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Abstract

Vision and language navigation (VLN) is a
challenging task towards the creation of embod-
ied agents that requires spatial and temporal rea-
soning over the instructions provided in natural
language and aligning them with the visual per-
ception of an environment. Although a number
of methods and approaches have been devel-
oped, none achieves human level performance
in outdoor settings (by up to 75 percent). The
contributions of visual and language modalities
to the success of VLN have been studied, how-
ever here we focus on an overlooked property
of routes and show that navigational instruc-
tions can be represented as patterns of actions
that also describe trajectory shapes. Through
carefully crafted experiments, we show that
agents generalization to unseen environments
depends not only on visual and linguistic fea-
tures, but also on the shape of trajectories pre-
sented to the model during the fine-tuning. Our
experiments show that the diversity of patterns
of actions during training is a key contributor
to high success rates for agents. Last, we pro-
pose a solution based on data augmentation
that fills the gap in missing patterns of train-
ing data. Our findings will guide researchers
towards improved practices in the development
and evaluation of VLN datasets and agents.1

1 Introduction

Vision-language navigation (VLN) is a challeng-
ing research area that combines computer vision
and natural language processing to enable embod-
ied agents to navigate and understand their envi-
ronment based on instructions provided in natural
language. A typical solution to solving this prob-
lem is to train neural network architectures such as
LSTM (Fried et al., 2018) and Transformers (Schu-
mann and Riezler, 2022) from scratch. In contrast,
using LLMs facilitates the development of modular

1https://github.com/kbaghaei/beaten_path_vln

Navigation Text of Route 641
You should be facing the correct direction when you
load in. Begin by moving forward until you reach an
intersection, and then take a right. Reorient yourself and
take a right at the next intersection. Reorient yourself
again and move forward though the next intersection.
Stop three screens after this intersection. If you turn to
the left slightly, there should be a traffic barrel near a
shopping cart, which is in front of a red car.

The Pattern of Actions:
forward, right, forward, right, forward, stop.

Figure 1: Visualization of route 641 on Google Maps
from TouchDown, along with navigation instructions
and corresponding pattern of actions.

agents (Shah et al., 2022; Schumann et al., 2024;
Zhou et al., 2023) by taking advantage of reasoning
capabilities learned through pre-training. Nonethe-
less, even with LLMs, a significant gap remains
between human-level and agent-based performance
when solving VLN tasks in outdoor settings (Schu-
mann et al., 2024).

Eliminating such a performance gap requires a
better understanding of the contributing factors to
the success and failures of the agents. Zhu et al.
(2022) studied token-level features of instructions
and structural features of routes such as heading
difference in turns. Schumann and Riezler (2022)
focused on junction types for navigation.
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In this work, we focus on an overlooked property
of navigational routes, which we call Pattern of
Actions (PAct), which can be understood as the
high-level shape of an agent trajectory. Figure 1
shows that each navigational pattern has a corre-
sponding PAct. To the best our knowledge, PActs
as a contributing factor to VLN agent performance
have been overlooked.

We find that the agents’ performance on out of
sample test sets highly relies on the pattern of ac-
tions seen during the training, a phenomenon we
call “pattern leakage”. We show that removing
some patterns of actions from training results in
performance degradation in task completion by up
to 8.9 percentage points. Based on our findings, we
propose a data augmentation method to create syn-
thetic training data that cover the missing patterns
in the human generated dataset.
Our contributions can be summarized as follows:
1. We show that as an intrinsic feature of naviga-

tional trajectories, navigational patterns play an
important role in model performance. This is
reflected in success of the model in navigating
routes with similar patterns, even with instruc-
tions that are from another routes. We introduce
new data splits, where train and test data are sep-
arated to minimize pattern leakage, and show
that agents largely fail on pattern generalization.

2. Successful VLN, beyond navigation, requires in-
termediate sub-tasks such as initial orientation,
and stopping at the right point along the navi-
gational path. We perform an in-depth analysis,
comparing the fine-tuned agents on different
data splits, showing that not observing patterns
during training also deteriorates the agents’ per-
formance on these sub-tasks by up to 10 percent-
age points in F1 scores.

3. We explore a data augmentation method to cre-
ate synthetic training data that makes up for the
missing patterns in the human generated data,
showing promising initial results.

2 Vision and Language Navigation

A navigation task can be defined as following in-
structions provided in natural language in order
to ground a destination point within a given envi-
ronment (Schumann et al., 2024). A navigation
instruction L = (w1, w2, ..., wN ) is a sequence of
words in natural language that describes a navi-
gation route R = (n1, n2, ..., nM ). Each naviga-
tional route consists of multiple nodes in the navi-

gational graph of the environment. Each node ni

in the navigational graph also has visual informa-
tion vi (a 360-degree panorama image). In each
round of navigation, a VLN agent starts at an ini-
tial state s1 and according to the instruction L and
visual observation v1 predicts a navigational ac-
tion from the action space of {FORWARD, LEFT,
RIGHT, TURN_AROUND, STOP}. After taking the
action, it moves to another state, obtains another vi-
sual observation, and predicts a navigational action
again. This loop continues until the agent decides
the action STOP, or it runs out of action limit. A nav-
igation is considered successful if the agent stops
within one node distance of the destination point.

3 Patterns of Actions

Patterns of Actions (PAct) can be considered “prin-
cipal components” of navigation trajectories. Con-
sider the navigation instruction shown in Figure 1,
and notice that it consists of largely two compo-
nents: (a) directional information at key points
where the agent should make turns, and (b) descrip-
tion of forward movements. The instructions also
contain several references to landmarks.

We define PActs as the sequence of actions
a1, a2, ..., an of an agent, where any consecutive
sequence of forward is represented as one single
forward action. This way, this PAct stands for an
abstract representation of the trajectory, capturing
the ground truth actions at key decision points. For
example, as depicted in Figure 1 (bottom), the nav-
igational text can be summarized using the follow-
ing PAct: forward, right, forward, right,
forward, stop. Although moving forward might
mean either one block or several kilometers, such a
sequence of actions at key points can represent the
structure of a navigational route. For brevity, we
will represent each unique pattern with a hash, with
the above example represented as frfrfs. Figure 1
also shows the actual route 641 on a map.

A PAct effectively also describes the shape of
a trajectory. Therefore, throughout the paper we
use the phrases shape of trajectory and pattern
of actions/PAct interchangeably to emphasize the
similarity of routes whose patterns of ground truth
actions are equal.

Given our definition of PAct, Table 9 shows the
number of unique patterns in our datasets. Com-
pared to the number of samples, the number of
unique PActs is 2 orders magnitude smaller, i.e.
66 unique patterns for 7352 samples in Map2Seq
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(Schumann and Riezler, 2021) dataset, and 85
unique patterns for 9325 samples in TouchDown
(Chen et al., 2018).

The datasets available in the literature share com-
mon PActs. In this work, we base our analysis on
those PActs and perform experiments and ablation
studies to show the contribution of pattern leakage
in agents’ performance. While bias of VLN models
in prediction of actions has been studied before (Yu
et al., 2020a), to the best of our knowledge, this is
the first analysis of VLN approaches and datasets
using such a pattern based approach.

