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Abstract

Language identification is used as the first step
in many data collection and crawling efforts
because it allows us to sort online text into
language-specific buckets. However, many
modern languages, such as Konkani, Kash-
miri, Punjabi etc., are synchronically written
in several scripts. Moreover, languages with
different writing systems do not share signif-
icant lexical, semantic, and syntactic proper-
ties in neural representation spaces, which is
a disadvantage for closely related languages
and low-resource languages, especially those
from the Indian Subcontinent. To counter
this, we propose learning script-agnostic rep-
resentations using several different experimen-
tal strategies (upscaling, flattening, and script
mixing) focusing on four major Dravidian lan-
guages (Tamil, Telugu, Kannada, and Malay-
alam). We find that word-level script ran-
domization and exposure to a language writ-
ten in multiple scripts is extremely valuable for
downstream script-agnostic language identifi-
cation, while also maintaining competitive per-
formance on naturally occurring text.1

1 Introduction

In many natural language processing (NLP) tasks
or data creation efforts, we often need to first iden-
tify the source language of a particular text. For
instance, automated translation, part-of-speech
(POS) tagging, and web scraping for data collec-
tion must typically identify the text’s language be-
fore performing the given task. The languages in-
volved might occur in non-standard scripts, but
as we show in this paper, modern systems are
heavily script-dependent in language identification
(langID). The result is that most current methods
are unable to account for languages written in non-
standard scripts. Moreover, script diversity is espe-
cially common in low-resource languages. Many

1Code and data are publicly available: https://github.
com/Joshua-Otten/Script-Agnostic-Lang-ID

bilingual communities choose to write their mi-
nority language in the region’s dominant system
(such as those in Pakistan, Iran, China), instead
of their language’s traditional writing system (Ah-
madi et al., 2023). Moreover, some languages sim-
ply do not possess one standard script, and are writ-
ten in multiple writing systems. For instance, the
Western-Indian Konkani language is actively writ-
ten in up to 5 scripts: Devanagari, Romi, Kannada,
Malayalam, and Perso-Arabic (Lehal and Saini,
2014; Rajan, 2014). However, most Konkani sys-
tems only support Devanagari and Romi scripts,
and would not recognize the language if written
in the other three. This illustrates the need to
have script-agnosticism so we can support script-
diverse usecases in NLP applications. While pre-
vious work has explored romanized langID for In-
dian texts, these are limited to informal contexts,
and don’t capture the full script-diversity of Indian
languages.
Script-agnosticism is expected to be useful for

closely related languages that use the same script
or with languages that have unique scripts but
share lexical information with others - a scenario
most common to the Indian Subcontinent. Addi-
tionally, it can be useful for applications like Large
Language Models that may receive transliterated
input in non-traditional scripts. In this paper, we
conduct a case study on script-agnosticism, focus-
ing on the langID task, on four languages: Tamil,
Telugu, Kannada, and Malayalam. We explore
three different embedding training methods, eval-
uate on the langID task across domains, and offer
insights for future work. Broadly, we attempt to
answer the following research questions:
1. What impact does training on transliterated

corpora have on downstream langID?
2. How does projecting to one script or upscal-

ing to multiple scripts impact performance?
3. What impact does intra-sentence script mix-

ing have on language identification?
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Figure 1: In upscaling, we transliterate each sentence into other scripts to expose the model to data in that language
in all 4 writing systems. For flattening, we aim to reduce this potential vocabulary overload and project all scripts
into 1 script per experiment. The goal is to identify if any of the 4 scripts is a suitable target script for all languages.
Each writing system has a unique number of total letters even though there is large overlap (Table 1), and we think
that this may result in one or the other script to be a suitable script for projection. For the final mixing setup, we
transliterate at the word-level instead (at different noise levels) and allow multiple scripts per sentence.

2 Methods

Script Upscaling This method takes a given
training example written in one script and “up-
scales” it into all 4 scripts (Figure 1 left). Our in-
tuition is that seeing every example in each script
will prevent a model from giving weight to any
one writing system in its decision-making, forcing
it to rely on inherent features of the language. In
other words, we teach the model that a sentence of
a given language could be written in any script, so
that it learns not to discriminate on the basis of writ-
ing system. This contrasts with the approach taken
in Brown (2012), where each language-script pair
is given a unique language model and their scores
are used to make the final classification decision.
For our setup, we first created four training files
for each language, where a file would include all
of the language’s training examples four times–one
for each script. Then we concatenated all of these
files into one training set. Therefore, our model
assumes that a sentence may appear in any of the
four writing systems with the same likelihood.

Script Flattening Under this setup, we want to
explore whether the embedding space will bene-
fit from seeing all the languages in only one com-
mon script (Figure 1 center) (Madhani et al., 2023).
The idea behind flattening the script space from
four to one is that with only one script, the embed-

ding space (and consequently the classification sys-
tem) can focus on finding discriminative features
between the languages. It is worth noting that train-
ing single-script word representations will require
deployment of several langID models in a real-
world setting to capture the natural script-diversity
on the web. This experiment is also useful to quan-
tify the role that script plays in language identifi-
cation, compared to the non-visual distinguishing
features of the languages.

Noisy Multi-Script Setup In the final setup, we
create synthetic sentences following Algorithm 1
(Appendix D) and Figure 1 for both FLORES200
data splits. Under this approach, for each noise
level n, language lang, and sentence sent, we
choose a base script and then randomly pick n%
words to transform to new non-base scripts. We
train separate text classification fastTextmodels
on each of these noisy datasets and evaluate them
on test sets with clean, noisy, and merged datasets.
This is to evaluate out-of-distribution generaliza-
tion and robustness, and the potential usefulness
of including noise during the training process. We
perform this experiment with permutations of 25%,
50%, 75%, and 100% script-noise levels in the
training data as done in Ahmadi et al. (2023). Fi-
nally, we train an “All-Noise” model on merged
data from all these script-noise levels.
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Language 639-3 Family Script Script Code Vowels Consonants

Tamil tam Southern தமBழ் Taml 12 18
Kannada kan Southern ಕನ್ನಡ Knda 16 35
Telugu tel South-Central తెలుగు Telu 16 36

Malayalam mal Southern മലയാളം Mlym 15 42

Table 1: A summary of the characteristics of the four Dravidian languages we study in our experiments. All four
languages use abugidas (alphasyllabaries) for writing and are written from left to right with diacritics. Note that
Tamil has the fewest overall graphemes whereas Malayalam has the most. The last two columns indicate common
vowels and consonants in the language, but each script comes with extended grapheme sets to accomodate other
Indian-language phonemes.

