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Abstract

Language agents powered by large language
models (LLMs) are increasingly valuable as
decision-making tools in domains such as gam-
ing and programming. However, these agents
often face challenges in achieving high-level
goals without detailed instructions and in adapt-
ing to environments where feedback is de-
layed. In this paper, we present SELFGOAL, a
novel automatic approach designed to enhance
agents’ capabilities to achieve high-level goals
with limited human prior and environmental
feedback. The core concept of SELFGOAL in-
volves adaptively breaking down a high-level
goal into a tree structure of more practical sub-
goals during the interaction with environments
while identifying the most useful subgoals and
progressively updating this structure. Exper-
imental results demonstrate that SELFGOAL
significantly enhances the performance of lan-
guage agents across various tasks, including
competitive, cooperative, and deferred feed-
back environments1.

1 Introduction

The advancement of large language models
(LLMs) (Brown et al., 2020; OpenAI, 2022, 2024)
has enabled the construction of autonomous lan-
guage agents (or LLM-based agents) to solve
complex tasks in dynamic environments with-
out task-specific training. In reality, these au-
tonomous agents are often tasked with very
broad, high-level goals, such as “winning
the most money” or “succeeding in a
competition”, whose ambiguous nature and de-
layed reward raise great challenges for autonomous
task-solving. More importantly, it is not always
practical to frequently retrain models with lim-
ited generalizability to adapt to new goals and
tasks (Zheng et al., 2023; Khot et al., 2023; Prasad

*Corresponding authors. †Now at ByteDance Seed.
1Project page: https://selfgoal-agent.

github.io.

et al., 2024). Therefore, a critical question arises:
How can we enable autonomous language agents
to consistently achieve high-level goals without
training?

Previous works focus on creating two types of
auxiliary guidance in the instructions for language
agents to achieve high-level goals in tasks: prior
task decomposition and post-hoc experience sum-
marization. The former involves decomposing
the task before acting, utilizing prior knowledge
from LLMs to break down high-level goals into
more tangible subgoals related to specific actions
at hand (Yuan et al., 2023; Zheng et al., 2023;
Singh et al., 2024; Liu et al., 2024). However,
this line of work does not ground these subgoals
into the environment during interaction, resulting
in the loss of empirical guidance. In contrast, the
latter allows agents to interact directly with en-
vironments and summarize valuable experiences
from history (Madaan et al., 2023; Majumder et al.,
2023; Zhao et al., 2024; Paul et al., 2024), e.g., “X
contributes to Y”. However, the difficulty of induc-
ing rules from experience causes the guidance to
be simple and unstructured, making it difficult to
prioritize or adjust strategies effectively.

A natural solution to combine the best of both
worlds is to dynamically decompose the task and
its high-level goal during interaction with the envi-
ronment. This approach requires an agent to build
and use guidelines that vary in detail and aspect.
A tree structure is ideal for this requirement, as
it allows hierarchical organization, providing both
broad overviews and detailed guidance as needed.
However, this approach presents two major chal-
lenges: 1) Not all nodes are relevant to the current
context during task execution, which requires se-
lecting the most suited nodes to guide current ac-
tions. For example, “watch for bargains”
is a more prudent choice than “bid on the
most expensive item” when budget is tight;
2) The granularity of guidance provided by nodes
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Figure 1: An overview of SELFGOAL, illustrated with a bargaining example. The agent interacts with environments,
and make actions based on environmental feedback and the GOALTREE dynamically constructs, utilizes and updates
with Search and Decompose Modules.

increases with tree depth, yet the appropriate detail
level varies across scenarios, making a fixed tree
depth not general. For example, a generic guide-
line like “earn more money” is not useful in
auctions.

To tackle these challenges, we propose SELF-
GOAL, a self-adaptive framework for a language
agent to utilize both prior knowledge and environ-
mental feedback to achieve high-level goals. The
main idea is to build a tree of textual subgoals,
where agents choose appropriate ones as the guide-
lines to the prompt based on the situation. Specifi-
cally, as shown in Figure 1, SELFGOAL is featured
with three main modules to operate a GOALTREE,
which is constructed, utilized and updated during
task execution: 1) Search Module is prompted to
select the top-K most suited nodes of goals based
on the provided current state and existing nodes
in GOALTREE, which utilizes the prior knowledge
of LLMs; 2) Act Module takes as input the se-
lected subgoals as guidelines, and prompts LLMs
for actions for the current state; 3) Decomposition
Module breaks down selected goal nodes into a list
of more concrete subgoals as subsequent leaves,
ensuring an adaptive self-growth of GOALTREE.
Note that we filter out the redundant nodes during
decomposition based on the textual similarity be-
tween new ones and the existing nodes of goals.
Extensive experiments in various competition and
collaboration scenarios show that SELFGOAL pro-

vides precise guidance for high-level goals and
adapts to diverse environments, significantly im-
proving language agent performance.

In summary, our contributions in this paper are
as follows:

• We target the challenge of enabling autonomous
language agents to consistently achieve high-
level goals without the need for frequent retrain-
ing.

• We introduce SELFGOAL, a self-adaptive frame-
work that constructs, utilizes, and updates a
GOALTREE to dynamically decompose a task’s
high-level goals into subgoals during interaction
with the environment.

• We conduct extensive experiments in both collab-
orative and competitive scenarios where agents
tend to deviate from their goals. The results
demonstrate that SELFGOAL significantly en-
hances the capability of language agents to ad-
here to high-level goals consistently.

2 Related Work

Learning from Feedback Recently, LLMs have
become a promising tool for building goal-directed
language agents (Huang et al., 2022a). With textual
input that includes the world state, task, and interac-
tion history, language agents are to decide the next
action to achieve a goal (Lin et al., 2023; Yao et al.,
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2023). Several studies have explored enhancing
the reasoning and planning abilities of language
agents through feedback from environments. For
example, Reflexion (Shinn et al., 2023) enables an
agent to reflect on its failures and devise a new
plan that accounts for previous mistakes. Similarly,
Voyager (Wang et al., 2023a) operates in Minecraft,
developing a code-based skill library from detailed
feedback on its failures. Recent works (Majumder
et al., 2023; Nottingham et al., 2024) analyze both
failures and successes attempts, summarizing a
memory of causal abstractions. However, learn-
ings directly from feedback are often too general
and not systematic, making it difficult to prioritize
strategies effectively.

LLMs for Decision Making LLMs are increas-
ingly used as policy models for decision-making
in interactive environments such as robotics (Ahn
et al., 2022; Huang et al., 2022b; Liu et al., 2023),
textual games (Wang et al., 2023b; Zhang et al.,
2024; Xie et al., 2024; Ma et al., 2024), and so-
cial tasks (Zhou et al., 2024). However, the goals
in these environments, like “find a fruit” in
ScienceWorld (Wang et al., 2022), are often sim-
ple and specific. For long-term, high-level goals,
LLMs struggle to perform effectively (Hoang et al.,
2021; Huang et al., 2019), and additional modules
are needed for support(Zheng et al., 2023). In our
work, we use a method that does not require updat-
ing LLM parameters, enabling language agents to
consistently pursue high-level goals during interac-
tions with environments.

