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Abstract

Syllogistic reasoning is crucial for Natural Lan-
guage Inference (NLI). This capability is partic-
ularly significant in specialized domains such
as biomedicine, where it can support automatic
evidence interpretation and scientific discov-
ery. This paper presents SylloBio-NLI1, a
novel framework that leverages external on-
tologies to systematically instantiate diverse
syllogistic arguments for biomedical NLI. We
employ SylloBio-NLI to evaluate Large Lan-
guage Models (LLMs) on identifying valid con-
clusions and extracting supporting evidence
across 28 syllogistic schemes instantiated with
human genome pathways. Extensive experi-
ments reveal that biomedical syllogistic rea-
soning is particularly challenging for zero-shot
LLMs, which achieve an average accuracy be-
tween 70% on generalized modus ponens and
23% on disjunctive syllogism. At the same
time, we found that few-shot prompting can
boost the performance of different LLMs, in-
cluding Gemma (+14%) and LLama-3 (+43%).
However, a deeper analysis shows that both
techniques exhibit high sensitivity to superfi-
cial lexical variations, highlighting a depen-
dency between reliability, models’ architecture,
and pre-training regime. Overall, our results
indicate that, while in-context examples have
the potential to elicit syllogistic reasoning in
LLMs, existing models are still far from achiev-
ing the robustness and consistency required for
safe biomedical NLI applications.

1 Introduction

Syllogistic reasoning – i.e., the process of deriving
valid conclusions from premises through the sys-
tematic application of abstract reasoning schemes
– is a fundamental type of inference for develop-
ing and evaluating Natural Language Inference
(NLI) models that can reason over textual evidence

1code and dataset available at: https://github.com/
neuro-symbolic-ai/SylloBio-NLI

P1: Every member of Diseases of hemostasis 
pathway is a member of Disease pathway

P2: Gene GP1BB is a member of Diseases of
hemostasis pathway

_____________________________________
C: Therefore, it is true that Gene GP1BB 

is a member of Disease pathway

<P1, P2, C>

Domain Ontology Syllogistic Schemes

Syllogism 
Generation

LLMs

<S, k, d, p>

Parameters

True/False

Relevant
Premises

S: set of syllogistic schemes
k: context size
d: number of distractors
p: domain alignment 

Evaluation

Task 1: Textual Entailment

Task 2: Premise Selection

F: "Diseases of hemostasis"
G: "Disease"
a: "GP1BB"

Figure 1: End-to-end diagram of the proposed method-
ological framework, illustrating the generation of syllo-
gistic arguments from domain-specific ontologies, pa-
rameterized input to LLMs, and evaluation tasks includ-
ing textual inference and premise selection.

at scale (MacCartney and Manning, 2009; Wu
et al., 2023). within specialised domains such as
biomedicine, the ability to reason over natural lan-
guage can have significant practical implications
for supporting complex discourse interpretation,
scientific discovery, and the development of down-
stream biomedical and clinical applications (Jul-
lien et al., 2023a,b), allowing for a set of formally
defined patterns for controlled inference.

Moreover, determining the reliability and ro-
bustness of NLI models with regard to syllogistic
reasoning is a crucial type of assessment, partic-
ularly in critical domains requiring safety guar-
antees (Eisape et al., 2024; Jullien et al., 2024).
This type of evaluation is further motivated by two
key factors. First, syllogistic reasoning is preva-
lent in discourse at large and, therefore, it is ex-
pected that approaches based on Large Language
Models (LLMs) are exposed to a variety of reason-
ing schemes during pre-training (Wu et al., 2023).
Second, a model that learns to perform syllogistic
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Every member of F pathway is a member
of G pathway.,

Gene a is a member of F pathway,
-----------------------------------------------

It is true that gene a is a member of G
pathway

(A) Select Formal
Syllogistic Schema

Content-Independent
Syllogistic Argument

Domain-Specific
NL Template

Domain-Specific
NL Predicates and

Entities

(C) Instantiate NL
Template with

Concrete Predicates
and Entities

(B) Instantiate
Schema with NL

Template

(D) Random
Permutation of

Premises
(E) Prompt LLM

Domain-Specific
Syllogistic Argument

Domain-Specific
NL Instructions

P1: Gene KRAS is a member of Defects of platelet
adhesion to exposed collagen pathway.

P2: Every member of Defects of platelet adhesion to
exposed collagen pathway is a member of Diseases of

hemostatis pathway.
------------------------------------------------------------

C: It is true that gene KRAS is a member of Diseases of
hemostatis pathway.

F: Defects of platelet adhesion to
exposed collagen,

G: Diseases of hemostasis,
a: KRAS

Figure 2: Domain-specific pipeline for creating natural language instances of argument schemes with multiple
templating. Steps include selecting a syllogistic schema (A), applying a domain-specific template (B), instantiating
with predicates and entities (C), permuting premises (D), and prompting LLMs for evaluation (E).

reasoning should intrinsically possess the ability
to generalize to different domains, regardless of
the specific world knowledge acquired during pre-
training (Kim et al., 2024). This is because the
ability to perform syllogistic reasoning should be
content-independent, that is, the ability to derive
logically valid conclusions is only a function of the
formal logical schemes and should be independent
of its concrete instantiation. However, despite the
importance of syllogistic reasoning for NLI and the
abundance of benchmarks involving commonsense
knowledge (Yu et al., 2023), resources for assess-
ing how systematic reasoning capabilities transfer
to specialised domains are still scarce and require
substantial expert-level annotation effort to guar-
antee quality and correctness (Zhao et al., 2024;
Eisape et al., 2024; Porada et al., 2022; Wysocka
et al., 2024).

This paper focuses on advancing the availability
of resources for biomedical syllogistic reasoning
along with our understanding of the capabilities
of state-of-the-art NLI models. In particular, we
propose SylloBio-NLI, a novel framework for auto-
matically generating NLI resources for evaluating
syllogistic reasoning within biomedical domains.
Specifically, we demonstrate how external domain-
specific resources such as ontologies and thesauri
can be leveraged to instantiate a wide range of
syllogistic schemes for biomedical NLI tasks, in-
cluding textual entailment and evidence extraction.

The methodological framework behind
SylloBio-NLI is designed to address the annota-

tion scarcity problem for the granular evaluation
of complex reasoning in specialized domains.
The framework minimises the human annotation
effort while guaranteeing the correctness of the
generated data by leveraging explicit domain
knowledge in the ontologies and the systematicity
of known syllogistic schemes (Fig. 1).

By instantiating SylloBio-NLI on human biolog-
ical pathways using Reactome (Croft et al., 2014),
we evaluate the domain-specific reasoning capa-
bilities of 8 open-source LLMs on 28 syllogistic
schemes, comparing the performance in a zero-
shot (ZS) and few-shot (FS) settings. An extensive
empirical evaluation led to the following findings
and conclusions:

1. We determine that LLMs exhibit surprisingly
low ZS performance on biomedical syllogistic ar-
guments with an average accuracy between 70%
on generalised modus ponens and 23% on disjunc-
tive syllogism (where random performance is equal
to 50%). These low performances are generally
shared across models’ family (i.e., Llama-3, Mis-
tral, Gemma, BioMistral) and pre-trained regimes
(language modelling and instruction-tuning).

2. We found that the FS setting can improve the
performance of different LLMs. In particular, we
observe a significant boost for both Gemma and
Llama-3, with an average increase in F1-score of
14% and 43% respectively. At the same time, the
experiments reveal that such improvement is in-
consistent across models’ families and pre-training
regimes.
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3. We perform a robustness analysis adopting
logically equivalent variations of the same syllo-
gistic schemes by rephrasing the arguments via
negations, complex predicates, and De Morgan’s
laws. Such analysis reveals that both ZS and FS
techniques are highly sensitive to surface-form and
lexical variations, demonstrating a shared inability
to systematically abstract the underlying reasoning
rules required to derive valid conclusions. These
results indicate that, while FS has the potential to
elicit syllogistic reasoning in LLMs, existing mod-
els are still far from achieving the robustness and
consistency required for safe biomedical NLI.

Overall, the above findings suggest that, upon
granular inference scrutiny, the reasoning mecha-
nisms induced in LLMs still confound formal and
material inference patterns. Moreover, while there
are FS intervention mechanisms which can im-
prove models’ performance, delivering controlled
specialised syllogistic reasoning remains a chal-
lenge for LLMs at large.

To the best of our knowledge, this is the first
work focusing on designing a methodology for
evaluating syllogistic reasoning within specialised
domains, thoroughly assessing the performance of
LLMs, and releasing a domain-specific resource
for supporting future work in the field. The
code for the dataset generation and the evaluation
pipeline is fully available online1.

2 SylloBio-NLI

We introduce a general framework for developing
resources to systematically evaluate the syllogis-
tic reasoning capabilities of NLI models within
biomedical domains. In particular, SylloBio-NLI
leverages the systematicity of known syllogistic
schemes (Betz et al., 2021) along with external
thesauri/ontologies to scale up the generation of
deductively valid arguments and to characterise
inference performance across a granular set of syl-
logistic schemes.

To this end, we focus on seven general syllo-
gistic schemes, including generalized modus po-
nens, generalized contraposition, hypothetical syl-
logism 1, hypothetical syllogism 3, generalized
modus tollens, disjunctive syllogism and gener-
alized dilemma. These base schemes are then
adopted to generate 28 different variations of syllo-
gistic argument templates applying negation, com-
plex predicates, and De Morgan’s laws, which can
then be instantiated with concrete domain knowl-

edge (see Fig. 6 in Appendix B). The overall
methodology is outline by the stages in Fig. 2.

