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Abstract

Text-to-image (T2I) diffusion models rely on
encoded prompts to guide the image generation
process. Typically, these prompts are extended
to a fixed length by appending padding tokens
to the input. Despite being a default practice,
the influence of padding tokens on the image
generation process has not been investigated. In
this work, we conduct the first in-depth analysis
of the role padding tokens play in T2I models.
We develop two causal techniques to analyze
how information is encoded in the represen-
tation of tokens across different components
of the T2I pipeline. Using these techniques,
we investigate when and how padding tokens
impact the image generation process. Our find-
ings reveal three distinct scenarios: padding
tokens may affect the model’s output during
text encoding, during the diffusion process, or
be effectively ignored. Moreover, we identify
key relationships between these scenarios and
the model’s architecture (cross or self-attention)
and its training process (frozen or trained text
encoder). These insights contribute to a deeper
understanding of the mechanisms of padding
tokens, potentially informing future model de-
sign and training practices in T2I systems.1

1 Introduction
Text-to-image (T2I) models consist of two main
components: a text encoder, which generates rep-
resentations of the user’s prompt, and a diffusion
model, which generates an image based on this rep-
resentation. To standardize sequence lengths for
efficient batch processing in training and inference,
input prompts are padded to a fixed length with a
special padding token. Unlike language models,
where padding tokens are explicitly masked and
thus ignored, the computation process of the T2I
models can use these tokens as any other token. De-
spite their ubiquity, the potential impact of padding

1Code available at padding-tone.github.io

Figure 1: Images generated with FLUX from different
segments of the input prompt. Description of each col-
umn, from left to right: (1) An image generated using
the full prompt (both prompt tokens and padding tokens
encoded together), (2) An image generated using only
the prompt tokens and clean padding tokens, (3) An
image generated using only the prompt-contextual pads
encoded with the prompt, while the prompt tokens were
replaced with clean pad tokens.

tokens on image generation has been overlooked.
Our goal in this work is to evaluate the influence
of these tokens and determine whether the model
learns to use semantically meaningless tokens.

We introduce two methods to evaluate the in-
fluence of tokens on different model components:
(1) Intervention in the Text Encoder (ITE) and (2)
Intervention in the Diffusion Process (IDP). Both
methods build on causal mediation analysis, also
known as activation patching (Imai et al., 2010;
Vig et al., 2020; Zhang and Nanda, 2024). This
technique involves perturbing specific inputs or in-
termediate representations to observe their effect
on the output, helping to pinpoint the influential
elements. Figure 1 illustrates one of our interven-
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tions, showing images generated with perturbations
in different parts of the textual representation.

In ITE we selectively perturb specific segments
of the text encoder’s output representations to iso-
late the contributions of two key elements: prompt
tokens and padding tokens. Next, we generate im-
ages using the modified prompt representations and
analyze the results. The perturbation involves re-
placing selected token representations with those
from a prompt that consists solely of padding to-
kens, referred to as clean pads. These clean pads
differ from the original padding tokens, which con-
tain contextual information from the prompt. The
method is illustrated in Figure 3. If padding tokens
carry meaningful information, we expect two out-
comes: (a) replacing the prompt tokens with clean
pads should still result in an image reflecting ele-
ments of the original prompt, while (b) replacing
the padding tokens with clean pads should alter the
image either semantically or stylistically.

In cases where our analysis with ITE indicates
that padding tokens are not used by the text encoder,
we further examine the role of padding tokens in
the diffusion process. Particularly, we investigate
whether significant information is written into the
padding token representations throughout the dif-
fusion process. Here we employ IDP, illustrated
in Figure 9, to interpret the causal effect of the
padding tokens during the diffusion process. We
begin with a standard prompt padded to a fixed
length, as well as an “only pads” prompt. However,
in IDP, token replacement occurs before each atten-
tion block within the diffusion process and at every
diffusion step. We repeat the procedure of selec-
tively replacing either prompt tokens or padding
tokens with clean pads, similarly to ITE.