3 Experiments

Dataset and Languages We use the FLO-
RES200 dataset (Costa-jussà et al., 2024; Goyal
et al., 2022; Guzmán et al., 2019) for training
and in-domain testing in all our experiments. The
dataset is small (1000 sentences), and while this
will not yield representations as robust as web-
sized datasets, the size is realistic setup for a ma-
jority of Indian languages, where access to high-
quality monolingual data is scarce. In order to
ensure that our models would work well on test
data that was not simply from FLORES200, we
also tested on three out-of-domain sets: GlotStory-
Books (Kargaran et al., 2023), UDHR (Kargaran
et al., 2023), and MCS-350 (Agarwal et al., 2023).
We do not transliterate these datasets since the goal
is to measure potential performance drops on natu-
rally occurring text compared to traditional models.
We also use a subset of monolingual data from In-
dicCorp (Kakwani et al., 2020) for an experiment
involving non-parallel training in §4.2. For this
paper, we explore script-agnosticism for 4 major
languages (Table 1) that fall within the same lan-
guage family and use four distinct writing systems.
Details about each of the datasets are available in
Appendix A and language profiles in Appendix B.

Transliteration We use the Aksharamukha2
python package to transliterate between our four
writing systems. Since the library is primarily de-
signed for Indic writing systems, it provides an ex-
tremely low-loss 1:1 transliteration, which is suit-
able for our purposes. This 1:1 mapping is pos-
sible because Indic writing systems descend from
a shared ancestor - Brahmi script, and they all
have unique and mappable graphemes for differ-
ent phonemes. The only exception (across all In-
dian writing systems) is Tamil script, which also

2https://pypi.org/project/aksharamukha/

IPA ISO TEL KAN MAL TAM

/ka/ ka క ಕ ക க
/kha/ kha ఖ ಖ ഖ க₂
/ga/ ga గ ಗ ഗ க₃
/gha/ gha ఘ ಘ ഘ க₄

Table 2: Tamil has only one letter to represent the above-
mentioned 4 sounds common in the other 3 Dravidian
languages. So, the transliterator introduces subscripts
to differentiate the four sounds in the source script.
There are 5 such character series but we only show the
velar phonemes’ series.

Model Acc N

CLD3 (Salcianu et al., 2020) 0.98 101
langid.py (Lui and Baldwin, 2012) 1.0 97
Franc3 1.0 419
fastText (Joulin et al., 2017) 1.0 176
HeLI-OTS (Jauhiainen et al., 2022) 0.99 200

Table 3: This table shows different popular language
identification systems, their accuracies on FLORES-200
and the number of supported languages (N). We chose
fastText as our root model since it achieves a high
accuracy, supports many languages, and can be easily
trained from scratch.

descends from Brahmi, but in its modern form,
it uses one grapheme to represent aspirated and
unaspirated or voiced and unvoiced versions of a
sound. Aksharamukha adds subscripts (see Ap-
pendix Table 2) to differentiate these sounds, but
we remove them during preprocessing as they are
only found in Tamil writing in literary and classi-
cal settings. Note that this lossless transliteration is
not scalable to non-Indic scripts, but because India
has hundreds of major languages written in Indic
scripts, we do not concern ourselves with scalabil-
ity concerns to non-Indic languages.
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Training Model Choice Table 3 shows the per-
formance of commonly used off-the-shelf langID
models on the FLORES200 dev set. Out of the
three highest performing models (with F1 score of
1.0) in Table 3, only fastText (Bojanowski et al.,
2017) and langid.py can be trained with custom
files. fastText, trained on data from Wikipedia,
Tatoeba and SETimes, supports a wider number
of languages in its base model, is known to work
well with unknown words, and is very easy to
train. Therefore, fastText will serve as the train-
ing model for our experiments. Macro F1 score is
computed across all 4 languages to identify a sys-
tem with the best overall coverage and accuracy.
Moreoever, fastText provides an efficient way
to glean subword information and is known to bet-
ter handle out of vocabulary words. Like all other
language identification systems, it does not come
with script-agnosticism support. All experiments
were run on CPU due to fastText’s optimizations.

Training and Evaluation We obtain our results
based on the original versions and transliterations
of the test sets provided by FLORES200, us-
ing fastText skipgram models on a downstream
language identification task (extrinsic evaluation).
For evaluation, while F1 scores are popular in
langID studies, they are hard to interpret and only
have significant advantages when there is a class
imbalance in the data distribution. We have se-
lected a training and test set that is evenly dis-
tributed and is not imbalanced. Therefore, we opt
for reporting top-1 accuracy since it is appropriate
here and easier to interpret.

Three BaselineModels Our first baselinemodel
(FLORES200) was trained on the .dev files from
FLORES200. We chose this as a baseline, given
that it represents an intuitive approach to training
a classification model, without any augmentations.
Our second baseline (SEPARATE) keeps all script-
language pairs separate during training and classi-
fication (Brown, 2012). That is, for 4 languages
and 4 unique scripts, we’ll end up with 16 total pre-
diction classes. For reporting accuracies, we pool
together results from all scripts for each language.
Our third baseline (WIKI) is a language identifi-
cation model pre-trained on Wikipedia, SETimes,
and Tatoeba, boasting support for 176 languages
(Joulin et al., 2017). Note that due to this large dis-
crepancy in training data size, its performance will
not be directly comparable to other models.

4 Results

We present our results for the Baseline, Flatten-
ing, Upscaling, and Noisy models here. In gen-
eral, our script-agnostic models demonstrate good
performance above the baselines on the transliter-
ated test sets, and our methods comparable to tra-
ditional approaches on clean data.

4.1 Script Flattening
Under the Flattening experimental setup, even
though certain languages have higher accuracies
than others, each language appears to have com-
parable performance across scripts ( Table 4). For
instance, Tamil sees 8̃0% accuracy on all flattened
tests; in fact, each language’s scores vary less than
one percent when flattening to any given script.
The uniformity across scripts suggests that any par-
ticular script does not play a major role in the mod-
els’ decision-making. This matches and confirms
our initial hypotheses, since there is no alternative
script for the model to consider when evaluating
language identity. Upon comparison with the base-
line, our flattened models are far superior both in
unconventional script scenarios, and when aver-
aged across the four languages. In some cases, the
baseline only classifies correctly 25% of the time,
while our models consistently perform with over
90% average accuracy on the transliterated FLO-
RES200 test set. With respect to individual lan-
guage scores, the baseline classifies with slightly
more accuracy when language and writing system
match, but this is merely due to its heavy reliance
on script, and does not speak to its overall perfor-
mance. When script and language are not the same,
the baseline is easily fooled; for example, in many
cases it cannot classify even a single example cor-
rectly for certain languages.

