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Abstract
In multi-agent scenarios, the ability to antic-
ipate and respond to opponents is essential,
particularly in environments involving adver-
sarial and collaborative interactions. In this
paper, we introduce Explicit Models of Oppo-
nents (EMO) based on Large Language Models
(LLMs), enabling agents to better predict and
adapt to diverse, dynamic multi-agent interac-
tions. Unlike traditional methods that often
simplify multi-agent interactions using a single
opponent model, EMO constructs an individ-
ual model for each opponent and aligns these
models working in synergy through a bi-level
feedback-refinement framework. We test EMO
alongside several reasoning methods in multi-
player deduction games, where agents must
infer hidden information about their opponents.
The results show that EMO significantly en-
hances agents’ decision-making, outperform-
ing traditional single-model approaches. Our
findings demonstrate that EMO can be a pow-
erful tool for enhancing LLM-based agents in
complex multi-agent systems.

1 Introduction

Autonomous agents, computational entities capa-
ble of operating independently in dynamic envi-
ronments, have become integral to a wide range
of applications (Mele, 1995a). Their core at-
tributes—autonomy, perception, intelligence, so-
cial ability, and learning capacity—enable them
to make decisions and take actions in pursuit
of their objectives without external intervention
(Mele, 1995b). The rise of Large Language Mod-
els (LLMs) has significantly expanded the capa-
bilities of autonomous agents, allowing for more
advanced reasoning, collaboration, and problem-
solving across diverse domains (Sun et al., 2024).
By integrating the cognitive abilities of LLMs,
agents are now able to tackle more complex tasks
with greater adaptability and effectiveness.

*†Correspondence to B zongqing.lu@pku.edu.cn

However, one critical aspect of agents, especially
in environments with both adversarial and coopera-
tive interactions, is the ability to model the behavior
of other agents (we call them ‘opponents’ through-
out the paper) (Nashed and Zilberstein, 2022; Von
Der Osten et al., 2017). Traditional approaches of-
ten simplify this by treating other agents as a single
agent rather than as distinct entities with their own
intentions and strategies (He et al., 2024; Huang
et al., 2023). This limitation restricts agents from
fully anticipating and responding to the behavior of
others, particularly in high-stakes scenarios where
understanding the goals and actions of opponents
is essential for success (Albrecht and Stone, 2018).

To address this, we introduce Explicit Models
of Opponents (EMO), a novel framework that en-
ables LLM-based agents to explicitly and effec-
tively model the behavior of their opponents. By
doing so, agents can make more informed deci-
sions, predict opponents’ actions more accurately,
and ultimately improve their performance in both
cooperative and competitive environments. EMO
goes beyond traditional learning-based approaches
by leveraging the inherent reasoning capabilities of
pre-trained LLMs, allowing for more adaptive and
dynamic responses to varying opponent strategies.

The EMO framework employs a bi-level
feedback-refinement process, wherein opponents
are modeled individually through Atomic Oppo-
nent Models, which are continuously improved via
feedback mechanisms. These individual models
are then validated and refined globally by a Central
Validator, ensuring that the predictions align with
the broader context of the game or task. This pro-
cess results in a more comprehensive understanding
of the multi-agent environment, leading to better
collaboration and conflict resolution among agents.

To evaluate the effectiveness of EMO, we con-
duct experiments in multi-player deduction games,
including Who is the Undercover (WITU) and
Avalon. These games present dynamic, imperfect-
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information scenarios where agents must infer hid-
den information about their opponents. The results
of our experiments show that EMO significantly
enhances agent performance compared to existing
methods, particularly in scenarios requiring com-
plex reasoning and strategic adaptation.

Our key contributions are summarized as fol-
lows: 1) We propose EMO, a novel framework
for LLM-based opponent modeling via explicitly
constructing individual models for opponents and
iterative feedback-refinement mechanisms; 2) We
show EMO has the potential to significantly im-
prove decision-making, adaptability, and overall
performance in dynamic, multi-agent games; 3)
The findings suggest that explicit opponent model-
ing can be a key factor in advancing the capabilities
of LLM-based agents.

2 Related work

Structured reasoning frameworks have recently
emerged as powerful methods for enhancing the
problem-solving capabilities of LLMs by intro-
ducing multi-step, structured reasoning processes.
Chain-of-Thought (CoT) (Wei et al., 2022) is
one of the pioneers, which breaks down complex
tasks into intermediate reasoning steps, allowing
LLMs to solve them in smaller, manageable parts.
Building on this, Tree of Thoughts (ToT) (Yao
et al., 2023) models reasoning as a tree struc-
ture, enabling the exploration of multiple reason-
ing paths with lookahead and backtracking. Graph
of Thought (GoT) (Yao et al., 2024) goes further
by representing reasoning in a non-linear graph
format, capturing more complex interrelations be-
tween thought processes. In addition, Program of
Thoughts (PoT) (Chen et al., 2023) separates rea-
soning from computation, using programming lan-
guage statements to improve LLM performance on
numerical tasks. Other approaches, like Skeleton-
of-Thought (SoT) (Ning et al., 2024) and Diagram
of Thought (DoT) (Zhang et al., 2024b), focus on
parallel and iterative reasoning strategies, boosting
both efficiency and accuracy. Together, these meth-
ods provide a robust set of tools for structuring the
reasoning processes of LLMs, enabling them to
handle complex tasks more effectively. However,
these methods primarily focus on solving static
problems through complex reasoning steps, with-
out accounting for the dynamic interactions often
found in multi-agent environments, where agents
must adapt to others.

Theory of Mind (ToM) has been incorporated
into LLM-based agents (Richards and Wessel,
2024; Street, 2024; Sclar et al., 2023; Xu et al.,
2023) to model the beliefs, desires, and intentions
of others, leading to more sophisticated and adap-
tive interactions. MuMA-ToM (Shi et al., 2024)
focuses on multi-modal inputs to help agents in-
fer and adapt to the mental states of others, while
Suspicion-Agent (Guo et al., 2023) applies ToM
in imperfect information games, using LLMs to
predict and influence opponents’ behaviors. Agent-
Pro (Zhang et al., 2024a) employs self-belief and
world-belief(other agents) to guide decisions. How-
ever, ensuring consistency and accuracy in belief
inference remains a challenge. Research on sym-
bolic representations (Sclar et al., 2023) proposes
using explicit graphs to track agents’ mental states
for more precise reasoning. Meanwhile, studies
on belief tracking systems (Li et al., 2023) explore
how maintaining dynamic belief states improves
decision-making. These studies form the founda-
tion for LLM-based ToM, aiming to enhance agent
collaboration, competition, and decision-making
(Gandhi et al., 2023; Zhu et al., 2024). Unlike ToM
methods, our approach takes a different path by
explicitly modeling multiple opponents, offering a
more direct way to predict their actions.