4 Experimental Settings

4.1 LLM-based Agents
In our study, we utilize VELMA (Schumann et al.,
2024). It is a state-of-the-art modular agent con-
sisting of two main components: (i) the Reasoning
module is an LLM that takes in instructions and
textual description of visual observations and pre-
dicts a sequence of actions. We use LLaMA (Tou-
vron et al., 2023) 7B, LLaMA 2, 7B, and Mistral
7B (Jiang et al., 2023) as the reasoning module of
VLN agent. (ii) Vision module, which is a mul-
timodal model for grounding landmarks referred
in instructions to the visual observations. We use
OpenCLIP (Cherti et al., 2022). Any landmark that
is grounded by OpenCLIP is added to the prompt of
the LLM as an observation. In our experiments, we
ablate the visual information (OpenCLIP vs. No-
Vision) both during fine-tuning and inference to
report its effect. When we train a model not using
visual information, we report it with suffix NV (e.g.
Llama2-NV). Similar to Schumann et al. (2024),
we fine-tune the models using LoRA (Hu et al.,
2021) for 20 epochs and we choose the best model
by shortest path distance (SPD) to the destination,
on the development set. 2

4.2 Datasets
We perform our experiments on two datasets: (i)
TouchDown (TD; Chen et al., 2018), which con-
sists of 9,326 navigational routes in Manhattan,
NY, generated by human annotators through an
ego-centric view similar to Google street view and
(ii) Map2Seq (M2S; Schumann and Riezler, 2021),
which consists of 7,672 routes in the same neigh-
borhood as TouchDown. However, annotators pro-

2Based on the size of data splits, fine-tuning the models
would take somewhere between 16 to 28 hours on an NVIDIA
A100- 80GB GPU. Inference, would take 30 to 60 minutes on
the same GPU.

vided navigational instructions by looking at the
map of the route.

Seen and Unseen splits. The original
train/dev/test splits of the TouchDown dataset
contains routes covering the area of Manhattan.
The train and test splits geographically overlap.
However, a new split was proposed in (Schumann
and Riezler, 2021) for both TouchDown and
Map2Seq datasets so that the train and test samples
are in geographically separate chunks. This split
is called unseen. Throughout this paper, we refer
to it as a baseline by base-unseen.

Dataset comparison. There are subtle differ-
ences in the construction of the datasets that are
important for the following discussion:
• Initial Direction: in TouchDown, the follower

agent is facing towards a random direction in the
beginning of the navigation. As a result, the first
piece of instruction describes how the follower
agent should orient itself towards the correct di-
rection. On the other hand, for Map2Seq, the
agent is initially placed in the correct orientation
towards the next move along the route. Note that
both datasets are verified by other humans as fol-
lowers to ensure that the instructions accurately
describe the routes.

• Route Structure routes of Map2Seq are generated
by finding the shortest path among two different
points on the navigational graph. Given the grid-
like map of Manhattan, this limits the number of
patterns of actions for Map2Seq agents. However,
TouchDown uses routes that are not necessarily
shortest path and have arbitrary patterns.

Synthetic Data The main objective of data aug-
mentation in our study is to create routes whose pat-
terns are missing from the human generated dataset.
We create 10160 navigational samples as follows.
We first create all possible patterns with n ≤ 7
number of turns, resulting in 508 and 127 unique
patterns for TouchDown and Map2Seq respectively.
We then fill-in template-based instructions that cor-
respond to the patterns and add landmarks that
are randomly sampled from the baseline training
dataset. To add diversity to word choice and sen-
tence structure, we also paraphrase the instructions
using GPT4-o. With the final instructions and pat-
tern of actions at hand, we can create the desired
action sequence to end up with a complete training
instance.

Note that since we use an LLM as the reasoning
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backbone of the navigation agent, we only need to
fine-tune the LLM on the textual training samples,
simulating the vision component. Therefore, un-
like the work of Wang et al. (2023b) and Yu et al.
(2020a), the generated routes need not correspond
to an actual route on a navigable graph of map.
Moreover, due to the length of route segments of
the street blocks in the actual graph of Manhattan,
sampling routes with some patterns are either not
possible or would result in too long routes. So,
sampling routes from the actual navigational graph
is not a feasible way of generating synthetic data.
Additional details of our data augmentation method
are in Appendix section D.

4.3 Evaluation Metrics

Interested in quantifying the effect of patterns in
the training data on agent performance for 3 main
tasks, we use the following metrics:
• Task Completion (TC) represents the percentage

of successful navigation instances among all nav-
igation instances in the test set (Schumann et al.,
2024).

• Overshoot Rate (OSR) is the rate at which the
agent reaches a destination but fails to stop at the
destination.

• Orientation assesses how capable the model is
in orienting the agent towards the correct direc-
tion in the beginning of the navigation. We use
Precision, Recall and F1 scores.

5 Experiments and Results

We are interested in the generalization ability of
agents with respect to the patterns presented to the
model during training. To this end, we split the
datasets into train and test sets based on patterns,
fine-tune the models on these splits, and discuss
the results. Both our datasets, TouchDown and
Map2Seq, have only a limited number of unique
patterns (PActs) of 85 and 63, respectively. Ta-
ble 9 shows the number of samples in the train,
dev(elopment), and test data using a base-unseen
split. However, notice that train, test and dev
datasets share patterns, which motivates our first
experiment.

5.1 Swapping Instructions of Similar Paths

We noticed that patterns that are present in train
data are also present in test data. This allows us to
form the following hypothesis:

FT→Test Swapped with OpenCLIP No-Vision

Same Train-Test Dataset

TD→TD
base-unseen 20.9 11.48
similar 4.97 2.82
different 2.92 1.46

M2S→M2S
base-unseen 39.13 33.75
similar 5.96 6.21
different 1.88 1.38

Different Train-Test Datasets

M2S→TD
base-unseen 6.17 5.31
similar 2.96 2.89
different 1.19 1.53

TD→M2S
base-unseen 23.5 22.75
similar 4.56 5.32
different 2.25 2.13

Table 1: FT: Fine-tune dataset. Task completion rate
for base-unseen in 3 scenarios: Instructions swapped
with similar PAct, different PAct, and base-unseen (no
swapping). In similar PActs case, the agent succeeds by
up to 5.96%, whereas its controlled scenario, different
PActs , fails more often. Hence, showing the importance
of PActs as a contributing factor to agents performance.

If the PAct of a trajectory is a contribut-
ing factor, then swapping the instructions
of one route with instructions of another
route and still retaining its shape (PAct),
then this should still result in a successful
completion of the navigation task.

To test this hypothesis, we take a test set of the
unseen data split and for each route in the test set,
we randomly choose five other routes that have an
identical PAct and use the instructions as substitute
instructions. We omit the few routes that have
fewer than five similar routes. For each route, we
also randomly choose five instructions from routes
with different PActs to aid in the validation of our
hypothesis.

Table 1 shows the results of these experiments
compared to the baseline (base-unseen). Across
different experiments, the model completes the
navigation task in up to 5% of the test cases even
without any visual information. On the other hand,
the task completion (TC) rate is lower for routes
whose instructions are swapped with routes of dif-
ferent patterns. The TC rates for similar pattern
replacements ("similar" rows in Table 1) are always
higher than those for different patterns ("different"
rows). Overall, the results support our hypothesis
and emphasizes the importance of PActs in VLN.
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5.2 Zero Pattern Overlap: Seen and Unseen
Patterns

Our observations so far support the hypothesis that
pattern leakage plays a role in dowsntream per-
formance. To further study this phenomenon, we
reverse the question. What if we train and test
a model on carefully selected samples that will
exhibit zero pattern leakage (i.e., no patterns are
shared between the training and test data)?

We create a new data split in which no sample
from the training data shares pattern with any of
the samples in the test set, denoted as Zero Pattern
Overlap (0-pact). We group the data samples based
on their patterns and sort them based on the number
of samples within each group in descending order.
We then assign the even-index samples to the train-
ing set odd-index samples to the test set, ensuring
zero overlap. We also leave samples of one pattern
for the development set. In the Appendix, Figure 2
illustrates this process. The resulting dataset has
a 50-50 train-test split. Also, there is no common
pattern among the train, development, and test sets.
Note that, although we ensure no leakage within
samples of each dataset, cross-dataset leakage (e.g.
Map2Seq train to Touchdown test) is still possible.

To control for the effect of number of samples of
data for training (compared to the base-unseen split
where around 75% of the data is used for training,
10% for development and 15% for testing), we
resample the base split –with leakage– so that the
number of samples in the train, dev, test sets match
that of 0-pact’s. We label this split base-p and
will use it as the fair baseline for comparison with
0-pact. The details of these splits are in Table 9.

