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Abstract

Large language models (LLMs) have shown
impressive capabilities across diverse settings,
but still struggle as the length and complex-
ity of the context increases. To address this
challenge, we propose Thinking Recursively
and Dynamically (ThReaD). THREAD frames
model generation as a thread of execution that,
based on the context, can run to completion or
dynamically spawn new threads. By spawn-
ing, threads can offload work (e.g., thinking,
retrieving information) to child threads, which
only return tokens needed for the parent thread
to do its work. We apply THREAD in the set-
tings of LLM task solving and question an-
swering, where the dynamic threading allows
the model to recursively decompose the given
task or question into progressively simpler sub-
problems that can be solved by separate child
threads. We test THREAD, implemented us-
ing a few-shot learning approach, on diverse
benchmarks for agent tasks and data-grounded
question answering. THREAD achieves state-
of-the-art performance with GPT-4 and GPT-
3.5 on these benchmarks, including ALFWorld,
TextCraft, and WebShop, along with two new
benchmarks, DataCommons QA and MIMIC-
III ICU QA. In addition, THREAD outperforms
existing frameworks by 10% to 50% absolute
points with smaller models, including Llama-3-
8b and CodeLlama-7b.

1 Introduction

Large Language Models (LLMs) have shown suc-
cess in diverse settings (Wei et al., 2022; Huang and
Chang, 2023), but their performance degrades as
context length and complexity grows (Dziri et al.,
2023; Liu et al., 2024; Qin et al., 2023). This con-
straint limits their efficacy in settings that require
more work (thinking, retrieving information, an-
alyzing, etc.) than can fit into a concise line of
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generation. To address this limitation, we propose
Thinking Recursively and Dynamically (ThReaD).

THREAD is a general framework where model
generation is treated as a thread of execution that,
based on the context, can independently run to
completion or dynamically spawn new threads in a
recursive fashion. When a thread spawns a child,
the child generates conditioning on context that de-
rives from the parent’s token sequence. Spawning
child threads allows work, such as internal thinking
or interacting with an external environment, to be
completed on behalf of the parent, without directly
adding to the parent’s context. Child threads re-
turn only the information (tokens) needed for the
parent to complete its work. In effect, spawning
enables the model to dynamically adapt the amount
of work or intermediate computational steps used
to produce different parts of its token sequence.

The synchronization and spawning mechanisms
of THREAD can vary based on the setting. Figure 1
shows an example of applying THREAD in a syn-
chronous setting, where a parent waits for a child
in a form analogous to Thread.join() in multi-
threaded programming. In this example, a parent
thread pauses generation until the child execution
completes and the child returns output tokens that
are appended directly to the token sequence of the
parent before the parent proceeds generation.

THREAD improves the flexibility of model gen-
eration, allowing the model to adapt, through recur-
sive spawning, the amount of work it does based
on the given problem, without overextending its
context. Importantly, this unfolds with limited
need for explicit rules or hard coded logic. Instead,
THREAD relies on the model’s ability to infer the
appropriate continuation given the context of each
thread at the time of execution. Finally, THREAD

is agnostic to the type of sequence. Depending on
the underlying model, THREAD can be applied in
varied settings, including multi-modal applications,
and fulfill varied purposes (e.g., carrying out calcu-
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Figure 1: THREAD with join synchronization. THREAD frames model generation as an execution thread that can
dynamically spawn new threads. In the example with join synchronization, when a thread spawns a child, it pauses
generation until feedback is returned. Child threads generate starting from context derived from their parent’s token
sequence. When the child completes, it returns output tokens (colored bars), which are added to the context of the
parent before it continues generating. ϕ and ψ are functions that control information flow from parent to child and
from child to parent, respectively, by defining the tokens that are propagated based on the thread’s token sequence.

lations, generating thoughts, retrieving information,
robot manipulation).

In this paper, we consider THREAD in the set-
tings of agent tasks (Figure 2a) and question an-
swering (Figure 2b). In these settings, THREAD en-
ables the LLM to recursively decompose a task, or
question, into progressively simpler sub-problems
that can be solved by child threads in a compart-
mentalized manner. A child thread infers the spec-
ifications of its sub-problem from its parent’s to-
ken sequence. If needed, child threads can trou-
bleshoot their sub-problem, and spawn their own
threads, all without distracting their parent. We test
THREAD, using a few-shot learning approach, on
benchmarks consisting of question-answering and
agent tasks. For these problems, we apply THREAD

with join synchronization, allowing parent threads
to see feedback from child threads before defining
their next step. For example, in the agent setting,
if the model is given the task of cleaning a bowl
and putting it on the countertop, the main thread
may spawn a child with the sub-task of finding a
bowl. This child can then spawn further threads
for handling the complexities of navigating to and
checking different locations for the bowl, with each
thread returning only the information needed for its
parent to proceed with its sub-task. Based on the
feedback with regard to finding the bowl, the main
thread can spawn a new thread to re-attempt the
sub-task or spawn threads to execute the remaining
sub-tasks (i.e., washing the bowl, putting the bowl
on the countertop).

THREAD has several advantages over existing

frameworks in these settings. To start, THREAD

addresses limitations of methods that require the
model to solve the problem in one line of context
(Yao et al., 2023; Shinn et al., 2024; Sun et al.,
2023a) by allowing the model to dynamically of-
fload work by spawning child threads. Further,
unlike methods for task decomposition (Khot et al.,
2023; Sun et al., 2023b; Prasad et al., 2023; Wang
et al., 2024, 2023), THREAD enables the model to
adapt its decision-making in real time as it receives
feedback from each step, as depicted in Figure 2.
Existing methods either do not allow for plan adap-
tation (Sun et al., 2023b; Wang et al., 2023) or
only adapt plans by calling pre-existing sub-task
handlers (Khot et al., 2023) or by adding more
sub-steps within the existing plan when a sub-task
fails (Prasad et al., 2023; Wang et al., 2024). Fi-
nally, THREAD provides a more unified framework
compared to these methods, which require separate
prompting mechanisms for separate planner and
executor modules. Instead, THREAD can be imple-
mented with the same few-shot prompt used for
every thread at every step of the task completion.

We evaluate THREAD on agent tasks and data-
grounded question answering. THREAD signifi-
cantly outperforms prior methods, achieving state-
of-the-art performance with GPT-4 and GPT-3.5
on ALFWorld, TextCraft, and WebShop, along
with two new benchmarks, DataCommons QA and
MIMIC-III ICU QA. THREAD also shows success
with smaller models, outperforming prior methods
by 10% to 50% absolute points across the bench-
marks with Llama-3-8b and CodeLlama-7b.
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2 THREAD Framework

THREAD frames model generation as an execution
thread that, given the context, can run to comple-
tion or spawn new threads. A thread consists of
generating with a model, G, given a specific start-
ing context, c. For the main thread, c is the initial
seed context, c0 (e.g., context provided by a user).
For each child thread, c derives from the parent’s
token sequence. A thread continues until it meets
some termination criteria, such as a stop token.

Algorithm 1 THREAD with join synchronization

function THREAD(c, Y )
while True do

Y = Y +G(c+ Y )
if Y spawns a child thread then

Y = Y + ψ( THREAD(ϕ(Y ), [ ] ) )
else if Y ends the thread then

return Y

2.1 THREAD with Join Synchronization
We present THREAD in a setting where, analogous
to how the join() method is used in multithreaded
programming, a parent thread waits for the exe-
cution of the child to complete before proceeding.
When the child execution completes, the child’s
output is returned directly to the parent. In this
setting, THREAD can be implemented using the
recursive function shown in Algorithm 1. The func-
tion takes two inputs: the context for the thread, c,
and the tokens generated so far by the thread, Y .
We treat a token sequence as a list of tokens.

THREAD begins with c = c0 and Y = [ ]. The
model generates, G(c + Y ), one token at a time
conditioning on the given context, c, appended with
the growing sequence of generated tokens, Y .

If Y spawns a child thread, then a new thread
is created with THREAD(ϕ(Y ), [ ] ) where Y for
the child thread is initialized as an empty list and
c is based on the token sequence of the parent,
ϕ(Y ). The output tokens of the child thread are
appended to the parent’s token sequence and the
parent continues generating. If Y ends the thread,
then the thread returns Y (its full token sequence).

The ϕ function defines the context for a child
thread based on the full token sequence of the par-
ent thread at the time the child is spawned, includ-
ing tokens directly generated by the parent or re-
turned as output from previous child threads of that
parent. The ψ function defines the output tokens of
a child thread based on its full token sequence at

the time the thread ends, including tokens directly
generated by the child or returned as output from
threads that it spawned.

