs 6 6 6 3 9
Learning Rate Decay Linear
Learning Rate Warmup 0
Max Sequence Length 128
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Gradient Clipping 1.0
Random Seed 42

Table 15: Best hyper-parameter configurations for fine-tuning our T5-base teacher models on the
GLUE benchmark. We finetune by ourselves from the Hugging Face pretrained T5-base model
https://huggingface.co/google-t5/t5-base with this Hugging Face PyTorch script for all datasets listed below:
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py.
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Hyper-parameters MNLI QQP QNLI SST-2 CoLA

Learning Rates 6e-4 6e-4 4e-4 3e-4 6e-4
Batch Size 128
Training Epochs 6 6 3 6 6
Hidden State Ratio λ 1e-4
Learning Rate Decay Linear
Learning Rate Warmup 0
Max Sequence Length 128
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Gradient Clipping 1.0
EOFD power p 0.5
Temperature τd 1.0
Random Seed 42

Table 16: Hyper-parameter configurations for fine-tuning distillation of our T5-small student
models on the GLUE benchmark. Our T5 distillation code is revised from with this Hugging
Face PyTorch script: https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-
classification/run_glue_no_trainer.py. We conduct finetuning distillation from the Hugging Face pretrained
T5-small model https://huggingface.co/google-t5/t5-small. We conduct integrated one step distillation, with the
total loss of L = LPRED + λLEOFD (or L = LPRED + λLHID, or only L = LPRED, for some ablations). λ is applied
to match the scales between the losses.
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H Appendix: T5 and Flan-T5 Outlier
Dimensions Across Layers

H.1 T5-Small

H.1.1 Encoder
• Dimensions (ID) recognized as outlier dimensions for 5

times across all 6 layers: 275;

• Dimensions (ID) recognized as outlier dimensions for 4
times across all 6 layers: 42, 339;

• Dimensions (ID) recognized as outlier dimensions for 3
times across all 6 layers: 159, 324, 505;

• Dimensions (ID) recognized as outlier dimensions for 2
times across all 6 layers: 190, 260, 367;

• Dimensions (ID) recognized as outlier dimensions for 1
times across all 6 layers: 14, 23, 89, 147, 263, 264, 308,
330;

H.1.2 Decoder
• Dimensions (ID) recognized as outlier dimensions for 5

times across all 6 layers: 206;

• Dimensions (ID) recognized as outlier dimensions for 4
times across all 6 layers: 182;

• Dimensions (ID) recognized as outlier dimensions for 2
times across all 6 layers: 245, 268, 308;

• Dimensions (ID) recognized as outlier dimensions for 1
times across all 6 layers: 1, 7, 14, 23, 31, 46, 59, 89, 98,
102, 115, 125, 137, 149, 159, 183, 190, 213, 234, 239,
294, 312, 329, 397, 410, 417, 475, 490;

H.2 T5-11B

H.2.1 Encoder
• Dimensions (ID) recognized as outlier dimensions for

13 times across all 24 layers: 869;

• Dimensions (ID) recognized as outlier dimensions for 5
times across all 24 layers: 680;

• Dimensions (ID) recognized as outlier dimensions for 4
times across all 24 layers: 55, 119, 165, 204, 518, 554,
607, 675, 693, 705, 753, 822, 924, 936, 1008;

• Dimensions (ID) recognized as outlier dimensions for 3
times across all 24 layers: 43, 70, 293, 295, 411, 572,
719, 925;

• Dimensions (ID) recognized as outlier dimensions for
2 times across all 24 layers: 4, 76, 155, 203, 226, 350,
512, 595, 857, 878;

• Dimensions (ID) recognized as outlier dimensions for 1
times across all 24 layers: 2, 13, 27, 141, 154, 176, 276,
396, 402, 421, 433, 435, 553, 687, 722, 810, 832, 908,
929, 968, 972;

H.2.2 Decoder
• Dimensions (ID) recognized as outlier dimensions for 8

times across all 24 layers: 146;

• Dimensions (ID) recognized as outlier dimensions for 7
times across all 24 layers: 201, 321, 894;

• Dimensions (ID) recognized as outlier dimensions for 6
times across all 24 layers: 470, 913;

• Dimensions (ID) recognized as outlier dimensions for 5
times across all 24 layers: 109, 443, 575;

• Dimensions (ID) recognized as outlier dimensions for 4
times across all 24 layers: 53, 189, 247, 476, 632, 862,
1015;

• Dimensions (ID) recognized as outlier dimensions for
3 times across all 24 layers: 68, 84, 98, 119, 124, 210,
268, 327, 360, 432, 515, 526, 645, 650, 677, 757, 924,
1008;