Effect of Patterns Results. Table 2 shows
that the model’s performance drops noticeably (on
TouchDown train-test), from 4.06% in Llama2 us-
ing vision, to 7.81% in no-vision scenario. The
range of the performance drop is from 1.51% to
7.15% for other cases. This underlines the impor-
tance of seeing patterns during the training phase
for the agent’s ability to resolve test cases. We
should also emphasize that the TC rates are also
worse for no-vision cases in 0-pact split, i.e., in
cases where the agent totally ignores visual obser-
vations during the inference or fine-tuning. For
example, when the model is fine-tuned with no-
vision, the performance drop from controlled to
0-pact ranges from 3.83% to 15.25%. This sug-
gests that the model heavily relies on patterns to
navigate.

Llama2
FT → Test Split OpenCLIP No-Vision Llama2-NV

Same Train-Test Dataset

TD → TD base-p 28.34 15.58 17.5
0-pact 24.28 7.77 2.25

M2S → M2S base-p 50.16 37.1 43.74
0-pact 43.01 34.7 39.72

Different Train-Test Datasets

TD → M2S base-p 27.7 29.51 28.93
0-pact 22.24 25.32 16.27

M2S → TD base-p 7.31 5.08 6.51
0-pact 4.56 3.55 2.68

Table 2: Task Completion Rate (%) for Zero-Pattern-
Overlap split. When train and test sets share PActs, the
agent TC rate would be higher.

Visual Data Contamination. Given that 0-pact
only separates the routes based on their patterns,
the test samples can be from the same area the
model has seen in the training data and poten-
tially causing data contamination in 0-pact split.
Nonetheless, even with this type of data contam-
ination, there is an evident decrease in TC rate
when the training and test samples do not share any
patterns compared to the baselines (base-p).

The question that may be raised here is as to
how a model fine-tuned with 0-pact split on M2S,
and tested on M2S (38.13% with vision, 30% with-
out vision) still performs comparable to that of the
base-unseen scenario (39.12% with vision, 33.75%
without vision), even though it has been trained on
fewer (almost half) samples?

We hypothesize that this can be partly due to
the geographical overlap in the 0-pact case. This
question motivates our next experiment.

FT → Test Split Llama2-7b

OpenCLIP No-Vision

Same Train-Test Dataset

TD → TD base-pg 18 10.8
0-pact-geo 10.6 4.9

M2S → M2S base-pg 31.42 23.5
0-pact-geo 28 22.25

Different Train-Test Datasets

TD → M2S base-pg 24.83 22.75
0-pact-geo 15.91 14.08

M2S → TD base-pg 5.6 3.7
0-pact-geo 5.4 4

Table 3: Task Completion Rate (%) for Zero Pattern and
Geographical Overlap. As a general trend, the TC rate
decreases when the PActs in test data are not familiar
to the model (i.e. train and test sets do not share any
PActs).
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Llama2 Llama2-NV
Image Split Precision Recall F1 Precision Recall F1

OpenCLIP 0-pact 53 43.06 42.09 - - -
base-p 45.1 55.82 44.79 - - -

No-Vision 0-pact 28.13 27.27 13.33 13.26 14.5 8.48
base-p 27.08 33.58 24.07 30.27 35.16 28.9

Table 4: Orientation results for Zero-Pattern-Overlap split. We use TouchDown as test and fine-tuning set. Bolded
results are better performing between a zero-pattern-overlap case and its controlled split. Agents performance
deteriorates when PActs in test set are not in train set.

Llama2 Llama2-NV
Image Split Precision Recall F1 Precision Recall F1

OpenCLIP 0-pact-geo 42.22 46.15 48 - - -
base-pg 51.07 54.2 58.27 - - -

No-Vision 0-pact-geo 23.4 32.84 17.25 23.4 32.84 17.25
base-pg 27.8 40.54 23.30 27.8 40.54 23.30

Table 5: Orientation result for Zero Pattern and Geographical Overlap for TouchDown as test and fine-tuning set.
Bolded results are better performing between a 0-pact-geo case and its controlled split. Generally, the agent’s
performance degrades when patterns in test set are not in train set. 0-pact-geo denotes the mean of 0-pact-geo-a and
0-pact-geo-b, while base-pg denotes mean of base-pg-a and base-pg-b.

5.3 Zero Pattern and Zero Geographical
Overlap

To mitigate the influence of both geographical over-
lap and pattern overlap within the dataset, we fur-
ther partition the data according to both geographic
coordinates and patterns creating Zero Patterns and
Geographical Overlap splits. Since the train and
test set in base-unseen are geographically separate,
if we take samples from its train set, whose pat-
terns are different from samples in its test set, then
we will have samples that have both geographical
and pattern separation. So, similar to the 0-pact
scenario, we group all data samples of base-unseen
based on their patterns and sort them by the num-
ber of samples. Now, for each pattern, we can split
the sampled into ones used for training and ones
used for test. From the even indices, we take train
samples, and from the odd indices we take test
samples, to form a split with zero pattern and geo-
graphical overlap (denoted by 0-pact-geo-a). We
follow a reverse-sampling procedure (taking train
samples from odd indices and test samples from
even indices) to generate a second dataset from the
remaining data (0-pact-geo-b). To form the dev
split, we randomly sample 15 and 20 percent of the
test samples for TouchDown and Map2seq respec-
tively. Appendix Figure 3 visualizes this process.

Since such a separation of data results in smaller
datasets for train and test, we control for data size
by creating two splits as baselines: base-pg-a, base-
pg-b. We sample from base-unseen train to cre-
ate train sets and sample from base-unseen test to

create test sets, ensuring that the number of train-
dev-test splits in base-pg-a and base-pg-b match to
0-pact-geo-a and 0-pact-geo-b respectively.

This way, the geographical separation of train
and test splits in base-pg-a and base-pg-b are guar-
anteed, while they share patterns. The details of
the data splits are listed in Table 9.

We fine-tune and test the models on these new
splits of data. We report the average of pairs of
0-pact-geo-a and 0-pact-geo-b as 0-pact-geo, and
average of base-pg-a and base-pg-b as base-pg. As
a general trend in Table 3, for each pair of 0-pact-
geo and base-pg the models performance deterio-
rates (from 5.9% to 7.4% where TouchDown was
used for both training and testing). This reduction
in model performance cannot be attributed to the
size of training data as the performance on control
cases (base-pg) is better. Furthermore, the potential
data contamination that was present in 0-pact and
base-p scenarios is not present here either. Hence,
we can conclude that the patterns play a key role in
the performance of the models.

5.4 Orientation

One key difference between the datasets of this
study is that in TouchDown, the initial direction of
the navigator agent is random whereas in Map2Seq
the agent is facing towards the correct direction
initially. This difference is also reflected in the in-
structions generated for each of the datasets. The
first piece of instruction in TouchDown describes
how the agent should orient itself towards the cor-
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rect direction at the start of navigation. Therefore,
an important sub-task in VLN is aligning towards
the correct direction in the beginning of the naviga-
tion. In over 53% of test samples in TouchDown,
the initial direction of the agent is incorrect, while
that is the case for 0% for Map2Seq in both train
and test splits.

The initial direction of the agent is encoded in
the ground truth pattern of actions, represented
by the first character. If the initial direction is to-
wards the correct direction, then the ground truth
pattern starts with a forward as there is no need
for the agent to make any turns. Otherwise, the
agent might need to make a turn before moving
forward, with the pattern starting with any of the
{l,r,t} letters (which stand for LEFT, RIGHT,
TURN_AROUND actions respectively).

We formulate the prediction of the initial action
as a multi-class classification problem. To evaluate,
we calculate F1 scores for each action and report
macro-averaged Precision, Recall, and F1 scores.

Map2Seq neither teaches nor instructs the agent
to make turns. When the test set is Map2Seq,
the agent never makes any initial turns even when
it is fine-tuned on TouchDown. Also, when the
model is fine-tuned on Map2Seq, it rarely 3 makes
any turns in the beginning since it has not learned
to make any turns. Hence, for this analysis, we
only focus on the Touchdown dataset.