Opponent modeling is a key technique in multi-
agent systems, where agents must predict and adapt
to the behaviors and strategies of others. SOM
(Raileanu et al., 2018) allows agents to use their
own policies to infer the goals of others, enhancing
decision-making in both cooperative and competi-
tive scenarios. L2E (Wu et al., 2022) enables agents
to quickly adapt to unknown opponents without re-
quiring extensive data. M-FOS (Lu et al., 2022)
and TP-MCTS (Weil et al., 2023) shape and pre-
dict opponents’ actions without needing explicit
knowledge of their learning processes, while MOL
(Hu et al., 2023) and MBOM (Yu et al., 2022) sim-
ulate and adapt to opponents’ evolving strategies
through recursive reasoning and equilibrium pre-
diction. Additionally, Full DouZero+ (Zhao et al.,
2024) employs opponent modeling in imperfect in-
formation games, while TDOM (Tian et al., 2023)
dynamically models opponents’ changing policies
to handle non-stationarity in mixed environments.
Unlike these methods, we introduce LLM-based
explicit models of multiple opponents, offering an
explainable way for opponent modeling.

Multi-Agent Debate (MAD) involves multi-
ple agents engaging in discussions to collabora-
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Figure 1: Diagram of EMO: The agent models each opponent as an atomic opponent model, which is refined
through four steps: 0) receiving the actual output, 1) self-refinement, 2) global feedback, and 3) global refinement.
The central validator participates in steps 2 and 3, and later summarizes information from all atomic opponent
models to provide it to the reasoning module for decision-making.

tively solve complex problems by presenting argu-
ments and counterarguments, refining their reason-
ing in the process. Liang et al. (2023) proposed
a MAD framework to enhance divergent thinking
in LLMs and address reasoning degeneration by
involving multiple agents, while Liu et al. (2024)
introduced group debate to improve the scalability
of multi-agent debates. Du et al. (2023) showed
that multi-agent debate significantly improves fac-
tuality and reasoning and reduces hallucinations
by cross-examining others’ reasoning. Wang et al.
(2024) introduced a knowledge-enhanced MAD
framework that incorporates external knowledge to
solve the problem, where agents stick to incorrect
viewpoints. While MAD has shown promising re-
sults in improving reasoning and factual accuracy,
its consideration of other agents relies on methods
like CoT. This limits its effectiveness in dynamic
environments. Our approach aims to address this
limitation by equipping agents with the ability to
predict the actions of other agents in dynamic envi-
ronments.

3 Method

EMO enhances the reasoning capabilities of the
LLM-based agent by explicitly modeling oppo-
nents’ behaviors and providing information that
enables the agent to make more strategic and in-
formed decisions.

3.1 Preliminary

We consider an N -player imperfect-information
extensive-form game (Shoham and Leyton-Brown,
2008). It is defined by the tuple G =
(N ,A,H,Z, χ, ρ, σ,u, I), where N = {1 . . . N}
is the set of players, A is the set of possible ac-
tions,H represents the set of non-terminal decision
nodes (histories), andZ is the set of terminal nodes.
The action function χ : H → 2A assigns to each
decision node a set of available actions, and the
player function ρ : H → N determines which
player makes a decision at a given node. The suc-
cessor function σ : H × A → H ∪ Z specifies
the next node or terminal state after an action is
taken. The utility function u = (u1, u2, . . . , uN )
assigns each player a payoff at terminal nodes. The
information set I = (I1, I2, . . . , IN ), where each
Ii = {Ii,1, Ii,2, . . . , Ii,ki} is a collection of equiva-
lence classes (information sets) for player i.

We control one of the players with an LLM-
based agent, denoted as agent i, which collaborates
or competes with other agents. Other agents as a
whole are denoted as agent −i. The agents take
actions in a sequential, turn-based manner, where
each agent acts in its designated turn t (or time
step). Without loss of generality, we assume that
the agents take actions sequentially from agent 1 to
agent N . As the game progresses to turn t, agent
i observes public information pi,t ∈ I, private
information qi,t ∈ I, and the action of the agent
in the previous turn a·,t−1. Specifically, the history

894



agent P2 P3 P4 P5

P2
This medium often uses visual panels to tell stories.

agent

Please use the record of descriptions to infer 
your role …

[‘regular’, ‘manga’, ‘comic’, ‘graphic novel’]

The description fits ‘manga’ but is too
generic. ‘Graphic novel’ usually implies
longer narratives. …

[‘regular’, ‘manga’, ‘comic’]

You believe player 2’s role is “regular” and
possible cards are “manga, comic, graphic novel”.
Analyze if this aligns with their description…

Adjust your prediction based on the feedback.

S
el

f-
R

ef
in

e

Figure 2: Example of P2’s model changing output by
self-refine to exclude candidates.

for agent i at turn t is given by:

Hi,t = (pi,0, qi,0, a·,0, . . . , pi,t−1, qi,t−1, a·,t−1).

The agent’s goal is to select the best action at each
time step based on its observations and available
information, maximizing its expected utility over
the course of the game.

3.2 Explicit Models of Opponents
We propose EMO to enhance the performance of
LLM-based agents, with the method architecture
shown in Figure 1. EMO is a bi-level feedback-
refinement framework, consisting of two main com-
ponents: atomic opponent models and central
validator. The atomic opponent models are re-
sponsible for generating initial predictions for the
opponents and iteratively improving their outputs
through feedback and refinement. The central val-
idator is responsible for evaluating the output of
each atomic opponent model with the ground truth
output of the opponents, providing global feedback
and coordination to the atomic opponent models.
Finally, the central validator aggregates the outputs
from all atomic opponent models and provides the
information to the agent to help generate a more
comprehensive and effective action.