First, for each syllogistic scheme, a correspond-
ing formal argument scheme (consisting of abstract
premises and conclusion expressed in first-order
logic) is created (Fig. 2A). Next, each symbolic
formula in the formal scheme is individually re-
placed by a natural language domain-specific sen-
tence schema (Fig. 2B). For example, the formulae
for the base schema of generalized modus ponens
(i.e., Premise 1: ∀xFx ⇒ Gx, Premise 2: Fa,
Conclusion: Ga) can be translated into the natural
language template: “Premise 1: Every member of
F is a member of G”. Premise 2: “a is a member
of F”. Conclusion: “a is a member of G”.

Subsequently, the entity and property placehold-
ers in the natural language template are replaced
argument-wise with domain-specific entities and
predicates extracted from an external ontology (Fig.
2C). In this process, the syllogistic schemes pro-
vide the logical validity component of the formal
inference while the ontology subdomain and its
associated mapping to the schemes provide the
soundness (content-based) for the premises and
conclusions. Hence, we obtain instances of syllo-
gistic arguments in natural language that are stored
in a knowledge base of premises and conclusions.

Finally, the natural language syllogistic argu-
ments can be structured to create prompts for eval-
uating LLMs. This involves introducing the syl-
logistic argument, clearly framing the premises,
and specifying the instructions for the inference,
as illustrated in Appendix F.

2.1 Biomedical NLI Tasks

SylloBio-NLI takes advantage of the corpus’s de-
sign, where every premise and conclusion in each
argument is explicitly stated and fully transparent
(Fig. 2). Once the full set of natural language
syllogistic arguments is generated, the premises
and conclusions in each instance can be adopted to
define two different NLI tasks:

Task 1. A textual entailment task where the
model determines whether the conclusion logically
follows from the premises, with the output being
’True’ or ’False’. The task is designed using nat-
ural language syllogisms generated from formal
schemes, with valid and invalid argument instances.
The model evaluates each argument’s logical valid-
ity, requiring it to reason deductively based on the
given premises. The focus is on testing the ability
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to discern valid reasoning structures in a biomedi-
cal context, independent of factual correctness.

Formally, given a set of premises P =
{P1, P2, . . . , Pn} and a conclusion C, the task is
to determine whether the logical entailment holds:

P |= C

such that (i) The premises and conclusion are
instantiated from formal syllogistic schemes and
(ii) arguments may be valid or invalid. The assess-
ment is purely on logical validity, independent of
the factual correctness of premises and conclusion.

Premises: A set P = {P1, P2, . . . , Pn} of
premises, where each Pi is a natural language sen-
tence derived from syllogistic schemes.

Conclusion: A natural language sentence C, rep-
resenting the conclusion.

Logical Validity Indicator: A binary output
Output ∈ {True,False} such that:

Output =

{
True if P |= C,

False if P ̸|= C.

Here, P |= C denotes that C is a logical conse-
quence of P .

Task 2. A premise selection task where the
model has to identify which premises are neces-
sary and sufficient to justify the conclusion from
Task 1, noting that some premises may be irrele-
vant. The task involves presenting the model with
a set of premises, including both relevant and dis-
tractor premises. The model must correctly select
the subset of premises that logically support the
conclusion, excluding those that do not contribute
to the entailment. This tests the ability to filter
essential information and assess the understanding
of the logical relationships between premises and
conclusions. Task 2 can be formalized as follows:

Objective: Identify the minimal subset of
premises P ′ ⊆ P that are necessary and sufficient
to logically derive the conclusion C.

• Given:

– A set of premises P =
{P1, P2, . . . , Pn}.

– A conclusion C.

• Task Definition: Find the minimal subset
P ′ ⊆ P satisfying:

1. Logical Sufficiency:

P ′ |= C.

2. Minimality:

∄ P ′′ ⊊ P ′, such that P ′′ |= C.

3. Necessity: Every premise in P ′ is neces-
sary for the entailment.

Premises: A set P = {P1, P2, . . . , Pn} con-
taining both relevant and irrelevant (distractor)
premises.

Conclusion: A natural language sentence C.

• Selected Premises: A subset P ′ ⊆ P such
that:

P ′ |= C,

and P ′ is minimal and necessary.

.

2.2 Human Genome Pathways for Syllogistic
Reasoning Evaluation

To instantiate the SylloBio-NLI methodology, we
developed a specialized dataset using Reactome2,
a comprehensive knowledge base containing de-
tailed information on human biological pathways,
including gene functions and interactions.

Reactome’s hierarchical structure, with its well-
defined hierarchical gene-pathway membership re-
lations, enables a systematic instantiation of the
syllogistic arguments. This allows for the efficient
generation of domain-specific NLI tasks that assess
LLMs’ ability to reason about biological pathway
membership, controlling for different levels within
the hierarchy. This use case is widely relevant in
the context of interpreting pathway-level interac-
tions, disease and treatment response mechanisms
at a genomics level (Fang et al., 2019).

By focusing on the Disease super-pathway, the
largest and most intricate group within Reactome,
we generated a diverse set of syllogistic schemes
(see Fig. 2) that mirror the complex molecular
interactions and regulatory mechanisms underly-
ing disease processes. This approach ensures our
evaluation reflects the depth and specificity needed
to rigorously test the syllogistic reasoning proper-
ties of NLI models in this highly specialised and
clinically significant domain. A comprehensive

2https://reactome.org
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Level of pathway Nr of unique
pathway names

Nr of unique
genes names

top-level 1
sub-pathway 13 2131
sub-sub-pathway 59 2131
sub-sub-sub-pathway 345 2114
sub-sub-sub-sub-pathway 1110 1775
sub-sub-sub-sub-sub-pathway 994 1002

Table 1: Summary of a dictionary with the true taxo-
nomic relationships between pathways and genes.

and systematic assessment of these properties is
essential if LLMs are to be applied to this domain.

The resulting dataset includes 12,098 entity-
gene names, which are used as substitutes for entity
placeholders. In contrast, pathway names, derived
from different levels of biological hierarchies, are
treated as predicate placeholders because they de-
scribe relationships or actions involving the enti-
ties, rather than being entities themselves. The
corpus includes 3767 complex predicates in total.
The premises of the natural language argument are
randomly re-ordered to mitigate potential biases
during the evaluation (Fig. 2D).

2.3 Dictionary of Gene and Pathway
Membership

Reactome3 (version 88—March 2024) has entries
for 11 226 protein-coding genes involved in 15
212 human reactions annotated from 38 549 litera-
ture references. These reactions are grouped into
2 698 pathways collected under 29 superpathways
(e.g. Immune System) that describe normal cellu-
lar functions. Each superpathway is represented
as a roughly circular ‘burst,’ with the central node
corresponding to the top-level of the Reactome
event hierarchy and concentric rings representing
increasingly specific levels of the event hierarchy
(sub-pathways) (e.g. Disease → Diseases of signal
transduction by growth factor receptors and second
messengers → Signalling by EGFR in Cancer →
Signalling by Ligand-Responsive EGFR Variants
in Cancer → Constitutive Signalling by Ligand-
Responsive EGFR Cancer Variants). The relation-
ships between these pathways are captured through
parent-child arcs, reflecting the ontological "is-a"
relationships.

The 29 Reactome superpathways group are each
organized as a roughly circular ‘burst’. However,
we built the corpus based on one, largest group
of pathways called Disease. The central node of
the Disease burst corresponds to the uppermost

3https://reactome.org

level of the Reactome event hierarchy (Table 1).
Concentric rings of nodes around the central node
represent successive more specific levels of the
event hierarchy (e.g. Disease → Diseases of sig-
nal transduction by growth factor receptors and
second messengers → Signalling by EGFR in Can-
cer → Signalling by Ligand-Responsive EGFR
Variants in Cancer → Constitutive Signalling by
Ligand-Responsive EGFR Cancer Variants). The
arcs connecting nodes between successive rings
within a burst represent parent–child (is-a) rela-
tionships in the event hierarchy. When a specific
pathway is shared by more than one burst, arcs
connect its nodes between bursts. A node’s size
is proportional to the number of physical entities
(proteins, complexes, chemicals) it contains.

2.4 Reasoning Challenges
Domain-specific Reasoning. Biomedical
datasets differ from general datasets in that they
involve complex semantic structures, such as gene-
pathway relationships and hierarchies, where sen-
tences encode intricate biological interactions and
dependencies. Reasoning about statements such as
"COL1A1 is involved in the TGF-beta signalling
pathway" requires not only an understanding of
specific gene functions but also the ability to nav-
igate over hierarchical biological pathways and
their associated relations. This demands a higher
level of domain-specific reasoning and the capabil-
ity to controllably interpret relationships within a
highly specialised context.

Material Inference Component. Each sentence
in the formal scheme (premises and conclusion) is
linked to the domain knowledge, i.e. the member-
ship of genes to a given level of pathway, which
refers to a multi-level, hierarchy. For example, if
gene X is a member of pathway Y, and that path-
way is a child of a top-level pathway Z, the model
must be able to infer that the gene also belongs to
a top-level pathway.