The agent fails most often in orientation when
the test dataset has patterns that are not present
in the training data. Table 4 shows this general
trend in the models’ performance in the orientation
sub-task. In the Zero Pattern Overlap scenario, the
F1 score for orientation drops by 2.70% when the
model is fine-tuned and tested on TouchDown us-
ing vision. Without vision data, the F1 score drops
even more (by 10.74%) from 24.07% in controlled
split to 13.33% in 0-pact.

Table 5 shows that the results of the Zero pattern
and geographical overlap (0-pact-geo-x) scenario
generally follow a similar trend. This indicates that
the models are sensitive to the train-test separation
of patterns for the orientation task as well.

5.5 Stopping

Accurately deciding where to stop is another cru-
cial sub-task in vision and language navigation.
Our error analysis on the base model showed that

3At most 2% in any of the test splits.

there is a significant number of what we term “over-
shoot errors”. The agent reaches the destination,
but erroneously continues moving instead of stop-
ping. These are cases that could indeed have been
successful had the agent stopped. We calculate the
overshoot rate among all the cases that reached the
destination as follows:

Overshoot_Rate =
Overshoot

Overshoot + Success
× 100,

Table 6 shows the results of overshoot rates in the
Zero Pattern Overlap scenario. For the same train-
test dataset scenarios, there is a consistent decrease
in overshoot rates. However, in the scenario where
the train and test datasets are different, overshoot
rates do not always decrease from base-p to 0-pact
split. This can be attributed to the fact that the cross
dataset pattern leakage still exists.

Table 7 shows the overshoot rates4 for the Zero
Pattern and Geographical Overlap scenario. Gener-
ally, for each split and its controlled baseline split,
the overshoot is lower in the baseline when fine-
tuned on TouchDown dataset. However, when the
model is fine-tuned on Map2Seq, the results are
fairly similar. The overshoot rate is affected by the
separation of patterns in one of two ways. One, it
reduces the agents’ generalization on routes with
unseen patterns, leading to a reduction in task com-
pletion rate (TC). Two, in most of the overshoot
scenarios, the agent is actually able to navigate the
route and make it to the destination, but fails to
stop at the right place. In such a case, the agent has
actually followed a pattern similar to the ground
truth pattern of the route. However, if a pattern
is totally unfamiliar to the agent, the agent is less
likely to reach the end of the route. Rather, it is
more likely to make a wrong turn in the middle of
the route. In turn, this would disqualify the route
as an overshoot example. Hence, we conclude that
the overlap in PActs, might affect the overshoot
rate. The details of these scores are in Appendix
Table 16.

5.6 The Effects of Data Augmentation
Table 8 compares fine-tuning our LLM solely with
human generated data (baseline) with the case
where the training data consists of human gen-
erated data plus the augmented data (Baseline +
DA). In almost all cases, our simple data augmenta-
tion method increases task completion rate for both

4We report the average of overshoot rates for 0-pact-geo-a
and 0-pact-geo-b, as 0-pact-geo and average of base-pg-a and
base-pg-b as base-pg.
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Llama2 Llama2-NV

FT → Test Split OpenCLIP No-Vision

Same Train-Test Dataset

TD → TD
0-pact 54.85 60.92 77.67
base-p 46.4 56.61 45.22

M2S → M2S
0-pact 35.62 47.63 36.81
base-p 26.81 47.39 30.04

Different Train-Test Dataset

TD → M2S
0-pact 17.45 29.08 46.74
base-p 19.68 29.97 27

M2S → TD
0-pact 76.08 79.89 84.72
base-p 75.98 82.82 77.59

Table 6: Overshoot Rate for Zero Pattern Overlap split.
In general, when there is no common PActs between
train and test sets, the overshoot rate is higher.

Llama2

FT → Test Split OpenCLIP No-Vision Llama2-NV

Same Train-Test Dataset

TD → TD
0-pact-geo 79.69 84.03 84.03

base-pg 58.24 66.17 66.17

M2S → M2S
0-pact-geo 37.44 51.84 51.84

base-pg 38.55 51.95 51.95

Different Train-Test Dataset

TD → M2S
0-pact-geo 56.89 63.12 63.12

base-pg 27.10 39.41 39.41

M2S → TD
0-pact-geo 77.63 84.11 84.11

base-pg 80.72 84.21 84.21

Table 7: Overshoot Rate for Zero Pattern and Geograph-
ical Overlap (0-pact-geo). The overshoot rate is signifi-
cantly higher when the train-test sets do not share PActs
(0-pact-geo) compared to baselines (base-pg) for the TD
dataset. Results are fairly similar to each other when
fine-tuning on M2S. We conclude pattern overlap might
affect overshoot rate.

Llama2
FT → Test Image Baseline Baseline + DA

Same Train-Test Dataset

TD → TD No-Vision 13.8 13.13
OpenCLIP 23.22 22.56

M2S → M2S No-Vision 26.5 31.5
OpenCLIP 36.75 39.25

Different Train-Test Datasets

TD → M2S No-Vision 25.5 26.1
OpenCLIP 23 23.5

M2S → TD No-Vision 3.58 3.8
OpenCLIP 4.98 5.1

Table 8: Task Completion Rate (%) for Baseline vs.
Data Augmentation for Llama 2. Simple data augmen-
tation can potentially enhance performance overall.

models, in M2S by almost 2.5 percentage points.
When both train and test are from TouchDown, it
performs slightly worse, which we think can be at-
tributed to the fact that the agent’s initial direction
is random in TouchDown and the vision component
does not align the direction of the landmark at the
starting point. We discuss the data augmentation
results in more detail in Appendix Section D.

6 Related Work

Navigation of environments by visual perception
and language instruction is a well studied problem
for both indoor (Anderson et al., 2017; Ku et al.,
2020) and outdoor settings (Chen et al., 2018; Schu-
mann and Riezler, 2021; Vasudevan et al., 2021a).
Model-wise, various methods have been proposed
to perform this task using LSTMs (Fried et al.,
2018), transformer based models (Schumann and
Riezler, 2022), and LLM-based agents (Schumann
et al., 2024). From a dataset perspective, naviga-
tional routes do not present enough diversity to
models as they are sampled using shortest path al-
gorithms (Yu et al., 2020a). This presents biases in
action space that leads to models failing to gener-
alize to unseen routes (Yu et al., 2020a). We study
such a bias through the lens of sequence of actions
that a LLM predicts and how the patterns of se-
quences of actions affect the models’ performance.
Due to high cost of human annotation, Fried et al.
(2018), Yu et al. (2020a), and Wang et al. (2023b)
propose methods to create synthetic data to add
more diversity in the distribution of samples in the
training data. A more in-depth discussion of the
related work is available in Appendix 6.

7 Conclusion

Our evaluation of LLM-based vision and language
navigation agents shows that navigation instruc-
tions contain an abstract representation of the shape
of a trajectory, which captures the pattern of actions
an agent must take to perform the navigation task.
Using this patterns as the basis of our evaluation,
we show that VLN agents’ are less likely to gen-
eralize to routes whose patterns are not present in
training data. We find that using diverse patterns
during the training phase improves the agents’ per-
formance. We additionally propose a simple data
augmentation method that has the potential to im-
prove the agents’ task completion rate.

A more comprehensive study of data augmenta-
tion is required in future work. Also, the effect of
PActs on indoor environments should be analyzed,
as our study focuses solely on outdoor settings. An-
other track of study is whether the pattern of actions
in instructions, affect performance of VLN models
in continuous environments. Our suggestion for
the development of new datasets for VLN is to gen-
erate navigational routes with a higher diversity of
patterns of actions to improve performance, and to
consider this variable when evaluating VLN agents
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and their generalization capabilities.