Decomposition and Modularity Decomposing
complex decision-making tasks into sub-tasks is a
traditional method that enhances LLM task-solving
capabilities (Barto and Mahadevan, 2003; Pellier
et al., 2023). Approaches like Hierarchical Task
Networks leverage domain knowledge, including a
hand-specified library of plans, to simplify complex
problems (Erol et al., 1994). Recently, some studies
have assigned LLMs the role of decomposing goals.
For example, Decomposed Prompting (Khot et al.,
2022) uses a few-shot prompting approach to tackle
multi-step reasoning tasks by breaking them into
a shared library of prompts. OKR-Agent (Zheng
et al., 2023) utilizes self-collaboration and self-
correction mechanisms, supported by hierarchi-
cal agents, to manage task complexities. ADAPT
(Prasad et al., 2024) enables LLMs to recursively
re-decompose goals based on feedback in decision-
making tasks. However, these approaches often

decompose tasks before interaction with the envi-
ronments, resulting in a lack of grounded, dynamic
adjustment. To address this, we aim to combine
modular goal decomposition with learning from
environmental feedback.

3 Methodology

Algorithm 1: Workflow of SELFGOAL

Data: Environment E, Main Goal groot, Threshold ξ,
Stopping criterion

1 Set Time step t = 0
2 Initialize Environment state s0
3 Initialize prompt pt and Actor Ma with policy

πθ(at∣st−1), θ = {pt}
4 Generate initial GOALTREE: T = {groot}
5 Let gi,j represent the jth node at ith layer on T
6 while t ≤ MaxStep do
7 subgoals = SEARCH(Tleafnodes, st−1)

// Add subgoals to prompt
8 pt ← {pt, subgoals}
9 {at, st} = ACT(st−1, pt)

10 while Stopping criterion not met do
11 foreach gi,j ∈ subgoals do
12 G← DECOMPOSE(gi,j ,{at, st})

// Update T
13 foreach g ∈ G do
14 if cosine(g,Tleafnodes) < ξ then

// Add g as a child
node of gi,j

15 gi,j ← gi,j ∪ g
16 Increment t

17 return

When executing complex tasks with high-
level goals (e.g., “forecast future
stock prices”), humans usually decom-
pose it into specific detailed subgoals (e.g.,
“gather historical price data
and adjust predictions based on
recent market events”) for effective
execution (Goffaux et al., 2011). Inspired from this
idea, we propose SELFGOAL in this paper, which
is a non-parametric learning approach for language
agents to exploit and achieve high-level goals.
SELFGOAL conducts a top-down hierarchical
decomposition of the high-level goal, with a
tree of nodes representing useful guidance for
decision-making.

In this section, we first provide an overview of
how SELFGOAL works in §3.1. Next, we explain
the details of three key modules (Search, Act and
Decompose) in SELFGOAL that help maintain a
tree of subgoals (GOALTREE) in §3.2 and guide
task execution.
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3.1 Overview of SELFGOAL

Problem Formulation: Tasks with High-level
Goals First, we formulate the features of our
studied tasks, requiring an agent to interact with a
dynamic environment and evaluated based on the
achievement of the high-level goal. We focus on
the scenarios where an actor model Ma aims to
achieve a high-level goal g0 in an environment E
through interaction. The policy employed by Ma

is denoted as πθ. At each timestep t, πθ generates
an action at, and the environment E returns a state
st. This action-state pair {at, st} is then utilized
to update πθ. Note that SELFGOAL also supports
accomplishing long-horizon tasks that do not al-
ways have immediate rewards. In this case, only
by completing the task Ma will be evaluated with a
score according to the achievement of the goal g0.

Workflow of SELFGOAL SELFGOAL is a non-
parametric learning algorithm for language agents,
i.e., without parameter update. The workflow of
SELFGOAL is shown at Algorithm 1. It models
the policy πθ = p by treating p as the instruction
prompt provided to the actor model Ma, where
actions are generated as at ∼ πθ(at∣st−1). The
policy πθ adapts through updates to p, specifically
by modifying subgoal instructions gi,j (where gi,j
represents the jth node at ith layer) to better suit
the current situation. Concretely, SELFGOAL is
featured with three key modules, Search, Act, and
Decomposition, which construct and utilize a sub-
goal tree T respectively, namely GOALTREE, to in-
teract with the environment2. Setting the high-level
goal of the task as the root node in GOALTREE,
Search Module finds the nodes that are helpful for
the status quo, Act Module utilize chosen nodes to
take actions, Decomposition Module decomposes
the chosen nodes into subgoals as leaf nodes if
they are not clear enough based on the environment
feedback.

3.2 Details in SELFGOAL

Search: Identifying Useful Subgoals for the Cur-
rent Situation In the Search module of SELF-
GOAL, we ask the backbone LLM of the agent
to identify the most appropriate subgoal for the
current situation, e.g., “Select K most useful sub-
goals that will help you reach your main goal in
the current situation...” (see Appendix A.2 for the
complete prompt). We represent the current state

2Details of context length required by three key modules
are in Appendix A.1.

st−1 as a description of the dialogue history of the
interaction with the environment. We also find the
leaf nodes of each branch in GOALTREE as the sub-
target candidate list for LLMs to decide which ones
are useful. The LLM then selects K most suitable
subgoals, followed by the update of the instruction
prompt pt at this step.

Act: Utilizing Subgoals to Take Actions Af-
ter getting the subgoals from GOALTREE that are
found by SELFGOAL as useful, the actor Ma takes
action at to interact with the environment. This
action is based on the updated instruction prompt
pt, leading to an updated state st. The prompt of
this step can also be found in Appendix A.2.

Decompose: Refine GOALTREE to Adapt to the
Environment Based on the updated action-state
pair {at, st}, GOALTREE is updated through de-
composition if it is not specific enough for use-
ful guidance to the agent. We use the backbone
LLM to break down the selected subgoal gi,j in the
Search Module (initially set to g0). We prompt the
LLM with the instruction such as “What subgoals
can you derive from {gi,j}, based on {at, st}”,
which generates a new set of subgoals G (see also
Appendix A.2). To control the granularity of these
subgoals, we apply a filtering mechanism that if the
cosine similarity (Rahutomo et al., 2012) between
a new subgoal and existing subgoals exceeds ξ, the
current node will not be updated. Otherwise, we
add the new subgoals under the current node, thus
expanding the GOALTREE. Moreover, a stopping
mechanism is designed that if no new nodes are
added to the GOALTREE for N consecutive rounds,
the update is stopped.

4 Experimental Setup

4.1 Tasks and Environments
Task Rounds Task Type

Public Goods Game Single Competitive
Guess 2/3 of the Average Single Cooperative
First-price Auction Multiple Competitive
Bargaining Multiple Cooperative

Table 1: The categorization of studied tasks.

We evaluated SELFGOAL in four dynamic tasks
with high-level goals, including Public Goods
Game, Guess 2/3 of the Average, First-price Auc-
tion, and Bargaining, which are implemented by
existing work (Huang et al., 2024; Chen et al., 2023;
Lewis et al., 2017). As seen in Table 1, they are ei-
ther single-round or multi-round games, requiring
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the collaboration or competition of multiple agents.
Note that agents in multi-round games will only
receive delayed rewards at the end of the game. In
our experiments, we repeat single-round games for
T = 20 times and multi-round games for T = 10
times for stable results.