2.2 Alternative Synchronization and
Spawning Mechanisms

Above, we show THREAD in a setting where a
parent always waits for a child to complete and
the child’s output is always appended directly to
the token sequence of the parent before the par-
ent proceeds. However, depending on the set-
ting, THREAD can involve varied mechanisms for
synchronization and spawning and, in scenarios
without sequential dependencies, can include asyn-
chronous multithreading, allowing parent threads
to continue generating without waiting for child
threads to complete (improving overall efficiency).

2.3 Defining Parent-Child Information
Exchange with ϕ and ψ

The functions ϕ and ψ control the propagation of
information from parent to child and from child
to parent, respectively. Similar to the synchroniza-
tion and spawning mechanisms mentioned above,
these functions can vary based on the setting in
which THREAD is implemented. For example, ϕ
and ψ can range from simple functions that com-
press or decompress information in the token se-
quence to entirely separate models that transform
the sequence in more complex ways. In the section
below, we describe how we define ϕ and ψ when
implementing THREAD in the settings of agent
tasks and question answering.

2.4 Dynamically Adapting Intermediate Work
in Token Generation

The THREAD framework enables a thread of model
generation to spawn a child thread to produce out-
put tokens that can serve as future tokens for the
parent. In effect, this enables the model to adapt,
as needed, the amount of work or computational
steps used to produce different tokens. The inter-
mediate work added through recursive spawning
can range from deeper thinking and reasoning to
interacting with external environments or sources
of information. As depicted in Figure 3, the work
associated with each part of the parent’s token se-
quence is represented by a thread tree organized
based on connections between threads. These trees
reflect how threads interact to form output tokens
and the computational work associated with each
component of the overall model generation.
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You task is to...

To complete this task,
I need to... Subtask 1 =>
[Subtask 1 feedback]
<=

Based on the feedback, 
I need to... Subtask 2 =>
...
...
...
Based on the feedback, 
the task is complete.
END

**TASK COMPLETE**

I need to... Subtask 1

To complete this task, 
I need to... Subtask 1.1 =>
[Subtask 1.1 feedback]
<=

Based on the feedback, 
I need to... Subtask 1.2 =>
...
...
...
Based on the feedback, 
the task is complete.
print(Subtask 1 feedback)
END

I need to... Subtask 1.1

To complete this task,
I need to... 
...
...
...
print(Subtask 1.1 feedback)
END

Thread 0 (depth: 0)

Thread 1 (depth: 1)

Thread 1.1 (depth: 2)

thread contextYour task is to... Task

I need to... Subtask 1

I need to... Subtask 1.1

2

You task is to...
The Information to answer 
this question is shown 
below: =>
[Information]
<=

Based on this information, 
the Answer is =>
...
...
END

**ANSWER COMPLETE**

I need to... Subtask 1

The RetrievedData with this 
information is =>
[RetrievedData]
<=

The ProcessedData after 
processing the data is =>
...
...
print(Information)
END

I need to... Subtask 1.1

resp = requests.post(...)
data1 = ...
...
...
print(RetrievedData)
END

Thread 0 (depth: 0)

Thread 1 (depth: 1)

Thread 1.1 (depth: 2)

What is the...?  Question

The Information to answer 
this question is shown 
below:

The RetrievedData with this 
information is 

2

Special tokens:

   listen token that 
      marks the start of 
    returned feedback        

   marks the end of 
    returned feedback      

 END  ends thread

(a)

(b)
=>

<=

Figure 2: When given a task (a) or question (b), THREAD can be used to help the model, through recursive spawning,
decompose the problem into progressively simpler sub-problems that are solved by child threads. In these examples,
the context for a child thread is based on the last line of the parent’s token sequence.

3 Applying THREAD for Agent Tasks and
Question Answering

In this paper, we test THREAD in the settings of
question answering and agent tasks with LLMs,
where THREAD enables the model to dynamically
decompose the given problem into simpler sub-
problems that are completed by separate threads.
We apply THREAD using an in-context learning
approach, where the same few-shot prompt is used
for every thread at every step of the task comple-
tion or question answering. Since these problems
benefit from the model adapting to feedback as it
defines its next steps, we apply THREAD with the
join synchronization described above.

Thread spawning and termination based on
special stop tokens. We implement a spawning
mechanism using a special stop token, ωlisten,
which pauses the thread generation and marks
the start of the output the thread expects from the
child. The context for the child thread is defined
by ϕ based on the token sequence of the parent
that occurs before ωlisten. A thread ends when it
generates the end token, ωend. As exemplified in
Figure 2, we use => as ωlisten and END as ωend.

Implementing THREAD with few-shot learning.
We leverage a few-shot learning approach to
implement THREAD. The few-shot examples
are comprised in a single prompt with examples
of successful spawning and problem solving at
different thread depths, including how the token
ωlisten should be used. As a result, the approach
does not require explicit rules to define when
new threads should be spawned and how parent
threads should respond to feedback from a child.
Instead, these mechanisms are all implied by
the examples provided in the few-shot prompt.
Changing the spawning and parent-child dynamics
simply requires modifying the prompt. All threads
are provided the same few-shot prompt for every
step of the problem completion. Thus, THREAD

only requires generating a single prompt for a
given setting. This prompt, q, is prepended to the
context for each thread, G(q+ c+Y ), forming the
full context from which the thread will generate.

Defining ϕ and ψ. As described above, the func-
tions ϕ and ψ control information flow from parent
to child and from child to parent, respectively. The
function ψ returns the result from a child thread
based on its full token sequence. As depicted in Fig-

8421



ure 2, we implement ψ as a function that returns
the tokens included in the print statement at the
end of the child thread’s token sequence. In addi-
tion, ψ appends the token <= to the output to mark
the end of the child’s output within the parent’s
token sequence. We implement ϕ as a function
that extracts the last line of the parent’s token se-
quence to create the context for the child thread.
To improve the ability of parent and child threads
to efficiently organize, use, update, and propagate
shared information, we leverage the coding-based
skills of the model to define variables that repre-
sent pieces of information that are important for
the given problem. For example, if the task is to
find an item on an e-commerce site that has certain
attributes, the model can define a variable, such as
obj_attributes, and spawn a child to search for
items with obj_attributes instead of having to
list all of the attributes. Then, when ϕ processes
the token sequence from the parent, it instantiates
the variables, allowing the child to see, for exam-
ple, the full list of attributes. We also test THREAD

implemented without using these variables, with
results shown in the appendix.

Threads performing actions in an environ-
ment. Threads can listen for feedback when per-
forming an action in an environment the same way
they listen for feedback from a child thread. They
simply generate tokens that represent the action
and then produce the token ωlisten to listen for
feedback from the environment. The action, a, is
then executed in the environment, E, and the out-
put, o = E(a), is appended to the thread’s token
sequence the same way it is done for the feedback
from a child thread (Algorithm 2). The thread can
then continue generating based on the feedback.

4 Experiments

We evaluate THREAD on 5 benchmarks for agent
tasks and question answering using large and small
models, including GPT-4, GPT-3.5, Llama-3-8b,
Llama-2-7b, and CodeLlama-7b. For each bench-
mark, we use the same prompt for all models.

We include details regarding models, prompts,
and experiments (including ablations) in the ap-
pendix. Examples of the prompts are shown in Ap-
pendix G. Details regarding the QA benchmarks
are provided in Appendix F. We release all code
and data at https://github.com/philipmit/
thread.

4.1 ALFWorld
ALFWorld is a suite of text-based environments,
implemented in TextWorld, designed to align with
the embodied ALFRED benchmark (Shridhar et al.,
2021). It includes 6 different task types that instruct
the agent to accomplish a goal by interacting with
a simulated household with actions defined in text.
Following Yao et al. (2023), we evaluate an agent
on 134 unseen evaluation games, including six task
types: Pick, Clean, Heat, Cool, Look, and Pick2.
Like previous methods, such as ReAct (Yao et al.,
2023), we implement THREAD with one few-shot
prompt per task. We also test THREAD using task-
general prompting.

Results. THREAD significantly outperforms all
prior methods (Tables 1 and 2), including those that
require the agent to have access to external memory
consisting of past experiences with the task. With
GPT-4, THREAD achieves a combined success rate
of 98.5% with 100% success in 4 of the 6 tasks.
With GPT-3.5, THREAD shows a combined success
rate of 95.5%, outperforming all methods by over
9% absolute points. With smaller models (Llama-
3-8b and CodeLlama-7b), THREAD improves upon
prior methods by 30% to 55% points.

Finally, Table 8 shows the results when testing
THREAD with task-general prompting. To imple-
ment the task-general prompt, we split the prompt
into one set of examples for the main thread and a
second set of examples for all other threads (with
the same sets of examples used for all tasks). We
see that GPT-3.5 achieves the same combined suc-
cess rate with the task-general prompting as it does
with the task-specific prompting. Further, while
the performance of Llama-3-8b and CodeLlama-7b
degrades with task-general prompting, it remains a
significant improvement over task-specific prompt-
ing with prior methods (Table 2).