Limitations

The limitations of our study can be summarized as
follows:

VLN Agents. We do not discuss the effect of pat-
terns on VLN agents that are LSTM (Fried et al.,
2018) or Transformer-based (Schumann and Rie-
zler, 2022) that use end-to-end training. This is
because:

1. Transformer-based models are superior in per-
formance compared to LSTM based models
on VLN tasks. (Schumann and Riezler, 2022)

2. LLMs are pre-trained on huge and diverse
datasets and we can take advantage of such
models by fine-tuning them.

3. Although we propose a data augmentation
method, we do not explore and discuss ev-
ery factor of the dataset augmentation method.
Rather, we present an experiment using a fixed
set of hyper-parameters, such as dataset size,
various paraphrasing methods, different types
of landmark sampling that worked best in our
experiments. Nonetheless, we show the po-
tential of our approach and leave any further
analysis of our method for future exploration.

Simplification Assumptions. The agent of our
study navigates in a discrete environment. The
actions of the agent are considered complete. How-
ever, the effect of PActs in a continuous setting is
an open research question.

Diversity of Languages. We only consider the
English language and leave the study of PActs and
VLN in other languages to future work.

Granularity of Contributing Factors. We do
not consider token-wise analysis as it is has been
studied in the literature (Zhu et al., 2022). Also,
we do not consider fine-grained structural features
such as junction types and directional changes since
they have been thoroughly analyzed and discussed
by Schumann and Riezler (2022). Rather, we focus
on the route structure, which is overlooked in the
literature.

Ethics Statement

In this study, we use panorama images of street
view published by Google (Mirowski et al., 2018).
Privacy and ethics concerned with the dataset have
been addressed by blurring individuals’ faces in the

image data. Since we conducted our experiments in
a simulated environment, there is no risk of damage
or injury. However, deploying and experimenting
VLN in real world environments would require
additional, extensive safety measurements which
are beyond the scope of this study.
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A Extended Related Work

Vision and Language Navigation Following
navigational instructions to reach destination in a
navigable environment is a well studied topic. Var-
ious datasets and benchmarks have been proposed
for indoor navigation such as R2R (Anderson et al.,
2017), RxR (Ku et al., 2020), Qi et al. (2020) and
Krantz et al. (2020), typically providing a naviga-
tional graph along with panorama images of each
point on the graph. (Krantz et al., 2020) expand
the indoor navigation to a continuous environment
and (Wang et al., 2023a) perform navigation in
continuous environment by using an internal world
model.

For outdoor navigation, several
datasets and models have been proposed:
StreetLearn (Mirowski et al., 2018) presents a
dataset of panorama views of Google Street View,
TouchDown (Chen et al., 2018) offer a dataset

of over 9300 random samples of navigational
trajectories of Manhattan annotated by humans
through ego-centric view, and Map2Seq (Schu-
mann and Riezler, 2021) release over 7000
samples of random navigational trajectories within
the same area as TouchDown (note however
that the instructions are created through a bird’s
eye view). StreetNav (Hermann et al., 2020)
propose an RL framework for VLN and sample
613000 routes with corresponding instructions
from Google API, and Talk2Nav (Vasudevan et al.,
2021b) create a dataset of 10700 navigational
routes with corresponding annotations that follow
the structure of description of landmark and
directional instructions. (Li et al., 2024) use
BDD100k (Yu et al., 2020b) dataset which consists
of driving videos as training data to enhance VLN
performance in outdoor settings.

While VLN was previously performed using
mostly LSTM based models (Fried et al., 2018;
Hermann et al., 2020), transformer-based models
that are trained end-to-end have been proposed as
well (Schumann and Riezler, 2022). All aforemen-
tioned studies explore discriminative methods in
performing VLN tasks in which the agents predict
next action based on the history of actions, trajec-
tory and instructions. In contrast, (Kurita and Cho,
2020) propose a generative language-grounded pol-
icy in which a language model predicts all possible
instructions given the past states and actions. Then,
the agent takes actions whose probability of gener-
ating instructions are maximum.

LLMs and Modular Agents The promising rea-
soning ability of large language models on linguis-
tic task has attracted researchers interest in path
planning (Aghzal et al., 2023). Also, it has en-
abled the development of modular agents such as
LM-Nav (Shah et al., 2022), NavGPT (Zhou et al.,
2023), A2Nav(Chen et al., 2023), and VELMA
(Schumann et al., 2024). In these agents, the task
of VLN is performed by having an LLM perform as
the reasoning and planner component and having
other multi-modal models such as CLIP (Radford
et al., 2021) as a visual alignment module.

Topology and Route Structure Rather than
solely relying on the history of past visual observa-
tions and taken actions, representing the topology
of the navigable environment as an abstract graph
has been studied in various studies (Zhao et al.,
2022; Liu et al., 2023). Addition of such a mental
map of the environment, enhances the performance
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of VLN agents. However, these studies do not dis-
cuss the effect of topology and patterns of routes
on agents performance. Yu et al. (2020a) analyze
VLN agents through the lens of predicted actions.
They show that VLN agents are more likely to pre-
dict certain actions that have been more present in
the training data. However, their study is different
from ours in two ways. First, their study is limited
to indoor environments where the length and com-
plexity of routes are lower compared to the outdoor
settings. Second, they analyze the probability of
actions regardless of their past sequence of actions.
In our paper however, we analyze the predicted
actions as a whole sequence and discuss whether
the sequences of actions present in the training set,
affect the performance of the agents on the test set.

Model Behaviour Analysis Evaluation of deep
generative models is both important and challeng-
ing. For VLN, various evaluation methods have
been proposed. While methods have been proposed
for assessing similarity of trajectories (Ilharco et al.,
2019; Jain et al., 2019), these scores do not reveal
any further details on how the models perform. For
outdoor VLN, Schumann and Riezler (2022) per-
form various ablation experiments and show that
structural features of routes such as junction type
and difference in heading have higher weight on
the performance of models compared to visual cues.
Also, Zhu et al. (2022) show that for indoor, the
models use object tokens and directional tokens for
navigation. Whereas, for the outdoor, the models’
performance mostly depends on directional tokens.
Yang et al. (2023) propose a method for interven-
ing with the instructions given to the agent and
evaluating its sensitivity to the interventions. In
this way, they analyze skill-specific capabilities of
VLNs. Our study differs from the previous ones
in several ways: First, unlike these studies, we fo-
cus on LLM-based models. As the LLMs provide
strong reasoning capabilities that can be incorpo-
rated in navigational tasks with fine-tuning. Hence,
eliminating the need to train a model from scratch.
Second, we do not perform a token-wise analysis.
Rather, we focus on the structure of navigational
routes. Nonetheless readers can refer to (Zhu et al.,
2022) for a holistic analysis on token level evalu-
ation of VLNs. Finally, we focus on the outdoor
navigation only as it is understudied.

Data Augmentation Due to the high cost of col-
lection of human generated data, various studies
propose methods of data augmentation. An LSTM-

Train Dev Test

Split name GS PS Dataset #S #P #S #P #S #P PO

base-unseen ✓ TD 6,770 74 800 50 1,50766 58
M2S 5,737 37 800 31 800 31 28

0-pact ✓ TD 4783 42 286 40 4256 40 0
M2S 3889 21 306 19 3477 19 0

base-p TD 4781 73 286 63 4258 72 63
M2S 3899 36 306 35 3467 35 31

0-pact-geo-a ✓ ✓ TD 3506 37 160 35 994 35 0
M2S 2892 20 150 17 633 17 0

base-pg-a ✓ TD 3506 74 160 74 994 69 69
M2S 2892 37 150 36 633 36 31

0-pact-geo-b ✓ ✓ TD 3264 37 160 34 993 34 0
M2S 2892 17 150 20 633 20 0

base-pg-b ✓ TD 3264 74 160 69 993 69 69
M2S 2892 37 150 36 633 36 36

Table 9: The number of samples and the number of
PActs in each train, dev, and test set for different data
splits. GS: Geographical Separation. PS: PActs Separa-
tion. PO: PActs Overlap, the number of common PActs
between train and test sets. #S: Number of Samples. #P:
Number of PActs.

based model, pretrained on the human-generated
data can be used for sampling instructions that cor-
respond to randomly sampled routes (Fried et al.,
2018; Yu et al., 2020a). ScaleVLN (Wang et al.,
2023b) scales the data augmentation by creating
navigable graphs and sampling routes from newly
created graphs. However, in generating VLN in-
structions, they take a similar approach to Fried
et al. (2018) by employing an LSTM. Our study
differs from these studies in two ways. First, they
focus on indoor, whereas our study focuses on out-
door environments where the navigational routes
are longer and the landmarks and objects are more
diverse. Second, since we use an LLM for geospa-
tial reasoning, we do not need to rely on an ac-
tual navigable graph to sample navigational routes.
Rather, the sequence of actions along with the in-
structions corresponding to them would suffice for
training the model.