Public Goods Game: GAMA-Bench We use
GAMA-Bench (Huang et al., 2024) as the imple-
mented environment for this game. Specifically,
each of N = 5 players privately decides the number
of tokens contributed to a public pot. The tokens in
the pot are multiplied by a factor R (1 ≤ R ≤ N),
and the created “public good” is distributed evenly
among all players. Players keep any tokens they
do not contribute. A simple calculation reveals that
for each token a player contributes, their net gain is
R
N −1 (i.e., income-contribution). Since this value is
negative, it suggests that the most rational strategy
for each player is to contribute no tokens. This strat-
egy results in a Nash equilibrium (Daskalakis et al.,
2009) in the game. N agents using the same back-
bone model and equipped with the same method
(e.g., CLIN or SELFGOAL) play games with each
other to observe group behavior. Following (Huang
et al., 2024), we set R = 2.

Guess 2/3 of the Average: GAMA-Bench Us-
ing the implementation of GAMA-Bench (Huang
et al., 2024), N players independently choose a
number between 0 and 100 (Ledoux, 1981), and
whoever has the number closest to two-thirds of
the group’s average wins the game. This setup ef-
fectively tests players’ theory-of-mind (ToM) abili-
ties (Kosinski, 2023; Mao et al., 2023). In behav-
ioral economics, the Cognitive Hierarchy Model
(Camerer et al., 2004) categorizes players as fol-
lows: Level-0 players choose numbers randomly.
Level-1 players assume others are Level-0 and pick
two-thirds of an expected mean of 50. Level-k
players believe that the participants include lev-
els 0 to k − 1, and therefore choose (2/3)k × 50.
The optimal outcome is to choose 0 for all players,
achieving a Nash equilibrium. In this game, N = 5
agents using same backbone model with the same
prompting method (e.g., SELFGOAL) play games
with each other to observe group behavior.

First-price Auction: AucArena We use Au-
cArena (Chen et al., 2023) as the implementation
of first-price auctions. An auctioneer collects and
announces the bids of all participants, revealing
the current highest bid. Participants must publicly

make their decisions after privately considering
their bids. The auction comprises if K = 15 items
with values ranging from $2,000 to $10,000, with
an increment of $2,000 between each item. These
items are presented in a randomized sequence, mak-
ing the auction last for K = 15 rounds. N = 4
agents participate in the auction as bidders. Each
agent aims to secure the highest profit by the end
of the auction and thereby outperform all competi-
tors. In our experiment, we set the budget for each
bidder at $20,000. We have an agent, enhanced
by various methods (e.g., SELFGOAL), using dif-
ferent backbone models to compete against three
identical opponents powered by the same model
(GPT-3.5 (OpenAI, 2022)).

Bargaining: DealOrNotDeal We use
DealOrNotDeal (Lewis et al., 2017) to im-
plement the bargaining over multiple issues. N = 2
agents, namely Alice and Bob, are presented with
sets of items (e.g., books, hats, balls) and must
negotiate their distribution. Each agent is randomly
assigned an integer value between 0 and 10 for
each item, ensuring that the total value of all items
for any agent does not exceed 10. The bargaining
goes on for K = 10 rounds, and if the agents fail to
agree on the distribution of items within 10 rounds,
neither party profits. The goal is to minimize
profit discrepancies between the two agents. We
randomly select M = 50 items for Alice and Bob
to negotiate over. The final profits at the end of
the negotiation for Alice and Bob are defined as
PAlice and PBob, respectively. Note that, we alter
the prompting methods of the agent behind Alice,
and keep Bob fixed (GPT-3.5).

4.2 Agent Framework Baselines and
Backbone LLMs

We adopt two types of agent frameworks pro-
viding guidance for achieving high-level goals
in the above tasks.3 One is task decomposi-
tion framework, including ReAct (Yao et al.,
2023) and ADAPT (Prasad et al., 2024). Re-
Act enables agents to reason before acting, while
ADAPT recursively plans and decomposes com-
plex sub-tasks when the LLM cannot execute
them. Another is experience summarization
framework, including Reflexion (Shinn et al., 2023)
and CLIN (Majumder et al., 2023). Reflexion
prompts agents to reflect on failed task attempts and
retry. CLIN creates a memory of causal abstrac-

3Implementation details are in Appendix A.3.

803



tions to assist trials in future by reflecting on past
experiences, expressed as “A [may/should]
be necessary for B.”. To drive these
language agent frameworks, we use the fol-
lowing LLMs: GPT-3.5-Turbo (gpt-3.5-turbo-
1106) (OpenAI, 2024) and GPT-4-Turbo (gpt-
4-1106-preview) (OpenAI, 2024); Gemini 1.0
Pro (Team et al., 2023); Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) and a Mixture of Experts
(MoE) model Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024); Qwen 1.5 (7B and 72B variants) (Bai
et al., 2023). The temperature is set to 0 to mini-
mize randomness.

4.3 Metrics for Tasks

In GAMA-Bench’s Public Goods Game (Huang
et al., 2024), where N players participating in re-
peated T times, the score S1 for this game is then
given by: S1 = 1

NT ∑ij Ci,j , where Ci,j ∈ [0,1] is
the proposed contribution of player i in round j.

In GAMA-Bench’s Guess 2/3 of the Average
Game (Huang et al., 2024), the score S2 is calcu-
lated by S2 = 100 − 1

NT ∑ij Ci,j , where Ci,j is the
number chosen by player i in round j.

In AucArena’s First-price Auction (Chen et al.,
2023), we use the TrueSkill Score (Herbrich et al.,
2006; Minka et al., 2018) (Appendix A.4) to rank
the profits of agents. TrueSkill Score estimates
dynamic skill levels (µ) through Bayesian statistics
while considering the uncertainty (σ) in their true
skills. Thus the performance score of an agent
is defined as S3 = TrueSkill Score. This method
is commonly used in competitions such as online
games or tournaments.

In DealOrNotDeal’s Bargaining Game (Lewis
et al., 2017), we calculate the absolute difference in
their profits: S4 = ∣PAlice−PBob∣

M , where PAlice, PBob

represents the profits at the end of the negotiation,
and M is the number of items to negotiate on. (S4

can also be represented by TrueSkill Score for con-
venience.)

5 Results and Analysis

5.1 Main Results

The main results across 4 scenarios are presented
in Table 2. Overall, our SELFGOAL significantly
outperforms all baseline frameworks in various
environments containing high-level goals, where
larger LLMs produce higher gains. When diving
into the generated guidelines and corresponding
agents’ behaviors, we find that some of those

subgoals given by task decomposition methods
like ReAct and ADAPT are no longer suited for the
current situation. For example, “bid on the
most expensive item” is not useful when
the budget is tight. Moreover, task decomposition
before interacting with the environment does
not consider the practical experience, leading to
broad and meaningless guidance. For example, in
Public Goods Game, ADAPT provides broad sub-
goals like “It’s important to strike
a balance between contributing
enough tokens to the public pot
to earn a significant payoff
while retaining enough tokens in
my private collection for future
rounds”. In contrast, post-hoc experience
summarization methods, i.e., Reflexion and CLIN,
tend to induce too detailed guidelines, lacking a
correlation with the main goal and might deviating
agents from their paths. For example, CLIN
produces subgoals focusing on minutiae, such as
“Considering the distribution of
numbers chosen by opponents may
be necessary to make an informed
decision on your own selection.”