Atomic opponent models leverage a memory-
enhanced self-refine method (Madaan et al., 2023).
The modeling process is divided into three phases:
initialization, feedback, and refinement.

In the initialization phase, the atomic opponent
model Mj generates an initial prediction of q0j,t that
represents the private information of the opponent
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agent
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Opponent models predict:
Player2: regular (manga, comic)
Player3: regular (manga, book)
Player4: undercover (cartoon)
Player5: undercover (animation)…

There are multiple undercover roles, which 
do not comply with the rules. Player 5 is 
undercover needs verification.

Player5’s model initially predicts [‘undercover’, 
‘animation’]. The global feedback suggests 
potential undercover role…

[‘undercover’, ‘animation’, ‘anime’]

[‘undercover’, ‘animation’]

Figure 3: Example of changing the output of P5’s model
by global-refine, since explicit models of opponents are
inconsistent with the rules.

j ∈ [1, . . . , i− 1, i+1, . . . , N ], which is based on
the task prompt P , task rules R, history H , and
public information p:

q̂0j,t ∼Mj(· | P init, R,Hj,t, p̃j,t). (1)

The prompt P init guides the generation process,
providing context and constraints for the output.
The history Hj,t contains past interactions, pre-
dictions, and observations of the opponent model,
allowing it to learn from experiences. The public
information p̂j,t provides the information about the
environment that agent i believes agent j knows,
i.e., p̃j,t = pi,t, because agent i cannot access the
observation of agent j.

In the feedback phase, opponent model Mj gen-
erates feedback F s

j,t as follows:

F s
j,t ∼Mj(· | P self -feedback, R,Hj,t,

p̃j,t, aj,t, q̂
s
j,t),

(2)

where aj,t is the action taken by the opponent at
time step t and s is an iterator.

In the refinement phase, opponent model Mj

generates a refined output q̂s+1
j,t by incorporating

all available information:

q̂s+1
j,t ∼Mj(· | P self -refine, R,Hj,t, F

s
j,t,

p̃j,t, aj,t, q̂
s
j,t).

(3)

The feedback and refinement phases are itera-
tively executed until the maximum number of it-
erations is reached or another stopping condition
is met. It then outputs the refined private informa-
tion of the opponent q̂Sj,t. Figure 2 illustrates an
example of self-refinement.
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Algorithm 1 EMO
1: Input: Central validator Mc, Atomic opponent

model Mj , prompts P , task rules R, history
{Hn,t | n = 1, . . . , N}, public information
p̃j,t, opponent j’s action aj,t, timestep t

2: {//Self-Refine}
3: Generate initial prediction q̂0j,t as Equation (1)
4: for s = 0, 1, . . . , S do
5: Generate feedback F s

j,t as Equation (2)
6: Refine prediction q̂s+1

j,t as Equation (3)
7: end for
8: {//Global-Refine}
9: Global initial prediction q̂gj,t ← q̂Sj,t

10: for g = 0, 1, . . . , G− 1 do
11: Generate global feedback F g

j,t as Equa-
tion (4)

12: Refine prediction q̂g+1
j,t as Equation (5)

13: end for
14: Global refined prediction q̂j,t ← q̂Gj,t
15: Merge history Hj = Hj ∪ {p̃j,t, q̂j,t, aj,t}

Central validator Mc plays a critical role in
coordinating the outputs of the atomic opponent
models and ensuring consistency. The central val-
idator is responsible for evaluating the aggregated
predictions and iteratively refining them to ensure
that each atomic opponent model’s output aligns
with the global context of the environment. Specifi-
cally, the central validator uses a two-phase process:
global feedback and global refinement.

In the global feedback phase, the central val-
idator Mc evaluates the outputs generated by each
atomic opponent model and compares them against
the overall ground truth or global information avail-
able to agent i. By incorporating information from
other agents’ past actions and global information
and history, the central validator generates a global
feedback signal F g

j,t for opponent model Mj :

F g
j,t ∼Mc(· | P global-feedback, R,HN ,t,

p̃N ,t, aN ,t, q̂
g
j,t).

(4)

Here, the notation “N ” represents all agents. The
central validator takes into account the refined pri-
vate information q̂gj,t from the atomic opponent
model j and evaluates it based on the global context.
During the first iteration, q̂gj,t is initialized to q̂Sj,t.
The generated global feedback F g

j,t is then used to
improve the predictions of each atomic opponent
model. In the global refinement phase, the atomic
opponent models incorporate the global feedback

Algorithm 2 CoT with EMO
1: Input: Agent i’s reasoning model M , CoT’s

prompts {P0, . . . , PK}, task rules R, history
Hi = {}.

2: for t = 0, 1, . . . do
3: Get public information pi,t, private informa-

tion qi,t.
4: if Agent i’s turn to act then
5: Get predicted private information of EMO

q̂−i,t−1 as Equation (6)
6: Initialize s0 = M(P0, D), where D =

{R,Hi,t, pi,t, qi,t, q̂−i,t−1}
7: for k = 1, 2, . . . ,K − 1 do
8: sk = M(sk−1, Pk, D)
9: end for

10: Take action ai,t = a·,t = M(sK , PK , D)
11: else
12: Get the current acting agent’s index j and

action aj,t = a·,t
13: Run EMO as Algorithm 1
14: end if
15: Merge history Hi = Hi ∪ {pi,t, qi,t, a·,t}
16: end for

to produce a further refined output q̂g+1
j,t :

q̂g+1
j,t ∼Mj(· | P global-refine, R,Hj,t, F

g
j,t,

p̃j,t, aj,t, q̂
g
j,t).

(5)

Here, the goal is to integrate the feedback pro-
vided by the central validator, ensuring that the
outputs are coherent with respect to the global in-
formation available. This iterative refinement con-
tinues until a predefined convergence criterion is
satisfied, and then we have the final prediction of
the opponent q̂j,t. Figure 3 shows an example of
global refinement.