We analyze six different T2I models and high-
light two scenarios where padding tokens are uti-
lized. First, when the text encoder was not frozen
during training or fine-tuning, it learns to encode
meaningful semantic information into these tokens.
Second, in architectures with multi-modal attention
mechanisms—such as Stable Diffusion 3 (Esser
et al., 2024) and FLUX2—padding tokens carry
meaningful information throughout the diffusion
process, even if the text encoder itself does not di-
rectly encode it. Here, the padding tokens seem
to act as “registers”, with information written into
their representations to store and recall, similarly
to findings from both language models and vision-

2blackforestlabs.ai

Figure 2: The scenarios we observe: padding tokens
may be effectively ignored (first row; image generated
using ITE), affect the model’s output during text encod-
ing (second row; image generated using ITE), or be used
during the diffusion process (last row; image generated
using IDP). Left: baseline. Right: our method.

language models (Darcet et al., 2024; Burtsev et al.,
2020).

To summarize, our main contributions are:

1. We propose two causal methods for analyz-
ing the use of specific tokens in both the
text encoder and diffusion model of the T2I
pipeline, and apply them to investigate the
role of padding tokens.

2. We find that T2I models with frozen text en-
coders (e.g., Stable Diffusion XL and Stable
Diffusion 2) ignore padding tokens (Figure 2,
first row). However, when the text encoder is
trained or fine-tuned (LDM, LLama-UNet),
padding tokens gain semantic significance
(Figure 2, second row).

3. We uncover that even when padding tokens
are not utilized by the text encoder, for some
architectures with multi-modal self-attention
in the diffusion model (Stable Diffusion 3 and
FLUX), they can still function as “registers”
and play a meaningful part in the diffusion
process (Figure 2, last row).
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Figure 3: ITE: Interpreting information within pad tokens in the text encoder. We first encode the full prompt and
the clean pads separately. Next, we keep the tokens we want to interpret and replace all other tokens with clean
pad tokens. We then generate an image conditioned on this mixed representation. In the example shown here, we
interpret the pad tokens in LLaMA-UNet, revealing semantic information embedded within the pad tokens.

Figure 4: Images generated from different segments of
the input prompt using ITE. Description of each column,
from left to right: (1) An image generated using the
full prompt (both prompt tokens and padding tokens
encoded together), (2) An image generated using only
the prompt tokens and clean padding tokens, (3) An
image generated using only the prompt-contextual pads
encoded with the prompt, while the prompt tokens were
replaced with clean pad tokens.

2 Analysis of Padding in Text Encoding
In the T2I pipeline, the text encoder processes the
input prompt P = [P1, .., Pk], k tokens. To ensure
a consistent input length, the prompt is usually
padded to a fixed length, denoted as N . We denote
this padded version of the prompt as Pfull, which
is a concatenation of the k prompt tokens and the
N − k padding tokens:

Pfull = [P1, . . . , Pk, pad, . . . , pad]. (1)

The text encoder then processes Pfull, producing
a constant-length encoded representation, which
is subsequently used by the diffusion model for

conditional image generation. We denote this en-
coded full prompt representation as Efull, which
consists of the encoded prompt tokens and the en-
coded prompt-contextual padding tokens.3

2.1 Method

Our goal is to evaluate the information encoded
in the prompt-contextual padding tokens, and to
measure their effect on the generated image. To do
so, as illustrated in Figure 3, we generate images
using partial representations of Efull that isolate the
effect of the padding tokens. We generate images
based on these partial representations of Efull and
compare them to images generated from the full
prompt Efull. This enables us to visually express
the information from different parts of the text in-
put.

Specifically, to remove information coming from
a subset of the tokens, we replace them with “clean”
padding tokens that were not influenced by the
user’s prompt. To obtain these clean padding to-
kens, we encode Sclean = [pad, pad, . . . , pad], a
fixed-length sequence made entirely of padding
tokens, and denote their embeddings as Eclean.

These encoded padding tokens are then used in
constructing the final mixed representation, which
combines both the prompt-contextual tokens and
clean padding tokens. We use the encoded padding
tokens since they contain no information related
to the current prompt, while maintaining the same
length and distribution of the text encoder’s output.
This allows us to effectively isolate the contribution
of the padding tokens that are encoded alongside
the full prompt tokens, helping us understand how
much of the information in the final representation

3One special case is the use of an EOS token in CLIP
models, which is discussed in Appendix E.
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comes from the prompt itself versus the prompt-
contextual padding tokens. Figure 4 demonstrated
our method. First, we generate an image from the
full prompt, which is how the image is generated in
the standard pipeline (left column). Then, we gen-
erate an image that demonstrates the information in
the non-pad tokens (e.g. encoded prompt tokens),
by replacing the prompt-contextual padding tokens
with clean pads (middle column). Lastly, we gener-
ate an image demonstrating the information within
the prompt-contextual padding tokens, by replacing
the non-pad tokens with clean pads (right column).