In comparison, SELFGOAL overcomes both
of the shortcomings. At each round, SELFGOAL

decomposes new nodes referring to existing
guidance, aligning with the main goal as the
game progresses. For example, in Public Good
Game, the initial subgoal is “The player
aims to contribute strategically
based on their assessment of
other players’ behaviors and the
overall distribution of tokens
in the public pot.” If all players
contribute less to the public pot during
the game, SELFGOAL absorbs the observa-
tion and refines existing nodes to “If the
player notices that the average
contribution of the group has
been increasing in recent rounds,
they might choose to contribute
fewer tokens in the current round
to avoid over-contributing and
potentially losing out on their
own gain.” According to the new subgoal as a
practical guideline, agents can dynamically adjust
their contributions.4

Interestingly, SELFGOAL shows superior perfor-

4Examples of GOALTREE are in Appendix A.5.
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Methods ReAct ADAPT Reflexion CLIN SELFGOAL ReAct ADAPT Reflexion CLIN SELFGOAL

Public Goods Game: GAMA (Huang et al., 2024) (S1 ↓) Guess 2/3 of the Average: GAMA (Huang et al., 2024) (S2 ↑)
Mistral-7B 55.70 46.00 51.28 41.00 28.45 89.43 84.91 92.65 91.95 93.64
Mixtral-8x7B 46.05 55.80 34.65 52.69 32.00 82.16 79.46 89.73 74.33 89.50
Qwen-7B 66.55 56.44 60.15 55.59 54.93 65.11 55.95 69.99 64.22 72.99
Qwen-72B 20.75 22.95 21.57 24.60 8.45 78.87 88.77 91.47 83.65 94.51

Gemini Pro 37.55 25.78 34.00 39.20 19.20 77.90 73.45 71.82 76.58 77.33
GPT-3.5 61.20 42.25 46.95 47.15 42.19 73.44 64.14 78.75 63.25 83.28
GPT-4 19.55 16.70 22.90 31.35 11.95 92.57 91.31 94.41 90.88 94.54

Methods ReAct ADAPT Reflexion CLIN SELFGOAL ReAct ADAPT Reflexion CLIN SELFGOAL

First-price Auction: AucArena (Chen et al., 2023) (S3 ↑) Bargaining: DealOrNotDeal (Lewis et al., 2017)(S4 ↓)
Mistral-7B 23.91 23.03 26.24 24.27 28.21 2.57 2.38 1.97 2.32 1.88
Mixtral-8x7B 35.85 32.35 33.18 36.37 39.23 2.38 2.66 2.46 2.34 1.97
Qwen-7B 29.88 30.15 32.97 33.44 33.50 2.83 2.88 3.15 2.73 2.05
Qwen-72B 34.77 34.25 35.92 34.24 36.48 2.59 2.10 2.06 2.26 2.00

Gemini Pro 36.12 36.47 38.82 36.79 39.28 2.10 2.33 2.28 2.36 1.95
GPT-3.5 22.85 22.10 22.00 21.21 27.40 2.31 2.95 2.44 2.87 2.20
GPT-4 36.46 35.40 34.41 38.98 39.02 1.94 1.80 1.92 1.83 1.71

Table 2: Comparison of the SELFGOAL powered by different models with alternative methods across four scenarios.
The best results are bolded, and the second best ones are underlined.

Model Overall Long Medium Short

GPT-3.5 13.67 2.94 15.71 28.47
w/ SELFGOAL 17.25 6.42 21.85 29.67

GPT-4o-mini 20.68 10.70 26.72 29.61
w/ SELFGOAL 24.34 15.14 31.50 31.00

Table 3: Average Scores of different methods on Sci-
enceWorld. We report performance on three difficult-
level groups based on the average length of the oracle
agent’s trajectories (Lin et al., 2023).

mance in smaller LLMs as well, while others can
not due to the deficiency of induction and summa-
rization capability of these models. For example,
CLIN is 0.7 inferior to Reflexion for Mistral-7B
and 5.77 for Qwen-7B in Guess 2/3 of the Average,
but SELFGOAL brings improvements consistently.
This can be attributed to the logical, structural ar-
chitecture of GOALTREE in SELFGOAL. At each
time for decomposition, the model receives exist-
ing subgoals on the last layer of GOALTREE as
clear references, making it easy for decomposition.

SELFGOAL enhances model performance in
complex, long-horizon scenarios. Our experi-
ments primarily focus on multi-agent social games,
highlighting the prediction of opponents’ dynamic
behaviors. However, it is also important to evaluate
single agents in complex, long-horizon environ-
ments that require interaction. For this, we use
ScienceWorld (Wang et al., 2022), an embodied AI
environment that demands long-term memory and
subtask decomposition. Results in Table 3 show
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Figure 2: Granularity control of the threshold ξ in SELF-
GOAL’s stopping mechanism.

that SELFGOAL outperforms the baseline across all
trajectory types, with particularly significant gains
in medium-trajectory tasks. This suggests that our
fine-grained, real-time guidance system effectively
enhances decision-making in extended tasks. More-
over, GPT-4 exhibits a marked improvement over
GPT-3.5 in longer trajectories, indicating that more
advanced models can leverage this guidance more
effectively.

5.2 Analysis of SELFGOAL

How does the granularity of guidelines in GOAL-
TREE affect task solving? As discussed in §5.1,
SELFGOAL adjusts to the dynamic environment by
setting different depths, where subgoal nodes of
deeper layers provide more detailed instructions.
Here, we explore how such granularity affects the
performance of SELFGOAL. We use Auction and
Bargaining environments as testbeds, and modify
the level of subgoals by setting the threshold ξ in
the stopping mechanism as 0.6, 0.7, 0.8, and 0.9.
According to Figure 2, the agent’s performance
initially improves with increasing depth but even-
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Figure 4: Ablation study of the model that generates
GOALTREE, either by a stronger (GPT-4) or weaker
(GPT-3.5) model. The rest of the agent framework is
driven by GPT-3.5.

tually diminishes. A shallow tree (ξ = 0.6) lacks
guidance details, thus leading to the poorest per-
formance. Yet, the deepest tree (ξ = 0.9) does
not show superior performance, probably because
repetitive guidance interferes with model selection
of useful guidance. Redundant nodes increase the
candidate set, making it difficult for the search mod-
ule to select all the valuable nodes. In fact, the
search module always focuses on multiple nodes
representing the same meaning, resulting in the
loss of other helpful nodes. This experiment con-
firms that more detailed instructions help language
agents achieve high-level goals, but only with a
balanced, adaptive depth of the guidance tree to
mitigate the drawbacks of overly detailed guidance.
We further conduct a case study in Appendix A.6
to demonstrate how SELFGOAL ’s focus on granu-
larity control provides distinct advantages5