Interpretability Analysis Interestingly, there is
a difference in performance across the individ-
ual language scores for both models, where they
correctly identify certain languages more often
than others. For example, Malayalam scores
near 100%, while Tamil is only correctly classi-
fied 80% of the time. To interpret differences
in accuracy scores across languages, we utilize
a game-theoretic metric, Shapley Additive Expla-
nations, or SHAP (Lundberg and Lee, 2017), to
compute global-level explanations across the train-
ing dataset. We focus on finding explanations
for false positive features in Tamil sentences that
have been predicted as Malayalam. We obtained
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Scripts→ Taml Knda Mlym Telu
Languages ↓ Baseline Flatten Baseline Flatten Baseline Flatten Baseline Flatten

TAMIL 94.37 80.43 0 80.63 0 80.93 0 80.73
KANNADA 0 91.60 92.59 92.19 0 91.60 0 91.70

MALAYALAM 69.27 99.31 88.93 98.32 100.00 98.42 88.93 98.91
TELUGU 0 93.68 0 93.77 0 93.08 94.07 93.77

AVERAGE 40.91 91.25 45.28 91.23 25.00 91.01 45.75 91.28

Table 4: We find that no particular script is best suited to the flattening task and each script can allow for identifi-
cation of the four Dravidian languages relatively faithfully. Although marginally, the Telugu script Flatten model
performs best and so we include it in cross-domain experiments in 4.4. There is also a noticeable drop in per-
formance for Tamil language, regardless of script (see Appendix E for interpretability analysis). Columns show
scripts and rows indicate language. Baseline models are trained on all four languages in their original scripts and
then tested on the transliterated flatten setups. We expect them to only predict the corresponding language for each
script, but we observe that they sometimes predict other languages too, despite not seeing them in the training
corpus.

WIKI FLORES200 train - 25% train - 50% train - 75% train - 100%
3,988 3,984 7,968 11,952 15,952

ORI TRA ORI TRA ORI TRA ORI TRA ORI TRA ORI TRA

TAM 100 25 94.37 23.59 48.02 48.84 77.96 78.04 91.8 92.02 95.26 95.16
KAN 100 25 92.59 23.15 74.41 74.18 89.62 90.02 92.69 92.76 95.06 95.06
MAL 100 25 86.78 95.85 95.41 99.11 97.83 99.7 99.68 99.7 99.65 99.65
TEL 100 25 94.07 23.52 47.23 46.89 92.49 92.86 94.37 94.47 95.36 95.41

AVG 100 25 95.26 39.26 66.38 66.33 89.80 89.69 94.64 94.73 96.35 96.32

Table 5: Transliteration of at least 75% of the data is required for Upscale models to perform at par with comparable
baselines (FLORES200) on naturally occurring text. Additionally, these Upscale models also show high perfor-
mance on transliterated test sets. The first two columns evaluate the fastText baselines on WIKI and FLORES200
datasets. The next four columns show Upscale models, trained on 25%, 50%, 75%, and 100% of the original train-
ing examples transliterated. The row underneath displays the amount of training data. Each model was tested on
the original test set (ORI), without any transliterations, and a test set (TRA) with all examples transliterated to all
scripts. Rows show language-specific langID performance.

translations for Tamil using Agarathi4 and Google
Translate, and for Malayalam using Google Trans-
late and Olam5. Appendix Table 11 displays all
the relevant words and characters in mispredicted
Tamil sentences. While not all positively weighted
words may have exact parallels in Malayalam, we
think the score may come from positively corre-
lated morphological features within the word itself,
since Tamil and Malayalam share many word suf-
fixes, prefixes, pluralization rules, prepositions etc.
Our interpretability investigation revealed that this
is due to presence of some positive MAL signal in
TAM sentences, due to the lexical, semantic, and
phylogenetic similarity of the two languages. This

4https://agarathi.com. அகராதி/agarathi means
dictionary in Tamil

5Malayalam Dictionary - https://olam.in/

overlap causes a small number of sentences to be
assigned a high probability of both TAM and MAL,
with MALwinning by a slight margin. For more de-
tailed results, plots, and explanations, please refer
to Appendix §E

4.2 Upscale

Our upscaled model performs quite well on the test
sets, with over 96% accuracy (Table 5). Moreover,
while it drastically outperformed the baseline on
transliterated data, it scores higher on native script
sentences as well. These results demonstrate that
the model was able to correctly disentangle script
and language using data augmentation.

Comparison with Flattening When comparing
the Flattening results to Upscale, it is important
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FLORES-TRA FLORES-ORI GLOT UDHR MCS350 Avg

BASELINE (FLORES200) 39.26 95.26 82.41 79.00 45.34 68.25
4-WAY PARALLEL 96.32 96.35 81.67 77.54 44.79 79.33

NON-PARALLEL 94.39 94.37 84.61 83.86 51.76 81.80

Table 6: This table compares two Upscaled models, each trained on 997 examples per language, which are then
transliterated to all scripts. One is trained on 4-way parallel data, and the other on examples that are not parallel
from IndicCorp. The slight discrepancy of performance is likely a result of data from different domains. TRA for
FLORES represents the test set that contains transliterations and ORI represents the default FLORES test set.

to recognize that the latter model was trained on
four times the amount of data, since we transliter-
ated to all four scripts as opposed to flattening to
a single script. Granted, the task was more com-
plex as the model needs to handle 4 different writ-
ing systems per language. But, in order to nor-
malize the effect of the number of examples, we
also trained it using three variations of our training
data: 25%, 50%, and 75% of the original exam-
ples transliterated. As expected, the 25% model
performed much worse than the 100% model, and
we saw improvements as we included more of the
data. Interestingly, the results were only compara-
ble to the Flattening model once we trained with
at least 75% of the original examples. We suspect
this is due to the difference between the number of
cross-language examples and the number of cross-
script examples. For instance, even though the
25% Upscaled model has nearly the same number
of training examples as any of the Flattening mod-
els, many of these sentences are merely transliter-
ated versions of each other, rather than full trans-
lations or original examples. This distribution ap-
pears to allow themodel to become script-agnostic,
but sacrifices the ability to identify languages in
the process. This suggests that although Upscaling
may perform better than Flattening overall, Flatten-
ing can perform similarly with fewer examples.

Learningwithout n-way parallel data It seems
that Upscale models correctly ignore script in their
decision-making process and so far, they have
been trained on n-way parallel data; however, this
could be a potential confounder. Therefore, we
compare the performance of two script-upscaled
models –one trained on 4-way parallel data, the
other on non-parallel data– keeping the number of
training examples per language constant for fair-
ness. For non-parallel data, we use subsets of the
monolingual corpora from IndicCorp for Telugu,
Tamil, and Malayalam. We reuse the FLORES200

examples for Kannada, since these are not parallel
to the data for the other three languages. To ensure
that we did not just get lucky with our non-parallel
upscaling process, we additionally perform multi-
seeded runs and find minimal differences in the
overall scores (see Appendix C).
Our evaluation on the FLORES transliterated

and clean test sets as well as all out-of-domain
sets is in Table 6. The two models have largely
similar results. The original 4-way parallel model
does somewhat better on the FLORES test sets,
and the non-parallel model has the better accuracy
on average; however, these discrepancies can be
expected due to the domain differences in data
sources. Overall, it appears that both models are
comparable and therefore using explicitly parallel
data has a negligible effect.