More formally, the mixed representation for gen-
erating an image from the encoded prompt tokens
only (middle column) is:

Eprompt =
[
E0:k

full , E
k+1:N−1
clean

]
, (2)

where Ei:j
x represents the encoded tokens from in-

dex i to j. For a representation that generates an
image from the prompt-contextual padding tokens
only (right column):

Epads =
[
E0:k

clean, E
k+1:N−1
full

]
(3)

2.2 Experimental Setup

Models. We use six T2I models. These models
can be divided into two categories based on their
training approach: those with pretrained frozen text
encoders during the training: Stable Diffusion 3
(Esser et al., 2024), Stable Diffusion 2, Stable Dif-
fusion XL (Podell et al., 2024), FLUX; and those
with some learned weights as part of the text to im-
age training: LDM (Rombach et al., 2022) and
Lavi-Bridge (Zhao et al., 2024) (LLaMA-UNet
version). The first group can be divided to two
subgroups: models that use vision-language cross-
attention with the text representations in the diffu-
sion process (Stable Diffusion 2, Stable Diffusion
XL) and models that use the text representations
as part of vision-language self-attention, allowing
text representations to change throughout diffusion
(FLUX, Stable Diffusion 3). Appendix C provides
more information regarding each of the models.

Data. Our prompts are based on the Parti dataset
(Yu et al., 2022), a benchmark containing over 1600
diverse and challenging prompts used to evaluate
T2I models. To prevent using prompts that have
leaked into the training corpus of the models, we
select prompts from eight different challenge cat-

egories in Parti, and use GPT-4o4 to generate an
alternative set of prompts with similar style and
complexity. We then manually review the prompts
to ensure their coherence. This process results in
500 new prompts. The complete list of categories,
along with the prompt used with GPT, can be found
in Appendix A, and the full dataset is included in
the supplementary material.

Each of the 500 prompts is used to generate 10
images from different random seeds, resulting in
5,000 images for each configuration of model and
representation. We investigate three representa-
tions: Efull, Eprompt (Eq. 2), Epads (Eq. 3), and
Eclean as a lower-bound control, with their cor-
responding images denoted as “full”, “prompt”,
“prompt-contextual pads” and “clean”, respectively.

Metrics. To evaluate the generated images, we
employ two key metrics: CLIP score (Hessel et al.,
2021), which measures how well the generated im-
ages align with the textual prompt, and KID (Ker-
nel Inception Distance) (Bińkowski et al., 2018),
to evaluate the quality of generated images. KID is
used to measure the similarity between the feature
distributions of images generated from full repre-
sentation and images generated after some causal
intervention. Unlike FID (Heusel et al., 2017),
which is based on Gaussian approximations, KID
uses the maximum mean discrepancy (MMD) mea-
sure, making it more robust in practice, especially
when dealing with smaller sample sizes.

2.3 Results

Figure 5 shows the average CLIP scores over
generations from different representations: “full”,
“prompt”, “prompt-contextual pads” and “clean”.
Stable Diffusion (versions 2+3) and FLUX models
appear to make little to no use of padding tokens:
CLIP scores for the full and prompt representations
are nearly identical, while the prompt-contextual
pads—containing only padding tokens—yield sig-
nificantly lower scores. In contrast, LLaMA UNet
and LDM contain significant semantic informa-
tion in padding, with a higher CLIP score for the
“prompt-contextual pads”, although the degradation
in performance from “full” to “prompt” is small.

Text encoder training objective and its influence
on padding usage. Our results suggest that the
training objective of the text encoder significantly
impacts how padding tokens are utilized. Many
current T2I models, such as Stable Diffusion and

4openai.com/index/hello-gpt-4o
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Figure 5: Average CLIP score over 5,000 images generated from the different representations: full prompt, only
prompt, prompt-contextual pads and clean pads using ITE. LDM and LLaMA-UNet are the only models achieving
high CLIP scores for images generated from padding tokens, indicating their use during text encoding. See Table 5
in the Appendix for standard deviations.