Formal Inference Component. Syllogisms are
examples of content-independent formal inference
in which, provided the truth value of the premises,
the conclusion can be derived through the applica-
tion of specific logical inference rules. This form of
reasoning can pose challenges to models that are in-
capable of abstracting inference patterns from text
and that are affected by content biases in their rep-
resentation (Prange et al., 2023; Kim et al., 2024).
Moreover, the syllogistic schemes in this paper
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Model ZS FS
Non-empty
output

Irrelevant
text

Following
instruction

Acc. Recall Precision F1 Faith. Non-empty
output

Irrelevant
text

Following
instruction

Acc. Recall Precision F1 Faith.

BioMistral-7B 0.00 - - - - - - - 0.00 - - - - - - -

Meta-Llama-3-8B 0.03 0.03 0.01 0.00 0.01 0.01 0.01 0.00 0.69 0.01 0.68 0.35 0.51 0.39 0.44 0.19
Meta-Llama-3-8B-Instruct 1.00 0.86 0.14 0.11 0.18 0.16 0.17 0.04 1.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00

Mistral-7B-Instruct-v0.2 1.00 0.1 0.9 0.47 0.63 0.48 0.54 0.48 1.00 0.24 0.76 0.45 0.44 0.45 0.44 0.46
Mistral-7B-v0.1 0.88 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.69 0.00 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 1.00 0.37 0.63 0.52 0.45 0.53 0.49 0.35 1.00 0.09 0.91 0.61 0.44 0.67 0.53 0.46

Gemma-7b 0.99 0.2 0.79 0.42 0.76 0.45 0.57 0.09 1.00 0.00 1.00 0.60 1.00 0.55 0.71 0.19
Gemma-7b-it 1.00 0.00 1.00 0.64 0.71 0.62 0.66 0.66 1.00 0.03 0.97 0.63 0.46 0.69 0.55 0.42

Model ZS FS
Non-empty
output

Irrelevant
text

Following
instruction

RA Faith. Non-empty
output

Irrelevant
text

Following
instruction

RA Faith.

BioMistral-7B 0.00 0.00 - - - 0.00 - - - -

Meta-Llama-3-8B 0.02 0.018 0.002 0.00 0.00 0.87 0.01 0.87 0.35 0.31
Meta-Llama-3-8B-Instruct 1.00 0.36 0.64 0.30 0.33 1.00 0.99 0.01 0.01 0.00

Mistral-7B-Instruct-v0.2 1.00 0.02 0.98 0.26 0.64 1.00 0.05 0.95 0.34 0.65
Mistral-7B-v0.1 1.00 1.00 0.00 0.00 0.00 0.84 0.84 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 1.00 0.05 0.95 0.34 0.63 1.00 0.05 0.95 0.24 0.46

Gemma-7b 0.69 0.31 0.38 0.23 0.14 1.00 0.00 1.00 0.58 0.69
Gemma-7b-it 1.00 0.03 0.97 0.55 0.65 1.00 0.00 1.00 0.55 0.31

Table 2: Main results for Task 1 (i.e., textual entailment, top) and Task 2 (i.e., premise selection, bottom).

are designed to assess the interpretation of fine-
grained logical operators including quantifiers, im-
plications and negation, which have been proved to
be particularly challenging for NLI models (Pitler
et al., 2023).

3 Empirical Evaluation

3.1 Model Architectures

We used the proposed methodology and resources
to assess the syllogistic NLI inference properties
of eight open-source LLMs.

Specifically, We test a range of architec-
tures, including mistralai/Mistral-7B-v0.1,
mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023), mistralai/Mixtral-8x7B-Instruct-v0.1 (Mis-
tral, 2023), google/gemma-7b, google/gemma-7b-
it (Gemma and Google, 2024), meta-llama/Meta-
Llama-3-8B, meta-llama/Meta-Llama-3-8B-
Instruct (AI@Meta, 2024), BioMistral/BioMistral-
7B (Labrak et al., 2024). Details of the models,
access, parameters, and the prompts used are
available in the Appendix C, D, F, G.

3.2 Evaluation Metrics

Accuracy, F1-score, Recall, and Precision are used
to evaluate performance in Task 1, a binary clas-
sification task where the conclusion C is labelled
as either True or False. These metrics compare
the predicted labels ŷi against the annotated gold
labels yi (True/False).

We used Reasoning Accuracy RA to evaluate
the models’ performance in Task 2 to correctly
predict the entailment label ŷi and select the ap-
propriate subset of premises P̂i that justify this

prediction. The metric is calculated as the percent-
age of responses where both the predicted label
ŷi matches the ground truth yi and the selected
premises P̂i match the ground truth premises Pi.
In addition, we use a measure of faithfulness intro-
duced by Jullien et al. (2024), which assesses the
ability of a model to correctly change its prediction
when altering the truth value of the conclusion (see
Appendix E for additional details).

3.3 Main Results and Discussion

The main results on Task 1 and 2 are reported in
Table 2. In particular, it is possible to derive the
following main conclusions:

ZS LLMs struggle with controlled, domain-
specific syllogistic inference. Overall, the re-
sults demonstrate that LLMs exhibit significant
challenges when performing biomedical syllogis-
tic reasoning in a ZS setting (Table 2). We found,
in fact, that the majority of the models struggle
to achieve performances that are above the 50%
random accuracy on Task 1, with Gemma-7B-it
being the only exception, achieving an accuracy of
64%. Similarly, in Task 2, Gemma-7B-it was again
the best-performing model, achieving reasoning
accuracy of 55%. In general, when comparing
the performance on the two tasks, we observed
that the models achieved lower performance in the
premise selection task compared to textual entail-
ment, indicating a shared inability of ZS models to
identify the sufficient and necessary set of premises
required for the entailment to hold. In addition to
low performance, we found a discrepancy between
faithfulness and accuracy on both tasks, which
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Figure 3: Comparative Analysis of accuracy, F1, and Faithfulness across two prompt types: ZS (left) and FS (right)
for Task 1 for the four best models.
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Figure 4: Accuracy across two prompt types: ZS and FS, for Task 1 (top) and Task 2 (bottom). The lines connect
the average accuracy for each of the seven syllogistic argument schemes, with green lines indicating an increase
and red lines indicating a decrease. Gray boxplots display the median, Q1, Q3, and minimum and maximum values.

highlights the inability to capture the underlying
reasoning phenomena along with the presence of
biases in the inference process. For example, we
observed that for Gemma-7B, the ZS accuracy and
F1-score are ≈ 0.5-0.6, while faithfulness plum-
mets below 0.1 (Fig. 3). This is due to the tendency
of the model to frequently output "True" (see Figs.
8-11 in Appendix K and Appendix H) regardless
of the truth value of the conclusion. In contrast, we
observed that such a phenomenon is less prominent
in Gemma-7B-it where faithfulness is comparable
to accuracy on both Task 1 (i.e., 0.66) and Task 2
(0.65). Overall, the results reveal that instruction-
tuned models can obtain higher performances in
the ZS setting, while models that are pre-trained
on language modelling struggle to follow the pro-
vided natural language instructions. Moreover, we
observed that this trend is independent of the spe-
cific knowledge the LLM is exposed to during pre-
training. For instance, BioMistral-7B, the only
biomedical domain-specific model, entirely failed
to follow the instructions and generate outputs that
are relevant to the target tasks.

FS can improve performance, but its impact
is inconsistent across models’ families and pre-
training regimes. We found that the FS setting
can improve the performance of different LLMs.
In particular, we observe a significant boost for
both Gemma-7b and Meta-Llama-3-8b, with an
average increase in F1-score of 14% and 43% re-
spectively. However, we observe such improve-
ment to be inconsistent across models’ family and
pre-training regime, indicating variability in how
different models handle prompt types in syllogistic
reasoning tasks within the biomedical domain (Fig.
4). In particular, the results show that FS improves
for all schemes only for Gemma-7b and Llama-
3. For Mixtral-8x7B Instruct, Mistral-7B-Instruct,
and Gemma-7b-it the overall accuracy increases
only for a subset of selected schemes, while for
others it drops significantly. This inconsistency
is demonstrated by the fact that Mixtral-8x7B In-
struct achieves worse accuracy in FS compared
to ZS on both tasks. Overall, the results on the
FS setting highlight distinct strengths and weak-
nesses that are highly dependent on the prompt
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Figure 5: Robustness to lexical variations. The graphs show the accuracy by model, syllogistic schema and lexical
variations for ZS and FS respectively for Task 1 (top) and Task 2 (bottom).

strategy, the pre-training setup, and the model’s
family. At the same time, improvements observed
in FS for some models might indicate a potential
for enhanced performance when contextual infor-
mation is available, although this gain is not uni-
versal across the models.

Significant variability in model accuracy is ob-
served across different syllogistic schemes. In
general, we found that LLMs exhibit variable per-
formances depending on the specific syllogistic
schema used for evaluation. The results indicate
that LLMs perform better on generalized modus
ponens (i.e., three out of four models), with ac-
curacy levels ranging from 0.71 to 0.98 in the FS
setting in Task 1 (Fig. 5, Table 5 in Appendix L)
and with reasoning accuracy scores ranging from
0.56 to 0.74 in Task 2 (Table 7 in Appendix L). On
the other side, In the ZS setting, the Gemma-7B-it
model achieved higher performance on generalized
modus tollens (accuracy = 0.78 in Task 1 and RA
= 0.74 in Task 2), while in the FS setting, the high-
est performances were registered on generalized
dilemma in Task 1 (accuracy = 0.85) and general-
ized modus ponens in Task 2 (RA = 0.74).