4.3 Noisy Multi-Script

In the intra-sentence noise setup, performance
varies to a large degree between the models, but ac-
curacy distributions for each model stay relatively
constant across test sets (Table 7). Our Script-
Upscaled model is the best on average with over
99% accuracy, and the All-Noise model follows
closely behind with a 98.82% score. Beyond these
two, scores drop significantly to the 50-65% range,
which is undesirable for a 4-class langID task.
This is likely explained by the size of the train-

ing sets. The Baseline, as well models with noise
settings from 25 to 100, used data from four sets
(one for each language) with varying script per-
mutations. However, our All-Noise model was
trained on a merged dataset consisting of sentences
at all noise levels (i.e. four times the data). This
is similar to the Script-Upscaled model that had
access to each language’s sentences transliterated
to the four different scripts, and is likely what al-
lowed the two models to perform so well. We be-
lieve that the Script-Upscaledmodel performed the
best because it was consistently shown the same
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Data Language Baseline N@25 N@50 N@75 N@100 N@all Upscale

CLEAN

Tamil 23.59 40.19 14.95 42.81 26.75 93.08 95.26
Kannada 23.15 76.38 58.75 77.32 67.27 93.33 95.16
Malayalam 86.78 94.54 99.93 95.11 99.51 99.63 99.70
Telugu 23.52 51.63 40.07 44.64 51.14 94.89 95.45

all

Tamil 40.77 36.86 14.82 39.66 25.55 99.77 100.00
Kannada 39.72 77.02 56.24 78.59 65.25 99.02 99.14
Malayalam 86.94 96.34 99.97 96.24 99.57 99.90 99.95
Telugu 42.40 52.70 38.71 43.32 52.47 99.47 99.77

AVG * 50.27 65.72 52.60 64.52 60.79 98.82 99.16

Table 7: Even after introducing transliteration noise at different levels within sentences, the N@all and Upscale
models are competitive implying that we can use word-level script-mixing without sacrificing performance. The
table has been abridged due to space constraints, but an extended version with results for 25, 50, 75, and 100%
noise-levels is in Appendix Table 10. N@25,50,75,100 and the baseline models were trained with 3988 sentences
per class. The Upscale and N@all models (last two columns) were trained with 15952 sentences per class and are
therefore more comparable with each other. The baseline was trained on original FLORES200 data.

Test Dataset→ FLORES200 GLOT UDHR MCS350 AVERAGE
Test Set Size→ 4048 3934 285 15000 5817

baseline (WIKI) 100.00 99.96 100.00 71.75 92.93
BASELINE (SEPARATE) 25.00 24.92 20.35 25.00 23.81
BASELINE (FLORES200) 95.26 82.41 79.00 45.34 75.50

FLATTEN (TELU) 91.28 43.18 44.56 33.95 53.24
UPSCALE (16K) 96.35 81.67 77.54 44.79 75.09

NOISE (ALL) 95.41 80.19 76.14 43.41 73.79

Table 8: We share three fastText-based baseline models (trained on FLORES200, separate language and script
classes, and Wikipedia) along with the best model from each of our 3 experimental setups (upscale, flatten, noise).
We test them on out of domain data to test domain transfer of the learned embeddings. Overall, the UPSCALE (16K)
and NOISE (ALL) models have comparable performance to BASELINE (FLORES200) demonstrating that the multi-
script training doesn’t lead to a significant degradation in performance on the languages’ naturally occurring native
scripts. Note that the WIKI model is trained on all of Wikipedia, and therefore its performance is not directly
comparable to any of the other models. The SEPARATE baseline performs the poorest, likely due to the low amount
of data required for a 16-way classification task.

sentence in all four scripts, forcing it to become
truly script-agnostic. The All-Noise model was
able to do this to a large degree, but due to random-
ness and slight inconsistencies in permutations, it
likely was not able to completely disregard script
in its decision-making process. Therefore, script-
mixing within sentences seems to be an extremely
challenging setup for models and requires data aug-
mentation for reasonable performance.

4.4 Cross-Domain Performance
A comparison of our models on the clean FLO-
RES200 test set, as well as out-of-domain sets
is in Table 8. The FLORES200 BASELINE per-
forms well in-distribution and on similar long-

length GLOT and UDHR datasets, but poorly on
MCS350 (children’s stories domain and shorter
sentences). The WIKI baseline is better than the
FLORES200 baseline across all datasets, showing
that is has built a better representation space for
the languages. The UPSCALE (16K) and NOISE (ALL)
models have comparable performance to BASELINE
(FLORES200), demonstrating that the multi-script
training does not lead to a significant degrada-
tion in performance on the languages’ conven-
tional/native scripts. The FLATTEN algorithm nat-
urally performs poorly compared to the other mod-
els in this setting since it is only exposed to one
script. Therefore, it may not be a practical choice
for real-world language identification.
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5 Discussion

The results demonstrate that all of our script-
agnostic language identification models (Flatten-
ing, Noise, and Scipt-Upscaled) perform well
above the baselines on examples that utilize a non-
standard script. In certain cases where data is in na-
tive script, our baseline models can surpass some
script-agnostic ones; this is likely because the base-
lines use script as a basis for determining language
ID. The All-noise model showed very good perfor-
mance, and we suspect it remains second to the Up-
scaled setting primarily due to the variability of the
training data. Unlike the Upscaled model, it may
not see every example transliterated to all scripts,
and thus may not become completely agnostic of
script. However, it is a strong contender and its per-
formance on other downstream tasks and the qual-
ity of its learned representations should be evalu-
ated in future work.
In the practical setting, our models, especially

Script-Upscaled, appear to be a reasonable alter-
native to current language identification systems.
Additionally, it is likely that had we trained an Up-
scaled model on Wikipedia, we would have seen
results that matched the WIKI baseline on noise-
less data. This should be the next step for future
research, in addition to exploring transliteration in
more Indian languages and scripts. Since translit-
eration can be done automatically and cheaply, our
final proposal should scale well to other Indic lan-
guages or languages that use Indian writing sys-
tems that share high phonemic/graphemic overlap,
but researchers should not expect this approach to
scale to languages outside the Indian Subcontinent,
as highly overlapping writing systems is a feature
unique to Indic scripts.
For instance, languages such as Konkani, Tulu,

Kodava, and Badaga in Southern India, are all syn-
chronically written in several writing systems by
different speaker communities. Like most Indian
scripts, there is a high degree of interchangeabil-
ity (limited to no loss during transliteration) for
these languages’ scripts. Therefore, our case study
could also easily be extended to this real-world set-
ting and to this new set of languages. However,
Konkani, Tulu, Kodava, and Badaga might have a
lot less data to train on, compared to Tamil, Malay-
alam, Telugu, and Kannada, researchers may need
to explore upsampling and data augmentation tech-
niques to achieve reasonable downstream task per-
formance.