By leveraging both the local feedback from
atomic opponent models and the global feedback
from the central validator, EMO aims to produce
more reliable predictions. The central validator
thus is the key to helping ensure the atomic oppo-
nent models are working in synergy, thereby en-
hancing the performance of the agent by providing
a more holistic understanding of the environment
and the actions of opponents.

The central validator Mc aggregates the predic-
tions from all opponent models after they generate
their respective outputs as follows:

q̂−i,t ∼Mc(· | P summary,
N∑

j ̸=i

q̂j,t). (6)
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The full procedure of EMO is outlined in Algo-
rithm 1.

3.3 Incorporating EMO

LLMs struggle with handling complex reasoning
tasks, and traditional methods that directly feed
complex opponent information into the LLM-based
agent are not effective since they fail to account
for deeper factors such as opponents’ intentions,
beliefs, and hidden information. To overcome
this limitation, we introduce EMO to handle the
complexity of opponent information. EMO pro-
cesses and interprets the opponent’s private infor-
mation q̂−i,t−1, letting the LLM focus on strategic
decision-making and action planning. This divi-
sion allows the agent to reason more effectively
about the environment and make more informed,
strategic decisions, while also enabling seamless
integration with existing strategic reasoning and
planning methods.

EMO does not impose limitations on the LLM-
based agent. As an example, we demonstrate how
EMO can be integrated with the Chain-of-Thought
(CoT) reasoning approach (Wei et al., 2022). The
algorithm is provided as Algorithm 2. Other rea-
soning methods are discussed in Appendix A.

4 Experiments

4.1 Settings

In the experiments, we combine EMO with the
following methods:

• Chain of Thought (CoT) (Wei et al., 2022) is a
prompting method that improves reasoning by
generating intermediate steps, enabling LLMs
to handle complex problems.

• Reflexion (Shinn et al., 2023) is a framework
where agents improve their decision-making
by reflecting on feedback in subsequent trials,
storing insights for future use.

• Self-Consistency with CoT (CoT-SC) (Wang
et al., 2023) is a method that samples multiple
reasoning paths and selects the most consis-
tent answer to improve reasoning.

• Tree of Thoughts (ToT) (Yao et al., 2023) is
a framework that explores multiple reasoning
paths and employs self-evaluation to enable
strategic decision-making.

• Multi-Agent Debate (MAD) (Liang et al.,
2023) a framework where multiple agents de-

bate and a judge determines the solution, pro-
moting divergent thinking to overcome biases
and rigid reasoning.

The vanilla versions of these methods serve as
baselines. All opponents are LLM-based agents.
We use the GPT-4-0613 as the default LLM
with the default parameters (temperature=1.0 and
top_p=1.0). For more details please refer to Ap-
pendix A.

4.2 Performance on WITU

Who is the Undercover (WITU) is a party game
for five players. Each player receives a card: four
regular players get a card with a common word,
while the undercover player receives a card with
a slightly different word, such as “manga” versus
“animation”. Players do not know their own roles
at the start. Each player takes turns describing their
word without directly revealing it. For example,
one might describe the “manga” by This thing is
usually in black and white, with occasional color
versions. After all players have given their descrip-
tions, they vote to identify the undercover player.
The regular players win if they successfully iden-
tify the undercover player, while the undercover
player wins by remaining undetected until only one
regular player remains.

Throughout the game, each player must deduce
what cards others hold based on their descriptions,
which in turn helps them figure out their own role.
When describing their card, a player must be con-
vincing enough that others with the same card find
the description consistent, thus avoiding suspicion.
Lying is not allowed. For example, a player hold-
ing “manga” cannot, even if they suspect others
hold “animation”, give a misleading description
such as This is usually accompanied by music and
background sound effects, which doesn’t match
the characteristics of “manga”. At the same time,
players need to be careful not to reveal too much,
as it could give those with different cards enough
information to guess the content and identify them.

Figure 4 presents the performance of the agent
in WITU. The results show that EMO significantly
enhances the performance of LLM-based agents in
both roles, as a regular player and as an undercover
player. The agent’s win rate improves by a large
margin with using EMO, indicating that EMO of-
fers valuable insights that help the agent make more
strategic decisions, ultimately enhancing its overall
performance in the game. The linear reasoning path

897



CoT CoT-SC MAD Reflexion ToT0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

wi
n 

ra
te

vanilla
with EMO

(a) Regular Player

CoT CoT-SC MAD Reflexion ToT0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

wi
n 

ra
te

vanilla
with EMO

(b) Undercover Player

Figure 4: Performance on WITU, win rate comparison between vanilla baseline methods (green) and methods
incorporating EMO (red). (a) represents the agent as a regular player, while (b) represents the agent as an undercover
player. The results show that EMO significantly enhances the performance of LLM-based agents in both roles. The
results are averaged over 100 games.

Table 1: Self-Identification Accuracy on WITU

Regular Player Undercover Player All roles
First Round Last Round First Round Last Round First Round Last Round

CoT + EMO 67% 81% 37% 85% 52% 83%
CoT-SC + EMO 75% 81% 21% 88% 48% 84.5%
MAD + EMO 64% 88% 20% 75% 42% 81.5%
Reflexion + EMO 69% 85% 29% 89% 49% 87%
ToT + EMO 78% 72% 20% 81% 49% 76.5%

of CoT can easily lead the agent down an incorrect
trajectory. EMO provides additional reasoning and
a higher self-identification accuracy, as shown in
Table 1, which helps correct CoT’s faulty reasoning.
Reflexion struggles with handling complex prob-
lems, while EMO mitigates this complexity. CoT-
SC and ToT both utilize multiple reasoning paths,
offering greater cognitive flexibility. MAD lever-
ages the diversity of multi-agent thinking, making
it more adept at handling scenarios with multiple
opponents. Even for these high-performing meth-
ods, the opponent information provided by EMO
further improves their performance.

Table 1 illustrates the self-identification accu-
racy of the LLM-based agent. Across both regular
and undercover roles, the accuracy consistently im-
proves from the first round to the last, indicating
that EMO significantly enhances the agent’s ability
to correctly identify its own role. This improve-
ment is evident in all methods tested, with EMO
contributing to higher overall accuracy.