3.4 Robustness to Lexical Variations

We performed a robustness analysis adopting
surface-form variations applied to the syllogistic
schemes. This is done by rephrasing the natural
language syllogistic arguments via negation, com-
plex predicates, and De Morgan’s laws, keeping the
underlying logical relation between premises and
conclusion unaltered (see Fig. 6 in Appendix B).
The results of the analysis are reported in Figure 5.

This intervention reveals that LLMs are highly
sensitive to surface forms and lexical variations,
showing a significant variability across different
schemes (Fig. 5). At the same time, we found that
in the FS setting, model responses demonstrated
overall greater consistency, with lower fluctuations
across variants.

In Task 1, disjunctive syllogism was generally
identified as the most challenging scheme in the ZS
setting for all four models, with none exceeding an
accuracy of 0.35, significantly worse than random
guessing. While FS slightly improved accuracy,
disjunctive syllogism remained the most challeng-
ing scheme. Overall, only Gemma-7B in the FS
setting effectively handled all syllogistic schemes
and their variants in Task 1, demonstrating a higher
level of consistency. The other models exhibited
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significant variability depending on the specific
surface form, which highlights a shared inability
to systematically abstract the underlying reasoning
rules required to derive valid conclusions.

3.5 Impact of Distractors and Factuality

Finally, we perform an analysis introducing an
increasing number of distractors (i.e., irrelevant
premises) in the syllogistic arguments and replac-
ing existing genes in Reactome with synthetic gene
names to generate arguments that are independent
of medical content and assess the impact of factu-
ality on reasoning (see Appendix I, J).

We found that LLMs show varied sensitivity to
distractors, with models like Gemma-7b exhibiting
a significant decline in reasoning accuracy as the
number of distractors increases, while Mistral-7B
Instruct shows improvements in some cases. The
impact is scheme-dependent and reveals that more
complex syllogisms are particularly affected by
increasing distracting information (Figs. 12-15 in
Appendix K).

Furthermore, contrary to previous work showing
that LLMs exhibit higher performance on syllo-
gisms that are in line with commonsense knowl-
edge (Eisape et al., 2024; Kim et al., 2024), we
found stable performances when intervening on the
factual correctness of the biomedical arguments.
These results indicate that (1) logical structure and
contextual information have a greater impact on
output generation than biomedical knowledge in
both ZS and FS settings and (2) existing models
might have limited exposition to human genome
pathways information during pre-training, being
unaffected by the substitution of real gene names
with synthetic ones (Fig. 7 in Appendix J).

4 Related Work

Syllogistic reasoning, which involves deriving
valid conclusions from given premises based on
formal logical structures, has long been a central
focus in the study of Natural Language Inference
(NLI) (Bertolazzi et al., 2024; Kim et al., 2024).

Early transformer models like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) were
trained on general NLI datasets, such as SNLI
(Bowman et al., 2015) and MNLI (Williams et al.,
2018), to address reasoning tasks. However, these
models were limited in their ability to generalize
abstract reasoning patterns, particularly in more
specialized domains. Recent work has explored

whether larger, decoder-based language models
are capable of capturing syllogistic reasoning with-
out task-specific fine-tuning, as reasoning itself is
content-independent (Bertolazzi et al., 2024).

Recent research, such as Liu et al. (liu et al.,
2023), has introduced benchmarks like GLoRE
to test logical reasoning in LLMs, utilizing tech-
niques such as Chain-of-Thought (CoT) prompting
(Wei et al., 2023) and in-context learning (ICL)
(Huang and Chang, 2023). These methods have
been shown to improve reasoning performance, but
issues remain, as models often rely on superficial
patterns instead of deep logical comprehension.
Eisape et al. (Eisape et al., 2024) further demon-
strated that even advanced models exhibit biases
when handling syllogisms, particularly when faced
with invalid syllogisms, often failing to generate
"nothing follows" conclusions.

While the general-domain performance of
LLMs in syllogistic reasoning has been explored
(Eisape et al., 2024; Dasgupta et al., 2024), re-
search on syllogistic reasoning in the biomedical
domain remains scarce. This paper addresses this
gap by focusing specifically on biomedical appli-
cations, where logical reasoning over specialized
knowledge is critical. We introduce a large-scale
biomedical syllogism dataset, SylloBio-NLI, and
provide a comprehensive evaluation of the syllogis-
tic reasoning capabilities of state-of-the-art LLMs
within this domain.

5 Conclusions

In this work, we proposed a novel methodologi-
cal framework, SylloBio-NLI, designed to evalu-
ate the syllogistic reasoning capabilities of state-
of-the-art LLMs within the biomedical domain.
Through comprehensive analysis across 28 syllo-
gistic schemes, we assessed the performance of
eight different models under varying conditions,
including zero-shot and few-shot settings.

Our results show that both techniques exhibit
high sensitivity to superficial lexical variations,
highlighting a dependency between reliability,
models’ architecture, and pre-training regime.
Overall, our evaluation indicates that, while few-
shot strategies have the potential to elicit syllogis-
tic reasoning in LLMs, existing models are still
far from achieving the robustness and consistency
required for safe biomedical NLI applications in
specialised domains.
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6 Limitations

A key challenge for scaling our approach to differ-
ent domains is its dependency on high-quality ex-
ternal ontologies and knowledge bases. This factor
limits the scope of our analyses across biomedical
domains. More efficient methods for populating
the natural language syllogistic arguments could be
investigated in future work, involving automated
NLP methods, such as those used in RepoDB
(Brown and Patel, 2017), MSI, Hetionet (Him-
melstein et al., 2017), DrugMechDB (Gonzalez-
Cavazos et al., 2023), and INDRA (Gyori et al.,
2017; Bachman et al., 2023), or synthetic data
generation methods coupled with efficient qual-
ity checks. However, these approaches still face
challenges in balancing precision and generaliza-
tion, particularly for complex reasoning tasks in
biomedicine. Further improvements are necessary
to develop scalable resources and more adaptable
NLP techniques for real-world applications.
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A Formalization of the SylloBio-NLI
Resource Generation Process

This appendix formalises the generation process of
the syllogistic inference patterns.

We start by defining the mains constructs (for-
mal and linguistic artefacts and functions) of the
underlying framework:

1. Syllogistic Scheme (S): A logical inference
pattern consisting of premises and a conclu-
sion, S = {P1, P2, . . . , Pn, C}, where Pi is
premise i and C is the conclusion.

2. Formal Argument Scheme (σ): Representa-
tion of a syllogistic scheme in first-order logic
(FOL), σ(S) = {ϕ1, ϕ2, . . . , ϕn, ψ}, where
ϕi corresponds to Pi and ψ corresponds to C.

3. Natural Language Template (τ ): A natu-
ral language schema mapping each formula
in σ(S) to a sentence template, τ(σ(S)) =
{τ1, τ2, . . . , τn, σ}, where τi is the sentence
template for ϕi and σ is the sentence template
for ψ.

4. Ontology (O): A domain-specific knowledge
base containing entities E and predicates Π,
O = {E,Π}, where E = {e1, e2, . . . , ek}
and Π = {π1, π2, . . . , πl}.

5. Instantiation Function (I): A function that
replaces placeholders in τ with entities and
predicates from O, I : τ(σ(S)) × O → NL,
where NL is the set of natural language sen-
tences.

6. Expert Mapping Function (µExpert): A func-
tion provided by a domain expert to map
placeholders to appropriate ontology terms,
µExpert : Placeholders→ E ∪Π.

7. Knowledge Base (KB): A collection
of instantiated syllogistic arguments,
KB = {A1, A2, . . . , Am}, where
Ai = {P ′

1, P
′
2, . . . , P

′
n, C

′} and P ′
i , C

′

are instantiated natural language sentences.

A.1 Process Formalisation
The process formalisation defines a systematic pro-
cess for generating domain-specific syllogistic ar-
guments by:

1. Defining formal representations of syllogistic
schemes in first-order logic.

2. Generating natural language templates from
these formal representations.

3. Mapping placeholders to domain-specific en-
tities and predicates using an ontology and
expert knowledge.

4. Instantiating the templates to produce logi-
cally valid and semantically sound arguments.

5. Constructing a knowledge base for evaluat-
ing NLI models.

This ensures that the generated arguments are
both logically valid and contextually relevant to
the biomedical domain.
Input: A set of syllogistic schemes:
S = {S1, S2, . . . , Sm}, an ontology:
O = {E,Π}, an expert mapping function:
µExpert.
Output: A knowledge base of instantiated
arguments: KB.

Step 1: Formal Argument Scheme Selection:
For each syllogistic scheme Si ∈ S, define its
formal argument scheme in first-order logic:

∀Si ∈ S, σ(Si) = {ϕi1, ϕi2, . . . , ϕin, ψi}.
Step 2: Natural Language Template Gener-
ation: Transform each formula in σ(Si) into a
natural language template:

∀ϕij ∈ σ(Si), τ ij = τ(ϕij),

σi = τ(ψi).

Step 3: Ontology Mapping and Instantiation:
Apply the expert mapping function to select ap-
propriate entities and predicates from the ontology:
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∀Placeholder p ∈ {F,G, a}, µExpert(p)→ E∪Π.

Instantiate the templates:

P ′
j = I(τ ij , µExpert),

C ′ = I(σi, µExpert).

under the following constraints:

• Logical Validity: The instantiated arguments
must preserve the logical structure of σ(Si).

• Domain Soundness: The selected entities
and predicates must be semantically coherent
within the targeted subdomain.