KID Score

Model Prompt Pads

FLUX 0.01 14.52
LDM 0.88 4.53
LLaMA UNet 7.37 0.48
Stable Diffusion 2 0.02 31.09
Stable Diffusion 3 0.01 15.74

Table 1: KID scores between the images generated from
the prompt-contextual pads vs. images generated only
from prompt representations. All images are gener-
ated using ITE. Lower is better. The KID is calculated
w.r.t. images generated from the full representation. No-
tably, LDM and LLaMA UNet are the only models that
achieve a low KID on images generated from contextual
pads (underlined).

FLUX, employ a frozen text encoder, with the dif-
fusion model being trained on its encoded outputs.
It may be that because the text encoder is not ex-
plicitly trained to process padding tokens for im-
age generation, it does not effectively incorporate
them during the textual encoding. As shown in
Figure 5, in models that use frozen text encoders
(Stable Diffusion and FLUX), images generated
using the “prompt” representation yield the same
CLIP score as those generated using the “full” rep-
resentation, while images generated from “prompt-
contextual padding” representations result in a very
low CLIP score, almost as low as those generated
from clean padding. Furthermore, Table 1 shows a
clear distinction between models trained to process
padding tokens for image generation and those that
are frozen. For models with a frozen text encoder,

the KID is very low (around 0.01) for images gener-
ated from prompt tokens only, whereas it is high for
images generated from contextual padding tokens,
indicating that these images are out of distribu-
tion. This suggests that in these models, the text
encoder does not encode meaningful information
in the padding tokens, making them unnecessary
for generating the final image.

Other models, like LDM and Lavi-Bridge, adapt
the text encoder specifically for the image gener-
ation task. These methods train the text encoder,
including the use of padding tokens, on the im-
age generation objective, allowing it to effectively
learn how to utilize padding. In these models, the
results differ: images generated from full prompt
tokens have lower scores compared to those gen-
erated using prompt representations, suggesting
that the information encoded in the prompt to-
kens is insufficient to generate the precise images.
Furthermore, images generated from the prompt-
contextual padding tokens in these models yield
much higher CLIP scores, even surpassing images
generated from prompt tokens in LLama-UNet.
These models achieve relatively low KID on im-
ages generated from the prompt-contextual padding
tokens, indicating that these images are close in dis-
tribution to those generated from the full represen-
tation. This suggests that in these models, the text
encoder has learned to utilize the padding tokens
during the textual encoding.

Overall, these results indicate that pads play an
important role in the text encoding process for im-
age generation in these adapted models.
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Pad Segment CLIP Score

First 0.30 ±0.018

Second 0.23 ±0.018

Third 0.17 ±0.022

Table 2: Average CLIP scores for different prompt-
contextual pad segments in LLaMA-UNet: the first 20%
of the pads, the next 20%, and then the subsequent 20%.
We observe that the semantic information degrades grad-
ually, with most of it concentrated in the initial tokens.

How many padding tokens do text encoders use?
We focus on the LLaMA-UNet model and analyze
padding behavior. We divide the padding tokens
into five segments, each containing 20% of the
total padding tokens in their natural order. For each
segment, we mask both the prompt tokens and pad
tokens in the other segments, then generate images
from this mixed representation.

The CLIP scores can be found in Table 2. Our
observations reveal that the information encoded
in padding tokens varies based on their proxim-
ity to the prompt tokens, with those closer to the
prompt carrying more significant information. We
hypothesize that this behavior may be due to the
text encoder’s use of causal masking or the po-
sitional encoding scheme applied to the padding
tokens. Only the padding tokens that are closer to
the prompt tokens appear to be utilized effectively.

Since LLaMA is a language model adapted for
image generation using LoRa training, we can load
the LoRa with a scaling factor, α, to observe how
gradually removing LoRa affects the number of
used pad tokens. Our results in Figure 6 show that
as α decreases, fewer pad tokens are used. This
indicates that part of what the LoRa learns involves
encoding information into more pad tokens.

3 Analysis of Padding in the Diffusion
Process

Padding tokens may not carry meaningful informa-
tion after text encoding, yet some diffusion architec-
tures may still utilize them during the diffusion pro-
cess. To generate images from the encoded textual
representation, T2I models use an attention mech-
anism to condition the generation process. This
mechanism typically follows one of two common
approaches: cross-attention and MM-DiT (Esser
et al., 2024) blocks. In cross-attention, used in mod-
els like Stable Diffusion 2/XL, the model converts
image patches into query vectors and text tokens

Figure 6: Images generated from Lavi-bridge with LoRa
loaded with scaling factor α (y-axis). We analyze pad
token segments: the first column shows the full image,
and the next columns show three consecutive 20% of
the pads. As α decreases, fewer pad tokens are used.