• Dimensions (ID) recognized as outlier dimensions for 2
times across all 24 layers: 12, 30, 65, 72, 149, 179, 193,
248, 260, 276, 415, 423, 510, 536, 581, 584, 618, 735,
788, 805, 814, 849, 854, 863, 907, 969, 975, 994, 1014;

• Dimensions (ID) recognized as outlier dimensions for 1
times across all 24 layers: 1, 33, 49, 57, 80, 85, 97, 106,
123, 128, 137, 165, 166, 178, 188, 194, 197, 207, 230,
243, 246, 258, 262, 299, 315, 329, 351, 362, 366, 367,
379, 387, 390, 392, 395, 400, 406, 414, 424, 431, 437,
438, 440, 448, 450, 471, 474, 492, 493, 499, 513, 532,
546, 550, 568, 577, 605, 609, 616, 627, 635, 641, 643,
649, 676, 680, 682, 686, 691, 703, 708, 726, 727, 733,
734, 738, 756, 789, 793, 797, 804, 818, 823, 824, 827,
842, 853, 871, 891, 893, 899, 910, 914, 917, 934, 938,
956, 993, 1001;

H.3 Flan-T5-Small

H.3.1 Encoder
• Dimensions (ID) recognized as outlier dimensions for 8

times across all 8 layers: 136;

• Dimensions (ID) recognized as outlier dimensions for 7
times across all 8 layers: 511;

• Dimensions (ID) recognized as outlier dimensions for 6
times across all 8 layers: 32;

• Dimensions (ID) recognized as outlier dimensions for 5
times across all 8 layers: 163, 414;

• Dimensions (ID) recognized as outlier dimensions for 4
times across all 8 layers: 367;

• Dimensions (ID) recognized as outlier dimensions for 3
times across all 8 layers: 6, 11, 78, 412;

• Dimensions (ID) recognized as outlier dimensions for 1
times across all 8 layers: 64;

H.3.2 Decoder
• Dimensions (ID) recognized as outlier dimensions for 7

times across all 8 layers: 247, 511;

• Dimensions (ID) recognized as outlier dimensions for 6
times across all 8 layers: 122, 396;
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• Dimensions (ID) recognized as outlier dimensions for 5
times across all 8 layers: 0, 231, 242, 428, 473;

• Dimensions (ID) recognized as outlier dimensions for 4
times across all 8 layers: 67, 72;

• Dimensions (ID) recognized as outlier dimensions for 3
times across all 8 layers: 389, 456;

• Dimensions (ID) recognized as outlier dimensions for 2
times across all 8 layers: 15, 70, 97, 173, 233, 280, 305,
479;

• Dimensions (ID) recognized as outlier dimensions for
1 times across all 8 layers: 33, 45, 132, 136, 163, 175,
193, 240, 246, 268, 275, 276, 288, 329, 385, 393, 401,
415, 417;

H.4 Flan-T5-XXL
H.4.1 Encoder

• Dimensions (ID) recognized as outlier dimensions for
12 times across all 24 layers: 2696;

• Dimensions (ID) recognized as outlier dimensions for
11 times across all 24 layers: 1463;

• Dimensions (ID) recognized as outlier dimensions for 9
times across all 24 layers: 456;

• Dimensions (ID) recognized as outlier dimensions for 8
times across all 24 layers: 248, 2313, 2463, 2830, 2833,
3001;

• Dimensions (ID) recognized as outlier dimensions for 7
times across all 24 layers: 34, 1072, 1284, 1845, 3898;

• Dimensions (ID) recognized as outlier dimensions for 6
times across all 24 layers: 297, 1012, 1327, 1988, 2283,
2680, 2707, 3789;

• Dimensions (ID) recognized as outlier dimensions for 5
times across all 24 layers: 854, 979, 1028, 1202, 2303,
3046;

• Dimensions (ID) recognized as outlier dimensions for
4 times across all 24 layers: 295, 379, 586, 792, 900,
1301, 1583, 2795, 3002;

• Dimensions (ID) recognized as outlier dimensions for 3
times across all 24 layers: 181, 739, 1154, 1478, 1601,
1891, 1941, 2020, 2023, 2082, 2218, 2508, 2538, 2673,
2775, 3266, 3651, 3660, 3766, 3909, 3982;

• Dimensions (ID) recognized as outlier dimensions for 2
times across all 24 layers: 19, 35, 124, 251, 540, 749,
998, 1208, 1291, 1599, 1776, 2175, 2244, 2826, 3107,
3152, 3483, 3624, 3633, 3743, 3907;