These constraints can be further formalised as:

Logical Validity Constraint: The instantiated
argument Ai must be logically valid:

{ϕ′1, ϕ′2, . . . , ϕ′n} |= ψ′,

where ϕ′j corresponds to the logical form of P ′
j .

Domain Soundness Constraint: The entities and
predicates used must be semantically valid within
the domain:

∀e ∈ E′, π ∈ Π′, DomainValid(e, π) = True,

where E′ ⊆ E and Π′ ⊆ Π are entities and
predicates used in Ai.

Verification of Logical Validity: Ensure that
the instantiated premises logically entail the
conclusion:

{ϕ′1, ϕ′2, . . . , ϕ′n} |= ψ′,

using logical inference rules.

Verification of Domain Soundness: Confirm
that:

• All entities and predicates are correctly used.

• There are no semantic contradictions.

Step 4: Knowledge Base Construction: Aggre-
gate all instantiated arguments into the knowledge
base:

KB =
m⋃

i=1

{Ai},

where:

Ai = {P ′
1, P

′
2, . . . , P

′
n, C

′}.
This is summarised with the following algorithmic
outline:

1. Initialize KB← ∅.

2. For each Si ∈ S:

(a) Create σ(Si) = {ϕi1, ϕi2, . . . , ϕin, ψi}.
(b) Generate τ(Si) = {τ i1, τ i2, . . . , τ in, σi},

where τ ij = τ(ϕij).
(c) Obtain mappings µExpert for placehold-

ers in τ ij and σi.
(d) Instantiate:

P ′
j = I(τ ij , µExpert),

C ′ = I(σi, µExpert).

(e) Form argument Ai =
{P ′

1, P
′
2, . . . , P

′
n, C

′}.
(f) Add Ai to KB:

KB← KB ∪ {Ai}.

3. Return KB.

B Domain-specific pipeline for creating
NL instances

Figure 6: Syllogistic argument schemes used to
create a biologically factual argument corpus with
domain-specific examples for generalized modus
ponens base scheme and disjunctive syllogism
complex predicates scheme. For each syllogistic
scheme, a formal argument scheme (consisted of
premises and conclusion (bold)) was provided.

C Accessing LLMs

To access these LLMs, we use the Mistral AI (mis-
tral), and the open-source weights of the remaining
models, available at the HuggingFace Hub4 reposi-
tories:

4https://huggingface.co
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{
    "F": "ABC transporter disorders",
    "G": "Disorders of transmembrane transporters",
    "a": "PSMC5"
}

{
    "id": "mb0",
    "base_scheme_group": "Modus barbara",
    "scheme_variant": "base_scheme",
    "scheme": [
        "Every member of ${F} pathway is a member of ${G} pathway.",
        "Gene ${a} is a member of ${F} pathway",
        "It is true that gene ${a} is a member of ${G} pathway"
    ],
    "predicate-placeholders": ["F","G"],
    "entity-placeholders": ["a"]
}

domain-specific NL template for formal sentence scheme

domain-specific NL predicates and names

{
    "F": "IKBKG deficiency causes anhidrotic ectodermal dysplasia with 

immunodeficiency (EDA-ID) (via TLR)",
    "G": "TLR3 deficiency - HSE",
    "H": "IKBKB deficiency causes SCID",
    "I": "IRAK4 deficiency (TLR5)"
}

{
    "id": "disjs2",
    "base_scheme_group": "Disjunctive Syllogism",
    "scheme_variant": "complex_predicates",
    "scheme": [
        Every member of ${F} pathway is a member of ${G} pathway 

or a member of ${H} pathway or a member of ${I} pathway.",
        Whatever is a member of ${F} pathway is not a member of ${G} pathway",
     Whatever is a member of ${F} pathway is not a member of ${I} pathway",
        "It is true that whatever is a member of ${F} pathway 

is not a member of ${H} pathway"
    ],
    "predicate-placeholders": ["F","G","H","I"],
    "entity-placeholders": []
}

domain-specific NL template for formal sentence scheme

domain-specific NL predicates and names

Figure 6: Syllogistic argument schemes used to create a biologically factual argument corpus with domain-specific
examples for generalized modus ponens base scheme and disjunctive syllogism complex predicates scheme. For
each syllogistic scheme, a formal argument scheme (consisted of premises and conclusion (bold)) was provided.

• mistralai/Mistral-7B-v0.1

• mistralai/Mistral-7B-Instruct-v0.2

• mistralai/Mixtral-8x7B-Instruct-v0.1

• google/gemma-7b

• google/gemma-7b-it

• meta-llama/Meta-Llama-3-8B

• meta-llama/Meta-Llama-3-8B-Instruct

• BioMistral/BioMistral-7B

The pretrained LLM weights are used through
the transformers5 python library. All models were
loaded with standard configurations and their re-
spective default tokenizers, using the AutoMod-
elForCausalLM and AutoTokenizer classes. Ad-

5https://huggingface.co/docs/transformers/

ditionally, the models were loaded with the op-
tions device_map=“auto", torch_dtype=“auto"
attn_implementation=“flash_attention_2" and of-
fload_buffers=True to make the best use of GPU
resources available.

For the instruction models, the inputs were
passed through each model’s chat template (with
tokenizer.apply_chat_template), so that they
would follow the appropriate prompt format. Re-
sponses were cleaned of special symbols for evalu-
ation. Table 3 contains the relevant characteristics
of all analyzed models.

D Experimental Details

The entire experimental setup was implemented as
a python code package, consisting of 5 modules:

• pathways: defines the ontological relations
and operations for biological pathways, as
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Model Type Parameters Training Data Architecture Enhancements Open-Source Performance in Benchmarks Efficiency Use Cases Year

Mistral-7B-v0.1 Base LLM 7B Diverse (internet, academic, etc.)
Grouped-query attention,
sliding-window

Yes
Strong in reasoning,
real-life scenarios

Similar, optimizations possible Math, code generation 2023

Mistral-7B-Instruct-v0.2 Instruct LLM 7B Instruction-tuned data Instruction-tuned architecture Yes High on MT-Bench Efficient for instruction-based tasks
Customer service chatbots
and virtual assistants

2023

Mixtral-8x7B-Instruct-v0.1 Instruct LLM 8x7B Diverse data with expert focus Mixture of Experts architecture Yes
Exceptional performance in

Arena Elo and MMLU,
excellent MT-Bench score

Great at simulated dialogues
and general language understanding

Customer service chatbots
and interactive storytelling

2023

Gemma-7B Base LLM 7B 6 trillion tokens (web, math, code)
Multi-query attention, RoPE,
GeGLU

Yes
(with terms of use)

Strong in code generation, math Lightweight, runs on various platforms Text generation, translation 2023

Gemma-7B-it Instruct LLM 7B 6 trillion tokens (web, math, code) Instruction-tuned architecture Yes
Strong in reasoning,

in MMLU and HellaSwag
Efficient for instruction-based tasks

Text comprehension
and generation inference

2023

Meta-Llama-3-8B Base LLM 8B Mix of publicly available online data Standard transformer Yes Moderate Efficient for general tasks General NLP tasks 2023

Meta-Llama-3-8B-Instruct Instruct LLM 8B Instruction-tuned data Instruction-tuned architecture Yes

High for Arena Elo,
impressive MT Bench scores
for translation, exceptional
MMLU score, indicating

strong reasoning and knowledge

Efficient for instruction-based tasks
High-volume applications,
great for real-time interactions

2023

BioMistral-7B Domain-Specific LLM 7B

Collection of medical LLMs
resulting from further pre-training

Mistral-7B Instruct on
PubMed Central resources

Enhanced for domain-specific tasks Yes

State- of-the-art performance on
the multilingual medical
evaluation benchmark

compared to other open-source
7B models

Efficient for domain-specific tasks Biomedical research 2024

Table 3: Detailed Characteristics of Selected LLMs.

well as the logic to retrieve and transform
data from the domain ontology.

• logic2nl: translates logic formulas into NL
statements (premises, conclusions), using pa-
rameterised scheme templates.

• llm: provides access to LLMs, and facilitates
logging.

• experiments: defines all test logic, parameter-
isation and metrics for the experiments.

• main: orchestrates all the tests and aggregates
results.

The LLMs were loaded and run using the Hug-
gingFace transformers library (v4.43.3). The
prompts were processed directly by the models
with generate, without sampling.

Parameters were set as follows:

• Number of premises = 2: the number of valid
premises per instance (factual argumentative
text).

• Max distractors = 5: maximum number of
distractors to be added per instance.

• Subset size = 200: maximum number of posi-
tive and negative instances for each scheme.

• Batch size = 20: number of instances evalu-
ated simultaneously.

• ICL: Whether the in-context learning prompt
would be used or not.

• Model: the LLM to be evaluated.

For both Task 1 and Task 2, each model was
analyzed across all 28 syllogistic schemes, with re-
sponses evaluated from a total of 11,200 instances
(28 schemes × (200 positive + 200 negative)). The

exceptions were: Generalized Modus Ponens -
complex predicates (18 instances), Hypothetical
Syllogism 1 - base (202 instances) and Generalized
Contraposition - negation (202 instances). This is
due to the number of factually possible different
instances being limited by the ground-truth data in
such cases. For both tasks, this amounted to a total
of 211,840 instances, with performance compar-
isons made between ZS and ICL settings, leading
to a total of 423,680 prompts.