Figure 7: Attention histogram for Stable Diffusion XL
and FLUX* for each token reveals that while both mod-
els exclude semantic information from padding tokens,
FLUX utilizes these tokens, whereas Stable Diffusion
does not. *In FLUX, we have removed the long middle
part with low attention in order to improve visualization.

into key and value vectors. The image patches
gather information from the encoded textual repre-
sentation, based on an attention map, but the text
representation remains unchanged throughout the
process. In contrast, MM-DiT blocks, found in
models like FLUX and Stable Diffusion 3, imple-
ment a multi-modal self-attention, by projecting
both image patches and text token representations
into query, key, and value vectors. Thus, both the
image and text representations update and influ-
ence each other during the attention process. We
therefore expect that models implementing cross-
attention where the pads are not used in the text
encoder would also not use them in the diffusion
process. However, models implementing MM-DiT
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Figure 8: Attention maps for FLUX diffusion show
strong alignment between prompt tokens and seman-
tically relevant image tokens. These maps also reveal
high attention for padding tokens with the main objects
in the image.

blocks can potentially aggregate information into
the padding tokens, even if initially they contain no
information.

Motivation: attention maps and qualitative ex-
amples. To understand whether padding tokens
are utilized during image generation, we examine
the attention maps between image patches and text
representations, resulting in an attention map be-
tween each text token and all the image tokens (see
example in Figure 8). While in Stable Diffusion
XL only the prompt (and the end-of-text) tokens
significantly attend to main areas in the image, in
FLUX not only prompt tokens, but also many pad
tokens contribute much attention to main image ar-
eas (Figure 7). Moreover, generating images with
FLUX and Stable Diffusion XL, with and with-
out padding (Figure 12, Appendix G), reveals that
FLUX without padding often misses key details,
while Stable Diffusion XL remains consistent in its
generations even without padding tokens.

3.1 Method

To interpret the causal effect of tokens during the
diffusion process, we develop IDP, illustrated in
Figure 9. The diffusion process consists of several
diffusion steps, where each step begins with the
current latent image representation and the full en-
coded text representation. Since we look only at
models where padding tokens do not carry mean-
ingful information in the text encoder, we hypothe-
size that the diffusion model might be using these
tokens as “registers” to store and recall informa-
tion, subsequently passing it to the image patches,
similar to the findings of Darcet et al. (2024) in
their work on VLMs with image patches.

To investigate the role of padding tokens during
the diffusion process, we intervene before each at-
tention block at every diffusion step. More specif-
ically, we use two representations: the fully en-
coded padded prompt representation from the text
encoder and another encoded “clean pads” prompt,

CLIP Reference

Representation Image Prompt

Full 1.0 ±0.0 0.33 ±0.037

Prompt 0.91 ±0.003 0.33 ±0.038

Pads 0.72 ±0.008 0.22 ±0.054

Pads First 0.58 ±0.008 0.21 ±0.052

Pads Second 0.55 ±0.006 0.15 ±0.038

Clean 0.46 ±0.018 0.10 ±0.009

Table 3: Average CLIP scores between images gen-
erated (with FLUX) with different IDP interventions
and either the full prompt or an image generated from
the full prompt. ‘Full’: a prompt with real tokens
and pads. ‘Prompt’: prompt tokens; ‘Pad’: prompt-
contextual pads; ‘Pad First’: First 20% of the prompt-
contextual pads; ‘Pad Second’: Second 20% of the
prompt-contextual pads; ‘Clean’: a prompt full of pads,
used for comparison;

whose representations per diffusion layer are de-
noted as E(l)

full and E
(l)
clean, respectively. We replace

the prompt tokens with clean pads at each dif-
fusion step, before each transformer layer using
Equation 2, resulting in an image generated solely
through self-attention to the prompt-contextual
pads. If the images generated from these represen-
tations still contain prompt-relevant information,
it would suggest that the pads are being utilized
during the diffusion process.