4.3 Performance on Avalon
Avalon (Light et al., 2023) is a social deduction
game. The players are divided into two teams:
three good players and two evil players. The good

team consists of Merlin and two servants of Arthur,
while the evil team includes the Assassin and one
Minion of Mordred. The objective for the good
team is to successfully complete three out of five
quests, while the evil team tries to sabotage these
quests. Each round, a leader proposes a team to
go on the quest, and players vote to approve or
reject the team. The good team includes Merlin,
who knows the identities of the evil players but
must be cautious not to reveal their own identity,
as the Assassin can win the game by identifying
and killing Merlin at the end. The two other good
players are Servants, who must use deduction and
reasoning to identify the evil players. The evil team
consists of the Assassin, who aims to deceive the
good players, and one Minion, who supports the
Assassin in sabotaging the quests.

Figure 5 illustrates the performance of the agent
in Avalon, comparing the win rates between vanilla
baseline methods and those incorporating EMO.
Across all roles — Merlin, Servant, Minion, and
Assassin — the results indicate that EMO signif-
icantly enhances the performance of LLM-based
agents. The agent’s win rate consistently improves
when using EMO, suggesting that EMO offers cru-
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Figure 5: Performance on Avalon, comparing win rate between vanilla baseline methods (blue) and methods
incorporating EMO (orange). (a), (b), (c), and (d) represent the agent’s performance as Merlin, Servant, Minion, and
Assassin, respectively. The results show that EMO significantly improves the performance of LLM-based agents.
The results are averaged over 100 games.

Table 2: Detail Results of Avalon

Good Roles Assassin
Merlin Evasion Mission Winrate Assass.acc

vanilla with EMO vanilla with EMO vanilla with EMO
CoT 17.2% 17.4% 49% 52% 60% 91.7%
CoT-SC 17.5% 15.6% 66% 74% 69.2% 92.3%
MAD 15.9% 16.1% 56% 74% 70% 88.9%
Reflexion 18.4% 17.9% 50% 49% 59.1% 88.9%
ToT 16.1% 15.6% 62% 71% 71.4% 90.9%

Table 3: Ablation on WITU, comparison between EMO
and Single Model of Opponents (SMO). The results
show that EMO significantly outperforms SMO in both
roles. The results are averaged over 100 games.

Regular Player Undercover Player
with EMO with SMO with EMO with SMO

CoT 27% 25% 15% 10%
CoT-SC 49% 36% 47% 53%
MAD 49% 46% 73% 60%
Reflexion 27% 22% 39% 38%
ToT 35% 30% 43% 36%

cial insights, which contribute to more strategic
choices and overall enhanced performance in the
game. CoT and Reflexion get poor performance,
primarily due to their lack of adaptability when
dealing with dynamically changing tasks. CoT-
SC and ToT, despite utilizing complex reasoning
paths, still suffer in this multi-agent game. MAD,
while benefiting from the diversity of multi-agent
interactions, faces challenges in ensuring coordina-
tion among agents. The inclusion of EMO further
enhances the performance of these sophisticated
methods.

Table 2 shows the detailed results from the game
Avalon. “Merlin Evasion” refers to the probability
that Merlin is not identified by the Assassin during
the assassination phase. For Merlin, with global
information, the overall win rate increases with
the use of EMO, while the evasion rate remains

almost unchanged, which indicates that EMO did
not introduce negative side effects. Methods that
involve more complex reasoning, such as CoT-SC
and ToT, demonstrate a slight edge. For the Assas-
sin role, EMO provides higher mission win rates
and increases accuracy in identifying Merlin. This
suggests that EMO’s application in Avalon signif-
icantly improves the agents’ ability to understand
their opponents, making it easier for the Assassin
to locate Merlin.

4.4 Ablation Study
In traditional opponent modeling methods like (Yu
et al., 2022), multiple opponents are often treated
as a single entity for the sake of simplification, re-
ducing the complexity of interactions between op-
ponents. This approach is usually taken due to limi-
tations in computational resources and model com-
plexity. However, EMO leverages the adaptability
and training-free nature of LLMs to construct com-
prehensive individual models for each opponent,
rather than using a single, unified model. As a part
of our ablation study, we compared EMO with the
method of modeling all opponents as one entity, de-
noted as Single Model of Opponents (SMO). The
results are shown in Table 3.

When the agent acts as a regular player, the
group of opponents consists of both regular and
undercover players, creating a complex opponent
modeling scenario that implicitly includes both
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cooperative and competitive relationships. SMO,
which uses a single model to handle this complex
environment, overlooks the interactions between
opponents, resulting in overall weaker performance
compared to EMO. When the agent plays as an un-
dercover player, the opponent model only includes
regular players, making it a simpler opponent mod-
eling scenario. EMO demonstrates significant ad-
vantages across several baseline algorithms, includ-
ing CoT, MAD, and ToT. By comparing the re-
sults of EMO and SMO, we observe that EMO per-
forms better in complex scenarios involving mul-
tiple opponents. Overall, EMO, by constructing
explicit models for each opponent, significantly en-
hances the performance of agents in multi-player
adversarial-cooperative scenarios. It proves to be
effective in scenarios requiring complex reasoning
and decision-making, outperforming SMO across
various metrics.

5 Conclusion

In this paper, we introduced EMO, which enhances
the reasoning capabilities of LLM-based agents
in multi-agent games. EMO leverages a bi-level
feedback-refinement framework, enabling agents
to better anticipate and adapt to the behavior of indi-
vidual opponents. Our experiments in “Who is the
Undercover” and Avalon demonstrate that EMO
significantly improves the performance of agents in
both adversarial and cooperative roles. By explic-
itly modeling each opponent, EMO provides more
strategic insights, leading to higher performance
compared to traditional single-model approaches.
These results highlight the potential of explicit op-
ponent modeling to advance LLM-based agents’
capabilities in complex multi-agent environments.
Future work may explore further optimizations in
EMO’s architecture and its application to more di-
verse and dynamic scenarios.