When examining the impact of distractors, re-
sponses were analyzed across five variants of each
argument scheme, reflecting different numbers of
irrelevant premises (from 1 to 5 distractors). For
each scheme and model, this resulted in 1,000 re-
sponses (200 prompts per scheme × 5 variants),
with the exception of the aforementioned cases.
Across all schemes, this totaled 26,480 responses
for one model, and 211,840 responses were ana-
lyzed for all models for each number of distractors,
totaling 1,059,200 responses. Again, comparisons
were made between ZS and ICL settings, doubling
the previous number.

For both Task 1 and Task 2, performance was
compared using actual gene entity names versus
synthetic names across two selected schemes. Each
scheme was tested with 400 instances (200 posi-
tive, 200 negative), resulting in a comprehensive
analysis of 12,800 instances per task (200 instances
× 2 schemes × 2 entity types × 8 models), provid-
ing a thorough comparison of model performance
with both factual and synthetic gene names.

The experiments were run on a computer with
an AMD EPYC 7413 24-Core CPU, 128GB of
available RAM and 2 × NVIDIA A100-SXM4-
80GB GPUs.

E Evaluation Metrics

Accuracy, F1-score, Recall, and Precision are
used to evaluate performance in Task 1, a binary
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classification task where the conclusion C is la-
beled as either True or False. These metrics com-
pare the predicted labels ŷi against the annotated
gold labels yi (True/False).

Reasoning Accuracy RA evaluates a model’s
ability in Task 2 to correctly predict the entail-
ment label ŷi and select the appropriate subset of
premises P̂i that justify this prediction. The metric
is calculated as the percentage of responses where
both the predicted label ŷi matches the ground truth
yi and the selected premises P̂i match the ground
truth premises Pi.

RA =
1

N

N∑

i=1

I
(
ŷi = yi and P̂i = Pi

)

In addition we used two supplementary metrics:
Non-empty output quantifies the frequency with
which the model generates any textual response.
This metric is crucial, as an empty output, while not
providing an incorrect answer, indicates a failure to
engage with the prompt. Irrelevant text assesses
the extent to which the model’s output deviates
from the expected format, such as failing to adhere
to the directive to respond with a straightforward
"True" or "False", or a structured statement like
"The correct answer is True." This metric identifies
instances where the model’s response is extraneous
or non-compliant with the specified guidelines.

Faithfulness F evaluates a model’s ability to
consistently adjust its predictions in response to
meaningful changes in input. In this analysis,
faithfulness is measured by examining N pairs
of prompts that differ only in the ’C’ conclusion:
one concludes with "it is True that..." (yi) and
the other with "it is False that..." (xi). A pair
is deemed faithful if the model changes its pre-
diction (f(xi),f(yi)) accordingly—shifting from
True to False or from False to True between the two
prompts. If the model’s response to either prompt
in a pair is empty or contains irrelevant text that
does not follow the instructions, the entire pair is
considered unfaithful (g = 0). This criterion en-
sures that only responses that are meaningful and
adhere to the given instructions are evaluated.

F =
1

N

N∑

i=1

I (f(xi) ̸= f(yi)) · g(f(xi), f(yi))

F Prompting LLMs - Zero-shot prompts

F.1 TASK 1

prompt = Suppose you are a specialist with exist-
ing knowledge about a signaling and metabolic
molecules and their relations organized into bio-
logical pathways and processes. Given premises
marked with the letter P and the following number
and the conclusion marked with the letter C, deter-
mine whether the conclusion logically follows from
these premises. If the conclusion logically follows
from the premises, you need to return ’True’. If
the conclusion does not follow logically from the
premises, you need to return ’False’. The output
should be a single word <True> or <False>.

"P1: " + Premise 1
"P2: " + Premise 2
"C:" + Conclusion

F.2 TASK 2

prompt = Suppose you are a specialist with exist-
ing knowledge about a signaling and metabolic
molecules and their relations organized into bio-
logical pathways and processes. Given premises
marked with the letter P and the following number
and the conclusion marked with the letter C, deter-
mine whether the conclusion logically follows from
these premises. If the conclusion logically follows
from the premises, you need to return ’True’. If
the conclusion does not follow logically from the
premises, you need to return ’False’. Specify the
premises you used to determine whether the con-
clusion logically follows from the premises, and
only these premises. The output should be a sin-
gle word <True> or <False> and the numbers of
the selected premises after the decimal point, like
<True, P1, P2>.

"P1: " + Premise 1
"P2: " + Premise 2
"C:" + Conclusion

G Prompting LLMs - Few-shot prompts

G.1 TASK 1

Context: Suppose you are a specialist with existing
knowledge about a signaling and metabolic
molecules and their relations organized into
biological pathways and processes.
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Instructions: Given premises marked with the letter
P and the following number and the conclusion
marked with the letter C, determine whether the
conclusion logically follows from these premises.
Relevance: If the conclusion logically follows
from the premises, you need to return ’True’. If
the conclusion does not follow logically from the
premises, you need to return ’False’.
Constraint: The output should be a single word
<True> or <False>.
Demonstration:

"P1: " "Every member of Diseases of hemostasis
pathway is a member of Disease pathway"

"P2: " "Gene GP1BB is a member of Diseases
of hemostasis pathway"

"C:" "Gene GP1BB is a member of Disease path-
way"

The correct answer is: True

"P1: " "Every member of Infectious disease path-
way is a member of Disease pathway"

"P2: " "Gene PKQQ is a member of Infectious
disease pathway"

"C:" "Gene PKQQ is a member of Infectious
disease pathway"

The correct answer is: True

"P1: " "Every member of SLC transporter dis-
orders pathway is a member of Disorders of trans-
membrane transporters pathway"

"P2: " "Gene AXZY is a member of SLC trans-
porter disorders pathway"

"C:" "Gene AXZY is not a member of Disorders
of transmembrane transporters pathway"

The correct answer is: False

"P1: " "Every member of HIV Life Cycle path-
way is a member of HIV Infection pathway"

"P2: " "Gene MLLX is a member of HIV Life
Cycle pathway"

"C:" "Gene MLLW is a member of HIV Infection
pathway"

The correct answer is: False

"P1: " "Every member of ABC transporter dis-
orders pathway is a member of Disorders of trans-
membrane transporters pathway"

"P2: " "Gene PSMC5 is a member of ABC trans-
porter disorders pathway"

"C:" "It is true that Gene PSMC5 is a member

of Disorders of transmembrane transporters path-
way"

G.2 TASK 2
Context: Suppose you are a specialist with existing
knowledge about a signaling and metabolic
molecules and their relations organized into
biological pathways and processes.
Instructions: Given premises marked with the letter
P and the following number and the conclusion
marked with the letter C, determine whether the
conclusion logically follows from these premises.
Relevance: If the conclusion logically follows
from the premises, you need to return ’True’. If
the conclusion does not follow logically from
the premises, you need to return ’False’. Specify
the premises you used to determine whether the
conclusion logically follows from the premises,
and only these premises.
Constraint: The output should be a single word
<True> or <False> and the numbers of the
selected premises after the decimal point, like
<True, P1, P2>.
Demonstration:

"P1: " "Every member of Diseases of hemostasis
pathway is a member of Disease pathway"

"P2: " "Every member of NS1 Mediated Ef-
fects on Host Pathways pathway is a member of
Influenza Infection pathway"

"P3: " "Gene AABC is a member of Diseases of
hemostasis pathway"

"C:" "Gene AABC is a member of Disease path-
way"

The correct answer is: True, P1, P3

"P1: " "Every member of SARS-CoV Infections
pathway is a member of Viral Infection Pathways
pathway"

"P2: " "Every member of Infectious disease path-
way is a member of Disease pathway"

"P3: " "Gene PKQQ is a member of Infectious
disease pathway"

"C:" "Gene PKQQ is a member of Infectious
disease pathway"

The correct answer is: True, P2, P3

"P1: " "Every member of SLC transporter dis-
orders pathway is a member of Disorders of trans-
membrane transporters pathway"

"P2: " "Gene AXZY is a member of SLC trans-
porter disorders pathway"
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"C:" "Gene AXZY is not a member of Disorders
of transmembrane transporters pathway"

The correct answer is: False

"P1: " "Every member of HIV Life Cycle path-
way is a member of HIV Infection pathway"

"P2: " "Gene MLLX is a member of HIV Life
Cycle pathway"

"C:" "Gene MLLW is a member of HIV Infection
pathway"

The correct answer is: False

"P1: " "Every member of ABC transporter dis-
orders pathway is a member of Disorders of trans-
membrane transporters pathway"

"P2: " "Gene PSMC5 is a member of ABC trans-
porter disorders pathway"

"C:" "It is true that Gene PSMC5 is a member
of Disorders of transmembrane transporters path-
way"

H Results: Misaligned
Instruction-Response

We observed four types of text outputs: those
aligned with the instruction (regardless of correct-
ness), empty outputs where no text was generated,
incorrect text outputs such as repeated prompts or
random content, and outputs resembling Chain-of-
Thought (CoT) reasoning that, while potentially
containing correct reasoning, did not align with the
given instructions (Figs. 8-11). We noticed that
BioMistral-7B generated empty outputs in 100% of
the cases regardless of the specific settings, while
Meta-Llama-3-8B exhibits this behaviour for ZS
settings in both tasks. We attribute this observation
to safety mechanisms applied during pre-training
(Labrak et al., 2024), suggesting that domain-
specific knowledge about human genome pathways
is absent in both models. Similarly, Mistral-7B-
v0.1 responses simply repeat the prompt text in
88% of the cases in the ZS settings, and 69% of
the cases in FS (Table 2). Moreover, CoT outputs
including phrases like e.g. "A nice logical puz-
zle! Let’s break it down step by step..." were par-
ticularly common for Meta-Llama-3-8B Instruct,
which often ignored the specific instructions to ad-
dress the task. This behaviour highlights potential
biases introduced during instruction-tuning which
make the models unable to generalise to domains
that are out-of-distribution of the training set.