4.2 TextCraft
TextCraft is a text-based environment inspired by
the crafting component of Minecraft (Prasad et al.,
2023). The tasks involve building Minecraft items
with crafting commands using available resources
from the environment. Following the work of
Prasad et al. (2023), we evaluate THREAD on the
test set containing 200 samples. We implement
THREAD using a single few-shot prompt and com-
pare its performance to previous methods used for
TextCraft (Prasad et al., 2023; Wang et al., 2024;
Shinn et al., 2024; Yao et al., 2023).
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Table 1: ALFWorld task-specific success rates (%). Results are separated based on whether the method requires
the agent to access to external memory. *As reported in Kagaya et al. (2024) (RAP) and Fu et al. (2024) (AutoGuide).

Model Requires
ext. mem. Method All Pick Clean Heat Cool Look Pick2

GPT-3.5

Yes

Reflexion (Shinn et al., 2024) 76.1 75.0 80.6 69.6 76.2 83.3 70.6
AdaPlanner (Sun et al., 2023a) 82.8 91.7 87.1 82.6 95.2 50.0 82.4
RAP* (Kagaya et al., 2024) 85.8 95.8 87.1 78.3 90.5 88.9 70.6
AutoGuide* (Fu et al., 2024) 79.1 - - - - - -

No
ReAct (Yao et al., 2023) 53.7 45.8 48.4 69.6 66.7 55.6 35.3
DecomP (Khot et al., 2023) 84.3 91.7 87.1 82.6 90.5 83.3 64.7
ADaPT (Prasad et al., 2023) 82.1 87.5 83.9 78.3 90.5 83.3 64.7
THREAD 95.5 95.8 93.5 95.7 95.2 100 94.1

GPT-4

Yes RAP* (Kagaya et al., 2024) 94.8 95.8 90.3 100 95.2 100 88.2

No
ReAct (Yao et al., 2023) 87.3 83.3 77.4 95.7 85.7 100 88.2
DecomP (Khot et al., 2023) 89.6 87.5 87.1 91.3 90.5 94.4 88.2
ADaPT (Prasad et al., 2023) 91.0 91.7 87.1 95.7 90.5 94.4 88.2
THREAD 98.5 100 100 100 95.2 100 94.1

Table 2: ALFWorld success rates (%) for all tasks combined.

Requires
ext. mem. Method Llama-3-8b Llama-2-7b CodeLlama-7b

Yes
Reflexion (Shinn et al., 2024) 25.4 11.2 27.6
AdaPlanner (Sun et al., 2023a) 28.4 11.9 29.9

No
ReAct (Yao et al., 2023) 20.1 12.7 23.1
DecomP (Khot et al., 2023) 37.3 14.2 33.6
ADaPT (Prasad et al., 2023) 30.6 15.7 35.1
THREAD 71.6 22.4 91.0

Results. THREAD outperforms prior methods by
at least 20% absolute points with GPT-3.5 and at
least 40% points with Llama-3-8b and 30% points
CodeLlama-7b (Table 3). Further, Llama-3-8b with
THREAD outperforms GPT-3.5 with all prior meth-
ods and CodeLlama-7b with THREAD outperforms
GPT-3.5 with all prior methods except TDAG.

4.3 WebShop

WebShop is an online shopping environment with
over a million real-world products (Yao et al.,
2022). The benchmark requires the model to inter-
act with the website to purchase a product based
on specifications provided by a user. The evalua-
tion metrics include the success rate, which is the
percentage of products that were purchased with
full success, and the score, which is the average
percentage of desired attributes covered by the pur-
chased items. Following prior work (Shinn et al.,
2024; Prasad et al., 2023; Zhou et al., 2023), we
evaluate THREAD on a test set of 100 instructions.

Results. Table 4 shows the success rate and
score for each method. We again separate the re-
sults based on whether the method requires the
model to have access to external memory. With
GPT-3.5, THREAD outperforms other prompt-only
methods by an absolute 4% in success rate and
over 10% in score and outperforms RAP (Kagaya
et al., 2024) by 1% in success rate (with a simi-
lar score). THREAD achieves an absolute 10%, or
greater, improvement in success rate with Llama-3-
8b and CodeLlama-7b. Llama-3-8b with THREAD

achieves a higher success rate than GPT-3.5 with
all prior methods, with the exception of RAP.

4.4 DataCommons QA

DataCommons QA is a benchmark consisting of
questions that can be answered using data provided
by Google DataCommons (Guha, 2019) https:
//datacommons.org. The questions range from
comparing statistics in different locations to mak-
ing predictions regarding future trends. The test
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Table 3: TextCraft success rate (%). *As reported in Prasad et al. (2023).

Method GPT-3.5 Llama-3-8b Llama-2-7b CodeLlama-7b

Reflexion* (Shinn et al., 2024) 32.0 - - -
ReAct (Yao et al., 2023) 20.5 12.5 8.0 10.5
DecomP (Khot et al., 2023) 68.5 47.0 12.0 38.5
ADaPT (Prasad et al., 2023) 52.5 23.5 12.0 18.0
TDAG (Wang et al., 2024) 73.5 48.5 14.0 31.0
THREAD 93.5 92.0 20.0 71.0

Table 4: WebShop success rate (SR; %) and score (%).

Requires
ext. mem. Method GPT-3.5 Llama-3-8b Llama-2-7b CodeLlama-7b

SR Score SR Score SR Score SR Score

Yes

Reflexion (Shinn et al., 2024) 38 64.4 32 59.8 8 19.7 17 57.3
LATS (Zhou et al., 2023) 40 76.0 34 61.5 12 30.1 21 60.7
RAP* (Kagaya et al., 2024) 48 76.1 - - - - - -
AutoGuide* (Fu et al., 2024) 46 73.4 - - - - - -

No

ReAct (Yao et al., 2023) 37 59.5 31 54.1 10 18.5 17 49.2
DecomP (Khot et al., 2023) 43 58.7 35 56.3 14 29.6 21 57.1
ADaPT (Prasad et al., 2023) 44 60.0 35 58.2 13 28.7 21 56.4
TDAG (Wang et al., 2024) 45 64.5 37 63.5 14 29.8 23 58.5
THREAD 49 76.3 47 70.4 20 48.5 40 68.9

set includes a total of 140 questions. We imple-
ment THREAD with a few-shot prompt and com-
pare its performance to three baselines: Reflex-
ion (Shinn et al., 2024), Natural Language Embed-
ded Programs (NLEP) (Zhang et al., 2023), and
NLEP+ReAct, an extension of NLEP that allows
the model to evaluate intermediate outputs of its
analysis as it answers the question.

Results. Table 5 shows the accuracy of each
method on DataCommons QA. THREAD outper-
forms prior methods by over 10% absolute points
with GPT-3.5, Llama-3-8b, and CodeLlama-7b.
Llama-3-8b with THREAD outperforms GPT-3.5
with all prior methods.

4.5 MIMIC-III ICU QA

The MIMIC-III ICU QA benchmark consists of
patient-focused questions based on clinical time-
series data made available by MIMIC-III (Johnson
et al., 2016). The benchmark reflects a setting in
which a healthcare provider can ask natural lan-
guage questions about patients in the intensive care
unit (ICU) and receive an answer from the language
model based on the relevant patient data. The test
set includes 160 questions. Similar to above, we im-
plement THREAD with a few-shot prompt and com-

pare its performance relative to Reflexion (Shinn
et al., 2024), NLEP, and NLEP+ReAct.

Results. As shown in Table 6, THREAD signifi-
cantly outperforms prior methods across all models
except Llama-2-7b. All methods show the lowest
performance with Llama-2-7b, which is consistent
across all benchmarks.

5 Related Work

The THREAD framework relates to prior ap-
proaches for dynamically adapting work, or compu-
tational steps, used during model generation. Pre-
vious approaches for dynamically adapting compu-
tation based on the given problem require special
training (Goyal et al., 2023; Nye et al., 2022) or
novel model architectures (Graves, 2016; Banino
et al., 2021; Dehghani et al., 2018). THREAD pro-
vides a more general and flexible framework that,
as we show, can be applied without modifications
to the underlying model architecture and without
further training. In addition, unlike methods that
allow the model to adapt the amount of internal
computations (Goyal et al., 2023; Graves, 2016;
Banino et al., 2021; Dehghani et al., 2018), the
intermediate work used to supplement model gen-
eration with THREAD can involve work that ex-
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Table 5: DataCommons QA accuracy (%).