B Data Separation

Figures 2 and 3 visually show the process of cre-
ating data splits of Zero Pattern Overlap and Zero
Pattern and Geographical Overlap respectively.

C Additional Results

Here we show our complete results on Llama1-hf
7B, Llama2-hf 7B and Mistral 7B v0.1.
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Test Dataset Finetune Dataset Scenario Llama1-7b Llama2-7b Mistral-7b-v0.1
OpenCLIP No-Vision OpeCLIP No-Vision OpenCLIP No-Vision

TouchDown TouchDown base-unseen 20.9 11.48 23.22 13.8 10.42 7.03
Map2Seq base-unseen 6.17 5.31 4.98 3.58 8.69 6.9

Map2Seq TouchDown base-unseen 23.5 22.75 23 25.5 5.62 6
Map2Seq base-unseen 39.12 33.75 36.75 26.5 35 32.62

TouchDown TouchDown base-p 30.48 15.1 28.34 15.58 14.92 8.06
0-pact 5.82 3.19 24.28 7.77 7.05 3.05

Map2Seq base-p 7.64 5.49 7.31 5.08 5.83 2.96
0-pact 2.53 1.87 4.56 3.55 2.02 1.36

Map2Seq TouchDown base-p 30.95 26.62 27.7 29.51 8.57 9.49
0-pact 16.28 15.05 22.24 25.32 3.52 2.74

Map2Seq base-p 49.52 38.94 50.16 37.1 39.57 25.65
0-pact 38.13 30 43.01 34.7 35.13 21.81

TouchDown TouchDown base-pg-a 18.1 11.1 18 11.2 16.3 9.3
0-pact-geo-a 6.1 3.8 13.6 6.1 10.2 3.5
base-pg-b 20 11.2 18 10.4 10.2 6.5
0-pact-geo-b 3.2 1.8 7.6 3.7 1.6 0.9

Map2Seq base-pg-a 7 3.5 4.1 3.7 3.2 2.3
0-pact-geo-a 5.5 4.2 4.9 3.9 1.7 1.1
base-pg-b 5.4 3.9 6.7 4.3 5.2 3.1
0-pact-geo-b 4.2 4 6.3 3.5 1 0.5

Map2Seq TouchDown base-pg-a 17.5 18.33 26.17 24 19.83 21.17
0-pact-geo-a 15.83 13.33 16.83 13.67 14.83 13.5
base-pg-b 20.83 21.66 23.5 21.5 4.67 6.17
0-pact-geo-b 7.66 6.5 15 14.5 4.17 2.67

Map2Seq base-pg-a 34.83 28.66 25.17 19.83 17.17 16.83
0-pact-geo-a 28.49 22.5 31.67 26 7.83 8.67
base-pg-b 37.33 25.83 37.67 27.17 34.67 26.83
0-pact-geo-b 20.83 18.66 24.33 18.5 13.83 11.17

Table 10: Task Completion (TC) rate for Llama1 and Mistral, fine-tuned using vision. In each pair of 0-pact
(0-pact-geo-x), and its controlled baseline, base-p (base-pg-x), the TC rate is higher in baseline. This indicates the
contribution of PAct in agent’s generalization to out of sample test sets.
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Test Dataset Finetune Dataset Split Llama1-7B-NV Llama2-7B-NV Mistral-7B-NV
TouchDown TouchDown base-unseen 14 14.4 10.95

Map2Seq base-unseen 6.64 3.45 2.65
Map2Seq TouchDown base-unseen 19.62 21.62 23.88

Map2Seq base-unseen 33.62 27.75 26.25
TouchDown TouchDown base-p 17.22 17.5 11.14

0-pact 6.08 2.25 2.47
Map2Seq base-p 7.07 6.51 6.48

0-pact 1.9 2.68 1.86
Map2Seq TouchDown base-p 27.67 28.93 11.13

0-pact 19.47 16.27 22.61
Map2Seq base-p 42.8 43.74 34.45

0-pact 33.86 39.72 18.34
TouchDown TouchDown base-pg-a 11.1 11.2 9.3

0-pact-geo-a 3.8 6.1 3.5
base-pg-b 11.2 10.4 6.5
0-pact-geo-b 1.8 3.7 0.9

Map2Seq base-pg-a 3.5 3.7 2.3
0-pact-geo-a 4.2 3.9 1.1
base-pg-b 3.9 4.3 3.1
0-pact-geo-b 4 3.5 0.5

Map2Seq TouchDown base-pg-a 18.33 24 21.17
0-pact-geo-a 13.33 13.67 13.5
base-pg-b 21.67 21.5 6.17
0-pact-geo-b 6.5 14.5 2.67

Map2Seq base-pg-a 28.67 19.83 16.83
0-pact-geo-a 22.5 26 8.67
base-pg-b 25.83 27.17 26.83
0-pact-geo-b 18.67 18.5 11.17

Table 11: Task Completion (TC) rate for fine-tuned models without using vision. Between each split and its
controlled baseline, the best performing score is bolded. As a general trend, the TC rate drops when train and tests
do not share PActs, even when no visual information was used in training. This renders the PActs as a contributing
factor in agents performance.

Llama1-7B-NV Llama2-7B-NV Mistral-7B-NV
Split Precision Recal F1 Precision Recal F1 Precision Recal F1

base-unseen 24.81 28.41 23.44 30.42 42.45 31.16 51.49 25 17
Zero Pattern Overlap

0-pact 16.31 24.83 8.74 13.26 14.5 8.48 10.35 12.93 6.88
base-p 31.93 42.02 32.66 30.27 35.16 28.9 39.78 37.82 38.68

Zero Pattern and Geographical Overlap
0-pact-geo-a 19.87 30.61 19.38 17.1 29.65 17.25 23.13 32.75 15.43

base-pg-a 20.78 25.02 13.9 24.26 34.59 22.47 26.06 35.15 20.77
0-pact-geo-a 36.54 37.24 24.32 29.7 36.04 25.33 26.89 38.25 25.2

base-pg-b 29.92 50.58 28.28 31.34 46.49 24.14 22.47 34.44 20.76

Table 12: Orientation : Models fine-tuned and evaluated without using vision on TouchDown dataset. Since the
orientation of agent in the beginning of navigation in Map2Seq dataset is towards the route, and there is no
instructions for orientation, when a model is fine-tuned on Map2Seq, it does not learn to make any turns in the start
of navigation. Therefore, this table only shows results of experiments on TouchDown dataset only. The orientation
task requires the agent to make turns based on its surrounding visual cues. Even though, no visual information is
used by the agents in these experiments, when train and test sets do not share any patterns, the performance of the
agents degrade.
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Llama1-7B Llama2-7B Mistral-7B
Test Dataset Fine-Tune Dataset Image Split Precision Recall F1 Precision Recall F1 Precision Recall F1
TouchDown TouchDown CLIP base-unseen 51.4 53.65 52.07 48.92 53.7 50.74 49.88 50.97 50.2

No-Vision base-unseen 26.37 36.64 25.99 29.94 43.33 31.29 30.64 36.39 29.15
Map2Seq CLIP base-unseen 23.09 24.93 12.62 20.09 36.26 19.84 22.63 32.03 18.76