I Results: Ambiguous Impact of
Distractors on Reasoning

LLMs show a slight sensitivity to increasing num-
ber of distractors nD in the prompt, with overall
accuracy remaining stable (Figs. 12- 15, Table 4).

While some models struggle with increasing
nD, others can leverage few-shot learning to mit-
igate their impact, though the effect is scheme-
dependent. Considering Task 1, in the ZS set-
ting (Fig. 12, Table 6), Gemma-7b shows a
significant decline in accuracy as nD increases,
particularly in the generalized dilemma (r =
−0.643, p = 0.001), generalized modus ponens
(r = −0.592, p = 0.002), and generalized modus
tollens (r = −0.571, p = 0.004) schemes, indi-
cating a moderate negative correlation. In con-
trast, in the ZS setting, Mistral-7B Instruct-v0.2
exibits a moderate improvement in accuracy with
higher nD , in the generalized modus tollens (r =
0.540, p = 0.006) scheme, reflecting a weak pos-
itive correlation overall (r = 0.333, p < 0.001).
Considering reasoning accuracy, in the ZS set-
ting (Fig. 14, Table 8), the Gemma-7b model
exhibited a substantial drop as the nD increased
(r = −0.951, p < 0.001), with an initial low ac-
curacy of 0.3 even with nD = 0 . The steepest
declines were observed in hypothetical syllogism
1 (r = −1.0, p < 0.000) and generalized dilemma
(r = −1.0, p < 0.000) schemes. For the Gemma-
7b-it, the strongest negative correlation between
the model and nD was for the hypothetical syllo-
gism 1, generalized modus ponens and generalized
contraposition schemes (r = −1.0, p = 0.000). In
the FS setting (Fig. 15), the Gemma-7b-it model
consistently exhibited significant decreases in rea-
soning accuracy across all schemes, with the most
pronounced effect in hypothetical syllogism 3 and
generalized modus tollens (r = −1.0p < 0.000).
Interestingly, the Mistral-7B Instruct model in both
settings, depending on the scheme, showed a posi-
tive or negative significant correlation.

The findings underscore the substantial impact
of distractors on reasoning accuracy, particularly
in complex syllogistic reasoning tasks, revealing
that current LLMs are highly susceptible to per-
formance degradation as distractor complexity in-
creases.
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J Results: Models Prioritize Contextual
Knowledge Over Background
Knowledge

The lack of statistically significant differences (Fig.
7) in accuracy between biologically factual and ar-
tificial datasets across generalized modus ponens
and generalized modus tollens schemes suggests
that the models’ reasoning capabilities rely more
on stated contextual knowledge and logical struc-
ture than on pre-existing background knowledge.
This holds true for both accuracy and reasoning ac-
curacy, as well as in both ZS and FS settings: mod-
els that perform well on a given scheme maintain
their performance even when factual gene names
are replaced by synthetic names, and the same con-
sistency is observed for models with weaker per-
formance. This ability to maintain accuracy with
synthetic gene names in the artificial set demon-
strates that models can abstract and apply logical
reasoning independently of their internal domain-
specific knowledge.

K Supplementary Figures

L Supplementary Tables

7253



factual synthetic
Dataset

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Ac
cu

ra
cy

Generalized
modus ponens

factual synthetic
Dataset

Generalized
modus tollens

factual synthetic
Dataset

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

Generalized
modus ponens

factual synthetic
Dataset

Generalized
modus tollens

factual synthetic
Dataset

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
as

on
in

g 
Ac

cu
ra

cy

Generalized
modus ponens

factual synthetic
Dataset

Generalized
modus tollens

factual synthetic
Dataset

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
as

on
in

g 
Ac

cu
ra

cy

Generalized
modus ponens

factual synthetic
Dataset

Generalized
modus tollens

Figure 7: Accuracy comparison between two datasets: Biologically Factual vs. Artificial with Synthetic Names for
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Figure 8: Percentage distribution of model response types under zero-shot settings for prompts with no distractors
for the set of biologically factual argumentative texts.
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Figure 9: Percentage distribution of model response types under few-shot settings for prompts with no distractors
for the set of biologically factual argumentative texts.
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Figure 10: Percentage distribution of model response types under zero-shot settings for prompts with all distractors
for the set of biologically factual argumentative texts.
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Figure 11: Percentage distribution of model response types under few-shot settings for prompts with all distractors
for the set of biologically factual argumentative texts.
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Figure 12: Task 1: Accuracy versus number of distractors and scheme in the zero-shot setting. Lines connect the
average values for each model, with error bars representing the range (min-max).
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Figure 13: Task 1: Accuracy versus number of distractors and scheme in the few-shot setting. Lines connect the
average values for each model, with error bars representing the range (min-max).
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Figure 14: Task 2: Reasoning accuracy versus number of distractors and scheme in the zero-shot setting. Lines
connect the average values for each model, with error bars representing the range (min-max).
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Figure 15: Task 2: Reasoning accuracy versus number of distractors and scheme in the few-shot setting. Lines
connect the average values for each model, with error bars representing the range (min-max).

Model ZS FS
Non-empty
output

Irrelevant
text

Following
instruction

Acc. Recall Precision F1 Faith. Non-empty
output

Irrelevant
text

Following
instruction

Acc. Recall Precision F1 Faith.

BioMistral-7B 0.00 - - - - - - - 0.00 - - - - - - -

Meta-Llama-3-8B 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.06 0.38 0.19 0.25 0.23 0.24 0.08
Meta-Llama-3-8B-Instruct 1.00 0.93 0.07 0.06 0.07 0.06 0.06 0.01 1.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00

Mistral-7B-Instruct-v0.2 1.00 0.08 0.92 0.51 0.70 0.51 0.59 0.43 1.00 0.18 0.82 0.54 0.60 0.53 0.57 0.53
Mistral-7B-v0.1 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.16 0.01 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 1.00 0.37 0.63 0.51 0.40 0.51 0.45 0.33 1.00 0.06 0.94 0.68 0.62 0.70 0.66 0.56

Gemma-7b 0.79 0.15 0.64 0.34 0.56 0.39 0.46 0.09 0.99 0.02 0.97 0.75 0.97 0.68 0.80 0.53
Gemma-7b-it 1.00 0.00 1.00 0.67 0.73 0.65 0.69 0.63 1.00 0.08 0.92 0.62 0.43 0.70 0.53 0.39

Table 4: Task 1: Distribution of model response types and performance outcomes across two experimental
settings—ZS and FS, considering all distractor conditions (n distractors from 0 to 5), for all syllogistic schemes
within biologically factual argumentative texts. Response types include: non-empty outputs, irrelevant text
generation, and outputs adhering to the given instructions.
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Scheme Model Recall Precision F1-score Accuracy
ZS FS ZS FS ZS FS ZS FS

disjunctive
syllogism

All models 0.11 0.24 0.11 0.25 0.11 0.25 0.12 0.27
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.01 0.43 0.01 0.33 0.01 0.38 0.01 0.29
Meta-Llama-3-8B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mistral-7B-Instruct-v0.2 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.08
Mistral-7B-v0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 0.11 0.42 0.18 0.98 0.13 0.59 0.30 0.71
Gemma-7b 0.65 1.00 0.41 0.56 0.50 0.72 0.35 0.61
Gemma-7b-it 0.08 0.02 0.13 0.34 0.10 0.03 0.26 0.49

generalized
contraposition

All models 0.39 0.38 0.33 0.34 0.35 0.36 0.30 0.31
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.01 0.46 0.01 0.35 0.01 0.39 0.01 0.29
Meta-Llama-3-8B-Instruct 0.10 0.00 0.09 0.00 0.10 0.00 0.06 0.00
Mistral-7B-Instruct-v0.2 0.97 0.39 0.61 0.44 0.75 0.41 0.67 0.45
Mistral-7B-v0.1 0.00 0.1 0.00 0.01 0.00 0.01 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 0.61 0.45 0.72 0.55 0.67 0.49 0.69 0.54
Gemma-7b 0.42 1.00 0.32 0.50 0.36 0.67 0.26 0.51
Gemma-7b-it 0.98 0.74 0.61 0.71 0.75 0.73 0.68 0.72

generalized
dilemma

All models 0.37 0.48 0.32 0.41 0.34 0.45 0.28 0.40
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.01 0.61 0.01 0.45 0.01 0.52 0.00 0.43
Meta-Llama-3-8B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mistral-7B-Instruct-v0.2 0.91 0.86 0.51 0.58 0.65 0.69 0.52 0.62
Mistral-7B-v0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 0.48 0.63 0.85 0.79 0.61 0.70 0.70 0.73
Gemma-7b 0.79 1.00 0.45 0.53 0.58 0.70 0.42 0.56
Gemma-7b-it 0.82 0.79 0.59 0.89 0.69 0.84 0.63 0.85