Method GPT-3.5 Llama-3-8b Llama-2-7b CodeLlama-7b

Reflexion (Shinn et al., 2024) 37.9 24.3 10.7 20.7
DecomP (Khot et al., 2023) 64.3 57.9 15.7 31.4
NLEP (Zhang et al., 2023) 28.6 21.4 11.4 19.3
NLEP+ReAct 41.4 27.1 14.3 24.3
THREAD 77.1 67.9 22.1 62.1

Table 6: MIMIC-III ICU QA accuracy (%).

Method GPT-3.5 Llama-3-8b Llama-2-7b CodeLlama-7b

Reflexion (Shinn et al., 2024) 38.1 19.4 8.8 16.9
DecomP (Khot et al., 2023) 61.9 51.3 13.1 30.6
NLEP (Zhang et al., 2023) 35.6 17.5 8.1 15.6
NLEP+ReAct 43.1 23.8 12.5 21.9
THREAD 71.3 61.9 18.8 58.1

tends beyond internal thinking, such as retrieving
information or interacting with an external envi-
ronment. In addition, THREAD allows for greater
interpretability, since all of the intermediate work
is performed by generating meaningful tokens.

In this paper, we apply THREAD in a setting
where it improves the ability of LLMs to decom-
pose a given problem into simpler sub-problems.
There has been significant prior work involving
the decomposition of problems with neural mod-
ular modeling architectures (Andreas et al., 2016;
Talmor and Berant, 2018; Min et al., 2019; Jiang
and Bansal, 2019; Gupta et al., 2019; Perez et al.,
2020; Khot et al., 2021). Later work has used fine-
tuning or in-context learning with modern LLMs
for decomposition with multi-step tasks (Khot et al.,
2023; Wang et al., 2023), mathematical reasoning
(Gao et al., 2023; Lee and Kim, 2023), and program
synthesis (Murali et al., 2018; Nye et al., 2019;
Zheng et al., 2023). To handle complex tasks, a
more recent approach, called ADaPT, has improved
upon these methods by using a planner to further
decompose a task when a failure is encountered
(Prasad et al., 2023), which was further extended
to a multi-agent setting with TDAG (Wang et al.,
2024). Unlike prior methods, such as Decomposed
Prompting (Khot et al., 2023), ADaPT and TDAG
enable the model to adapt a plan upon task fail-
ure. In contrast to these approaches, THREAD has
the advantage of allowing the model to adapt its
decision-making in real time as it receives feedback
from each step. With THREAD, each step of the

plan is specified only after receiving feedback from
the previous step. In addition, THREAD enables the
model to flexibly specify and, if needed, re-specify
sub-tasks when a sub-task fails or when unexpected
feedback is returned. Finally, THREAD, which uses
the same prompting for every thread at every step
of the problem, provides a more unified framework
than ADaPT and TDAG, which involve separate
prompting and few-shot examples for the “planner”
and “executor” modules. With these methods, the
planner module outlines a full plan and the executor
follows all steps of the plan. If the executor fails,
the planner is tasked with further decomposing the
failed step into more sub-steps. Instead of outlin-
ing a full plan and attempting all steps, THREAD

involves specifying one step, allocating this to a
child thread, and receiving feedback from the child
thread before proceeding.

6 Conclusion

We introduce THREAD, a general framework in
which model generation is treated as a thread of
execution that can dynamically offload work, such
as thinking or retrieving information, by spawning
new threads. THREAD enables a model to adapt,
through recursive spawning, the amount of inter-
mediate work it uses to produce different parts of
its token sequence. We apply this framework in
the settings of agent tasks and question answering.
We show that THREAD, implemented using a few-
shot learning approach, achieves state-of-the-art
performance on diverse benchmarks.
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Limitations

The implementation of THREAD in this paper does
not involve any explicit mechanisms for error han-
dling and instead relies on the inherent reasoning
ability of LLMs to respond to unexpected feedback
from child threads or from the environment. An
advantage of THREAD is that individual threads
can fail without directly affecting other threads.
However, the context necessary to self-correct may
be lost if error reporting is not handled appropri-
ately. More work is needed to develop robust error
detection and recovery mechanisms to ensure that
the information necessary for self-correction is pre-
served and utilized effectively. In addition, our
implementation of THREAD involves limited com-
munication between the parent and child threads,
where the context for the child thread is based on
the last line of the parent’s token sequence. This
can result in the child missing information that
could help with its work, leading to less efficient or
effective generation. Overall, more work is need to
improve the propagation of information, as defined
by the functions ϕ and ψ, between parent and child
threads.

Ethical Statement

In this work, we show how THREAD can be ap-
plied to improve LLM agent task completion and
question answering. LLMs are being increasingly
deployed to autonomously interact with external
environments and humans. By improving this ca-
pacity, our work has the potential for amplifying
risk associated with automated decision-making
or facilitate harmful use of LLMs. Addressing
these risks requires careful consideration of ethical
guidelines, robustness checks, and transparency in
algorithm deployment to ensure that advancements
in LLMs contribute positively to societal welfare.
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Figure 3: THREAD allows model to adapt amount of supplemental work used to produce tokens.

A Illustration of Intermediate Work used
to Produce Tokens

Figure 3 illustrates how THREAD enables the
model to dynamically adapt the amount of work or
computational steps used to produce different parts
of its token sequence. The illustration is based
on the Thread 0 from Figure 1. The “supplemen-
tal work” for a token reflects the amount of addi-
tional tokens, generated by spawned threads, used
to produce each token within Thread 0. The work
associated with each part of the token sequence is
represented by a thread tree organized based on con-
nections between parent and child threads. These
trees reflect how threads interact to form output
tokens and the computational work associated with
each component of the overall model generation.

B Implementing THREAD for Agent
Tasks and Question Answering

We release all code and data at https://github.
com/philipmit/thread. As described in section
3, we implement THREAD with join synchroniza-
tion for the problems evaluated in this paper. We
implement a spawning mechanism using a special
stop token, ωlisten. A thread ends when it generates
the end token, ωend. We use => as ωlisten and END
as ωend.

We implement THREAD in each setting using a
fixed few-shot prompt showing examples of suc-
cessful spawning and problem solving at different
thread depths. All threads are provided the same
few-shot prompt for every step of the problem com-
pletion. This prompt, q, is prepended to the context,
c = q+ c, for each thread, forming the full context
from which the thread generates.

As shown in Algorithm 2 below, threads can get
feedback from the environment the same way they
get feedback from a child thread. They generate
tokens that represent the action and then produce

the token ωlisten to listen for feedback from the
environment. As shown in Algorithm 2, the action,
a, is executed in the environment, E, and the out-
put, o = E(a), is appended to the thread’s token
sequence before it continues generation. The func-
tion ξ parses the action from the token sequence.
As with prior methods such as ReAct (Yao et al.,
2023), actions are specified following the ‘>’ token.

Algorithm 2 THREAD with join synchronization
for tasks involving actions in environment

function THREAD(c, Y )
while True do

Y = Y +G(c+ Y )
if Y performs an action then

a = ξ(Y )
o = E(a)
Y = Y + o

else if Y spawns a child thread then
Y = Y + ψ( THREAD(ϕ(Y ), [ ] ) )

else if Y ends the thread then
return Y

To ensure consistency across benchmarks and
with prior work, we use Meta-Llama-3-8B
for Llama-3-8b, Llama-2-7b-hf for Llama-
2-7b, and CodeLlama-7b-hf for CodeLlama-
7b available on Huggingface (Wolf et al.,
2019) and use gpt-4-0613 for GPT-4 and
gpt-3.5-turbo-instruct for GPT-3.5 from the
OpenAI API, with the temperature set to 0 for all
experiments.

C Additional Experiments with GPT-3.5

Table 7 shows the mean and standard error of the
performance of THREAD with GPT-3.5 across 5
runs on each benchmark. Overall, the results are
consistent across multiple runs. Table 7 also shows
the average and max thread depths for each task.
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Table 7: Mean and standard error of THREAD performance and thread depths with GPT-3.5.

Benchmark Mean (Std. Err.) Avg. thread depth Max thread depth

DataCommons QA 76.7 (.17) 4.1 6
MIMIC-III ICU QA 71.4 (.36) 4.3 6
ALFWorld 95.7 (.28) 3.7 7
TextCraft 93.7 (.37) 5.8 10
WebShop 48.6 (.40) 3.6 7

Table 8: ALFWorld task-specific success rates (%) using task-general prompting with THREAD.

Model All Pick Clean Heat Cool Look Pick2

GPT-3.5 95.5 100 96.8 82.6 95.2 100 100
Llama-3-8b 49.3 58.3 38.7 56.5 57.1 72.2 11.8
CodeLlama-7b 61.9 41.7 87.1 65.2 61.9 38.9 64.7

D Task-general Prompting for ALFWorld

Table 8 shows the results when testing THREAD

with task-general prompting in ALFWorld. To
implement the task-general prompt, we split the
prompt into one set of examples for the main thread
and a second set of examples for all other threads.
The same sets of examples used for all tasks. GPT-
3.5 achieves the same combined success rate with
the task-general prompting as it does with the task-
specific prompting. Further, while the performance
of Llama-3-8b and CodeLlama-7b degrades with
task-general prompting, it remains a significant im-
provement over task-specific prompting with prior
methods (Table 2).