6 Limitations

We propose EMO, a novel framework for LLM-
based opponent modeling that significantly en-
hances decision-making, adaptability, and overall
performance in dynamic, multi-agent games. De-
spite its strengths, EMO has limitations due to its
strong dependence on the reasoning abilities of
LLMs and the performance of baseline methods.
Although EMO excels in open multi-agent envi-
ronments with its zero-shot capabilities, the con-
struction of opponent models remains vague, which

hinders its ability to support simulation-based plan-
ning and reduces its effectiveness in scenarios re-
quiring detailed and accurate opponent modeling.
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A Algorithms

The CoT method discussed in the main text. In EMO for all methods, both the termination conditions
for self-refine and global-refine are set to 2 iterations. The prompts has provided in Appendix D. We
have also implemented several structured reasoning frameworks as part of the agent’s reasoning module,
detailed below:

• Reflexion (Shinn et al., 2023) is a framework where agents improve their decision-making by
reflecting on feedback in subsequent trials, storing insights for future use. The number of iterations
is 3. See Algorithm 3.

• Self-Consistency with CoT (CoT-SC) (Wang et al., 2023) is a method that samples multiple reasoning
paths and selects the most consistent answer to improve reasoning. The number of samples is 10.
See Algorithm 4.

• Tree of Thoughts (ToT) (Yao et al., 2023) is a framework that explores multiple reasoning paths and
employs self-evaluation to enable strategic decision-making. We use the ToT-BFS with size limit of
8, step limit of 3, and the breadth limit is min{5, |χ|}, where χ is the available action space. See
Algorithm 5.

• Multi-Agent Debate (MAD) (Liang et al., 2023) a framework where multiple agents debate and a
judge determines the solution, promoting divergent thinking to overcome biases and rigid reasoning.
The number of iterations is 3 with 5 debate agents. See Algorithm 6.

Algorithm 3 Reflexion with EMO

1: Input: Agent i’s reasoning model M , Reflection’s prompts P refl and Select prompt P select, task rules
R, history Hi = {}, max iteration K.

2: for t = 0, 1, . . . do
3: Get public information pi,t, private information qi,t.
4: if Agent i’s turn to act then
5: Get predicted private information of EMO q̂−i,t−1 as Equation (6)
6: Initialize a

(1)
i,t = M(P,D), where D = {R,Hi,t, pi,t, qi,t, q̂−i,t−1}

7: for k = 2, . . . ,K do
8: a

(k)
i,t = M(P refl, D, a

(1)
i,t , . . . , a

(k−1)
i,t )

9: end for
10: Take action ai,t = a·,t = M(P select, D, a

(1)
i,t , . . . , a

(k)
i,t )

11: else
12: Get the current acting agent’s index j and action aj,t = a·,t
13: Run EMO as Algorithm 1
14: end if
15: Merge history Hi = Hi ∪ {pi,t, qi,t, a·,t}
16: end for
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Algorithm 4 CoT-SC with EMO

1: Input: Agent i’s reasoning model M , CoT-SC’s prompts {P0, . . . , PK} and Select prompt P select,
task rules R, history Hi = {}, num of samples L.

2: for t = 0, 1, . . . do
3: Get public information pi,t, private information qi,t.
4: if Agent i’s turn to act then
5: Get predicted private information of EMO q̂−i,t−1 as Equation (6)
6: Initialize Aset = {}
7: for l = 1, 2, . . . , L do
8: Initialize s0 = M(P0, D), where D = {R,Hi,t, pi,t, qi,t, q̂−i,t−1}
9: for k = 1, 2, . . . ,K − 1 do

10: sk = M(sk−1, Pk, D)
11: end for
12: Aset = Aset ∪ {M(sK , PK , D)}
13: end for

14: Take action ai,t = a·,t =

{
a = argmaxA

∑L
l=1 I{A

(l)
i,t = A} // action space is countable

a = M(P select, Aset, D) // action space is uncountable
15: else
16: Get the current acting agent’s index j and action aj,t = a·,t
17: Run EMO as Algorithm 1
18: end if
19: Merge history Hi = Hi ∪ {pi,t, qi,t, a·,t}
20: end for

Algorithm 5 ToT with EMO

1: Input: Agent i’s reasoning model M , prompts {P gen, P eval}, task rules R, history Hi = {}, size
limit l, step limit K, breadth limit b.

2: for t = 0, 1, . . . do
3: Get public information pi,t, private information qi,t.
4: if Agent i’s turn to act then
5: Get predicted private information of EMO q̂−i,t−1 as Equation (6)
6: Initialize S0 = D, where D = {R,Hi,t, pi,t, qi,t, q̂−i,t−1}
7: for k = 1, 2, . . . ,K do
8: S′

k ← {[s, z] | s ∈ Sk−1, zk ∈M(P gen, s, l)} {//Generate l candidates by multi-step CoT}
9: Vk ←M(P eval, S′

k)
10: Sk ← argmaxS⊂S′

k,|S|=b

∑
s∈S Vt(s)

11: end for
12: Take action ai,t = a·,t = M(P gen, argmaxs∈SK

, 1)
13: else
14: Get the current acting agent’s index j and action aj,t = a·,t
15: Run EMO as Algorithm 1
16: end if
17: Merge history Hi = Hi ∪ {pi,t, qi,t, a·,t}
18: end for
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Algorithm 6 MAD with EMO

1: Input: Multi Agent reasoning models {M(l) | l = 1, . . . , L} and Vote model Mvote, MAD’s prompts
{P(1), . . . , P(L)} and Vote prompt P vote, task rules R, history Hi = {}, max round K.

2: for t = 0, 1, . . . do
3: Get public information pi,t, private information qi,t.
4: if Agent i’s turn to act then
5: Get predicted private information of EMO q̂−i,t−1 as Equation (6)
6: for each agent l = 1, 2, . . . , L do
7: Initialize a

(0)
(l) = M(l)(P(l), D), where D = {R,Hi,t, pi,t, qi,t, q̂−i,t−1}

8: end for
9: for each debate round k = 2, . . . ,K do

10: for each agent l = 1, 2, . . . , L do
11: a

(k)
(l) = M(l)(a

(k−1)
(l) , P(l), D)

12: end for
13: end for
14: Take action ai,t = a·,t = M(P vote, D, a

(K)
(1) , . . . , a

(K)
(L) )

15: else
16: Get the current acting opponent’s index j and action aj,t = a·,t
17: Run EMO as Algorithm 1
18: end if
19: Merge history Hi = Hi ∪ {pi,t, qi,t, a·,t}
20: end for

B Environments

B.1 Who is the Undercover
WITU is a social deduction game designed for 5 players. The objective of the game is to use descriptions
and deductions to identify the undercover player within the group. The game follows the steps outlined
below:

Roles and Cards
At the start of each round, players are randomly assigned a card that displays a word. There are two words
in total, which have similar meanings (for example, "Lion" and "Tiger"). However, the distribution of
these words is uneven:

• Regular players: Most players will receive the same word, making them part of the majority group.

