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Abstract

The rapid progress of large language models
(LLMs) has seen them excel and frequently
surpass human performance on standard bench-
marks. This has enabled many downstream
applications, such as LLM agents, to rely on
their reasoning to address complex task require-
ments. However, LLMs are known to unexpect-
edly falter in simple tasks and under seemingly
straightforward circumstances - underscoring
the need for better and more diverse evaluation
setups to measure their true capabilities. To this
end, we choose to study compositional and con-
ditional reasoning, two aspects that are central
to human cognition, and introduce GroundCo-
coa - a lexically diverse benchmark connecting
these reasoning skills to the real-world problem
of flight booking. Our task involves aligning
detailed user preferences with available flight
options presented in a multiple-choice format.
Results indicate a significant disparity in per-
formance among current state-of-the-art LLMs
with even the best performing model, GPT-4
Turbo, not exceeding 67% accuracy despite ad-
vanced prompting techniques.

1 Introduction

Conditional and compositional reasoning are cen-
tral to navigating and interacting with complex sys-
tems through decision-making processes (Oaksford
and Chater, 2010; Simon and Newell, 1971). Con-
ditional reasoning refers to the understanding and
application of logical rules, often structured in “if-
then” forms, which are fundamental to evaluating
potential scenarios and anticipating outcomes in
daily decision-making. Compositional reasoning
involves solving complex problems by integrating
solutions to simpler sub-problems in a structured
manner. This cognitive process is crucial for under-
standing the relationships between different com-
ponents of a task. We evaluate how effectively cur-
rent LLMs exhibit these cognitive abilities, which

are essential for both human and artificial intelli-
gence. To that end, we introduce GroundCocoa1,
a benchmark designed to assess compositional and
conditional reasoning within a grounding task.

Set within a real-world inspired flight reserva-
tion scenario, GroundCocoa comprises questions
framed as user needs. Finding and booking flights
is a complex task where user requirements might be
many and highly convoluted. While we use flight
booking to illustrate our idea, the compositional
primitives forming our user requirements test for
general skills such as temporal reasoning (e.g., "I
want a flight departing after 5 pm") and mathemati-
cal reasoning (e.g., "Ticket price should be under
$1000"). Thus, we posit that results and insights
derived from evaluating LLMs on GroundCocoa
should largely be applicable to other domains.

We leverage a controllable method, illustrated in
Figure 1, to create samples of varying complexity.
Our data generation process (§2) consists of a 5-
stage pipeline including online scraping, constraint
generation, symbolic logic to impose conditionality,
paraphrasing user requirements, and matching gen-
erated requirements to available flight options. To
test for robustness, we allow requirements to freely
condition on one another and impose no restrictions
on their nature. Additionally, we isolate a subset of
more atypical queries that contain unconventional
user needs (e.g., “I want at least 2 layovers”) and
evaluate their impact on model performance.

In addition to the release of the dataset and ac-
companying results, our contribution also includes
the data generation pipeline which can be used to
controllably generate samples of increasing com-
plexity to challenge more advanced models in the
future. Through slight modifications to the data
scrapers and the primitive rule-set (described in
Section 2), the method can also be extended to
incorporate other domains for a more diverse eval-

1https://osu-nlp-group.github.io/GroundCocoa/
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Figure 1: Stepwise depiction of GroundCocoa query generation using 2 slots and 2 minterms.

uation setup. Statistics of GroundCocoa are shown
in Table 1. Our key findings are as follows:

1. Accuracy among contemporary LLMs varies
greatly, ranging from a little better than ran-
dom guess to about 67% on a five-option
multiple-choice question task. Within this
spectrum, GPT-4 Turbo (OpenAI, 2023)
stands out, demonstrating a superior capacity
of the GPT line of models to adapt and excel
in novel reasoning tasks. However, condi-
tional reasoning poses a significant challenge
to all evaluated models, even on samples of
relatively lower complexity.

2. Incorporating prompting techniques such as
Chain of Thought (COT) (Wei et al., 2022)
and Least-to-Most (L2M) prompting (Zhou
et al., 2023) leads to mixed results, with only
a modest performance improvement in some
cases. Prior research has noted that although
these methods help decompose problems into
steps, LLMs struggle as the complexity of
the individual steps grows (Hendrycks et al.,
2021b; Madaan and Yazdanbakhsh, 2022;
Nogueira et al., 2021; Qian et al., 2023).
These assertions hold true in our observations.