6 Related Work

Previous work has demonstrated that script bar-
riers discourage transfer learning from high-
resource languages into low-resource languages’
representation spaces, especially for Neural Ma-
chine Translation (Muller et al., 2021; Anasta-
sopoulos and Neubig, 2019). Moreover, script di-
versity negatively impacts low-resource languages
disproportionately because their training data is
often of poor quality and smaller in size (Pfeif-
fer et al., 2021). Consequently, researchers have
focused on transliteration, romanization, phonetic
representation etc. to reduce vocabulary sizes
and allow lexical sharing between languages with
different writing systems (Amrhein and Sennrich,
2020). Most recently, due to the presence of ro-
manized texts on the web, romanized language
identification approaches for Indian languages
have also been explored with some success (Mad-
hani et al., 2023). Another common approach
relies on existing pre-trained models and fine-
tuning them with different transliterated versions
of the originally supported languages (Muller et al.,
2021; Dhamecha et al., 2021). This is an instance
of the common hierarchical pipeline (Goutte et al.,
2014; Lui et al., 2014; Bestgen, 2017) or fine-
tuning-based approach for language identification
(Jauhiainen et al., 2018; Agarwal et al., 2023; Ah-
madi et al., 2023). Identification is also critical in
digitization of non-machine-readable documents
and can help produce new corpora for researchers
at scale (Agarwal and Anastasopoulos, 2024).
Most recently, Moosa et al. (2023) conducted a

study on effects of transliteration on multilingual
languagemodeling, which focused on two kinds of
models: a multi-script model with native scripts of
each language (matching our BASELINE setup) and
a uni-script model with only one script for all lan-
guages (similar to our FLATTEN setup). As a natural
extension of their work, we also consider UPSCALE
and NOISE setups for Dravidian languages, as de-
scribed in §3. Unlike their work, we do not fine-
tune on downstream tasks, but instead focus on in-
cluding the transliteration in the original training
data to give the model the ability to handle non-
native scripts without losing performance on the
original script. Moreover, our work is not only mo-
tivated from a lexical-sharing and transfer-learning
perspective, but is grounded with the aim of sup-
porting synchronic and diachronic digraphia ade-
quately in NLP applications and tasks.
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7 Conclusion

We introduce and evaluate three new kinds of
language identification models that are script-
agnostic. All of our systems have been shown to
outperform the baseline on examples that are not
written in the standard script. Two of our models
(Upscaled and All-Noise) perform especially well
on both clean and transliterated data. Our meth-
ods may provide a reasonable alternative to train-
ing language identifiers that can correctly classify
text based on the language used, rather than the
script in which it is written. Future work should ex-
pand to includemore languages and scripts, as well
as performing thorough intrinsic evaluation on the
learned embeddings to determine if these would be
effective on other downstream tasks.

Limitations

Data loss due to script-conversion Most In-
dic scripts have a 1:1 phonetic mapping between
graphemes, but there may still be letters that are
not mapped accurately (truly unique sounds in cer-
tain languages). In our study, three of the four
scripts have direct phonetic mappings, while only
one (Tamil) includes aspirated sounds that are not
translatable to the other writing systems. This
means that two different scripts representing the
same word can have two different character dis-
tributions. However, this limitation will only be
amplified for non-Indic scripts, so we recommend
researchers to focus the scaling of this approach in
the Indic-script context.

Unknown Scripts Note that our approach helps
bring script-agnosticism to scripts included during
training time. Themodel will still struggle with un-
known writing systems, and for this, we will need
to scale to an extremely large number of writing
systems, which we leave for future work.

Ethics Statement

Languages may be written in non-native scripts to
obfuscate their presence on the internet, and the
use script-agnostic embeddings would be able to
discover and accurately identify such text during
web crawls. This may have some downstream
privacy and surveillance related concerns that are
out of scope for this work. Currently, our pilot
study uses the FLORES200 dataset to train em-
beddings, but in the future, a larger corpora such
as Wikipedia, CommonCrawl, or other publicly

crawled data can be used, which may bring with it
several concerns around data ownership and copy-
right.
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A Out-of-Domain Datasets

1. FLORES200: Open-source n-way parallel
dataset consisting of sentences from 842 web
articles, translated into a large number of lan-
guages (Costa-jussà et al., 2024; Goyal et al.,
2022; Guzmán et al., 2019). Each language’s
example are in the same order, and are sepa-
rated into .dev and .devtest files, contain-
ing 997 and 1012 sentences, respectively.

2. GlotStoryBooks6: Open-licensed curated
library of books (Kargaran et al., 2023)
from a variety of sources in 176 languages
(Yankovskaya et al., 2023; Ogundepo et al.,
2023). Each sample contains a sentence along
with its language identifier and script.

3. UDHR (Universal Declaration of Human
Rights): We use Kargaran et al. (2023)’s
public domain preprocessed version of the
UDHR dataset, where each sample is a para-
graph along with a language identifier. The
authors removed errors and formatting issues
in the original UDHR data and made this
clean version available7.

4. MCS-350: Multilingual Children’s Stories
dataset, released by Agarwal et al. (2023),
contains over 50K children’s stories cu-
rated primarily from two sources - African
Storybooks Initiative and Pratham Story-
weaver, both open-source story repositories
for African and Indian languages respectively.
For our experiments, we use the monolingual
data files available on the authors’ GitHub
repository8 for Tamil, Malayalam, Kannada,
and Telugu. Compared to UDHR, the sen-
tences are relatively smaller in length since
they are not from the legal domain, and unlike
GlotStoryBooks, the authors don’t apply any
length-based filtering to the curated stories.

5. IndicCorp9: Monolingual, sentence-level
corpora for English and 11 Indian languages
from the Dravidian and Indo-Aryan fami-
lies (Kakwani et al., 2020). It consists of 8.8

6https://huggingface.co/datasets/cis-lmu/
GlotStoryBook

7https://huggingface.co/datasets/cis-lmu/
udhr-lid

8https://github.com/magarw/limit
9https://paperswithcode.com/dataset/

indiccorp

billion tokens and is sourced mostly from In-
dian news crawls (articles, blog posts, maga-
zines), though it also takes data from the OS-
CAR corpus.