E Error and Ablation Analysis

E.1 Error Types

To identify what types of errors THREAD reduces,
we classify the errors that are responsible for each
method’s failures. Descriptions and examples of
each error type are provided in Tables 9 and 10
for the agent tasks and Tables 11 and 12 for the
QA tasks. We classified these errors through hand
review of each failure case, where the first error
type to occur within the failure case was identified
as the error type responsible for the failure. Figures
4a, 4b, 5, and 6a show the error counts across dif-
ferent methods and tasks. We focus this analysis on
the prompt-only methods to provide a more clear
evaluation of how the novel aspects of THREAD

change performance relative to other methods that
leverage few-shot learning.

E.2 Ablations
Figures 4c, 4d, and 6b show how the error counts
change when applying the following three modifi-
cations to THREAD:

1. Removing the variables used by parent and
child threads to manipulate and organize
shared information.

2. Replacing ϕ with a function that returns the
parent thread’s full token sequence.

3. Using a separate prompt for Thread 0 (which
performs the initial task decomposition) in-
stead of using the same few-shot prompt for
all threads.

E.3 Agent Tasks
Task decomposition and flexible sub-task spec-
ification reduce failures caused by inadequate
plans. In Figures 4a and 4b, we see that the meth-
ods that involve task decomposition (i.e., Decom-
posed prompting, ADaPT, and THREAD) show
fewer failures that are caused by inadequate plan-
ning. This is likely because there is a dedicated
line of reasoning for generating the plan, instead of
it being part of the single line of model generation
that is responsible for both defining the plan and
carrying out the steps of the plan, like in ReAct.

We see that THREAD, which allows for flexi-
ble sub-task specification, further reduces failures
caused by inadequate planning. This is due to
the fact that, when a child thread fails, the parent
thread can accommodate the child thread’s feed-
back, adapt the sub-task specification, and spawn a
new thread. Prior methods do not allow for this flex-
ible sub-task re-specification, as they either require
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the model to select from a fixed set of pre-defined
sub-task handlers (e.g., Decomposed Prompting)
or do not accommodate sub-task feedback when
handling failures (e.g, ADaPT and TDAG). Figure
7 shows an example where a child thread, which is
tasked with checking a cabinet for a plate, returns
feedback saying the cabinet is closed. This is a
common problem, where a child thread (or a sub-
task handler/executor in Decomposed Prompting
or ADaPT) return some unpredictable intermediate
result instead of fully completing its task (which, in
this case, involves opening the cabinet and check-
ing for a plate). To address this with THREAD,
the parent thread spawns a new child thread with
a modified sub-task specification (which includes
opening the cabinet and checking if there is a plate)
in order to prevent the new child thread from repeat-
ing the mistake made by the previous child. Prior
methods do not allow for these dynamic, nuanced
adjustments to the plan to accommodate the full
range of possible intermediate feedback involved
in complex tasks.

Shortening action sequences reduces failures
caused by misinterpreting environment feed-
back. We see that errors in interpreting envi-
ronment feedback are lowest with Decomposed
Prompting and THREAD. One potential explana-
tion for this is that, by decomposing the task into
more sub-components than other methods, Decom-
posed Prompting and THREAD require each line
of model generation to execute shorter sequences
of consecutive actions. As a result, each line of
model generation needs to manage shorter action-
observation sequences and, therefore, is able to
more accurately interpret and keep track of the in-
formation returned from the environment.

Figure 5 shows the number of times GPT-3.5
misinterprets environment feedback when execut-
ing action sequences of different lengths when us-
ing the different methods. By significantly reduc-
ing the number of cases where the model has to per-
form long action sequences, Decomposed Prompt-
ing and THREAD reduce the number of interpreta-
tion errors.

E.4 QA Tasks
Task decomposition reduces failures that are
caused by performing the wrong analysis. In
Figure 6a, we see that Decomposed Prompting and
THREAD show fewer failures caused by the model
performing the wrong analysis for the given ques-
tion. This is similar to what we see with the agent

tasks where problem decomposition improves the
planning. By separating the line of model gener-
ation that defines the plan (defining the analysis
type) from the line of model generation that is re-
sponsible for executing the plan (completing the
analysis), the model can more effectively accom-
plish both tasks.

Flexible sub-task specification reduces fail-
ures that are caused by runtime errors. We see
that THREAD shows the fewest failures that are
caused by runtime errors. With THREAD, when
an error occurs, the error is returned to the parent
thread, which can adapt its plan by modifying the
sub-task specification and spawning a new thread
(as discussed above). In addition, based on the abla-
tion analysis (Figure 6b), we see that the variables
used in THREAD may also reduce failures due to
runtime errors, especially with smaller models such
as Llama-3-8b.

F DataCommons QA and MIMIC-III
ICU QA Benchmarks

We built the DataCommons QA benchmark utiliz-
ing data provided by Google Data Commons (Guha,
2019) with a focus on U.S. data. Data Commons
contains publicly available data, aggregated from
sources such as the Center for Disease Control and
Prevention and the World Health Organization.

Generation of the benchmark started with the
production of questions which fit the following cri-
teria: 1) answerable by information provided by
Google Data Commons, 2) broad enough to encom-
pass information sampled between different loca-
tions (e.g., two counties), 3) lacking in subjectivity
for the creation of a verifiable answer. The bench-
mark consists of question templates, which gener-
ate the questions of the benchmark, and ground-
truth programs, which generate the answers to the
questions of the benchmark. This format allows
for the creation of a large quantity of diverse ques-
tions. Each question template consists of a sentence
containing placeholders such as {variable_text}
which, upon random sampling of a variable, are
altered accordingly, facilitating the automated pro-
duction of a variety of questions based on one
question template. An example of a question tem-
plate is as follows: ’Was {variable_text} in
{entity1} increasing or decreasing from {time1}
to {time2}?’. Time series data was sampled at the
city, state, county, and country level for the United
States. Data retrieval from Google Data Commons
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Figure R1: Failure counts in ALFWorld and TextCraft for different methods (a and b) and for modified versions of THREAD (c and d). 
 
 

                                                                                         
 

                
 
Figure R2: Number of times GPT-3.5 misinterprets environment feedback when executing action sequences in ALFWorld (a) and TextCraft (b). 
Values are shown as log10(count) to allow the total counts to fit in the same figure as the error counts. 
 
   

   
 

 
 

Figure R3: Failure counts, combined for DataCommons QA and MIMIC-III QA, for different methods (a) and modified versions of THREAD (b). 
 
 

 
Figure R4: Illustration of THREAD executing the “Clean” task in ALFWorld. 

obj = 'plate'
clean_loc_ID = 'sinkbasin 1'
target_loc_ID = 'cabinet 1'
likely_loc_IDs_for_obj = ['countertop 1', 
'diningtable 1', ...]

I need to find a {obj} =>
You have found the {obj_ID}.<=

I need to clean the {obj_ID} with the 
{clean_loc_ID}. =>
You have cleaned the {obj_ID} with the 
{clean_loc_ID}.<=

I need to put the {obj_ID} in the 
{target_loc_ID}. =>
You have put the {obj_ID} in the 
{target_loc_ID}.<=

END

You are in the middle of a room. 
You see a fridge 1, cabinet 1, ...
Task: put a clean plate in cabinet.

obj = 'plate'
...
...
I will check the locations in 
{likely_loc_IDs_for_obj} one by one.

loc_i = likely_loc_IDs_for_obj[0]
I need to check if there is a {obj} in 

{loc_i}. =>
There is no {obj}.<=
...
...
loc_i = likely_loc_IDs_for_obj[5]
I need to check if there is a {obj} in 
the {loc_i}. => 
There is the {obj_ID}.<=
...
...
print('You have found the {obj_ID}.')
END

I need to find a plate

Thread 0 (depth: 0)

Thread 1 (depth: 1)

obj = 'plate'
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Figure 4: Failure counts in ALFWorld and TextCraft for different methods (a and b) and for modified versions of
THREAD (c and d).

 
                        
 

 

 
 

Figure R1: Failure counts in ALFWorld and TextCraft for different methods (a and b) and for modified versions of THREAD (c and d). 
 
 

                                                                                         
 

          
 
Figure R2: Number of times GPT-3.5 misinterprets environment feedback when executing action sequences in ALFWorld (a) and TextCraft (b). 
Values are shown as log10(count) to allow the total counts to fit in the same figure as the error counts. 
 