3. Including unconventional user requirements
leads to a drop in accuracy of as much as
6% in GPT-4 Turbo, indicating a training bias
towards more typical needs.

2 Approach

Figure 1 illustrates our proposed approach for gen-
erating a user requirement. The task involves
matching this generated requirement against 5
flight options where only 1 of the options satisfies

the generated criteria. Our 5-stage data creation
pipeline is detailed in subsequent sections. In the
process of generating a natural language user re-
quirement for flight booking, we are faced with the
following considerations:
Conditionality of Constraints. We aim to chal-
lenge contemporary models in their ability to rea-
son through scenarios characterized by conditional
complexity. This is done through mutual depen-
dence of flight attributes which we refer to as slots.
As illustrated in the final requirement (Step 5) of
Figure 1, there is an interdependence between the
values for price and ticket class. This is a direct
result of the generated minterm table. A minterm
is a specific type of logical expression that repre-
sents exactly one row in a truth table where the
function evaluates to true (1). In the context of
GroundCocoa, each minterm represents a specific
combination of flight attributes, or ’slots’, that satis-
fies a particular user requirement. We represent this
interdependence in logical form through a Product-
of-Sums (POS) expression which consists of mul-
tiple OR operations (sums) which are later com-
bined through AND operations (products). This
process is further explained in a subsequent section
(§2.2). The inclusion of OR operations between
slots introduces conditional complexity to our user
requirement, necessitating consideration of poten-
tial slot values in if-then scenarios. On the other
hand, a greater number of AND conditions implies
a higher number of variables that a model has to
simultaneously reason over resulting in increased
compositional complexity.
Satisfiability of POS Expression. While generat-
ing the logical form for a user requirement, we must
ensure satisfiability of the generated POS expres-
sion. For this, we use SymPy (Meurer et al., 2017),
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an open-source Python symbolic mathematics li-
brary which generates an optimal POS expression
given a minterm table (§2.2).
Fuzziness in Slot Values. Corresponding to each
occurrence of a slot in the POS expression there
has to be a unique constraint. For the example
in Figure 1, the two constraints on the price slot
are {<12400, <500}. We impose these constraints
randomly through specialized rule-based systems
corresponding to each slot. However, these might
cause the final user criteria to become impossible to
satisfy even if the corresponding POS expression is
satisfiable. Thus, for a generated user requirement
we perform checks to ensure that there exists at
least 1 route that satisfies the criteria and at least 4
that do not so that there are at least 1 positive and
4 negative options for a generated requirement.

In addition to the test set, we also include a sep-
arate validation set which may be used for tuning
hyperparameters. The pipeline may be reused to
generate more complex samples in the future, and
could also be extended to other domains through
a slight modification of the data collection (§2.1)
and primitive generation (§2.3) stages.

2.1 Flight Data Collection
We start with a list of the top 50 busiest airports
by passenger traffic derived from Wikipedia. We
choose source and destination airports randomly
from this list. A fixed departure date is also chosen
randomly from the future and set for each flight
search. The source, destination, and travel date are
input to Google Flights. We then sample a small
number of flights from the search results. The sam-
pled flights are chosen from each of economy, busi-
ness, and first class and, for each flight option, all
the relevant details such as the number of layovers,
price, departure and arrival times etc. are saved. A
sample flight schema with all the elements is pro-
vided in Appendix A. We use Selenium Webdriver
for scraping this data.

2.2 Product-of-Sums Generation
To generate a POS expression, we first randomly
select a small number of flight attributes or slots.
The complete set of slots S is as follows:

S={airline, ticket class, departure time, ar-
rival time, total travel time, number of layovers,
average carbon emission difference, travel
date, price, layover locations, layover times}

We vary the number of slots between 2 and 6 in
order to generate samples of differing complexity.