No-Vision base-unseen 23.09 24.93 12.62 21.28 36.26 19.56 23.22 30.67 18.43
TouchDown TouchDown CLIP 0-pact-geo-a 53.36 40.74 39.99 46.12 53.29 48 46.41 47.85 46.94

base-pg-a 58.94 45.67 44.68 47.52 54.2 49.2 43.86 47.04 44.81
0-pact-geo-b 76.77 39.15 38.55 38.32 39.01 38.5 53.01 43.42 40.01

base-pg-b 57.04 54.88 54.56 54.63 62.34 55.41 62.36 60.62 61.28
No-Vision 0-pact-geo-a 19.87 30.61 19.38 17.1 29.65 17.25 23.13 32.75 15.43

base-pg-a 20.78 25.02 13.9 24.26 34.59 22.47 26.06 35.15 20.77
0-pact-geo-b 36.54 37.24 24.32 29.7 36.04 25.33 26.89 38.25 25.2

base-pg-b 29.92 50.58 28.28 31.34 46.49 24.14 22.47 34.44 20.76
Map2Seq CLIP 0-pact-geo-a 11.71 26.84 12.97 13.24 26.77 13.48 14.7 34.74 16.53

base-pg-a 17.55 28.96 16.74 15.87 24.95 12.89 26.26 33.23 21.35
0-pact-geo-b 17.86 28.28 17.12 25.31 35.44 22.3 17.8 24.95 13.92

base-pg-b 26.29 31.9 19.93 22.54 31.9 19.5 11.66 24.79 12.69
No-Vision 0-pact-geo-a 11.74 26.71 12.95 14.3 26.9 13.73 14.29 34.74 16.2

base-pg-a 18.18 28.96 16.89 15.87 24.95 12.89 20.28 29.06 17.36
0-pact-geo-b 21.09 32.13 20 21.13 31.64 19.33 26.68 24.95 13.91

base-pg-b 39.01 29.78 18.07 17.96 26.9 15.37 15.55 24.84 12.7
TouchDown TouchDown CLIP 0-pact 64.75 46.15 47.59 53 43.06 42.09 32.82 39.16 31.61

base-p 45.14 57.04 44.94 45.1 55.82 44.79 59.58 52.85 55.1
No-Vision 0-pact 29.43 28.79 20.35 28.13 27.27 13.33 15.93 32.4 14.33

base-p 32.3 39.69 27.43 27.08 33.58 24.07 31.85 37.31 25.38
Map2Seq CLIP 0-pact 18.64 28.3 12.74 16.06 28.6 12.74 14.98 25.54 9.34

base-p 16.78 26.33 14.74 22.36 27.28 15.96 23.27 29.77 18.5
No-Vision 0-pact 19.17 28.01 12.46 16.96 31.13 14.07 9.32 25.25 8.88

base-p 15.92 25.85 14.21 20.22 27.25 15.89 20.94 28.31 16.99

Table 13: Precision, Recall and F1 scores for Orientation task. Between each pair of data split and its corresponding
baseline, the best performing F1 score is bolded.

Llama1-7B Llama2-7B Mistral-7B

Test Dataset Fine-Tune Dataset Split OpenCLIP No-Vision OpenCLIP No-Vision OpenCLIP No-Vision

TouchDown TouchDown base-unseen 46.88 60.59 42.53 54.98 69.22 73.03
Map2Seq base-unseen 77.26 80.68 82.64 86.92 71.08 76.94

Map2Seq TouchDown base-unseen 14.55 25.1 22.03 23.88 47.67 42.86
Map2Seq base-unseen 24.94 38.78 37.31 57.26 13.58 29.46

TouchDown TouchDown 0-pact-geo-a 88.18 87.66 75.05 77.32 81.65 87.59
base-pg-a 55.09 67.54 56.94 64.44 63.94 72.07

0-pact-geo-b 93.19 95.6 84.33 90.75 96.38 97.18
base-pg-b 54.13 66.77 59.55 67.9 69.28 74.21

Map2Seq 0-pact-geo-a 70.27 78.12 73.37 79.03 92.51 94.91
base-pg-a 76.51 87.41 84.23 84.9 85.39 89.59

0-pact-geo-b 87.9 87.95 81.9 89.2 97.21 98.57
base-pg-b 80.78 85.17 77.21 83.52 84.71 90.37

Map2Seq TouchDown 0-pact-geo-a 53.88 60.2 47.12 56.15 66.29 68.24
base-pg-a 28.57 45.27 22.66 33.02 36.02 45.02

0-pact-geo-b 79.19 83.4 66.67 70.1 87.37 92.42
base-pg-b 23.78 34.34 31.55 45.8 36.36 28.85

Map2Seq 0-pact-geo-a 25.97 47.47 28.57 42.22 72.67 73.2
base-pg-a 32.14 48.35 42.8 51.43 55.22 61.3

0-pact-geo-b 55.36 62.03 46.32 61.46 72.7 78.25
base-pg-b 33.13 54.55 34.3 52.48 33.76 50

Table 14: Overshoot Rate (OSR) among different models and data splits. For each pair of Zero PActs and
Geographical Overlap (0-pact-geo-x) and control splits (base-pg-x), the best performing split is bolded.
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Test Dataset Fine-Tune Dataset Split Llama1-7B-NV Llama2-7B-NV Mistral-7B-NV
TouchDown TouchDown base-unseen 46.88 42.53 69.22

Map2Seq base-unseen 77.26 82.64 71.08
Map2Seq TouchDown base-unseen 14.55 22.03 47.67

Map2Seq base-unseen 24.94 37.31 13.58
TouchDown TouchDown 0-pact-geo-a 87.66 77.32 87.59

base-pg-a 67.54 64.44 72.07
0-pact-geo-b 95.6 90.75 97.18
base-pg-b 66.77 67.9 74.21

Map2Seq 0-pact-geo-a 78.12 79.03 94.91
base-pg-a 87.41 84.9 89.59
0-pact-geo-b 87.95 89.2 98.57
base-pg-b 85.17 83.52 90.37

Map2Seq TouchDown 0-pact-geo-a 60.2 56.15 68.24
base-pg-a 45.27 33.02 45.02
0-pact-geo-b 83.4 70.1 92.42
base-pg-b 34.34 45.8 28.85

Map2Seq 0-pact-geo-a 47.47 42.22 73.2
base-pg-a 48.35 51.43 61.3
0-pact-geo-b 62.03 61.46 78.25
base-pg-b 54.55 52.48 50

Table 15: Overshoot Rate (OSR) among different models fine-tuned without vision and data splits. For each pair of
Zero PActs and Geographical Overlap (0-pact-geo-x) and control splits (base-pg-x), the best performing split is
bolded

Test Dataset Finetune Dataset Image Split Llama1-7B Llama2-7B Mistral-7B
TC OSH OSR TC OSH OSR TC OSH OSR

TouchDown TouchDown No-Vision base-p 13.53 24.72 64.62 15.58 20.32 56.61 8.06 24.48 75.23
0-pact 7.68 23.65 75.49 7.77 12.12 60.92 3.05 10.52 77.51

OpenCLIP base-p 28.22 31.91 53.07 28.34 24.53 46.4 14.92 35.57 70.45
0-pact 18.69 37.48 66.72 24.28 29.5 54.85 7.05 27.17 79.41

Map2Seq No-Vision base-p 5.97 21.78 78.49 5.08 24.46 82.82 2.96 27.26 90.2
0-pact 3.17 13.22 80.66 3.55 14.09 79.89 1.36 16.25 92.27

OpenCLIP base-p 7.82 23.19 74.77 7.31 23.12 75.98 5.83 27.02 82.26
0-pact 3.76 13.48 78.2 4.56 14.49 76.08 2.02 17.24 89.51

Map2Seq TouchDown No-Vision base-p 27.24 22.46 45.2 29.51 12.63 29.97 9.49 7.19 43.1
0-pact 20.59 15.89 43.56 25.32 10.38 29.08 2.74 3.46 55.81

OpenCLIP base-p 31.64 14.55 31.51 27.7 6.79 19.68 8.57 6.61 43.56
0-pact 18.72 7.67 29.07 22.24 4.7 17.45 3.52 3.52 50