• Dimensions (ID) recognized as outlier dimensions for
1 times across all 24 layers: 105, 168, 171, 204, 206,
244, 285, 307, 418, 431, 465, 527, 579, 595, 645, 826,
892, 912, 924, 994, 997, 1024, 1093, 1099, 1107, 1116,
1158, 1258, 1375, 1376, 1392, 1430, 1544, 1563, 1589,
1597, 1603, 1640, 1684, 1702, 1741, 1747, 1788, 1850,
1895, 1901, 1964, 2001, 2018, 2076, 2142, 2144, 2149,
2162, 2167, 2200, 2212, 2321, 2405, 2417, 2452, 2491,
2612, 2698, 2730, 2816, 2845, 2861, 2874, 2891, 2958,
2993, 2999, 3025, 3037, 3153, 3163, 3222, 3240, 3285,
3296, 3327, 3353, 3372, 3509, 3594, 3702, 3774, 3778,
3782, 3797, 3801, 3857, 3873, 3940, 3951, 3961, 3968,
3980, 3991;

H.4.2 Decoder
• Dimensions (ID) recognized as outlier dimensions for

23 times across all 24 layers: 550;

• Dimensions (ID) recognized as outlier dimensions for
21 times across all 24 layers: 3280;

• Dimensions (ID) recognized as outlier dimensions for
20 times across all 24 layers: 2297;

• Dimensions (ID) recognized as outlier dimensions for
15 times across all 24 layers: 112, 339;

• Dimensions (ID) recognized as outlier dimensions for
14 times across all 24 layers: 3327;

• Dimensions (ID) recognized as outlier dimensions for
13 times across all 24 layers: 3874;

• Dimensions (ID) recognized as outlier dimensions for
12 times across all 24 layers: 303, 433, 2576, 3579,
3835;

• Dimensions (ID) recognized as outlier dimensions for
10 times across all 24 layers: 1426, 2257, 2316, 3604;

• Dimensions (ID) recognized as outlier dimensions for 9
times across all 24 layers: 1093, 1416, 2627;

• Dimensions (ID) recognized as outlier dimensions for 8
times across all 24 layers: 784, 961, 1154, 1310, 1421,
1799, 2008, 2339, 2724;

• Dimensions (ID) recognized as outlier dimensions for 7
times across all 24 layers: 45, 98, 109, 765, 927, 1409,
1723, 2685, 3462;

• Dimensions (ID) recognized as outlier dimensions for
6 times across all 24 layers: 703, 747, 909, 984, 1279,
1713, 3054, 3782, 3920;

• Dimensions (ID) recognized as outlier dimensions for
5 times across all 24 layers: 324, 600, 726, 877, 974,
1197, 1456, 1503, 1850, 2005, 2485, 2534, 2624, 2830,
2874, 3084, 3232, 3410, 3466, 3646, 3866, 3964;

• Dimensions (ID) recognized as outlier dimensions for
4 times across all 24 layers: 19, 410, 709, 962, 1088,
1658, 1760, 1900, 2299, 2493, 2514, 2693, 2938, 3158,
3169, 3588, 3627, 3903, 3917, 4027, 4072;

• Dimensions (ID) recognized as outlier dimensions for
3 times across all 24 layers: 257, 277, 489, 553, 628,
668, 831, 869, 876, 891, 1048, 1067, 1079, 1175, 1248,
1320, 1396, 1413, 1438, 1529, 1566, 1665, 1813, 1901,
1911, 1915, 1945, 2035, 2143, 2158, 2247, 2337, 2588,
2633, 2636, 2669, 2800, 2904, 2905, 3015, 3020, 3050,
3061, 3069, 3216, 3464, 3488, 3491, 3562, 3584, 3656,
3691, 3824, 3862, 3902, 3962, 3992;