We then randomly generate 2-3 “minterms”, the
list of all input combinations of slots that generate
a true (1). A higher number of minterms results in
a greater conditional complexity. The slot symbols
and generated minterms are input to SymPy which
uses a redundant-group eliminating algorithm to
output the smallest POS expression consistent with
the minterm table.

2.3 Primitive Generation
Corresponding to each slot, we have developed
a rule-based system that randomly imposes con-
straints on its values. These constraints are con-
verted to natural language through templates. Since
a POS expression may contain a negation, we gen-
erate two primitives at each turn - one for the con-
straint and one for its negation. A sample primitive
for total travel time is shown in Table 2.

TravelTime Travel Time should be more than 22 hours and 30 minutes.

¬TravelTime Travel Time should not be more than 22 hours and 30 minutes.

Table 2: Sample primitive for total travel time.

At this stage, we also isolate samples that in-
clude any one of the following three primitives -
(1) carbon emissions must be above the average for
that route, (2) price of the flight must be above a
minimum threshold, and (3) number of layovers on
the route should be greater than a minimum. While
this list is not exhaustive, such samples (hence-
forth referred to as "atypical" queries) are able to
successfully encapsulate contrarian needs that are
unlikely to manifest often during pretraining.

2.4 LLM Paraphrasing and Human
Validation

We paraphrase the user requirement derived from
rule templates to make them more natural-sounding
while preserving the original intent and meaning.
LLM paraphrasing is carried out in two distinct
steps described below. The exact prompts and an
example of intermediate results are provided in
Appendix D. We manually verify each query to
ensure it is consistent with the primitives and make
changes wherever necessary.

1. Individual primitives are substituted into each
sum term and combined using templated
rules. We then use GPT-4 Turbo to paraphrase
each of the sum terms.

2. Next, we combine the individual sum terms
into a product (logical AND). This is done by
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Statistic
(slot, minterm) configurations Total

(2,2) (3,2) (4,2) (4, 3) (5,2) (6,2)

Test Samples 1511 1083 710 723 451 371 4849
Test Unique Queries 124 136 117 129 121 101 728
Val. Samples 17 17 8 5 2 3 52
Val. Unique Queries 1 1 1 1 1 1 6
Avg. Query Length 65.04 88.33 103.88 119.14 124.56 148.87 95.95
Avg. Context Length - - - - - - 1252.27
Vocab Size - - - - - - 4200

Table 1: Key Statistics of GroundCocoa.

merging the paraphrases of sum terms, sepa-
rated by periods. The resulting flight require-
ment is again paraphrased with GPT-4 Turbo.

2.5 Option Matching

We match the generated user requirements with the
flight data collected in Section 2.1. Each route be-
tween the source and destination represents a poten-
tial choice in our multiple-choice dataset. Choices
are divided into subsets containing one positive
(matching the user requirement) and four negative
(not matching the user requirement) options. This
is done to ensure that each multiple-choice question
has only a single correct answer for ease of eval-
uation. Many such subsets may be created from
a single user requirement and, consequently, our
dataset consists of queries repeated multiple times
with differing choices. Table 1 contains details of
the number of unique queries and overall samples
corresponding to all the slot/minterm configura-
tions in GroundCocoa.

3 Results

To measure performance on GroundCocoa, we test
several models of different sizes including both
open-source and closed-source LLMs - LLAMA
2-chat (Touvron et al., 2023) / LLAMA 3-Instruct
(Dubey et al., 2024), Mixtral 8x7B - Instruct (Jiang
et al., 2024) / Mistral 7B Instruct (Jiang et al.,
2023), Gemini Pro (Team et al., 2023), and GPT-4
Turbo. Results from our experiments are shown in
Table 3. We have 3 different evaluation setups for
the our models - direct prompting, chain-of-thought
(CoT) (Wei et al., 2022) prompting, and least-to-
most (L2M) prompting (Zhou et al., 2023). We aim
to evaluate the intrinsic reasoning ability of current
LLMs and, thus, exclude methods such as Program
of Thoughts (Chen et al., 2023) and Program-aided
Language Models (Gao et al., 2023) that offload the
critical reasoning component to an external engine

such as a Python interpreter.

3.1 Direct Prompting

The models are presented with a sample from
GroundCocoa consisting of a user requirement and
5 flight options in a zero-shot manner. The smaller
models in our experiments are only evaluated in
this setting.