B Brief Language Profiles

1. Tamil (tam), a Southern-Dravidian language,
is spoken by over 80 million people and is
an official language in Sri Lanka, the Indian
states of Tamil Nadu and Puducherry, and of
the Indian Constitution’s Eighth Schedule. It
is curently most widely written in the Tamil
abugida - தமBழ் எழுத்து (tamizh ezhuttu).

2. Telugu (tel), a South-Central Dravidian lan-
guage, is spoken by about 100 million peo-
ple and is the most spoken Dravidian lan-
guage. It is also an Eighth Schedule language
of the Indian Constitution and is official in the
Indian states of Andhra Pradesh, Telangana,
and Puducherry (Yanam). It is written in Tel-
ugu abugida - తెలుగు లిపి (telugu lipi)

3. Malayalam, (mal), another Southern-
Dravidan language is the smallest language
from our selection, spoken by about 40
million people in Southern India. It is an
Eighth Schedule language and is official
in the southernmost Indian state of Kerala.
It is written in the Malayalam abugida -
മലയാളം അക്ഷരങ്ങൾ (malayalam
aksharangal).

4. Kannada (kan), also a member of the
Southern-Dravidian language subfamily, is
spoken by about 60 million people, mostly
within India. It is an official language of the
Indian Constitution’s eighth schedule and is
the sole official language of Karnataka state.
It is widely written in Kannada script, which
is closely related to the Telugu script and is
also an abugida, but diverged around 1300CE
- ಕನ್ನಡ ಅಕ್ಷರěಾಲೆ (kannada aksharamale).

C Non-Parallel Multi-Seeded Runs

For our non-parallel upscaled model, we perform
multi-seeded runs to ensure that we did not just
get lucky with our dataset permutations. Table 9
shows the results for 10 trials on 4 of our test sets.
Note that in all cases, scores are quite similar and
the variance is low.
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Seed FLORES-TRA FLORES-ORI UDHR MCS350

1 94.37 94.56 84.56 51.89
2 94.19 94.36 83.51 51.07
10 94.47 94.62 84.56 51.93
15 94.24 94.34 83.51 51.33
20 94.22 94.39 81.4 51.88
50 94.17 94.38 84.21 51.59
100 94.17 94.38 84.21 51.59
175 94.39 94.52 84.56 51.91
200 94.32 94.45 83.86 51.58
300 94.15 94.35 84.21 51.4

AVG: 94.27 94.43 83.72 51.61
VAR: 0.01 0.01 0.99 0.08

Table 9: Output from 10 multi-seeded runs of our non-parallel upscaled model. Note that the variance is low in all
cases, especially on the FLORES and MCS350 datasets.

Algorithm 1 Synthetic Noise Within Sentences
1: for noise = 25, 50, 75, 100 do
2: for lang = tam, kan,mal, tel do
3: for sent = 0, 1, . . . ..N do
4: Choose 1 base script
5: Choose noise%words to transform
6: for index in chosen indices do
7: nonbase = Chose new script
8: Transform word into nonbase
9: Save transformed data at noise-level
10: Merge-save sentences at all noise levels into a

new file for the all-noise setting

D Noise-Experiments Extended Results

E Interpreting Flattening Results

The default baseline (in-distribution) is a
fastText model trained on FLORES200 data,
keeping the languages in their original scripts
without any transliterations. For the flattening
experiments, we project all data to one script at
a time. Since the test data is flattened to a single
script, we would expect the model to only predict
the language that is representative of the writing
system. For instance, the baseline model would
predict Tamil when it’s shown data from any
language in the Tamil script. But, we find that
the models (trained on data in 4 different scripts
and languages) tend to default to a Malayalam
prediction for sentences that it knows are not
Tamil (Table 4). This can be seen by the presence
of a Malayalam signal across experiments for all

4 projection scripts. It also seems that several
Malayalam sentences are being misclassified as
Tamil (as evident by the less-than-100% accu-
racy for the Malayalam row for non-Malayalam
scripts).
For the Upscale experiments (Table 5), we find

that theWikipedia pre-trainedmodel does not have
the same bias towards Malayalam as our model,
and instead is perfectly fit to each language’s writ-
ing system (100% and 25% accuracy on Origi-
nal and Transliterated data). The custom-trained
FLORES200 baseline, on the other hand, has sim-
ilar performance (between 86-94% for Original
and 23% for Transliterated). We observe the
Malayalam-defaulting phenomenon here as well,
and it is likely that the model is over-predicting
Malayalam, treating it as an “other” prediction
bucket.
For Noise experiments (Table 7), we observe

similar performance by the FLORES200 baseline
as on the Upscaling experiments. However, the
accuracy for non-Malayalam languages seems to
increase as we increase the amount of noise. To
interpret differences in accuracy scores across lan-
guages, we utilize a game-theoretic metric, Shap-
ley Additive Explanations, or SHAP (Lundberg
and Lee, 2017), to compute global-level explana-
tions across the training dataset for all 4 languages.
As discovered in 4.1, we find that Tamil receives
a significantly lower accuracy (around 80%) com-
pared to the other 3 languages, especially com-
pared to Malayalam (95%+). Therefore, we fo-
cus on finding explanations for false positive fea-
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Data Language Baseline N@25 N@50 N@75 N@100 N@all Upscale

CLEAN

Tamil 23.59 40.19 14.95 42.81 26.75 93.08 95.26
Kannada 23.15 76.38 58.75 77.32 67.27 93.33 95.16
Malayalam 86.78 94.54 99.93 95.11 99.51 99.63 99.70
Telugu 23.52 51.63 40.07 44.64 51.14 94.89 95.45

25

Tamil 35.05 36.25 14.20 39.98 25.08 99.90 100.00
Kannada 31.38 77.21 56.93 78.82 64.76 99.40 99.60
Malayalam 85.74 95.58 99.90 96.18 99.80 99.90 100.00
Telugu 36.18 52.66 38.29 43.82 51.96 99.10 99.90

50

Tamil 38.87 36.86 14.30 39.68 26.38 99.70 100.00
Kannada 41.84 77.30 55.83 79.23 66.67 99.29 99.59
Malayalam 86.00 96.48 100.00 96.17 96.17 99.90 99.90
Telugu 43.50 52.47 38.67 42.50 52.77 99.40 99.70

75

Tamil 45.01 37.34 14.83 39.35 25.93 99.80 100.00
Kannada 44.08 76.34 56.22 78.77 64.91 98.79 98.89
Malayalam 88.56 96.86 100.00 95.85 99.39 100.00 100.00
Telugu 47.61 52.59 39.19 43.65 52.79 99.59 99.70