• Dimensions (ID) recognized as outlier dimensions for 2
times across all 24 layers: 10, 18, 139, 206, 256, 265,
300, 328, 359, 367, 401, 418, 445, 448, 575, 608, 660,
661, 795, 819, 851, 856, 898, 943, 950, 968, 1098, 1107,
1116, 1198, 1232, 1259, 1302, 1441, 1442, 1472, 1505,
1519, 1534, 1597, 1624, 1642, 1686, 1712, 1740, 1816,
1825, 1849, 1853, 1887, 2054, 2079, 2080, 2081, 2122,
2142, 2146, 2205, 2232, 2236, 2255, 2336, 2358, 2452,
2464, 2500, 2556, 2563, 2665, 2705, 2711, 2721, 2804,
2815, 2833, 2859, 2964, 3138, 3192, 3207, 3217, 3226,
3228, 3285, 3294, 3338, 3342, 3397, 3398, 3418, 3426,
3553, 3624, 3818, 3836, 3855, 3886, 3913, 4000, 4036,
4051, 4063, 4080;
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• Dimensions (ID) recognized as outlier dimensions for
1 time across all 24 layers: 0, 4, 14, 26, 28, 48, 50, 52,
53, 55, 57, 81, 91, 108, 113, 114, 121, 131, 146, 156,
195, 199, 219, 240, 248, 250, 295, 302, 340, 363, 372,
376, 406, 411, 434, 437, 441, 454, 455, 467, 471, 475,
476, 487, 498, 526, 527, 528, 541, 566, 584, 596, 658,
669, 686, 697, 706, 719, 728, 743, 766, 772, 798, 821,
837, 844, 847, 884, 892, 914, 937, 940, 942, 948, 969,
973, 979, 983, 993, 998, 1009, 1024, 1038, 1039, 1043,
1044, 1069, 1081, 1082, 1111, 1131, 1137, 1169, 1177,
1178, 1185, 1191, 1285, 1298, 1303, 1314, 1315, 1336,
1344, 1350, 1364, 1372, 1381, 1399, 1412, 1429, 1435,
1447, 1466, 1478, 1481, 1506, 1511, 1526, 1527, 1540,
1545, 1556, 1580, 1585, 1586, 1608, 1614, 1631, 1633,
1646, 1667, 1683, 1699, 1700, 1706, 1721, 1734, 1745,
1768, 1785, 1787, 1793, 1794, 1817, 1824, 1826, 1837,
1843, 1846, 1847, 1865, 1867, 1874, 1885, 1917, 1929,
1952, 2001, 2007, 2015, 2017, 2039, 2040, 2060, 2071,
2083, 2090, 2100, 2109, 2112, 2115, 2124, 2170, 2187,
2190, 2211, 2214, 2218, 2243, 2245, 2259, 2262, 2278,
2287, 2300, 2315, 2320, 2325, 2354, 2357, 2372, 2374,
2378, 2390, 2405, 2470, 2496, 2501, 2530, 2569, 2586,
2587, 2590, 2607, 2626, 2652, 2660, 2670, 2677, 2684,
2689, 2690, 2694, 2696, 2698, 2708, 2712, 2714, 2722,
2743, 2748, 2751, 2777, 2791, 2792, 2803, 2810, 2818,
2837, 2856, 2863, 2876, 2887, 2898, 2907, 2917, 2918,
2947, 2989, 3016, 3025, 3036, 3075, 3078, 3085, 3086,
3094, 3106, 3107, 3121, 3154, 3172, 3173, 3179, 3182,
3202, 3211, 3227, 3240, 3246, 3252, 3313, 3318, 3322,
3353, 3367, 3412, 3435, 3436, 3452, 3453, 3467, 3481,
3495, 3535, 3547, 3559, 3567, 3569, 3577, 3586, 3609,
3637, 3638, 3670, 3692, 3704, 3712, 3717, 3718, 3719,
3721, 3739, 3744, 3746, 3747, 3753, 3775, 3793, 3794,
3806, 3810, 3821, 3825, 3841, 3879, 3880, 3882, 3892,
3910, 3929, 3931, 3976, 3980, 3982, 4028, 4056, 4058,
4061, 4077;

I Appendix: Code for the Emergent
Outlier Focused Distillation Loss
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def outlier_focused_distillation_loss(student , teacher , power =0.5):
# Compute EOFD loss for a given layer l.
# Input: batched teacher and student intermediate representation
# (H^t_l and H^s_l) tensors of shape (B, N, d_t or d_s)
# Input: EOFD power p

weights = calculate_weight(teacher , power=power)

squared_diff = (student - teacher) ** 2
weighted_squared_diff = squared_diff * weights
weighted_mse_loss = weighted_squared_diff.mean()
return weighted_mse_loss

def calculate_weight(teacher , power):
# teacher tensor of shape (B, N, d_t)
(batch_size , sequence_length , hidden_size) = teacher.shape

std_hidden = teacher.std(dim=(0, 1))
# of shape (d_t)

mean_std = std_hidden.mean()

std_scaled = std_hidden / mean_std
# of shape (d_t)

# Scaling , if power=0, should be vanilla MSE loss
std_scaled = std_scaled ** power

# of shape (d_t)

# Broadcasting the new weights to the original shape
std_scaled_unsqueezed = std_scaled.unsqueeze (0).unsqueeze (0)

# of shape (1, 1, d_t)
weights = std_scaled_unsqueezed.expand(batch_size , \

sequence_length , hidden_size)
# of shape (B, N, d_t)

return weights

Figure 12: PyTorch Code for the proposed Emergent Outlier Focused Distillation (EOFD) Loss.
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