3.2 Chain-of-Thought Prompting

Since our task involves grounding user require-
ments to each answer choice, the CoT explanations
are provided for each flight option given the user
requirement. Thus, our standard CoT (CoT-full)
consists of 5 distinct explanations. On GPT-4, we
empirically observe that the large resulting con-
text length can prove detrimental to model perfor-
mance with the models often confusing between
the requirements and options of the test case and
the exemplar. To address this, we try a different
prompting strategy (CoT-partial) with only two
flight choices (1 positive and 1 negative) for the
in-context example. Due to limitations on context
length (4096 tokens) we are unable to run LLAMA
2-chat 70B on CoT-full. The exact prompts are
given in Appendix C. Results from our experi-
ments are shown in Table 3. As alluded to previ-
ously, GroundCocoa poses a significant challenge
for each of the evaluated models, even with CoT
prompting. The CoT-partial strategy leads to better
results than CoT-full in 3 out of 4 cases, and best
results are obtained using GPT-4 Turbo with CoT-
partial. It is noteworthy, though, that there exists
a marked difference in performance between com-
peting models. Such variation represents a signifi-
cant departure from the usual performance patterns
observed in popular benchmarks such as MMLU
(Hendrycks et al., 2021a), HellaSwag (Zellers et al.,
2019), ARC Reasoning Challenge (Clark et al.,
2018), WinoGrande (Sakaguchi et al., 2021), and
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GSM-8K (Cobbe et al., 2021) among others, where
results are much more comparable.

3.3 Least-to-Most Prompting

Finally, we do a limited evaluation with least-to-
most prompting which carries out task decomposi-
tion through an iterative prompting procedure. The
problem (user requirement) is broken down into
multiple sub-problems and each sub-problem is
solved iteratively through successive prompts. The
number of decomposition steps (turns) required in
L2M scales linearly with the compositional com-
plexity of each sample. The large number of turns
per sample leads to a higher inference cost. We
thus test each of our larger models using L2M us-
ing a subset of 200 samples from GroundCocoa -
the corresponding rows are marked with an asterisk
(∗) in Table 3. Results indicate that GroundCo-
coa remains a challenging benchmark despite such
multi-turn prompting methods for problem decom-
position.

Regular Atypical Total

Open-source Models

LLAMA 2-chat 7B 14.56 14.66 14.60
LLAMA 3.1-chat 8B 33.66 35.25 34.29
Mistral 7B Instruct 25.70 26.10 25.86
LLAMA 2-chat 13B 16.33 16.06 16.23
Mixtral 8x7B-Instruct 45.79 42.48 44.48
Mixtral 8x7B-Instruct + CoT-full 34.38 32.65 33.69
Mixtral 8x7B-Instruct + CoT-partial 41.38 39.85 40.15
Mixtral 8x7B-Instruct + L2M∗ 22.32 15.90 19.50
LLAMA 2-chat 70B 24.13 21.63 23.13
LLAMA 2-chat 70B + CoT-partial 25.73 23.97 25.03
LLAMA 3.1-chat 70B 59.57 55.64 58.01
LLAMA 3.1-chat 70B + CoT-full 58.37 57.67 58.09
LLAMA 3.1-chat 70B + CoT-partial 60.22 58.66 59.60
LLAMA 3.1-chat 70B + L2M∗ 68.18 50.89 58.50

Closed-source Models

Gemini Pro 42.79 40.46 41.86
Gemini Pro + CoT-full 41.14 40.87 41.04
Gemini Pro + CoT-partial 34.82 33.85 34.44
Gemini Pro + L2M∗ 42.86 40.46 41.90
GPT-4 Turbo 64.66 58.81 62.34
GPT-4 Turbo + CoT-full 65.07 61.51 63.66
GPT-4 Turbo + CoT-partial 67.77 65.62 66.92
GPT-4 Turbo + L2M∗ 46.43 53.41 49.50

Table 3: Accuracy (%) on GroundCocoa.

4 Analysis

Beyond assessing the overall model performance,
we also investigate the consequences of varying the
complexity of user criteria and presenting relatively
unconventional user needs.