100

Tamil 44.21 36.99 15.96 39.63 24.80 99.70 100.00
Kannada 41.19 77.23 55.97 77.53 64.68 98.58 98.48
Malayalam 87.46 96.43 100.00 96.74 99.39 99.80 99.90
Telugu 42.35 53.09 38.70 42.96 52.38 99.80 99.80

all

Tamil 40.77 36.86 14.82 39.66 25.55 99.77 100.00
Kannada 39.72 77.02 56.24 78.59 65.25 99.02 99.14
Malayalam 86.94 96.34 99.97 96.24 99.57 99.90 99.95
Telugu 42.40 52.70 38.71 43.32 52.47 99.47 99.77

AVG * 50.27 65.72 52.60 64.52 60.79 98.82 99.16

Table 10: Even after introducing noise at all levels, the N@all and Upscale models are competitive implying that
we can both use the word-level script-mixing without sacrificing performance on clean or noisy data. Among the
noise@25,50,75 settings, we observe that 50% and 100% noise have drastic impact on classification accuracy for
≥ 2 languages. N@25,50,75,100 and the baseline models were trained with 3988 sentences per class. The Upscale
and N@all models were trained with 15952 sentences per class and are therefore more comparable with each other.
The baselinen was trained on FLORES200 data.

tures in Tamil sentences that have been predicted
as Malayalam. Readers should note that Tamil
and Malayalam are closely related since they were
the most recent to diverge from each other among
the four major Dravidian languages (around the
9th century CE). Therefore, there are substantial
vocabulary and grammatical similarities between
them.
Table 11 displays all the relevant words and char-

acters in mispredicted Tamil sentences. We ob-
tained translations for TAM using Agarathi10 and
Google Translate, and forMAL using Google Trans-

10https://agarathi.com. அகராதி/agarathi means
dictionary in Tamil

late and Olam11. While not all positively weighted
words may have exact parallels in Malayalam, we
think the score may come from positively corre-
lated morphological features within the word itself,
since Tamil and Malayalam share many word suf-
fixes, prefixes, pluralization rules, prepositions etc.
It is worth noting that our interpretability study re-
vealed that for the flattened script condition, the
fastText trained models always predict MAL as
default. This is not inherently bad because we
still receive over 90% accuracy for MAL, KAN and
TEL, indicating that the models find sufficient non-
MAL signal in the sentence when it’s present. How-

11Malayalam Dictionary - https://olam.in/

7377

https://agarathi.com
https://olam.in/


Figure 2: Example: Sentence 0’s SHAP visualization for gold TAM sentence and weights when predicted class is
MAL. Red indicates positive signal for MAL (unwanted) and blue indicates negative signal for MAL (wanted).

ever, for TAM, we saw that there was a 10% gap in
performance (i.e TAM prediction accuracy stayed
around 80%). Our interpretability investigation re-
vealed that this is due to presence of some positive
MAL signal in TAM sentences, due to the lexical,
semantic, and phylogenetic similarity of the two
languages. This overlap causes a small number of
sentences to be assigned a high probability of both
TAM andMAL, withMAL having themaximum since
it is the default prediction being downscored.
Results and all graphs from the Interpretability

Jupyter notebook have been attached below. It
shows the sentence-level explanations for each of
the Tamil sentences that were misclassified in the
training set with a small margin.
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Sent TAM in TELU script Weight Transliteration MAL TAM

WORDS
0 ఇőయిల్ 0.039 itaiyil during in between
0 ఒరు 0.025 oru a, an a, an
0 వటివşకక్పప్టుట్ ళళ్న 0.021 vativamaikkuppattullana shaped are designed
1 వఴంకపప్టట్తు 0.041 vazhaankappattathu indulgence provided
2 ఇలెɜ 0.021 illai no, not no, not, ain’t
3 చిఱియť! 0.031 chizhiyavai small ones small ones
4 నిఱువపప్టట్తు 0.039 nizhuuvappattathu established
5 వరుŇకుక్ 0.059 varukkaikku to visit
5 ఒరు 0.058 oru a, an a, an
5 వఴంకాతు. 0.029 vazhankaathu don’t give in doesn’t provide
6 పతివాకిన. 0.033 pativaakina regularly were recorded.
7 ఒరు 0.035 oru a, an a, an
7 చşకక్పప్టుకిఱతు. 0.024 chamaikkappatukizhathu is being cooked
8 ఆతరవళికక్విలెɜ. 0.043 aatharavalikkavillai not supported

CHARACTERS
0 వటివşకక్పప్టుట్ ళళ్న 0.052 vativamaikkappattullana
0 ఒరు_ 0.037 oru_ a, an one
0 కుటియేఱఱ్ంకŤ 0.037 kutiyezzhankalai above
0 ఇőయిల్ 0.035 itaiyil in
1 వఴంకపప్టట్త 0.102 vazhankappattatha suffix suffix
1 కుటినీర్ 0.033 kutiniir above
1 అవరక్ళǻకుక్ 0.024 avarkulukku to them they
2 కుటియిరుపిప్నుళ్ 0.152 kutiyiruppinul above
3 చిఱియవ 0.125 chizhiyava small ones small ones
4 ఉరువాకుక్ం 0.033 uruvaakkum emerge create
5 నిఱువపప్టట్త 0.112 nizhuvappattatha
6 కుక్_ 0.079 kku_
6 వఴంకాత 0.045 vazhankaatha
6 _ఒరు 0.037 _oru a, an one
7 పతివాకిన 0.119 pativaakina
7 మţయిన్ 0.022 malaiyin
8 చşకక్పప్టుకిఱత 0.048 chamaikkappatukizhatha
8 కుఴి 0.035 kuzhi pit pit
9 చేరప్ȕŖ (ర్ ) 0.035 cheerppathai (r)

Table 11: Words and characters that have a positive Malayalam explanation weight of > 0.02 for ground-truth
Tamil sentences. All sentences under consideration had a difference of > 0.15 between the Tamil and Malayalam
classes. We pick this threshold since it gives us Tamil sentences that have a high-enough Malayalam signal (or low
Tamil signal) causing the classifier to mispredict.