• Undercover player: One or more players will receive a card with the less common word. These
players are referred to as undercover players.

Game Phases
The game progresses through multiple rounds, with each round consisting of three phases:

• Description Phase: Players take turns describing the word on their card. Descriptions must be subtle
enough not to reveal the exact word, but clear enough to avoid suspicion.

• Voting Phase: At the end of the discussion, players vote to eliminate one player whom they suspect
to be an undercover player. The player with the most votes is eliminated from the game, and the
game proceeds to the next round.

Objective and Strategy
• Regular players: The goal of the regular players is to identify and eliminate all undercover players

before the end of the game.
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• Undercover player: The undercover player’s goal is to avoid detection by blending in with the
regular players, offering vague or misleading descriptions, and surviving as many rounds as possible
without being eliminated.

Both regular players and undercover players share the same immediate objective: survival. Regular
players must deduce the majority word from the descriptions given, as no player knows their own affiliation
at the start of the game. As the game progresses, undercover players must avoid raising suspicion while
trying to outlast the regular players.

Game Conclusion
The game concludes under one of two conditions:

• Victory for the regular players: If the regular players successfully eliminate the undercover players,
they win the game.

• Victory for the undercover players: If the undercover players survive until the final round without
being identified, they win the game.

B.2 Avalon
Avalon (Light et al., 2023) is centered around social deduction and hidden identities, where players are
divided into two teams: Good and Evil, each with different roles and objectives. The game mechanics as
follows:

Roles
• Good Side:

– Servants: These are the basic good players who do not know the identities of other players.
– Merlin: A special good role. Merlin knows the identities of all evil players but must help guide

the good players without revealing his own identity, as revealing himself puts the good team in
danger.

• Evil Side:

– Minions: These evil players know who the other evil players are, and their goal is to sabotage
the missions without being identified by the good players.

– Assassin: A special evil role. The Assassin also knows all the evil players. If the evil team loses
three missions, the Assassin can still win by successfully identifying and assassinating Merlin
at the end of the game.

Game Phases
There are four distinct phases in each round of Avalon:

• Team Selection Phase: The current leader of the round must select a subset of players to form a
mission team. The size of the team is predetermined based on the mission number.

• Voting Phase: Once the leader has selected the team, all players vote publicly to either approve or
reject the proposed team. If a majority votes "yes," the team proceeds to the mission phase; otherwise,
the team selection phase is repeated with a new leader. If four teams are consecutively rejected, the
fifth team is automatically approved.

• Quest Phase: The selected team members vote anonymously on whether to pass or fail the mission.
Typically, if at least one player votes to fail the mission, it is marked as a failure. Otherwise, the
mission succeeds. If three missions succeed, the good side wins. If three missions fail, the evil side
wins.

• Assassination Phase: If three missions succeed, the evil team has one final chance to win by
assassinating Merlin. The Assassin chooses one player to assassinate, and if Merlin is successfully
assassinated, the evil team wins.
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Discussion and Deduction
Discussion is a key aspect of Avalon. Between the team selection and voting phases, and again before the
assassination phase, players engage in open discussion. During these discussions:

• Players can make observations about the actions and voting patterns of others, attempt to deduce
who is on the evil team, and propose strategies.

• Evil players must deceive the good players by disguising their true intentions.

• Players may accuse others, defend themselves, or try to persuade others to follow a particular strategy.
The leader will often seek advice on which players to select for the team.

Hidden Information and Deception
• Most good players do not know the identities of other players, which forces them to rely on deductive

reasoning based on the actions of others.

• Evil players, on the other hand, know each other’s identities and can coordinate their actions to
sabotage the missions while hiding their roles.

• Merlin, who knows the identities of all evil players, must carefully guide the good team without
revealing his identity, as doing so will make him a target for the Assassin.

Strategy and Complexity
The strategic complexity in Avalon arises from the need for players to simultaneously:

• Reason and deduce the roles of other players based on their actions, votes, and dialogues.

• Collaborate with teammates to propose and approve teams for missions.

• Deceive others by hiding their true identity, especially for evil players. For example, evil players
may vote to approve or pass missions early on to build trust, only to sabotage critical missions later.

Avalon provides a highly dynamic and multi-layered environment, making it an ideal setting for
evaluating decision-making, persuasion, and social deduction capabilities in both human and AI agents.

C Computational Cost Analysis of EMO

To provide a clearer understanding of the computational trade-offs associated with the EMO method, we
present a comparison of the number of API requests incurred across different approaches. The following
table summarizes the request counts for various methods in the WITU setting:

Table 4: Number of API requests in WITU under different methods.

CoT CoT-SC MAD Reflexion ToT
with EMO 5391 12513 8398 7106 8600
with SMO 2220 9996 5364 4079 5452

vanilla 1031 8905 4352 2971 4075

As shown in the table, incorporating EMO leads to a noticeable increase in the number of API requests
compared to both the vanilla methods and SMO. This increase in computational cost reflects the additional
reasoning and refinement steps introduced by EMO. Despite the higher cost, the additional API requests are
justified by the substantial improvements in reasoning and decision-making capabilities, as demonstrated
in our experimental results.
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D Prompts

The prompts used for “Who is the Undercover” is as follows: it is divided into three groups: ENVIRON-
MENT, EXPLICIT MODEL OF OPPONENTS, and AGENT. The ENVIRONMENT group provides the
game’s rules and observations, while the EXPLICIT MODEL OF OPPONENTS group provides the agent
with information on how to model the opponents. The AGENT group contains prompts for the agent to
reason and make decisions based on the information provided.