4.1 Impact of Increasing Complexity

In our analysis, we observe the performance of
GPT-4 Turbo, the best-performing model from

among those tested on GroundCocoa across differ-
ent levels of conditional and compositional com-
plexity. In their recent work on assessing the limita-
tions of transformer on compositional tasks, Dziri
et al. (2023) use computational graphs as approx-
imations of the underlying reasoning processes
in such models. They define the terms reason-
ing depth, the length of the deepest layer in the
computational graph from the source nodes, and
reasoning width, the mode of number of nodes in
each layer - indicating the extent of multi-hop rea-
soning and compositional parallelism required to
solve a given problem. Considering the charac-
teristics of GroundCocoa we focus on reasoning
width - the number of variables a model has to
simultaneously reason over for a given problem.
Intuitively, this may be represented by the number
of slots used during the generation of a particu-
lar sample as described in Section 2.2. However,
keeping the number of rows in the minterm table
constant while increasing the slots may often lead
to lower conditional complexity as the number of
slots is increased.

Figure 2: POS expression and its dependency graph.

In order to effectively gauge the compositional
and conditional complexity of a sample in our
dataset, we define a dependency graph derived from
the POS expression corresponding to that sample.
Vertices represent slots and a dependency (edge) is
created when a particular slot co-occurs with an-
other slot within a sum term in the POS. A sample
POS expression and its corresponding dependency
graph are shown in Figure 2. The graph has 3
connected components with the largest connected
component (LCC) of size 4. The maximum degree
is 2 which corresponds to the two connections for
nodes LayoverTime and TicketClass.

Figure 3: Increasing complexity in evaluation samples.

Given a fixed schema for the flight options, the
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Figure 4: Sample user requirement and two hypothetical flight options.

number of sum terms in the POS expression as well
as the LCC in the dependency graph are indicative
of the reasoning width and, in turn, the composi-
tional complexity of the user criteria. The LCC is
the length of the largest chain of slots - the possi-
ble values of which are dependent on one another
through OR conditions (represented by edges in the
dependency graph). This metric effectively reflects
the breadth of parallel computation or reasoning
width required to accurately infer the given user cri-
teria. Since increased branching in the dependency
graph suggests a greater conditional complexity in
user criteria, we also analyze model performance
with increasing maximum degree of the dependency
graph. This gives us the extent of conditioning on a
single slot value. In Figure 3 we observe the decline
in model performance with increased complexity
as indicated by these factors.

4.2 Quantifying Confusion in Answer Choices
through Entropy

Numerous recent studies have explored how deep
learning models, specifically transformer-based ar-
chitectures, achieve success by exploiting shortcuts
(Geirhos et al., 2020; Liu et al., 2022; Tang et al.,
2023; Du et al., 2023) and relying on spurious cor-
relations present in the training data (Zhang et al.,
2023; Saparov and He, 2023; Saparov et al., 2023).
Recently, Dziri et al. (2023) utilized relative in-
formation gain of individual output elements in
partially correct answers to explain surface pattern
understanding in LLMs. In the same vein, we em-
ploy entropy as a metric to measure the confusion
that might be caused due to conditions in the user
query for a given flight option. We do this in an
attempt to demystify how language models may
succeed at some and fail at other queries with simi-
lar levels of complexity. To illustrate this, we take
an example user requirement, and two hypothetical
and simplified flight options as shown in Figure 4.
Additionally, we show the reasoning path that must

be navigated in each case for a successful outcome.

Option A Option B

Price < $5000 1 0

TicketClass = Economy 1 0

Price < $6000 1 1

TicketClass = First 0 1

psat 0.75 0.5

p ¯sat 0.25 0.5

Entropy 0.81125 1.0

Table 4: Satisfaction of primitives and entropy.

We observe how option B in our example leads
to a more convoluted reasoning path, whereas the
model is able to bypass considerable conditional
overhead in the case of Option A. For the purpose
of quantifying this more generally, we observe the
compositional primitives (values attached to indi-
vidual slots in the POS expression) in each sample
and attach a binary value indicating if the primi-
tive is satisfied. For the example in Figure 4, we
show the primitives and the corresponding values
of both options in Table 4. We also show the proba-
bility of a primitive being satisfied(psat) and being
unsatisfied(p ¯sat) by the flight option under consid-
eration, as well as the final entropy.