   

   
 

 
 

Figure R3: Failure counts, combined for DataCommons QA and MIMIC-III QA, for different methods (a) and modified versions of THREAD (b). 
 
 

 
Figure R4: Illustration of THREAD executing the “Clean” task in ALFWorld. 
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Figure 5: Number of times GPT-3.5 misinterprets environment feedback when executing action sequences in
ALFWorld (a) and TextCraft (b). Values are shown as log10(count) to allow the total counts (shown in gray) to fit in
the same figure as the error counts (shown in green).

 
                        
 

 

 
 

Figure R1: Failure counts in ALFWorld and TextCraft for different methods (a and b) and for modified versions of THREAD (c and d). 
 
 

                                                                                         
 

                
 
Figure R2: Number of times GPT-3.5 misinterprets environment feedback when executing action sequences in ALFWorld (a) and TextCraft (b). 
Values are shown as log10(count) to allow the total counts to fit in the same figure as the error counts. 
 
   

   
 

 
 

Figure R3: Failure counts, combined for DataCommons QA and MIMIC-III QA, for different methods (a) and modified versions of THREAD (b). 
 
 

 
Figure R4: Illustration of THREAD executing the “Clean” task in ALFWorld. 
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clean_loc_ID = 'sinkbasin 1'
target_loc_ID = 'cabinet 1'
likely_loc_IDs_for_obj = ['countertop 1', 
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Figure 6: Failure counts, combined for DataCommons QA and MIMIC-III ICU QA, for different methods (a) and
modified versions of THREAD (b).

Table 9: Description of error types for agent tasks.

Error type Description

Inadequate plan The plan does not include steps sufficient to complete the task (in-
cluding steps to recover from unexpected intermediate results).

Invalid action The model attempts to perform an invalid action in the environment.

Misinterprets environment
feedback

The model incorrectly interprets information returned from the envi-
ronment.
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Table 10: Examples of error types for agent tasks.

Error type Examples

Inadequate plan ALFWorld: The plan does not include cleaning the plate when the
model is tasked with putting a clean plate on the table. The plan
does not involve opening the cabinet to check for a plate when an
unexpected sub-task result is returned (e.g., “The cabinet is closed”).
TextCraft: The plan involves crafting an object before acquiring one
of the precursors. The plan does not finish checking if a material (e.g.,
bamboo) can be retrieved from the environment when an unexpected
result is returned (e.g., “Could not find valid recipe for bamboo.”).

Invalid action ALFWorld: The model incorrectly specifies the action for examining
an object with the desklamp. TextCraft: The model incorrectly states
a crafting recipe.

Misinterprets environment
feedback

ALFWorld: The model continues looking for a plate after the en-
vironment indicates “You see a plate 1”. TextCraft: The model
proceeds as though it has successfully fetched bamboo despite the
environment returning “Could not find bamboo”.

Other ALFWorld: The model reaches the maximum number of actions
allowed in the ALFWorld environment. TextCraft: The model runs
out of context.

Table 11: Description of error types for QA tasks.

Error type Description

Retrieves wrong information The model does not retrieve the information needed to answer the
question.

Performs wrong analysis The model retrieves the correct information, but does not perform the
analysis needed to answer the question.

Misinterprets results of
analysis

The model performs the correct analysis, but misinterprets the results.

Runtime error Error occurs during the execution of the model’s code.
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Figure 7: Example of task in ALFWorld where ADaPT fails to productively respond to the feedback from a sub-task,
while THREAD successfully accommodates the feedback to re-specify a new sub-task.
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Table 12: Examples of error types for QA tasks.

Error type Examples

Retrieves wrong information The model retrieves data on smoking prevalence of all people when
asked specifically about the female population.

Performs wrong analysis The model compares values from 2014 to 2021 when asked to com-
pare values from 2018 to 2021.

Misinterprets results of
analysis

The model indicates a variable is increasing despite its analysis show-
ing that it is decreasing.

Runtime error The model tries to concatenate an integer to a string.

Other The model runs out of context.

was conducted through the REST API provided by
the website.

A “ground-truth program” was created for each
question template to generate a verifiably correct
answer for each question within the benchmark.
These programs varied in length from 100-200
lines of code and analyzed data acquired from the
Google Data Commons API in accordance with the
constraints tailored by the question it was answer-
ing. For example, if a question template included a
constraint about the years of data to be sampled, the
ground-truth program was constructed to generate
a year range for the answer. Code within the pro-
gram would subsequently be created to filter and
analyze the data acquired from Google Data Com-
mons accordingly by applying whichever mathe-
matical concept was required for the answer (e.g.,
correlation, linear regression, median, mean). Con-
sequently, ground-truth programs formed the back-
bone of the benchmark through the creation of an-
swers to the diverse questions which comprised the
question template set. Figure 8 shows an example
with the question “From 2015 to 2021, was the rate
of asthma increasing faster in Boston or LA?”.

The MIMIC-III ICU QA was created using the
same approach as described above. However, ques-
tions were instead based on clinical time-series
data provided by MIMIC-III (Johnson et al., 2016).
We outline all steps, along with the code, to re-
produce the benchmarks at https://github.com/
philipmit/thread. We release the full dataset
for DataCommons QA. Due to restrictions with
MIMIC-III data access, we cannot directly release
the dataset for MIMIC-III ICU QA. However, upon

gaining access to MIMIC-III following the in-
structions outlined at https://physionet.org/
content/mimiciii/1.4/, you can reproduce the
full dataset using the code that we release.

From 2015 to 2021, was the rate of asthma 
increasing faster in Boston or LA?

A table with the asthma rate from 2015 to 
2019 in Boston and LA is shown below:
=>{table_dir}<=
Year  Asthma rate Boston  Asthma rate LA
2015                10.9             8.4
2016                11.3             8.5
2017                10.9             9.0
2018                11.1             8.8
2020                11.4             9.2
2021                11.3             9.6

Based on the data in {table_dir}, the slope 
of the asthma rate in Boston is =>0.06<= 
and in LA is =>0.18<=.

Therefore, we see that the rate of asthma 
increased faster in LA than Boston.

A figure representing the data in 
{table_dir} is shown below:
=>

<=

Figure 8: Question and example response with the
DataCommons QA benchmark.
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G Prompts

Below, we provide examples of the prompt used for each benchmark. The given task or question is
highlighted in yellow. The text corresponding to the spawning of child threads is highlighted in blue, pink,
orange, and green. The full prompts for each task can be seen at https://github.com/philipmit/
thread.

G.1 DataCommons QA

Question: From 2018 to 2021 was the percentage of people with diabetes increasing faster in Willows or Villa Ridge?
Here is a table showing the percentage of people with diabetes during 2018 to 2021 for Willows and Villa Ridge:
=>{table_dir}<=
Based on the data in {table_dir} from 2018 to 2021 the slope of the percentage of people with diabetes in Willows was
=>0.3357<= and in Villa Ridge was =>0.1642<=
Therefore, the percentage of people with diabetes was increasing faster in Willows.
Final Answer: Willows
#END#

Here is a table showing the percentage of people with diabetes during 2018 to 2021 for Willows and Villa Ridge: =>
location1 = ‘Willows’
location2 = ‘Villa Ridge’
timeframe = ‘2018 to 2021’
variable = ‘percentage of people with diabetes’
# The {variable} during {timeframe} for location number 1, {location1}, is =>{data_location1_in_timeframe}<=
# The {variable} during {timeframe} for location number 2, {location2}, is =>{data_location2_in_timeframe}<=
data_location1_in_timeframe = [data_location1_in_timeframe] if not isinstance(data_location1_in_timeframe, list) else
data_location1_in_timeframe
data_location2_in_timeframe = [data_location2_in_timeframe] if not isinstance(data_location2_in_timeframe, list) else
data_location2_in_timeframe
timeframe_dates = np.unique([x[‘date’] for x in data_location1_in_timeframe] + [x[‘date’] for x in
data_location2_in_timeframe])
data_location1_in_timeframe_values = ...
data_location2_in_timeframe_values = ...
...
...
table = pd.DataFrame(’date’: timeframe_dates, location1: data_location1_in_timeframe_values, location2:
data_location2_in_timeframe_values)
table_dir = DATA_DIR
table.to_csv(table_dir, sep=‘�’, index=False)
print(‘{table_dir}’)
#END#