generalized
modus ponens

All models 0.51 0.50 0.43 0.45 0.47 0.47 0.41 0.44
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.00 0.59 0.00 0.44 0.00 0.50 0.00 0.41
Meta-Llama-3-8B-Instruct 0.75 0.03 0.48 0.03 0.59 0.03 0.47 0.02
Mistral-7B-Instruct-v0.2 0.80 0.99 0.65 0.73 0.72 0.84 0.69 0.82
Mistral-7B-v0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 0.91 1.00 0.80 0.97 0.85 0.98 0.84 0.98
Gemma-7b 0.91 1.00 0.56 0.63 0.69 0.78 0.59 0.71
Gemma-7b-it 0.74 0.37 0.69 0.64 0.71 0.47 0.70 0.58

generalized
modus tollens

All models 0.40 0.28 0.34 0.28 0.36 0.28 0.31 0.29
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.01 0.48 0.01 0.40 0.01 0.43 0.01 0.37
Meta-Llama-3-8B-Instruct 0.32 0.00 0.26 0.00 0.28 0.00 0.20 0.00
Mistral-7B-Instruct-v0.2 0.70 0.42 0.57 0.49 0.63 0.45 0.59 0.49
Mistral-7B-v0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 0.50 0.14 0.41 0.26 0.45 0.18 0.39 0.37
Gemma-7b 0.92 1.00 0.49 0.55 0.64 0.71 0.48 0.60
Gemma-7b-it 0.71 0.17 0.83 0.42 0.77 0.24 0.78 0.47

hypothetical
syllogism 1

All models 0.36 0.37 0.32 0.36 0.34 0.37 0.30 0.36
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.01 0.54 0.01 0.42 0.01 0.47 0.01 0.40
Meta-Llama-3-8B-Instruct 0.16 0.00 0.14 0.00 0.15 0.00 0.10 0.00
Mistral-7B-Instruct-v0.2 0.59 0.42 0.40 0.44 0.48 0.43 0.35 0.44
Mistral-7B-v0.1 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Mixtral-8x7B-Instruct-v0.1 0.55 0.36 0.72 0.97 0.63 0.53 0.67 0.67
Gemma-7b 0.74 1.00 0.48 0.56 0.58 0.72 0.46 0.61
Gemma-7b-it 0.80 0.62 0.77 0.85 0.78 0.72 0.78 0.76

hypothetical
syllogism 3

All models 0.30 0.29 0.26 0.28 0.28 0.28 0.23 0.27
BioMistral-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Meta-Llama-3-8B 0.00 0.45 0.00 0.34 0.00 0.39 0.00 0.29
Meta-Llama-3-8B-Instruct 0.04 0.00 0.03 0.00 0.03 0.00 0.03 0.00
Mistral-7B-Instruct-v0.2 0.48 0.13 0.49 0.21 0.49 0.16 0.49 0.32
Mistral-7B-v0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mixtral-8x7B-Instruct-v0.1 0.15 0.23 0.16 0.31 0.15 0.27 0.20 0.36
Gemma-7b 0.84 1.00 0.46 0.55 0.59 0.71 0.42 0.59
Gemma-7b-it 0.87 0.54 0.62 0.54 0.72 0.54 0.67 0.54

Table 5: Results from Task 1 baseline models on the
biologically factual argumentative texts set (without
synthetic data and without distractors, bold - the best
and worst accuracy values for each model).

Scheme
Gemma-7b Gemma-7b-it

Mistral-7B
Instruct-v0.2

Mixtral-8x7B
Instruct-v0.1

r p-val r p-val r p-val r p-val

ZS

disjunctive
syllogism

-0.497 0.013 0.432 0.035 0.405 0.050 0.418 0.042

generalized
contraposition

-0.495 0.014 0.155 0.469 -0.397 0.055 0.229 0.282

generalized
dilemma

-0.643 0.001 0.203 0.342 -0.282 0.182 0.049 0.819

generalized
modus ponens

-0.592 0.002 0.104 0.630 0.069 0.748 -0.026 0.902

generalized
modus tollens

-0.571 0.004 0.198 0.353 0.540 0.006 0.432 0.035

hypothetical
syllogism 1

-0.375 0.071 -0.268 0.205 0.115 0.594 0.012 0.954

hypothetical
syllogism 3

-0.465 0.022 0.211 0.321 -0.125 0.560 0.100 0.640

FS

disjunctive
syllogism

0.279 0.187 0.370 0.075 0.197 0.356 0.116 0.588

generalized
contraposition

0.511 0.011 -0.201 0.347 0.189 0.377 0.349 0.095

generalized
dilemma

0.462 0.023 -0.097 0.652 0.183 0.391 -0.046 0.831

generalized
modus ponens

0.455 0.025 0.051 0.812 0.011 0.961 0.023 0.914

generalized
modus tollens

0.568 0.004 0.224 0.292 0.419 0.041 0.391 0.059

hypothetical
syllogism 1

0.420 0.041 -0.314 0.135 0.056 0.793 -0.026 0.902

hypothetical
syllogism 3

-0.122 0.571 0.199 0.351 0.422 0.040 0.116 0.588

Table 6: Values of the Spearman’s Ranked Correlation
Coefficient (r) for Accuracy by Distractors and Syllogis-
tic Scheme for evaluated Models in Task 1: Spearman’s
correlation coefficients (r) and p-values for the accuracy
metric are shown across various levels of distractors and
syllogistic schemes for each model. Negative r values
reflect a decrease in accuracy with increasing distractor
complexity. The highest correlation values for each
scheme are highlighted in bold, indicating the models
most affected by distractors.

Scheme BioMistral-7B Meta-Llama-3-8B Meta-Llama-3-8B
Instruct

Mistral-7B
Instruct-v0.2 Mistral-7B-v0.1 Mixtral-8x7B

Instruct-v0.1 Gemma-7b Gemma-7b-it All models

ZS FS ZS FS ZS FS ZS FS ZS FS ZS FS ZS FS ZS FS ZS FS

disjunctive
syllogism

0.00 0.00 0.00 0.32 0.15 0.00 0.00 0.10 0.00 0.00 0.18 0.26 0.13 0.67 0.42 0.47 0.11 0.23

generalized
contraposition

0.00 0.00 0.00 0.16 0.15 0.00 0.33 0.21 0.00 0.00 0.20 0.04 0.18 0.27 0.43 0.32 0.16 0.13

generalized
dilemma

0.00 0.00 0.00 0.37 0.49 0.00 0.15 0.56 0.00 0.00 0.34 0.18 0.26 0.66 0.33 0.53 0.20 0.29

generalized
modus ponens

0.00 0.00 0.00 0.48 0.28 0.05 0.32 0.56 0.00 0.00 0.62 0.61 0.18 0.62 0.59 0.74 0.25 0.38

generalized
modus tollens

0.00 0.00 0.00 0.44 0.48 0.01 0.32 0.26 0.00 0.00 0.39 0.17 0.11 0.62 0.74 0.73 0.25 0.28

hypothetical
syllogism 1

0.00 0.00 0.00 0.40 0.45 0.00 0.31 0.39 0.00 0.00 0.55 0.21 0.31 0.54 0.68 0.51 0.29 0.26

hypothetical
syllogism 3

0.00 0.00 0.00 0.29 0.13 0.00 0.41 0.33 0.00 0.00 0.17 0.27 0.39 0.65 0.70 0.57 0.23 0.26

Table 7: Reasoning accuracy results from Task 2 base-
line models on the set of biologically factual argumen-
tative texts (without synthetic data and without distrac-
tors).
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Scheme
Gemma-7b Gemma-7b-it

Mistral-7B
Instruct-v0.2

Mixtral-8x7B
Instruct-v0.1

r p-val r p-val r p-val r p-val

ZS

disjunctive
syllogism

-0.943 0.005 0.029 0.957 -0.086 0.872 0.486 0.329

generalized
contraposition

-0.943 0.005 -1.000 0.000 -0.829 0.042 0.429 0.397

generalized
dilemma

-1.000 0.000 -0.086 0.872 1.000 0.000 0.314 0.544

generalized
modus ponens

-0.943 0.005 -1.000 0.000 0.543 0.266 0.771 0.072

generalized
modus tollens

-0.943 0.005 -0.829 0.042 0.829 0.042 0.771 0.072

hypothetical
syllogism 1

-1.000 0.000 -1.000 0.000 0.029 0.957 -0.486 0.329

hypothetical
syllogism 3

-0.886 0.019 -0.943 0.005 -0.943 0.005 0.029 0.957

FS

disjunctive
syllogism

-1.000 0.000 -0.543 0.266 0.829 0.042 -0.143 0.787

generalized
contraposition

-0.086 0.872 -0.943 0.005 -0.943 0.005 0.829 0.042

generalized
dilemma

-0.657 0.156 -0.943 0.005 -0.829 0.042 0.943 0.005

generalized
modus ponens

0.371 0.468 -0.886 0.019 0.600 0.208 0.829 0.042

generalized
modus tollens

0.486 0.329 -1.000 0.000 0.371 0.468 0.257 0.623

hypothetical
syllogism 1

-0.086 0.872 -0.943 0.005 0.314 0.544 0.829 0.042

hypothetical
syllogism 3

-1.000 0.000 -1.000 0.000 -0.943 0.005 -0.486 0.329

Table 8: Values of the Spearman’s Ranked Correlation
Coefficient (r) for Accuracy by Distractors and Syllogis-
tic Scheme for evaluated Models in Task 2: Spearman’s
correlation coefficients (r) and p-values for the reason-
ing accuracy metric are shown across various levels
of distractors and syllogistic schemes for each model.
Negative r values reflect a decrease in accuracy with
increasing distractor complexity. The highest correla-
tion values for each scheme are highlighted in bold,
indicating the models most affected by distractors.
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