7379



outputs

__label__tam __label__kan __label__mal __label__tel

0.50.30.1 0.7 0.90.0381440.0381440.038144
base value

0.3562970.3562970.356297
f
__label__tam

(inputs)

క���ళ�వ�వ��య�ఇ�ఒ�తట�వ�ఏ�������ట���������� యమ�

inputs

ఒ�� ఏ��ం ����ట� ఇ�ం�ళ��, అత�� ర�� వ��క ���య� కట���ం� వ�వ�
ఇన��ం ��� యమ

outputs

__label__tam __label__kan __label__mal __label__tel

0.50.30.1 0.7 0.90.0381440.0381440.038144
base value

0.362340.362340.36234
f
__label__tam

(inputs)

యత�,��ళ�������ప�����ఇ����క�రం����య������ం� ర�

inputs

ఇం��ం�� �ర�� ఉ��య�ళ� �ప�� ��, ��� ����, ����� ��య చ�రంక�� కం�ర

Character Level Explanations > 0.15

ix_array

array([ 906, 1113, 1395, 1687, 2080, 2108, 2224, 2270, 2801])

for i in ix_array:
    shap.plots.text(shap_values[i])

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.50.4 0.9 1 1.10.9173830.9173830.917383
base value

0.5853720.5853720.585372
f
__label__mal

(inputs)

ళనఒ���వ�క������ ఇ� త� ట � ఇం క�, � ��ంవ��ఱం�క�వఴ���ఇ���త������

inputs

ఇంత� ��క�, ఇ� ��క���ం ఇ��� ఒ� ఒ�ంక�క�ప�ట� ���ఱ� ంక� వఴం�వత��
వ�వ�క�ప��� ళ�న

In [ ]:

Out[ ]:

In [ ]:
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.40.3 0.8 0.9 10.9173830.9173830.917383
base value

0.4518810.4518810.451881
f
__label__mal

(inputs)

టత�ప�క��� F) - పయ� � అవ� � � � క� � � � � ��90��ఴక��ప����

inputs

పయ�క� 90(F) - ��� �ప��� � ��� �ంత�� అవర���� ���� వఴంకప�ట� త

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.50.4 0.9 1 1.10.9173830.9173830.917383
base value

0.6493570.6493570.649357
f
__label__mal

(inputs)

�ల � ఎవ�ం � ఇ� �����

inputs

�������� ఎవ�ం ఇల�

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 1 1.10.9173830.9173830.917383
base value

0.5209840.5209840.520984
f
__label__mal

(inputs)

యవ��� క� అ� క� ట�ం ఉ� �ం ��క��క������

inputs

అ�క�� ఉ����ం�కళ�� �ట�ం ��� న�� ��యవ

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.5 0.9 10.9173830.9173830.917383
base value

0.6107870.6107870.610787
f
__label__mal

(inputs)

టత� � ఆ� క � � � ��వత��ర�

inputs

ఆ�� �య�త��క ��ర� ��వప�ట� త

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 10.9173830.9173830.917383
base value

0.5785740.5785740.578574
f
__label__mal

(inputs)

�తఒ�త����ఴ� � � ( � � � త మ��NA��ంఅ��� �వ���చ���ఎ����

inputs

� ��� చ��� (MINAE), ఎ���ర� � వ���� ఒ� �త�� ������ం� అ�మ�క� వఴం�త
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 10.9173830.9173830.917383
base value

0.4871360.4871360.487136
f
__label__mal

(inputs)

న�����మ ఎ� క� � ట� మ� � తయ�� �అ��ప��కంక��ర���ట

inputs

ఎ�మ�� �యల��ట� �ట���� త క��కంక� మ��� అ��ర�� � ప���న

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.5 0.9 10.9173830.9173830.917383
base value

0.600850.600850.60085
f
__label__mal

(inputs)

ఱత�ఒ���� న ఉణ� � � � అ�ఒ��ంత��ం��

inputs

ఒ� �ం� ఉణ� త��� ఒ� ��న �� �ం� అ�� చ�క�ప���ఱత

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5793890.5793890.579389
f
__label__mal

(inputs)

ల�క� వ�ం న � అ� � అ�ప�����క��

inputs

అ�వ�ం �ణ����న అ�క�� �ర��� ఆతరవ�క��ల�

for i in ix_array:
    shap.plots.bar(shap_values[i][:,2], max_display=20)

In [ ]:
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Explanations > 0.15

for i in ix_array:
    shap.plots.text(shap_values[i])

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5686650.5686650.568665
f
__label__mal

(inputs)

ఇ���ఒ��క�ప� ఇంత� ���ఱ� ంక� ఇ� ��క�,�ంక�క�ప���క���ఴం�వత�

inputs

ఇంత� ��క�, ఇ� ��క���ం ఇ��� ఒ� ఒ�ంక�క�ప�ట�  ���ఱ� ంక� వఴం�వత��
వ�వ�క�ప��� ళ�న.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.90.9173830.9173830.917383
base value

0.4324960.4324960.432496
f
__label__mal

(inputs)

ఴంకప�ట� పయ�క� ���� అవర������� �ంత��90(F) - ��� �ప��� �

inputs

పయ�క� 90(F) - ��� �ప��� � ��� �ంత�� అవర���� ���� వఴంకప�ట� �.

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.6 0.90.9173830.9173830.917383
base value

0.6203030.6203030.620303
f
__label__mal

(inputs)

ఇ�� ౖ.

-0.19

�������� ఎవ�ం

inputs

�������� ఎవ�ం ఇ�� ౖ.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.479760.479760.47976
f
__label__mal

(inputs)

�య� అ�క�� �ట�ం ఉ����ం �కళ�� ��� న��

inputs

అ�క�� ఉ����ం �కళ�� �ట�ం ��� న�� ��య�!

In [ ]:
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.539690.539690.53969
f
__label__mal

(inputs)

�వప�ట� � ఆ�� �య�త��క ��ర�

inputs

ఆ�� �య�త��క ��ర� ��వప�ట� �.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5627540.5627540.562754
f
__label__mal

(inputs)

వ����ఒ�ఴం�� � �ం� అ�మ�క���� ��� చ����త�� �MINAEఎ���ర�

inputs

� ��� చ��� (MINAE), ఎ���ర� � వ���� ఒ� �త�� �� ��� �ం� అ�మ�క� వఴం��.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.4553510.4553510.455351
f
__label__mal

(inputs)

���న ఎ�మ�� క��కంక� అ��ర�� � �యల��ట� �ట���� త మ���

inputs

ఎ�మ�� �యల��ట� �ట���� త క��కంక� మ��� అ��ర�� � ప���న.

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.6 0.90.9173830.9173830.917383
base value

0.5887540.5887540.588754
f
__label__mal

(inputs)

ఒ�ప��� ఉణ� ��న �� �ం� �ం� అ�� ఒ�

inputs

ఒ� �ం� ఉణ� త��� ఒ� ��న �� �ం� అ�� చ�క�ప���ఱ�.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.5247870.5247870.524787
f
__label__mal

(inputs)

తరవ�క�� అ�వ�ం �ర��� అ�క�� �ణ����న

inputs

అ�వ�ం �ణ����న అ�క�� �ర��� ఆతరవ�క���� ౖ.
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