# The percentage of people with diabetes during 2018 to 2021 for location number 1, Willows, is =>
location1 = ‘Willows’
timeframe = ‘2018 to 2021’
time1 = ‘2018’
time2 = ‘2021’
variable = ‘percentage of people with diabetes’
query = f’{variable} in {location1}’
response = requests.post(URL_EXPLORE + ‘?q=’ + query, headers=HEADERS, json=JSON)
response = json.loads(response.text)
> print(response[‘variables’]) =>[‘dc/topic/Diabetes’, ‘Percent_Person_WithDiabetes’,
‘Percent_Person_20OrMoreYears_WithDiabetes’, ‘dc/topic/PopulationWithDiabetesByAge’,
‘Count_Person_20To79Years_Diabetes_AsFractionOf_Count_Person_20To79Years’,
‘WHO/SDG_SH_DTH_RNCOM_DiabetesMellitus’, ‘dc/topic/DiabetesFemalePopulationByAge’, ‘dc/nh3s4skee5483’]<=
variable_ID = ‘Percent_Person_WithDiabetes’
> print(response[‘entities’]) =>[‘geoId/0685684’]<=
location_ID = ‘geoId/0685684’
# I will now use the location_ID and variable_ID to get the data.
data_location1_all = collect_data_commons1(location_ID, variable_ID)
data_location1_in_timeframe = [x for x in data_location1_all if (int(x[‘date’])>=int(time1) and int(x[‘date’])<=int(time2))]
> print(data_location1_in_timeframe) =>[’date’: ‘2018’, ‘value’: 10.1, ’date’: ‘2020’, ‘value’: 10.8, ’date’: ‘2021’, ‘value’:
11.1]<=
print(‘You have retrieved {data_location1_in_timeframe}.’)
#END#
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Based on the data in /path/to/data_table.txt from 2018 to 2021 the slope of the percentage of people with diabetes in Willows
was =>
table_dir = ‘/path/to/data_table.txt’
variable = ‘percentage of people with diabetes’
location = ‘Willows’
table = pd.read_csv(table_dir, sep=‘�’)
# > print(table) =>
# date Willows Villa Ridge
# 0 2018 10.1 8.2
# 1 2020 10.8 8.5
# 2 2021 11.1 8.7
# <=
location_col_name = ‘Willows’
X = table[‘date’]
y = table[location_col_name]
slope, intercept, r_value, p_value, std_err = stats.linregress(X, y)
print(slope)

#END#

G.2 MIMIC-III ICU QA

Question: Was the average systolic blood pressure of patient X from hour 10 to 20 of their ICU stay higher or lower than the
average among all patients who expired in the hospital?
Here is a table showing the systolic blood pressure of patient X from hour 10 to 20 of their ICU stay: =>{table_dir}<=
Based on the data in {table_dir} the average systolic blood pressure of patient X was =>138.18<=
The average systolic blood pressure among all patients who expired in the hospital was =>120.81<=
Therefore, the average systolic blood pressure of patient X from hour 10 to 20 was higher than the average among all patients
who expired in the hospital.
Final Answer: higher
#END#

Here is a table showing the systolic blood pressure of patient X from hour 10 to 20 of their ICU stay: =>
patient_ID = ‘X’
timeframe = ‘hour 10 to 20’
variable = ‘systolic blood pressure’
# The {variable} during {timeframe} for patient {patient_ID} was =>{data_patient_in_timeframe}<=
...
...
table = pd.DataFrame(’time’: timeframe_dates, variable: data_patient_in_timeframe_values)
table_dir = DATA_DIR
table.to_csv(table_dir, sep=‘�’, index=False)
print(‘{table_dir}’)
#END#

# The systolic blood pressure during hour 10 to 20 for patient X was =>
patient_ID = ‘X’
timeframe = ‘hour 10 to 20’
time1 = ‘10’
time2 = ‘20’
variable = ‘systolic blood pressure’
...
...
print(‘You have retrieved {data_patient_in_timeframe}.’)
#END#

Based on the data in /path/to/data_table.txt the average systolic blood pressure of patient X was =>
table_dir = ‘/path/to/data_table.txt’
variable = ‘systolic blood pressure’
table = pd.read_csv(table_dir, sep=‘�’)
# > print(table) =>
...
...
variable_col_name = ‘Systolic blood pressure’
y = table[variable_col_name]
y_mean=np.mean(y)
print(y_mean)
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#END#

The average systolic blood pressure among all patients who expired in the hospital was =>
variable = ‘systolic blood pressure’
table = pd.read_csv(PATIENT_DATA_DIR, sep=‘�’)
# > print(table) =>
...
...
filter_col_name = ‘MORTALITY_INHOSPITAL’
variable_col_name = ‘Systolic blood pressure’
target_patient_group = table[table[variable_col_name]==1]
y = target_patient_group[variable_col_name]
y_mean=np.mean(y)
print(y_mean)

#END#

G.3 ALFWorld

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: clean some apple and put it in sidetable.
target_location_ID = ‘sidetable 1’
cleaning_location_ID = ‘sinkbasin 1’
likely_location_IDs_for_obj = [‘fridge 1’, ‘countertop 1’, ‘cabinet 4’, ‘cabinet 3’, ‘cabinet 2’, ‘cabinet 1’, ‘diningtable 3’,
‘diningtable 2’, ‘diningtable 1’, ‘sidetable 1’, ‘sinkbasin 1’, ‘garbagecan 1’, ‘drawer 1’, ‘stoveburner 4’, ‘stoveburner 3’,
‘stoveburner 2’, ‘stoveburner 1’]
obj = ‘apple’
I need to perform the following steps:
First, I need to find and take the {obj}. =>You have found and taken the {obj_ID}.<=
Next, I need to clean the {obj_ID} with the {cleaning_location_ID}. =>You have cleaned the {obj_ID} with the
{cleaning_location_ID}.<=
Finally, I need to put the {obj_ID} in the {target_location_ID}. =>You have put the {obj_ID} in the {target_location_ID}.<=
#END#

I need to find and take the apple. =>
obj = ‘apple’
My sub-task is to find and take the {obj}. I will check the locations in {likely_location_IDs_for_obj} one by one.
location_i = likely_location_IDs_for_obj[0]
I need to check if there is the {obj} in the {location_i}. =>There is no {obj} in the {location_i}.<=
location_i = likely_location_IDs_for_obj[1]
...
...
I need to check if there is the {obj} in the {location_i}. =>There is no {obj} in the {location_i}.<=
location_i = likely_location_IDs_for_obj[2]
I need to check if there is the {obj} in the {location_i}. =>There is no {obj} in the {location_i}.<=
location_i = likely_location_IDs_for_obj[3]
I need to check if there is the {obj} in the {location_i}. =>There is no {obj} in the {location_i}.<=
location_i = likely_location_IDs_for_obj[4]
I need to check if there is the {obj} in the {location_i}. =>There is no {obj} in the {location_i}.<=
location_i = likely_location_IDs_for_obj[5]
I need to check if there is the {obj} in the {location_i}. =>There is no {obj} in the {location_i}.<=
location_i = likely_location_IDs_for_obj[10]
I need to check if there is the {obj} in the {location_i}. =>You have found and taken the {obj_ID} from the {location_i}.<=
print(‘You have found and taken the {obj_ID}.’)
#END#

I need to check if there is the apple in the fridge 1. =>
location_i = ‘fridge 1’
obj = ‘apple’
My sub-task is to check if there is the {obj} in the {location_i}.
> go to {location_i} =>The {location_i} is closed.<=
> open {location_i} =>You open the {location_i}. The {location_i} is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a
tomato 1.<=
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obj_IDs_found = [‘lettuce 2’, ‘mug 2’, ‘potato 2’, ‘tomato 1’]
obj_number = ‘There is no obj_number’
obj_ID = ‘There is no obj_ID’
print(‘There is no {obj} in the {location_i}.’)
#END#

I need to clean the apple 3 with the sinkbasin 1. =>
cleaning_location_ID = ‘sinkbasin 1’
obj_ID = ‘apple 3’
My sub-task is to clean the {obj_ID} with the {cleaning_location_ID}.
> go to {cleaning_location_ID} =>On the {cleaning_location_ID}, you see nothing.<=
> clean {obj_ID} with {cleaning_location_ID} =>You clean the {obj_ID} using the {cleaning_location_ID}.<=
print(‘You have cleaned the {obj_ID} with the {cleaning_location_ID}.’)
#END#

I need to put the apple 3 in the sidetable 1. =>
target_location_ID = ‘sidetable 1’
obj_ID = ‘apple 3’
My sub-task is to put the {obj_ID} in the {target_location_ID}.
> go to {target_location_ID} =>On the {target_location_ID}, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a
saltshaker 1.<=
> put {obj_ID} in/on {target_location_ID} =>You put the {obj_ID} in/on the {target_location_ID}.<=
print(‘You have put the {obj_ID} in the {target_location_ID}.’)