How does the quality of GOALTREE affect goal
achievement? To explore the influence of GOAL-
TREE on SELFGOAL, we conduct an experiment
in Auction and Bargaining Games by replacing the
model that constructs GOALTREE with GPT-4 or
GPT-3.5 for comparison, while keeping the model
that utilizes the tree fixed as GPT-3.5. Results in
Figure 4 illustrate that higher-quality GOALTREE

(from GPT-4) significantly boosts the performance
of SELFGOAL, with gains of +2.87 in Auction and
+3.10 in Bargaining compared to one using GPT-

5We also perform an ablation study on the impact of prun-
ing GOALTREE, as well as the effect of GOALTREE’s quality
in Appendix A.7 and 5.2.
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Figure 5: Patterns of model behavior in repeated games.
(a): Adjustments in number predictions within the
Guessing Game. Our SELFGOAL shows improved ToM
abilities by converging to a guess of zero more quickly
in each round. (b): Fluctuations in contributions within
the Public Goods game. The agent equipped with SELF-
GOAL displays more rational behavior (i.e., achieving
a Nash equilibrium) by consistently contributing fewer
tokens than other methods.

3.5. This improvement comes from more abundant
and higher-quality guidance, generated by a strong
model equipped with better understanding and sum-
marizing capabilities.

Can the Search Module in SELFGOAL succeed
in finding useful subgoal nodes? We employ
two methods as baselines to replace the original
LLM-based search module, which is instantiated
with GPT-3.5. One baseline is random selection,
where we randomly choose an node from the set of
subgoal nodes. The other is the selection based on
embedding similarity, which selects the subgoals
most similar to the current situation based on cosine
similarity. On multi-round games as Auction and
Bargaining, we keep the Trueskill Score for eval-
uating the rankings of these methods. As shown
in Figure 3, the LLM search module gains a bet-
ter score in both games. Besides, similarity-based
method performs worse than random selection in
Bargaining, which could be the reason that the
guidance is usually short, making it hard to capture
semantic embeddings between subgoals and situa-
tions. This experiment demonstrates the rationality
of the LLM-based search module in SELFGOAL’s
design.

Can SELFGOAL improve the rationality in
agents’ behaviors? Aside from the final perfor-
mance gain, we are also interested in whether each
agent behavior at every turn benefits from SELF-
GOAL. Therefore, we use two games from GAMA-
Bench to examine the impact of SELFGOAL on
model behavior, where behavioral changes are eas-
ier to evaluate. Here, we use LLMs with great
improvement from SELFGOAL, i.e., Mistral-7B for
Public Goods Game and Qwen-72B for Guessing
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2/3 Average Number Game. We record patterns in
the model’s number predictions and token contri-
butions by visualizing data from 20 repeated ex-
periments. Note that GOALTREE is updated across
these 20 rounds of games. With SELFGOAL, agents
in the Public Goods scenario consistently act more
rationally compared to those using alternative meth-
ods, as illustrated in Figure 5(a). For the Guessing
Game, enhanced models showed smoother, steadily
declining curves, indicating faster convergence to
the Nash equilibrium (Figure 5(b)).

6 Conclusion

In this paper, we introduce SELFGOAL, an agent
framework that enhances the capabilities of LLMs
for achieving high-level goals across various dy-
namic tasks and environments. We demonstrate
that SELFGOAL significantly improves agent per-
formance by dynamically generating and refining
a hierarchical GOALTREE of contextual subgoals
based on interactions with the environments. Ex-
periments show that this method is effective in both
competitive and cooperative scenarios, outperform-
ing baseline approaches. Moreover, GOALTREE

can be continually updated as agents with SELF-
GOAL further engage with the environments, en-
abling them to navigate complex environments with
greater precision and adaptability.

Limitation

SELFGOAL incurs higher computational costs com-
pared to baseline methods but remains within a
reasonable range. Specifically, SELFGOAL re-
quires approximately five times the computational
resources of the baseline, as shown in Table 6.
However, this additional cost leads to a substan-
tial performance improvement, with SELFGOAL

achieving a TrueSkill gain of +5.9 over ReAct.
This demonstrates that the extra computational re-
sources are effectively utilized, while other meth-
ods, such as CLIN and ADAPT, fail to produce any
significant improvement.

Recent trends in the field highlight the impor-
tance of scaling inference-time computations to en-
hance model capabilities (Putta et al., 2024; Snell
et al., 2024), often incorporating complex tech-
niques like MCTS (Hao et al., 2023). Our ap-
proach, SELFGOAL, employs a tree structure that
aligns with these advancements, leveraging them
to deliver superior performance. Additionally, the
computational cost is closely tied to the number

of child nodes generated during GOALTREE con-
struction. By dynamically adjusting the number of
child nodes, we can better balance resource con-
sumption and performance. As shown in Table 7,
even with a minimal configuration of only two
child nodes, SELFGOAL surpasses baseline perfor-
mance. Notably, when using fewer child nodes, our
method consumes fewer computational resources
than ADAPT, which also relies on goal decomposi-
tion, while delivering better performance.

Besides, while SELFGOAL is effective for
smaller models, we acknowledge that its perfor-
mance may be limited by the models’ inherent chal-
lenges in understanding and summarizing complex
capabilities, which could prevent SELFGOAL from
fully realizing its potential.
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A SELFGOAL Details

A.1 Average context lengths required by three
key modules

Module AucArena Bargaining Guessing Game Public Goods
Actor 2174.61 566.11 715.25 1780.875
Searcher 2891.13 1556.17 2046.75 4656.51
Decomposer 2163.6 925.37 1045.17 2264.13

Table 4: Computational Efficiency of Different Methods
in Auction Per Round.

In the SELFGOAL framework, the entire tree is
not included in the instructions for the act, search,
and decompose modules. Instead, the prompt for
each module (actor, searcher, decomposer) is con-
structed as follows:

• Actor: Incorporates only five guidance points
into the original prompt.

• Searcher: Searches exclusively from the leaf
nodes.

• Decomposer: Sequentially decomposes nodes,
focusing on one node’s historical data at a time.

As shown in Table 4, the average context lengths
required by these modules for our tasks remain well
within the context limits of our base models.

A.2 Instruction Prompt Examples
The instruction prompts of three modules in SELF-
GOAL are presented in Listing 1.

Listing 1: The instruction prompts in SELFGOAL.
Decomposition Instruction:

# Main Goal
Humans exhibit numerous behaviors and
sub-goals, which can be traced back to
the primary aim of survival. For
instance:
1. Food Acquisition: To maintain
physical and mental functionality,
individuals seek nourishment. They
target foods with high energy and
nutritional values to augment their
health, thus enhancing survival
possibilities.
2. Shelter Construction: Safe and secure
housing is a fundamental human need. It
offers protection from potentially

harmful natural elements and potential
threats.

Imagine you are an agent in a {scene}.

Taking analogy from human behaviors, if
your fundamental objective in this
scenario is "{goal}", what sub-goals you
might have?