Entropy due to user criteria for each option can
then be computed using the formula in Equation 1.
Higher uncertainty leads to greater entropy in Op-
tion B as opposed to Option A, indicating a greater
conditional overhead.

H(X) = −(psatlogpsat + p ¯satlogp ¯sat) (1)

In our analysis, we take the entropy values of the
correct answer choice for each sample. Figure 5
shows the densities of entropy values for the cor-
rect and wrong predictions of GPT-4 Turbo. While
correct predictions exceed wrong predictions at
lower entropy values, an abrupt surge in wrong
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predictions is observed at higher entropy levels.
Thus, entropy gives us yet another measure of con-
ditional complexity from the perspective of the
answer choices rather than just the query, and helps
explain why a model might exhibit inconsistent
results across user queries of similar complexity.

Figure 5: Effect of increasing entropy in answer choices.

4.3 Robustness to Unconventional User Needs

Several contemporary studies have sought to ex-
amine the robustness of language models by study-
ing their resilience to out-of-distribution data (Koh
et al., 2021; Wang et al., 2023) or through ad-
versarial attacks and input perturbations (Gardner
et al., 2020; Goel et al., 2021; Subhash et al., 2023;
Sanyal et al., 2022; Yuan et al., 2023). In our
work, we challenge models through atypical user re-
quirements in order to assess bias from pretraining
and robustness to unorthodox and nontraditional
queries. We segregate queries into "Regular" and
"Atypical" groups as described in Section 2.3. In
Table 3, we contrast model performance on sam-
ples that describe such unconventional user needs
versus those that do not. While most models in our
testing show a decay in performance, the impact
is more noticeable on better performing models
such as GPT-4 Turbo. The in-context example used
for all queries when testing with CoT includes two
such primitives (ticket price > 1800, carbon emis-
sion above average). We observe that the decline
in performance is less pronounced with CoT.

5 Related Work

Reasoning Challenges in NLP. Our work extends
the existing line of research on evaluating natural
language processing (NLP) systems on different
facets of reasoning - most notably commonsense
question-answering (Talmor et al., 2019; Huang
et al., 2019), physical reasoning (Bisk et al., 2020),
social interaction (Sap et al., 2019), mathematical
reasoning (Cobbe et al., 2021; Amini et al., 2019;
Miao et al., 2020; Hendrycks et al., 2021b), story

completion (Zellers et al., 2019), temporal reason-
ing (Zhou et al., 2019; Tan et al., 2023) abduc-
tive reasoning (Bhagavatula et al., 2020) and pro-
noun resolution (Sakaguchi et al., 2021). Different
from these benchmarks, GroundCocoa introduces
a unique and substantial challenge for LLMs in the
form of conditional and compositional reasoning.

Among these, ConditionalQA (Sun et al., 2022)
is arguably the most comparable to GroundCocoa
in terms of the skills it assesses. While Condi-
tionalQA focuses on the reading comprehension of
conditionally-complex policy documents, Ground-
Cocoa further tests the alignment/grounding ability
of language models as (conditionally complex) user
preferences have to be matched with multiple (5)
flight schemas. The user requirements in Ground-
Cocoa are deliberately generated to introduce con-
ditional complexity through our pipeline. These
factors result in a greater number of reasoning paths
(reasoning width) and the number of variables the
model has to simultaneously consider when answer-
ing a question. Our method provides a controllable
way to adjust for this complexity by a simple ad-
justment of parameters such as slots/minterms as
described in Section 2.2. Thus, GroundCocoa can
be scaled to more complex examples in the future
and also adapted to different domains.
Benchmarks on Propositional Logic. Ground-
Cocoa also aligns with the considerable body of
work on evaluating logical reasoning in language
models. The RuleTaker (Clark et al., 2021) and
ProofWriter (Tafjord et al., 2021) datasets proposed
a modern approach to evaluating logical reason-
ing through a task involving assignment of binary
labels to candidate implications following a set
of premises expressed in natural language. The
datasets emulate a linear deductive chain of reason-
ing of varying depths given a set of facts and rules,
with ProofWriter augmenting this task through in-
termediate conclusions and proof generation. Log-
icNLI (Tian et al., 2021) provides a more compre-
hensive diagnostic benchmark involving reasoning
through all seven fundamental logics (conjunction,
disjunction, negation, implication, equation, uni-
versal and existential quantifiers). It contains an ad-
ditional "paradox" label implying a situation where
both the hypothesis as well as its negative proposi-
tion can be simultaneously entailed to the premise
through different reasoning paths. This facilitates
a non-linear reasoning, but is still limited to two
contradictory reasoning paths. The FOLIO (Han
et al., 2022) dataset boasts a higher vocabulary
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size due to a hybrid annotation approach but again
consists of linear reasoning chains. Along similar
lines, ProntoQA (Saparov and He, 2022) proposes a
first-order logic benchmark using a linear ontology
which might be fictional. This is done to prevent
LLMs from predicting correct outcomes through
spurious correlations in their pretraining corpus.