#END#

G.4 WebShop

Instruction: i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00 dollars
obj_attributes = [‘3 ounce bottle’, ‘Bright citrus’, ‘For sensitive skin’]
max_price = 50.00
obj = ‘deodorant’
I need to perform the following steps:
First, I need to retrieve search results for {obj} that are less than {max_price} dollars with the attributes: {obj_attributes}. =>You
have retrieved {results_under_max_price}.<=
Next, I need to identify the item in {results_under_max_price} that matches the most attributes: {obj_attributes}. =>You have
identified {item_to_purchase}.<=
Finally, I need to purchase {item_to_purchase} with {obj_attributes}. =>You have purchased {item_to_purchase}.<=
#END#

I need to retrieve search results for deodorant that are less than 50.00 dollars with the attributes: [‘3 ounce bottle’, ‘Bright citrus’,
‘For sensitive skin’]. =>
obj = ‘deodorant’
max_price = 50.00
obj_attribute1 = ‘3 ounce bottle’
obj_attribute2 = ‘Bright citrus’
obj_attribute3 = ‘For sensitive skin’
> search[{obj}; {obj_attribute1}; {obj_attribute2}; {obj_attribute3}] =>
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &
Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 1 oz, 2-Pack)
$15.95
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Pregnancy and Breastfeeding, Contains Organic Calendula 3-Ounce
$10.99
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Pregnancy and Breastfeeding, Contains Organic Calendula 3-Ounce
$60.99
<=
I will now filter for results that are less than {max_price}.
results = [‘B08KBVJ4XN’, ‘B078GWRC1J’, ‘B078GTKVXY’]
results_prices = [15.95, 10.99, 60.99]
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results_under_max_price = [result for result, price in zip(results, results_prices) if price < max_price]
print(‘You have retrieved {results_under_max_price}.’)
#END#

I need to identify the item in [‘B08KBVJ4XN’, ‘B078GWRC1J’] that matches the most attributes: [‘3 ounce bottle’, ‘Bright
citrus’, ‘For sensitive skin’]. =>
item1 = ‘B08KBVJ4XN’
item2 = ‘B078GWRC1J’
obj_attributes = [‘3 ounce bottle’, ‘Bright citrus’, ‘For sensitive skin’]
My sub-task is to identify the item in [{item1}, {item2}] that matches the most attributes: {obj_attributes}.
I need to count the number of attributes in {obj_attributes} that {item1} has. =>This item has 1 attribute.<=
I need to count the number of attributes in {obj_attributes} that {item2} has. =>This item has 2 attributes.<=
items = [{item1}, {item2}]
item_attributes = [1, 2]
item_to_purchase = next(iter(items[item_attributes.index(max(item_attributes))]))
print(‘You have identified {item_to_purchase}.’)
#END#

I need to count the number of attributes in [‘3 ounce bottle’, ‘Bright citrus’, ‘For sensitive skin’] that B08KBVJ4XN has. =>
item_to_check = ‘B08KBVJ4XN’
obj_attributes = [‘3 ounce bottle’, ‘Bright citrus’, ‘For sensitive skin’]
My sub-task is to count the number of attributes in {obj_attributes} that {item_to_check} has.
> click[{item_to_check}] =>
[Back to Search]
[< Prev]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &
Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 1 oz, 2-Pack)
Price: $15.95
Rating: N.A.
[Description]
[Features]
[Reviews]
[Attributes]
[Buy Now]
<=
I need to check if {item_to_check} has the attribute ‘3 ounce bottle’. {item_to_check} does not have this attribute because it is
described as ‘1 oz, 2-Pack’.
I need to check if {item_to_check} has the attribute ‘Bright citrus’. {item_to_check} does not have this attribute because it is
described as ‘Cedar & Patchouli Blend’.
I need to check if {item_to_check} has the attribute ‘For sensitive skin’. {item_to_check} has this attribute because it is
described as ‘Gentle on Sensitive Skin’.
{item_to_check} has 1 attribute.
print(‘This item has 1 attribute.’)
#END#

I need to purchase B078GWRC1J with [‘3 ounce bottle’, ‘Bright citrus’, ‘For sensitive skin’]. =>
item_to_purchase = ‘B078GWRC1J’
obj_attributes = [‘3 ounce bottle’, ‘Bright citrus’, ‘For sensitive skin’]
My sub-task is to purchase {item_to_purchase} with {obj_attributes}.
> click[{item_to_purchase}] =>
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Pregnancy and Breastfeeding, Contains Organic Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Attributes]
[Buy Now]
<=
I will select from the ‘scent’ buttons: [assorted scents], [bright citrus], [calming lavender], [ginger fresh], [simply non-scents].
> click[bright citrus] =>You have clicked bright citrus.<=
I will select from the ‘size’ buttons: [travel set (4-pack)], [3 ounce (pack of 1)], [3-ounce (2-pack)].
> click[3 ounce (pack of 1)] =>You have clicked 3 ounce (pack of 1).<=
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I can now select [Buy Now].
> click[Buy Now] =>You have clicked Buy Now.<=
print(‘You have purchased {item_to_purchase}.’)

#END#

G.5 TextCraft

Crafting commands:
craft 3 dark oak sign using 6 dark oak planks, 1 stick
craft 4 dark oak planks using 1 dark oak log
craft 1 stick using 1 planks
craft 4 stick using 2 bamboo
craft 4 oak planks using 1 oak log
craft 1 dark oak fence using 2 stick, 4 dark oak planks
craft 1 warped stairs using 6 warped planks
craft 3 oak sign using 6 oak planks, 1 stick
Goal: craft dark oak sign.
craft_command_list = [’craft 3 dark oak sign using 6 dark oak planks, 1 stick’, ’craft 4 dark oak planks using 1 dark oak log’,
’craft 1 stick using 1 planks’, ’craft 4 stick using 2 bamboo’, ’craft 4 oak planks using 1 oak log’, ’craft 1 dark oak fence using 2
stick, 4 dark oak planks’, ’craft 1 warped stairs using 6 warped planks’, ’craft 3 oak sign using 6 oak planks, 1 stick’]
craft_command_item_list = [’dark oak sign’, ’dark oak planks’, ’stick’, ’stick’, ’oak planks’, ’dark oak fence’, ’warped stairs’,
’oak sign’]
target_item = ‘dark oak sign’
target_item_count_total = 1
idx = craft_command_item_list.index(min([x for x in craft_command_item_list if target_item in x], key=len))
target_craft_command = craft_command_list[idx]
To craft {target_item}, I need to perform the following action until I have at least {target_item_count_total} {target_item}:
{target_craft_command} =>You have completed the action.<=
#END#

I need to perform the following action until I have at least 1 dark oak sign: craft 3 dark oak sign using 6 dark oak planks, 1 stick
=>
target_item = ‘dark oak sign’
target_item_count_total = 1
target_craft_command_result_count = 3
precursor1 = ‘dark oak planks’
precursor1_count_command = 6
precursor2 = ‘stick’
precursor2_count_command = 1
Since I need at least 1 {target_item} and each action produces 3 {target_item}, The number of times I need to perform the action
is ceiling of 1/3, which is 1.
target_craft_command_reps = 1
precursor1_count_total = precursor1_count_command * target_craft_command_reps
precursor1_count_total = precursor2_count_command * target_craft_command_reps
Next, I need to get or craft {precursor1}.
To start, I first need to check if I can get {precursor1_count_total} {precursor1}. =>You cannot get the material.<=
Since I cannot get {precursor1}, I need to craft it.
idx = craft_command_item_list.index(min([x for x in craft_command_item_list if precursor1 in x], key=len))
precursor1 = craft_command_item_list[idx]
precursor1_craft_command = craft_command_list[idx]
To craft {precursor1}, I need to perform the following action until I have at least {precursor1_count_total} {precursor1}:
{precursor1_craft_command} =>You have completed the action.<=
Next, I need to get or craft {precursor2}.
To start, I first need to check if I can get {precursor2_count_total} {precursor2}. =>You cannot get the material.<=
Since I cannot get {precursor2}, I need to craft it.
idx = craft_command_item_list.index(min([x for x in craft_command_item_list if precursor2 in x], key=len))
precursor2 = craft_command_item_list[idx]
precursor2_craft_command = craft_command_list[idx]
To craft {precursor2}, I need to perform the following action until I have at least {precursor2_count_total} {precursor2}:
{precursor2_craft_command} =>You have completed the action.<=
Finally, I will perform the action 1 time.
> craft {target_craft_command_result_count} {target_item} using {precursor1_count_command} {precursor1},
{precursor2_count_command} {precursor2} =>Crafted 3 minecraft:{target_item}.<=
print(‘You have completed the action.’)
#END#
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I first need to check if I can get 6 dark oak planks =>
get_item = ‘dark oak planks’
get_item_count_total = 6
> get {get_item_count_total} {get_item} =>Could not find {get_item}.<=
I cannot get the {get_item}.
print(‘You cannot get the material.’)

#END#
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