------------------------------

# Sub-Goal
Here’s the current scenario:

{scene}

------------------------------
For the goal: "{sub_goal}", can you
further run some deduction for fine-
grained goals or brief guidelines?

Search Instruction:

Here’s the current scenario:

{scene}

------------------------------
To better reach your main goal: {
objective}, in this context, please do
the following:
1.Evaluate how the sub-goals listed
below can assist you in reaching your
main goal given the present
circumstances.
Sub-goals:

{guidance}

2. Select {width} most useful sub-goals
that will help you reach your main goal
in the current situation, and note their
IDs.

Start by explaining your step-by-step
thought process. Then, list the {width}
IDs you’ve chosen, using the format of
this example: {{"IDs": [1, 3, 10, 21,
7]}}.

Task Solving Instruction:
Here is the current scenarios:

{scene}

------------------------------
Here are some possible subgoals and
guidance derived from your primary
objective {main_goal}:

{sub_goals}

In this round, You may target some of
these subgoals and detailed guidance to
improve your strategy and action, to
achieve your primary objective.

We implemented CLIN and Reflexion methods in
our environments as presented in Listing 2.

Listing 2: The instructions for Reflexion and CLIN.
REFLEXION Instruction:

You are an advanced reasoning agent that
can improve based on self refection.

Review and reflect on the historical
data.
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{data_log}

Based on the history record, in a few
sentences, diagnose a possible reason
for failure or phrasing discrepancy and
devise a new, concise, high level plan
that aims to mitigate the same failure.
Use complete sentences.

CLIN Instruction:

Review and reflect on the historical
data.

{data_log}

Here are your past learnings:

{past_learnings}

Based on the history record, formulate
or update your learning points that
could be advantageous to your strategies
in the future. Your learnings should be
strategic, and of universal relevance

and practical use for future auctions.
Consolidate your learnings into a
concise numbered list of sentences.
Each numbered item in the list can ONLY
be of the form:
X MAY BE NECCESSARY to Y.
X SHOULD BE NECCESSARY to Y.
X MAY BE CONTRIBUTE to Y.
X DOES NOT CONTRIBUTE to Y.

A.3 Implementation Details

We compare our SELFGOAL with the following
methods: ReAct (Yao et al., 2023), which induces
an LLM actor to engage in preliminary reason-
ing about the task before initiating action, Reflex-
ion (Shinn et al., 2023), which encourages an LLM
actor to re-assess unsuccessful task attempts before
attempting the task again, CLIN (Majumder et al.,
2023), which leverages historical insights to deduce
transition strategies, articulated as “A [may/should]
be necessary for A”. To adapt these methods to our
experimental environment, we update the memory
of the CLIN/Reflexion approach at each timestep
within a single trial, whether it is a bid in the Auc-
tion environment, a dialogue round in the Nego-
tiation environment, or a game round in GAMA-
Bench. Specifically, for Reflexion, the model uses
historical steps from the current trial to generate
verbal self-reflections. These self-reflections are
then added to long-term memory, providing valu-
able feedback for future trials. In the case of CLIN,
we use the BASE method due to the absence of
a training set in our environment. The memory
is updated at each step by prompting the model
with historical steps from the current trial and all

previous memories to generate an updated mem-
ory, which includes a new list of semi-structured
causal abstractions. This updated memory is then
incorporated into the historical memories.

A.4 Details of TrueSkill Score
In a game with a population of n players{1, . . . , n}, consider a match where k teams com-
pete. The team assignments are specified by k
non-overlapping subsets Aj ⊂ {1, . . . , n} of the
player population, with Ai ∩Aj = ∅ for i ≠ j. The
outcome r ∶= (r1, . . . , rk) ∈ {1, . . . , k} is defined
by a rank rj for each team j, with r = 1 indicating
the winner and draws possible when ri = rj . Ranks
are based on the game’s scoring rules.

The probability P (r ∣ s,A) of the game out-
come r is modeled given the skills s of the par-
ticipating players and the team assignments A ∶={A1, . . . ,Ak}. From Bayes’ rule, we get the poste-
rior distribution

p(s ∣ r,A) = P (r ∣ s,A)p(s)
P (r ∣ A) .

We assume a factorizing Gaussian prior distribu-
tion, p(s) ∶= ∏n

i=1N (si;µi, σ
2
i ). Each player

i is assumed to exhibit a performance pi ∼
N (pi; si, β2) in the game, centered around their
skill si with fixed variance β2.

The performance tj of team j is modeled as
the sum of the performances of its members, tj ∶=∑i∈Aj

pi. Teams are reordered in ascending order
of rank, r(1) ≤ r(2) ≤ ⋯ ≤ r(k). Disregarding
draws, the probability of a game outcome r is mod-
eled as

P (r ∣ {t1, . . . , tk}) = P (tr(1) > tr(2) > ⋯ > tr(k))
In other words, the order of performances deter-
mines the game outcome. If draws are allowed,
the winning outcome r(j) < r(j+1) requires tr(j) >
tr(j+1) + ε and the draw outcome r(j) = r(j+1) re-
quires ∣tr(j) − tr(j+1) ∣ ≤ ε, where ε > 0 is a draw
margin calculated from the assumed probability of
a draw. 1

To report skill estimates after each game, we
use an online learning scheme called Gaussian den-
sity filtering. The posterior distribution is approxi-
mated to be Gaussian and is used as the prior dis-
tribution for the next game. If skills are expected
to change over time, a Gaussian dynamics factor
N (si,t+1; si,t, γ2) can be introduced, leading to an
additive variance component of γ2 in the subse-
quent prior.
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Consider a game with k = 3 teams with team
assignments A1 = {1},A2 = {2,3} and A3 = {4}.
Assume that team 1 wins and teams 2 and 3 draw,
i.e., r ∶= (1,2,2). The function represented by
a factor graph in our case, the joint distribution
p(s,p, t ∣ r,A), is given by the product of all
the potential functions associated with each factor.
The structure of the factor graph provides infor-
mation about the dependencies of the factors in-
volved and serves as the foundation for efficient in-
ference algorithms. Referring back to Bayes’ rule,
the quantities of interest are the posterior distribu-
tion p (si ∣ r,A) over skills given game outcome
r and team assignments A. The p (si ∣ r,A) are
calculated from the joint distribution by integrating
out the individual performances {pi} and the team
performances {ti}:
p(s ∣ r,A) = ∫ ∞

−∞ ⋯∫
∞
−∞ p(s,p, t ∣ r,A)dpdt.

A.5 Examples of GoalTree
Here, we provide examples of GOALTREE from
four environments in Listing 3, with their main
goals as follows:

• Public Goods: maximize your total token count
by the end of the game;

• Guess 2/3 of the Average: choose a number that
you believe will be closest to 2/3 of the average
of all numbers chosen by players, including your
selection;

• First-price Auction: secure the highest profit
at the end of this auction, compared to all other
bidders;

• Bargaining: minimize the profit gap between
yourself and your partner in this negotiation, re-
gardless of your own profit.