The benchmarks described here are primarily
focused on the evaluation of deductive reasoning.
In contrast, GroundCocoa offers a more realistic
grounding task with an emphasis on if-then reason-
ing which leads to many candidate reasoning paths
for each answer choice. While deductive reason-
ing may involve a broader range of logical struc-
tures, conditional reasoning is a subset which deals
specifically with the relationships and implications
of conditional statements. Our dataset consists of a
large vocabulary size and context length per sam-
ple, leading to greater linguistic diversity, and a
higher reasoning width than other benchmarks in
logical reasoning. Questions are designed to test
for robustness against rare and unconventional user
requirements and bring to the fore model bias from
pretraining data. Also, unlike most other bench-
marks, we do not attempt to evaluate logical rea-
soning in isolation - our task might require abilities
such as temporal or mathematical reasoning.
Compositional Generalization. Samples in
GroundCocoa consist of novel combination of
primitives expressed as user requirements in a
flight-booking task. Such reasoning falls under
the umbrella of compositional generalization - an
area that has garnered increasing interest recently.
Hosseini et al. (2022) highlight the relative gen-
eralization gap with in-context learning between
in-distribution and out-of-distribution samples in
various semantic parsing tasks. Dziri et al. (2023)
demonstrates how transformer-based LLMs may
solve compositional tasks by reducing them to lin-
earized subgraph matching. By establishing a com-
putational graph for each problem, the authors are
able to define computational complexity by metrics
such as the reasoning depth and width which corre-
spond to levels in multi-hop reasoning and average
parallelism respectively. Unsurprisingly, increased
task complexity leads to a rapid decay in model
performance under various settings.

Our findings largely concur with previous liter-
ature on compositional reasoning. However, re-
sults on GroundCocoa reveal that even the most
advanced LLMs struggle at relatively low levels of
compositional complexity when juxtaposed with

conditional reasoning and grounding. While Dziri
et al. (2023) demonstrated their results using prob-
lems such as multi-digit multiplication, dynamic
programming, and Einstein’s puzzle - we release
a new dataset that is anchored on a practical, real
world use-case of parsing complex user criteria and
grounding to a fixed schema representing a flight
option. GroundCocoa contains a high semantic
coverage and we posit that it would be of interest
to the NLP community as a hard evaluation set to
benchmark compositional generalization in LLMs.
Dialogue-State Tracking. Finally, while our task
is reminiscent of a single turn in a dialogue state
tracking system, it goes one step further to test
a language model’s grounding ability to match a
flight schema with the user query. Most schema-
guided dialogue datasets (Rastogi et al., 2020; Lee
et al., 2022) consist of fixed slot values and filter-
ing of available options is handled through external
systems (e.g. api’s). Slot values in GroundCo-
coa are fuzzy due to conditional constraints on the
primitives - in Figure 4, TicketPrice may take on
different values based on TicketClass. Ground-
Cocoa consists of examples with varying levels of
compositional complexity due to long and complex
user requirements. This differentiates it from the
majority of schema-guided dialogue datasets where
the primary objective is goal identification and tag-
ging of slot values. These tasks, while challenging
in their own respect, do not engage a models’ com-
positional reasoning ability to the same extent.