3.2 Results

Table 3 shows the results of our intervention in the
diffusion process. The table shows average CLIP
scores of images generated with different IDP in-
terventions, to assess the role of pad and prompt
tokens. First, we compute CLIP scores with re-
gards to the full-text prompt (Prompt column). We
find that images generated only from the prompt
tokens are similar to the prompt to the same extent
as images generated from the full prompt. Images
generated only from the prompt-contextual pads
are much more similar to the text prompt compared
to images generated from clean pads, indicating
that pad tokens are used by the diffusion model
to represent concepts related to the prompt. That
said, the CLIP scores of images generated from
the prompt-contextual pads are much lower com-
pared to the CLIP scores of images generated from
prompt-contextual pads in LLama-UNet with ITE .

These results are further demonstrated in Fig-
ure 10, where we present images generated by IDP .
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Figure 9: IDP: Interpreting information within pad tokens in the diffusion model. We perform a diffusion of two
prompts simultaneously: the full prompt and an clean pads. During the diffusion, we keep the tokens we want
to interpret (here: the prompt-contextual padding tokens) and replace all other tokens with clean pad tokens. We
perform this intervention before each attention block in the diffusion model, through all diffusion steps. We then
generate an image conditioned on this mixed representation. In the example shown here, we interpret the pad tokens
in FLUX, revealing semantic information embedded within the pad tokens during diffusion.

In the first row, images are generated for the prompt
“a cozy living room with a raccoon napping on the
couch”. The image generated from the prompt-
contextual pads has a cozy style but does not align
well with the prompt itself. In the second row,
for the prompt “two dogs writing poetry”, the im-
age generated from the prompt-contextual padding
tokens retain several visual features present but
do not incorporate the concept of writing poetry,
which is prominent in the prompt. We hypothesize
that in diffusion, pads are used to represent visually
related information but do not contain the same
semantic information.

To further explore this relationship, we compute
CLIP scores with regards to images generated from
the full padded prompts (Table 3, Image column).
The CLIP score between images generated from
full prompts and images generated when using only
contextual padding tokens is approximately 72—
significantly higher than the score for randomly
generated images from a ‘clean’ padding prompt.
This is further evidence that the padding tokens
contain visual information closely related to the
content of the prompt tokens. Here, similar to the
results in Section 2, images generated from the
first 20% of the contextual pads contain more in-
formation than those generated from the next 20%,
indicating that information is not spread evenly
and is primarily concentrated in the first contextual
pads.

Finally, we provide more qualitative examples
in Figure 11 (Appendix G), which show that im-
ages generated from the prompt-contextual pads

with IDP have meaningful semantic information.
While images generated solely from prompt tokens
typically align with the semantic meaning of the
prompt, different visual features are often missing
when padding tokens are excluded, while the same
features are presented in the padding tokens. It
appears that the diffusion model uses padding to-
kens to create additional visual information, while
semantic content remains primarily in the prompt
tokens.

Figure 10: Images generated with FLUX us-
ing IDP from different prompt segments show distinct
alignments: prompt tokens produce semantically accu-
rate images, while the visual nuance like ’cozy’ emerges
only from the prompt-contextual pad tokens.
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4 Related Work

Special tokens and additional computation.
While padding tokens are generally used for ef-
ficient batch processing without fulfilling a func-
tional role, other special tokens are known to carry
various roles. In transformer language models, at-
tention is often directed to special tokens, includ-
ing punctuation marks (‘.’), [SEP], or just the first
token; this has been referred to as null or no-op
attention (Vig and Belinkov, 2019; Kovaleva et al.,
2019; Clark et al., 2019; Rogers et al., 2020). Some
have added special tokens to enable additional pro-
cessing, such as ‘registers’ in vision transformers
(Darcet et al., 2024) or ‘memory tokens’ in lan-
guage models (Burtsev et al., 2020). More gen-
erally, language models benefit from additional
computation via chain-of-thought reasoning (Wei
et al., 2024). Finally, several studies found it useful
to train models to perform additional computation
with custom tokens, including filler tokens like ‘.....’
(Pfau et al., 2024), so-called ‘pause tokens’ (Goyal
et al., 2024), or ‘meta-tokens’ for additional rea-
soning steps (Zelikman et al., 2024). This idea can
be traced back to adaptive computation time tech-
niques (Graves, 2016; Banino et al., 2021). Our
work contributes to this literature by analyzing the
role of padding tokens in T2I models.