ENVIRONMENT

INTRODUCTION

You are playing a game called Who is the Undercover (WITU).
Who is the Undercover (WITU) is a game of hidden identities and social deduction. The
game is played by five players, each of whom receives a card with a word. Four of the
players are regular players and receive a card with the same word, while the undercover
player receives a slightly different word. The goal for the regular players is to identify the
undercover player, while the undercover player’s goal is to remain undetected.
Each player takes turns describing their word without directly revealing it. For example, if
the word is ’manga’, the player might say something like ’This thing is usually in black
and white, with occasional color versions’. Players need to describe their words in a way
that convinces others with the same card while being careful not to give away too much
information that would help the undercover player figure out the difference.
After everyone has given their descriptions, all players vote on who they think the under-
cover player is. If the regular players correctly identify the undercover player, they win.
If the undercover player can stay undetected until only one regular player remains, the
undercover player wins.
In this game, players must deduce their own roles based on the descriptions given by
others. Lying or giving misleading information is not allowed. Instead, players need to
provide consistent descriptions while being vague enough not to reveal too much. Success
in WITU requires careful observation, strategic descriptions, and reading others’ intentions
accurately.

TUTORIAL_STRATEGIES

1) Describe the card in an indirect or ambiguous way. For example, ’goat’ can be described
as ’Jordan’ since ’goat’ stands for ’Greatest of All Time.’
2) Use vague language to describe the card. For example, ’I often buy it.’
3) Avoid following others’ descriptions, as it may raise suspicion.

ACTION

Currently in round {}, player {} gives the description: {}.

PRIVATE_OBSERVATION

The card you hold is {}. Throughout the game, remember the card’s details and keep them
secret.
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EXPLICIT MODEL OF OPPONENTS

VALIDATOR_ROLE

Please forget you are an AI. You are the validator for opponent model {}. Each opponent
model will infer the possible card and role it might have.

OPPONENT_ROLE

Please forget you are an AI. You are the model for player {} in this game. Your task is
to adjust your estimation of the possible card based on player {}’s card descriptions and
feedback.

OPPONENT_PRIVATE_OBSERVATION

Player {}’s opponent model {} believes the role is {} and the card held is {}.

INIT

Please use the record of descriptions to infer your role and the card(s) you hold. Output
the answer in list format, such as [’regular’, ’apple’, ’banana’, ’cherry’]. The first element
should be your possible role: ’regular’ or ’undercover’. The other elements should be the
possible cards you hold, with a maximum of three. If no information is available, please
respond with None.

SELF_FEEDBACK

You believe your role is {}, and the possible cards you hold are {}. Based on this round’s
description: {}, analyze step by step and provide feedback suggestions to adjust your card
estimation.

SELF_REFINE

Please adjust your possible role and cards based on the feedback. Output the answer in list
format, such as ["regular", "apple", "banana", "cherry"]. The first element should indicate
your possible role: ’regular’ or ’undercover’, and the other elements should be the possible
cards you hold, with a maximum of three.

GLOBAL_FEEDBACK

Opponent model {} believes its role and held cards are {}. Based on the record of card
descriptions from other players, particularly the first description from each player, and
considering the game rule of having 4 identical cards and 1 unique card, analyze step by
step and provide feedback suggestions for the opponent model to adjust its card estimation.

GLOBAL_REFINE

Please adjust your possible role and cards based on the feedback. Output your answer
in list format, such as ["regular", "apple", "banana", "cherry"]. The first element should
represent your possible role: ’regular’ or ’undercover’, while the other elements should be
the possible cards you hold, with a maximum of three.
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AGENT

AGENT_ROLE

Please forget you are an AI. You are player {} in this game. You currently control {}
opponent models, each representing a player in this game: player {}. Your task is to avoid
revealing too much information about your own card and to vote to eliminate players with
cards different from your own.

SUMMARY

Please summarize the possible cards held by the opponent based on the opponent model’s
card and role inference.

COT_1

The opponent model’s summary is {}. Based on the opponent model’s description, deter-
mine whether your role is ’regular’ or ’undercover’ and infer the possible other card.

COT_2

List the common characteristics of the two cards: {}, the unique characteristics of your
card, and the unique characteristics of the other card.

COT_3

Based on the record of past descriptions, select one suitable characteristic from the shared
characteristics and output it.

VOTE_1

Please think about whose card is different from ours, and analyze step by step.

VOTE_2

Select a player to eliminate from player {}. Output only the player number.
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The ENVIRONMENT and AGENT of prompts used for Avalon are refered (Light et al., 2023), and the
EXPLICIT MODEL OF OPPONENTS of prompts are shown in detail as follows.

EXPLICIT MODEL OF OPPONENTS

VALIDATOR_ROLE

Please forget you are an AI. You are the validator for opponent model {}. Each opponent
model will infer the possible card and role it might have.

OPPONENT_ROLE

Please forget you are an AI. You are the model for player {} in this game. Your task is to
adjust your estimation of the possible card based on player {}’s descriptions and feedback.

OPPONENT_PRIVATE_OBSERVATION

Player {}’s opponent model {} believes the role is {}.

INIT

Please use the record of descriptions to infer your role and the character you are playing as.
Output the answer in list format, such as [’Good’, ’Merlin’]. The first element should be
your possible allegiance: ’Good’ or ’Evil’. The other element should be the possible role.
If no information is available, please respond with None.

SELF_FEEDBACK

You believe your role is {}. Based on this round’s description: {}, analyze step by step and
provide feedback suggestions to adjust your role estimation.

SELF_REFINE

Please adjust your possible role and cards based on the feedback. Output the answer in list
format, such as ["Good", "Merlin"]. The first element should be your possible allegiance:
’Good’ or ’Evil’. The other element should be the possible role.

GLOBAL_FEEDBACK

Opponent model {} believes its role is {}. Based on the record of card descriptions from
other players, particularly the first description from each player, and considering the game
rule of having 3 good roles and 2 evil roles, analyze step by step and provide feedback
suggestions for the opponent model to adjust its card estimation.

GLOBAL_REFINE

Please adjust your possible role based on the feedback. Output your answer in list format,
such as ["Good", "Merlin"]. The first element should be your possible allegiance: ’Good’
or ’Evil’. The other element should be the possible role.
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