6 Conclusion

Modern LLMs have demonstrated remarkable ad-
vancements in many tasks including those that
are inherently compositional and necessitate con-
ditional reasoning such as mathematical problem
solving, and code generation and interpretation.
However, discerning genuine reasoning from mere
rote learning and shallow understanding continues
to be a focal point of study. Though proficient at
answering questions of seemingly greater complex-
ity, we show that they can struggle on the same
skills when presented with an unfamiliar task set-
ting. While problem size does have an impact,
even the less complex samples in our dataset are
challenging to the best language models today.

Beyond introducing a new benchmark dataset,
we conduct a thorough analysis of the effects of
increasing complexity, including advanced prompt-
ing techniques, and robustness to atypical queries.
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Our results uncover a substantial disparity in the
performance of competing language models, a dis-
tinction that is not as pronounced in most other
evaluation benchmarks and highlights their respec-
tive abilities in tackling novel challenges. Our data
generation process is largely automatic, with hu-
man validation at the last step. In addition to the
dataset and the evaluation script, we release code
for the data generation which can be easily ex-
tended to generate more examples, and increase
diversity (through different slots) as well as com-
plexity. With minor modifications, the task can
be further complicated by incorporating queries
with multiple answers and questions that require
other forms of logical reasoning such as aggrega-
tion (e.g., "Give me the cheapest flight matching
my criteria?") and existential quantification (e.g.,
"Is there a first class seat under $5000?"), greater
world knowledge (e.g., "I’d like to avoid layovers
in Europe") etc., which we leave for future work.

7 Limitations

GroundCocoa consists entirely of samples in the
flight-booking domain. This scenario is popular
and widely used in training and evaluation bench-
marks for dialogue state tracking, planning etc.
Due to the general nature of the primitives used
in our flight requirements, we are confident that
the results and insights would be applicable to a
wide array of domains. However, this has not been
empirically validated and we leave the extension
of GroundCocoa to other domains as a topic for
future research.

To isolate unconventional user requirements, we
identify primitives that are uncommon in typical
flight reservation scenarios (e.g., "I want more than
two layovers"). However, the criteria for segrega-
tion involves a degree of subjectivity. Furthermore,
conventional primitives can be combined in uncon-
ventional ways using conditional formats (e.g., "If
the flight is after 7 pm, I want the carbon emis-
sions to be below average"), which our approach
for identifying unconventional requirements does
not account for. Consequently, further investigation
is needed to evaluate model robustness to uncon-
ventional requirements that significantly deviate
from patterns likely encountered in training data.

Finally, we assess the performance of LLMs
using both CoT and L2M prompting techniques.
However, L2M requires several decomposition
steps, resulting in multiple prompts to the various

LLMs for each test sample. Given the high infer-
ence cost associated with this approach, our evalu-
ation is limited to a subset of 200 samples. While
the results suggest that GroundCocoa remains a
challenging benchmark even with L2M prompting,
they do not offer a full assessment of individual
LLM performance under this setting.
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A Sample Flight Schema

Figure 6: Schema for British Airways flight between Mexico City and Paris on 04/24/2024

B Samples from different slot/minterm configurations

B.1 2 slots, 2 minterms

Figure 7: Sample query in GroundCocoa with 2 slots and 2 minterms.

B.2 3 slots, 2 minterms

Figure 8: Sample query in GroundCocoa with 3 slots and 2 minterms.

B.3 4 slots, 2 minterms

Figure 9: Sample query in GroundCocoa with 4 slots and 2 minterms.

B.4 4 slots, 3 minterms

Figure 10: Sample query in GroundCocoa with 4 slots and 3 minterms.
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B.5 5 slots, 2 minterms

Figure 11: Sample query in GroundCocoa with 5 slots and 2 minterms.

B.6 6 slots, 2 minterms

Figure 12: Sample query in GroundCocoa with 6 slots and 2 minterms.

C Prompts used in Model Evaluation

Figure 13: Evaluation prompt without CoT.
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D End-to-End Generation Process

Figure 15: End-to-End query generation with 2 slots and 2 minterms.
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Figure 14: Evaluation prompt using CoT-partial.
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