Map2Seq No-Vision base-p 40.98 26.6 39.36 37.1 33.42 47.39 25.65 36.93 59.01
0-pact 38.13 24.4 39.02 34.7 31.55 47.63 21.81 41.16 65.37

OpenCLIP base-p 50.1 16.42 24.69 50.16 18.38 26.81 39.57 25.54 39.22
0-pact 46.15 16.56 26.4 43.01 23.8 35.62 35.13 27.34 43.77

Table 16: Overshoot (OSH) denotes the number of overshoot cases among all of the samples in the test split.
Overshoot Rate (OSR) and Task Completion (TC) are described in section 5.5. As explained in section 5.5,
separation of PActs from train and test, results in lower number of OSH cases and TC rates in 0-pact compared to its
baseline, base-p. However, the overall outcome is a general increase in Overshoot rates.
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Figure 2: Illustration of creation of Zero Pattern Overlap from base-unseen split. The graphs depicted here are
hypothetical to clarify the process. Each column represents frequency ( number of repetitions ) of a pattern in
samples. Splitting the data by patterns, results in zero pattern overlap, whereas geographical overlap still exists.

D Data Augmentation

Pattern Generation The structure of patterns
can be defined as a regex as follows. For Touch-
Down:

[t|l|r]?(fl|fr) ∗ (fs) (1)

And for Map2Seq dataset, where the initial direc-
tion of the agent is towards the ground truth path:

(fl|fr) ∗ (fs) (2)

Where f,l,r,t,s correspond to {FORWARD, LEFT,
RIGHT, TURN_AROUND, STOP} actions respectively.
We create all possible combinations of patterns
with up to 7 turns meaning that a pattern would

contain 7 intermediate turns. This results in 127
unique patterns for M2S, and 508 unique patterns
for TD. For instance, the following patterns contain
3 turns: flflfrfs, lfrflfrfs

Instruction Generation Once we have a pattern
in hand, we create instructions that correspond to
each action using templates with blanks reserved
for landmarks. For instance: ’Turn so [blank] is
on your [blank]’ where we can fill them with Star-
bucks, left respectively. We concatenate the filled
templates to form a piece of navigational instruc-
tions.
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Figure 3: Illustration of creation of Zero Pattern and Geographical Overlap from base-unseen split. The graphs
depicted here are hypothetical to clarify the process. Each column represents frequency ( number of repetitions ) of
a pattern in samples. In base unseen, train and test samples are geographically separate. So, when we separate them
by patterns, we could get two sub-sets that are (a) geographically separate, AND (b) have zero pattern overlap. From
the samples assigned to the test, we randomly take 15 (20) percent of samples to create dev set for TouchDown
(Map2Seq) and use the remaining samples as the test set.

Training Sample Following (Schumann et al.,
2024), each piece of instructions is placed within a
prompt template, that instructs the agent to predict
the next action given the instructions and previous
sequence of actions. So, to create a training sample,
we also create the ground truth sequence of actions
and observations that correspond to the pattern. For
instance for a pattern: flfs where the instruction is:
Go straight until you reach Salsa Room, then turn
left. Keep going straight until you reach Apple
store The sequence of actions and observations
would look like as follows: 1.Forward, 2.Forward,
3. Forward, Salsa Room on your right, 4. Left, 5.
Forward, 6. Forward, Apple store ahead, 7. Stop

Avoiding Over-fitting To avoid over-fitting to
the templates, we take the following measures:

1. We paraphrase the instructions using GPT-4o
using the prompt in Figure 5.

2. During the training we add noises to the
dataset in three ways:

• Word Drop: we randomly drop 10 per-
cent of the words in the instructions

• Letter Drop: we randomly drop one let-
ter from 10 percent of the remaining
words

• Added Noise: We repeat up to 50 percent
of the observations several times among
a sequence of actions. This is a type of
noise that can happen in real data. For in-
stance when an agent passes by a bank, it
might be able to see the bank within sev-
eral consequent steps. So, the observa-
tion will be added to the prompt several
times.

Data Generation Settings We create dataset
with the following different settings.

1. Landmarks from Human Generated Data
When creating a synthetic dataset, we ran-
domly choose from landmarks referred in the
human generated dataset.

2. Landmarks from New Town In another set-
ting, we create landmarks that are totally syn-
thetic and imaginary i.e. formed by putting
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random words together. For instance Bright
Mountain Cafe.

3. Zero Initial Turns We also create another
dataset where the initial action is never a turn-
ing action i.e. left, right, turn_around. In this
setting, the pattern

Fine-tuning Table 17 shows how different fac-
tors affect the performance of a model. Sampling
landmarks from the current human generated data
to create new synthetic routes might result in over-
fitting of the model. So, we articulate that one
way of avoiding over-fitting would be to generate
synthetic landmarks. This approach, improves per-
formance of the model in certain cases.

Another problem with the current setting of VLN
agent is the ability of the agent in alignment of
landmarks. This causes the failure of the model to
turn appropriately in the beginning of a route. So,
we articulate that training on more samples of data,
would not contribute much to the initial turn task as
long as the model does not ground well the visual
observations. So, we create a dataset where none
of its patterns start with a turning task. However,
such a change, does not solely contribute to any
better performance.

And lastly, any human generated data may con-
tain errors such as missing letters in words or even
missing words in a sentence. So, we also add such
noises to the data during the training phase. So
that the noise is applied at random and in many
different combinations.

Combining all of the above strategies, results in
maximum enhancements given our settings. How-
ever, we leave a more comprehensive study of data
augmentation methods as a future work.

E Instruction Templates

Figure 4 shows the raw instructions templates used
for data generation.

F Prompts

Figure 5 shows the prompt used for paraphrasing
the raw template-based instructions.
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Synthetic data settings
Baseline ✓

New Town ✓ ✓
0 Inital Turns ✓ ✓
Added Noise ✓ ✓

FT → Test
Same train-test datasets

TD → TD No-Vision 13.8 13.93 10.06 13.33 13.13
OpenCLIP 23.22 23.8 12.87 15.12 22.56

M2S → M2S No-Vision 26.5 22.5 22.12 31.4 31.5
OpenCLIP 36.75 30.87 33.25 37.6 39.25

Different train-test datasets
TD → M2S No-Vision 3.58 3.26 3.13 3.4 3.8

OpenCLIP 4.98 4.33 4.46 4.66 5.1
M2S → TD No-Vision 25.5 19.12 20.37 22.6 26.1

OpenCLIP 23 19.75 21.25 22.25 23.5

Table 17: TC rate (%) for different settings of data augmentation for Llama-2. Any number in bold shows where the
agent outperforms the baseline.

Initial direction with respect to surrounding landmarks:
Turn so [landmark] is on your [direction]

Initial Direction with respect to the traffic direction:
Orient yourself [against|with] the flow of the traffic
Orient yourself so you are facing [against|with] the flow of the traffic

Moving forward:
Go straight
Go straight until you [reach|see] [landmark]

Making a turn:
Turn [direction] at the [traffic light|intersection]
Turn [direction] when you see [landmark] on your [direction]
At the [intersection|street light] that you see [landmark] on your [direction], turn [direction]

Stop:
Stop when you see [landmark]
Stop at the [landmark]
Stop when you see [landmark] on your [direction]
Stop

Observation:
There is a [3|4]-way intersection.
You are aligned [against|with] the flow of the traffic

Figure 4: Raw templates of synthetic instructions. Place holders indicated with brackets are replaced with proper
words.

Initial direction with respect to surrounding landmarks:
Rephrase the given text so that its meaning remains the same by using a combination of the following approaches:

1. make it more formal 2. make it less formal 3. change the words with appropriate synonyms 4. combine some of the
sentences together. 5. split long sentences into two sentences. 6. move around the verb and objective within a sentence.

Only write the resulting text.

The given text:

[instructions]

Figure 5: Prompt for rephrasing the template based .
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