Listing 3: Examples of GOALTREE in SELFGOAL.
Public Goods Game:

root: Maximize your total token count by
the end of the game.

root-0: Maximizing Contribution
root-0-0: Assess the Current State
root-0-0-2: Long-term Token Accumulation
root-0-0-2-3: Collaboration and
Competition
root-0-0-2-3-0: Observation and Analysis
root-0-0-2-3-0-1: Identify Potential
Collaborators
root-0-0-2-3-0-1-1: Observe Consistency
root-0-0-2-3-0-1-1-1: Establish
Trustworthy Partnerships

root-0-0-2-3-0-1-1-1-2: Monitor
Trustworthiness
root-0-0-2-3-0-1-1-1-2-1: Identify
Unreliable Contributors
root-0-0-2-3-0-1-1-1-2-1-0: Track and
Analyze Contributions
root-0-0-2-3-0-1-1-1-2-1-0-1: Identify
Inconsistent Contributors
root-0-0-2-3-0-1-1-1-2-1-0-1-1: Monitor
Reliability
root-0-0-2-3-0-1-1-1-2-1-0-1-2: Consider
Communication

root-0-0-2-3-0-1-1-1-2-1-0-1-3: Adjust
Your Strategy
root-0-0-2-3-0-1-1-1-2-1-0-1-3-2:
Anticipate Player Behavior
root-0-0-2-3-0-1-1-1-2-1-0-1-3-4: Risk
Management
root-0-0-2-3-0-1-1-1-2-1-0-1-4:
Collaborate with Consistent Contributors
root-0-0-2-3-0-1-1-1-2-1-0-1-4-0:
Identify Reliable Contributors
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1:
Establish Communication
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1-2:
Observe Behavioral Patterns
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1-3:
Formulate a Joint Strategy
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1-3-1:
Optimal Contribution Levels
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1-3-2:
Establish Communication
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1-3-3:
Adaptation and Flexibility
root-0-0-2-3-0-1-1-1-2-1-0-1-4-1-3-4:
Trust and Collaboration
root-0-0-2-3-0-1-1-1-2-1-0-1-4-3:
Monitor Consistency
root-0-0-2-3-0-1-1-1-2-1-0-4:
Communication and Collaboration
root-0-0-2-3-0-1-1-1-2-1-0-4-2:
Encourage Consistency
root-0-0-2-3-0-1-1-1-2-1-0-4-3: Form
Alliances
root-0-0-2-3-0-1-1-1-2-1-0-4-3-1:
Establish Communication
root-0-0-2-3-0-1-1-1-2-1-0-4-3-2:
Coordinate Contribution Efforts
root-0-0-2-3-0-1-1-1-2-1-0-4-3-3: Build
Trust and Reliability
root-0-0-2-3-0-1-1-1-2-1-0-4-4: Monitor
and Adapt
root-0-0-2-3-0-1-1-1-2-1-2: Communicate
and Negotiate
root-0-0-2-3-0-1-1-1-2-1-2-0: Analyze
Contribution Patterns
root-0-0-2-3-0-1-1-1-2-1-2-3: Monitor
Trustworthiness
root-0-0-2-3-0-1-1-1-2-1-2-4: Adapt to
Changing Dynamics
root-0-0-2-3-0-1-1-1-2-1-2-4-1: Form
Alliances
root-0-0-2-3-0-1-1-1-2-1-2-4-4: Long-
term Planning
root-0-0-2-3-0-1-1-1-2-1-2-4-4-0: Assess
the Current Trend

root-0-0-2-3-0-1-1-1-2-1-2-4-4-4:
Flexibility in Strategy
root-0-0-2-3-0-1-1-1-2-1-2-4-4-5:
Consistency in Contributions
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root-0-0-2-3-0-1-1-1-2-1-4: Build a
Reputation
root-0-0-2-3-0-1-1-1-2-1-4-2:
Observation and Adaptation
root-0-0-2-3-0-1-1-1-2-1-4-4:
Communication and Collaboration
root-0-0-2-3-0-1-1-1-2-2: Establish
Collaborative Partnerships
root-0-0-2-3-0-1-1-1-2-2-0: Identify
Trustworthy Players
root-0-0-2-3-0-1-1-1-2-2-0-2: Consider
Long-Term Behavior
root-0-0-2-3-0-1-1-1-2-2-0-2-1: Identify
Trustworthy Players

root-0-0-2-3-0-1-1-1-2-2-0-2-3: Adjust
Your Strategy
root-0-0-2-3-0-1-1-1-2-2-0-3: Form
Alliances
root-0-0-2-3-0-1-1-1-2-2-0-3-1: Assess
Trustworthiness
root-0-0-2-3-0-1-1-1-2-2-0-3-3: Mutual
Benefit
root-0-0-2-3-0-1-1-1-2-2-0-3-4: Long-
Term Collaboration
root-0-0-2-3-0-1-1-1-2-2-0-4: Monitor
Changes
root-0-0-2-3-0-1-1-1-2-2-1: Initiate
Communication
root-0-0-2-3-0-1-1-1-2-2-2: Reciprocate
Trust
root-0-0-2-3-0-1-1-1-2-2-4: Adaptability
root-0-0-2-3-0-1-1-1-2-2-4-0: Assess
Other Players’ Contributions
root-0-0-2-3-0-1-1-1-2-2-4-2: Identify
Potential Alliances
root-0-0-2-3-0-1-1-1-4: Long-term
Planning
root-0-0-2-3-0-1-1-1-4-2: Encourage
Cooperative Behavior
root-0-0-2-3-0-1-1-1-4-2-0: Establish
Trust
root-0-0-2-3-0-1-1-1-4-2-1: Strategic
Communication
root-0-0-2-3-0-1-1-1-4-2-1-2: Highlight
Long-Term Benefits
root-0-0-2-3-0-1-1-1-4-2-1-3: Negotiate
Contribution Strategies
root-0-0-2-3-0-1-1-1-4-2-1-4: Foster
Trust and Collaboration
root-0-0-2-3-0-1-1-1-4-2-2: Highlight
Mutual Gains
root-0-0-2-3-0-1-1-1-4-2-3: Foster
Collaboration
root-0-0-2-3-0-1-1-1-4-2-4: Long-Term
Perspective
root-0-0-2-3-0-1-1-1-4-3: Monitor and
Adapt
root-0-0-2-3-0-1-1-1-4-3-1: Build
Sustainable Partnerships
root-0-0-2-3-0-1-1-1-4-3-3: Strategic
Observation
root-0-0-2-3-0-1-1-1-4-3-4: Long-term
Adaptation
root-0-0-2-3-0-1-1-1-4-4: Evaluate Long-
Term Gains
root-0-0-2-3-0-1-1-1-4-4-2: Monitor
Contribution Trends
root-0-0-2-3-0-1-1-2: Monitor Changes in
Contributions

root-0-0-2-3-0-1-1-2-2: Form

Partnerships
root-0-0-2-3-0-1-1-2-2-1: Establish
Communication
root-0-0-2-3-0-1-1-2-2-2: Form Strategic
Alliances