Interpreting vision-language models. Com-
pared to uni-modal models, VLMs have seen rel-
atively few attempts at interpretation. CLIP (Rad-
ford et al., 2021) has been a focus of several studies:
Goh et al. (2021) identified multimodal neurons
responding to specific concepts, while Gandels-
man et al. (2023) decomposed its image represen-
tations into text-based characteristics. In the realm
of text-to-image models, Tang et al. (2023) intro-
duced a method to interpret T2I pipelines by ana-
lyzing the influence of input words on generated
images through cross-attention layers. Chefer et al.
(2024) decomposed textual concepts, with a focus
on the diffusion component. Basu et al. (2024)
employed causal tracing to investigate the storage
of knowledge in T2I models like Stable Diffusion.
Toker et al. (2024) analyzed the text encoder in
T2I pipelines, offering a view into intermediate
representations rather than just its final output.

Our work takes a unique direction by focusing
specifically on padding tokens, which have been
largely overlooked in prior research. While previ-
ous research has illuminated how prompt tokens
guide image generation, we show that padding to-

kens, often thought to be inert, can play a more ac-
tive role—encoding semantic information or even
functioning as “registers” that influence model
computations. This adds a new dimension to the
interpretation of T2I models, suggesting that even
these seemingly unimportant tokens may hold valu-
able information or operational significance.

5 Discussion

This work addresses a design decision present in
every T2I model that has remained largely unex-
plored: the choice to include padding tokens dur-
ing both textual encoding and the diffusion pro-
cess. As more studies begin integrating large lan-
guage models (LLMs) into T2I pipelines using
techniques like fine-tuning, LoRA, or adapters, the
role of padding tokens becomes increasingly cru-
cial. Training these models with padding tokens
could influence a wide range of methods that as-
sume subject information is encoded in specific
tokens (Chefer et al., 2023; Rassin et al., 2023;
Hertz et al., 2023; Gal et al., 2022), potentially al-
tering their implementation when padding tokens
carry significant semantic information. This fac-
tor should be carefully considered when deciding
whether to train with or ignore padding tokens.

Furthermore, future research could explore how
incorporating padding tokens into training might
provide computational advantages in more inte-
grated, end-to-end architectures, potentially allow-
ing models to dynamically allocate resources by
adjusting the use of padding tokens as needed.

Limitations

While we have studied multiple T2I models rep-
resenting several architectures, our work did not
cover the vast space in this area. Our prompt se-
lection offers some variety, but it may not capture
all edge cases, potentially overlooking cases where
padding tokens are used differently. Additionally,
although we rely on widely used metrics like CLIP
score and KID for evaluation, these may not cap-
ture all nuances of image quality.

Ethical Considerations

In developing our code, we used both Copilot and
GPT-4o, but carefully reviewed each line to en-
sure it aligned with our intended implementation.
For writing and rephrasing improvements, we used
WordTune and GPT-4o. Every generated sugges-
tion was carefully reviewed and adjusted to ensure
our original intent remained intact.
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A Data Creation
To construct our dataset, we sampled prompts from
the Parti dataset and augmented them using GPT-
4o. We randomly selected 50 samples from each
of the following eight categories: Fine-grained De-
tail, Imagination, Simple Detail, Style and Format,
Complex, Linguistic Structures, Perspective, and
Quantity. For each category, we provided GPT-4o
with the prompt: Create an alternative CSV with
different prompts of similar style and complexity.

To ensure greater diversity, we repeated this pro-
cess twice for Style and Format and Simple Detail,
generating 100 examples for each. Finally, we
manually reviewed all generated prompts to verify
their diversity and coherence. In total, our dataset
comprises 500 curated prompts.

B Attention Between Image and Text in
Different Architectures

To condition the generation process on a textual
prompt, T2I models typically employ an attention
mechanism. There are two popular methods for
achieving this: through cross-attention mechanism,
used in models like Stable Diffusion 2 and Stable
Diffusion XL, and Multimodal Diffusion Trans-
former (MM-DiT) (Esser et al., 2024) blocks, found
in models such as FLUX and Stable Diffusion 3. In
the cross-attention mechanism, image patches are
projected into query vectors Q while text tokens
are projected into key and value vectors K and V .
Essentially, each image patch draws information
from the text tokens based on the attention map A:

A = softmax(QK⊤/
√
dk), (4)

where dk represents the dimensionality of the key
vectors. It is important to note that only the image
patches extract information from the text tokens,
while the text tokens remain constant throughout
the computation process. Alternatively, the MM-
DiT blocks implement a self-attention mechanism
where both the image patches and text tokens are
concatenated into a single set and then projected
into Q, K and V vectors. In this formulation, both
the image and text draw information from each
other, using the following attention map:

A = softmax([Qtxt, Qimg][Ktxt,Kimg]
⊤/

√
dk),

(5)
where Qtxt, Ktxt are the text query and key vectors,
and Qimg, Kimg are the image query and key vec-
tors. Here, both the image patches and text tokens
are updated after the operation.

C Models

The models with frozen text encoders are:

1. Stable Diffusion 2 employs a single frozen
CLIP-based text encoder.

2. Stable Diffusion 3 utilizes a combination of
two frozen CLIP text encoders along with a
frozen T5 encoder.

3. FLUX utilizes a frozen T5 text encoder and
CLIP encoder. A key distinction between
FLUX and Stable Diffusion models is that the
latter incorporates a transformer architecture
with self-attention to both the image and text
latent representations in the diffusion process.
This allows the diffusion model to modify text
representations dynamically during the diffu-
sion. We use the distilled version of FLUX -
FLUX-Schnell.

The models with trained text encoders:

1. LDM uses a BERT text encoder, which is
trained jointly with the diffusion model on
the image generation task.

2. Lavi-Bridge employs a LLaMA that is trained
jointly with the diffusion model on the image
generation task.

D Technical Details

All experiments were conducted using NVIDIA
A100 GPUs with 8 cores, ensuring high compu-
tational performance and efficiency for our model
evaluations. The total computational time across
all experiments amounted to approximately 200
GPU hours.

E Additional Results

Model Full EOS

SDXL 0.34± 0.036 0.30± 0.041
SD2 0.33± 0.033 0.31± 0.032

Table 4: Average CLIP Scores for full representation vs
images generated using ITE masking all but the EOS
token in Stable Diffusion XL and Strable Diffusion 2
models, both using CLIP as the text encoder.
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EOS Token Retains Most Semantic Information.
When the CLIP text encoder is used, we observe
a phenomenon where semantic information is con-
centrated in a special token—the EOS token. Dur-
ing CLIP’s training, this token serves as the primary
objective for the text encoder, making its represen-
tation align with that of the image CLS token. As
a result, semantic information naturally aggregates
into this token. In Table 4, we observe that the
CLIP score of the EOS token is very high, nearly
matching that of the image generated from the full
representation. This observation has been noted in
previous works, such as Ding et al. (2024).

F Complementary Results
We have removed the error bars from Figure 5 for
clarity. The standard deviations are listed in Table
5.

Model Clean Pads Full Pads Prompt
FLUX 0.039 0.037 0.036 0.036
LDM 0.033 0.037 0.043 0.042
LLaMA-U 0.034 0.035 0.034 0.041
SD 2 0.037 0.033 0.037 0.034
SD 3 0.039 0.035 0.046 0.036
SDXL 0.023 0.036 0.043 0.039

Table 5: Calculated standard deviation of CLIP scores
for each model and different text encoder interventions.
LLaMA-U stands for LLama-UNet. SD stands for Sta-
ble Diffusion.

G Qualitative Examples
The following figures provide visual examples il-
lustrating the impact of padding tokens in the T2I
pipeline, highlighting some key findings from our
analysis.
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Figure 11: Additional examples of images generated from different segments of the input prompt using IDP.
Description of each column, from left to right: (1) An image generated using the full prompt (both prompt tokens
and padding tokens encoded together), (2) An image generated using only the prompt tokens and clean padding
tokens that were not encoded with the prompt, (3) An image generated using only the padding tokens encoded with
the prompt, while the prompt tokens were replaced with clean pad tokens. See Figure 9 for further technical details.
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Figure 12: Examples of images generated from the same prompts with maximum padding* and without padding
in Stable Diffusion XL and FLUX. Images generated by Stable Diffusion XL maintain consistent quality, while
produced by FLUX without padding often miss key details. For example, given the prompt “a compass beside a
feather,” images with padding typically include textured paper with text or a manuscript. In contrast, for the prompt

“a boy visiting a zoo,” images generated without padding result in vague animal shapes (first column) or hybrids,
such as a mix between a giraffe and a horse (third image). However, adding padding leads to more visually coherent
animals. *Maximum padding length is defined as the default number of padding tokens for each model: 77 for
SDXL and 512 for FLUX.
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