root-0-0-2-3-0-1-1-2-2-4: Maximize
Collective Gain
root-0-0-2-3-0-1-1-2-3: Anticipate
Changes
root-0-0-2-3-0-1-1-2-4: Evaluate Risk-
Reward Ratio
root-0-0-2-3-0-1-3: Build Trust and
Cooperation
root-0-0-2-3-0-1-4: Monitor Results
root-0-0-2-3-0-1-4-1: Assess Impact on
Public Good Payoff
root-0-0-2-3-0-1-4-1-1: Evaluate Public
Pot Growth
root-0-0-2-3-0-1-4-1-3: Identify
Collaborative Strategies
root-0-0-2-3-0-1-4-1-4: Predict Future
Payoff Trends
root-0-0-2-3-0-1-4-2: Compare Individual
Gains

root-0-0-2-3-0-1-4-4: Formulate
Collaboration Tactics
root-0-0-2-3-0-2: Detect Potential
Competition
root-0-0-2-3-2: Strategic Adaptation
root-0-0-2-3-2-0: Analyze Other Players’
Contributions

root-0-0-2-3-2-4: Flexibility in
Decision Making
root-0-0-2-3-2-4-1: Adjust Contribution
Based on Public Pot Size
root-0-0-2-3-2-4-2: Balance Risk and
Reward
root-0-0-2-3-2-4-2-0: Assess the Current
Token Balance

root-0-0-2-3-2-4-2-2: Adapt Contribution
Strategy

root-0-0-2-3-2-4-2-4: Observe Patterns
root-0-0-2-3-3: Long-term Planning
root-0-0-2-3-4: Risk Assessment
root-0-0-2-3-4-0: Analyze Previous
Rounds
root-0-0-2-3-4-0-1: Gain Assessment
root-0-0-2-3-4-0-2: Competitive
Strategies
root-0-0-2-3-4-0-3: Collaboration
Opportunities
root-0-0-2-3-4-2: Assess Potential
Losses
root-0-0-2-3-4-4: Long-term Planning
root-0-0-2-4: Long-term Planning
root-0-0-2-4-0: Monitor Token Balance
root-0-0-2-4-0-0: Analyze Contribution
Impact
root-0-0-2-4-0-0-2: Strategy
Effectiveness
root-0-0-2-4-0-0-2-0: Contribution
Analysis
root-0-0-2-4-0-0-2-0-2: Identify rounds
with lower gain than expected and
analyze potential reasons
root-0-0-2-4-0-0-2-0-3: Experiment with
different contribution amounts in future
rounds

root-0-0-2-4-4: Risk Management
root-0-0-2-4-4-0: Assess Potential Gains
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root-0-0-2-4-4-0-0: Analyze Contribution
Impact

root-0-0-2-4-4-1: Balance Contribution
root-0-0-2-4-4-3: Long-term Planning
root-0-0-2-4-4-4: Flexibility in
Contributions
root-0-3: Adaptability
root-0-3-2: Observation and Prediction
root-0-3-2-1: Predict Potential
Strategies
root-0-3-2-1-0: Player 1
root-0-3-2-1-1: Player 2
root-0-3-2-1-2: Player 3
root-0-3-2-2: Adjust Your Strategy
root-0-3-2-4: Stay Flexible
root-0-3-3: Risk Assessment
root-0-3-3-1: Consider Contribution
Variability
root-0-3-3-1-1: Predict Potential
Contributions
root-0-3-4: Long-term Adaptation
root-0-3-4-2: Flexibility in
Contribution
root-0-3-4-2-2: Balance Short-term Gains
and Long-term Goal

root-0-4: Risk Assessment
root-0-4-0: Analyze Previous Rounds
root-0-4-0-1: Risk Assessment
root-0-4-0-1-0: Analyze Previous Rounds
root-0-4-0-1-1: Consider Variability
root-0-4-0-1-3: Risk Tolerance
root-0-4-0-1-4: Strategic Adjustment
root-0-4-0-3: Strategic Planning
root-0-4-4: Adaptation
root-1: Strategic Decision Making
root-1-0: Analyze Other Players’
Contributions
root-1-0-3: Consider Overall Game
Dynamics
root-1-0-3-1: Assess Token Distribution
root-1-1: Consider Potential Payoff
root-1-1-2: Risk Assessment
root-1-1-2-0: Analyze Previous Rounds
root-1-1-2-0-0: Contribution Level
Analysis
root-1-1-2-0-2: Trend Identification
root-1-1-2-0-2-0: Consider the overall
game dynamics
root-1-1-2-0-2-1: Flexibility in
contribution strategies
root-1-1-2-0-2-2: Risk management
root-1-1-2-0-2-2-0: Analyze Trends
root-1-1-2-0-2-2-2: Diversify
Contributions
root-1-1-2-0-2-3: Observation of player
behavior
root-1-1-2-0-3: Risk Assessment
root-1-1-2-0-4: Adaptation Strategy
root-1-1-2-0-4-2: Consider Overall Game
Dynamics
root-1-1-2-4: Long-term Risk Management
root-1-1-3: Adapt to Player Behaviors
root-1-1-3-2: Strategic Decision Making
root-1-3: Adapt to Player Behaviors
root-1-3-3: Balance Risk and Reward
root-1-5: Flexibility
root-1-5-1: Adjust Contribution Based on
Public Pot

root-1-5-1-0: Analyze Public Pot Size
root-1-5-1-0-2: Monitor Overall Trends

root-1-5-1-0-2-2: Compare with Other
Players
root-1-5-1-2: Monitor Overall Token
Accumulation
root-2: Long-term Planning
root-2-0: Assess Previous Contributions
root-2-0-1: Identify Optimal
Contribution Levels
root-2-0-2: Consider Player Behaviors
root-2-0-3: Adjust Contribution Strategy
root-2-1: Strategic Contribution
root-2-2: Monitor Other Players

Guess 2/3 of the Average:

root: Choose a number that you believe
will be closest to 2/3 of the average of
all numbers chosen by players,

including your selection
root-0: Observation
root-0-0: Analyze Trends
root-0-0-1: Evaluate Deviations
root-0-0-1-3: Stay Informed
root-0-0-1-3-3: Flexibility in Decision-
Making
root-0-0-1-3-3-1: Adapt to Changing
Dynamics
root-0-0-1-3-3-1-3: Consider Risk-Reward
root-0-0-1-3-3-2: Consider Risk-Reward
Tradeoff
root-0-0-1-3-3-2-3: Adapt to Changing
Circumstances
root-0-0-1-3-3-2-3-3: Strategic
Observation
root-0-0-1-3-3-2-3-3-1: Consider Recent
Rounds
root-0-0-1-3-3-2-3-3-2: Identify
Outliers
root-0-0-1-3-3-2-3-3-3: Predict
Potential Average
root-0-0-1-3-3-2-3-4: Risk Assessment
root-0-0-1-3-3-4: Balance Consistency
and Adaptability
root-0-0-1-3-4: Strategic Observation
root-0-0-1-3-4-0: Analyze Winning
Numbers
root-0-0-1-3-4-0-1: Identify Common
Numbers
root-0-0-1-3-4-0-2: Consider the Average
root-0-0-1-3-4-1: Monitor Average
Numbers
root-0-0-1-3-4-1-2: Consider Previous
Results
root-0-0-1-3-4-1-4: Adjust Risk
Tolerance
root-0-0-1-3-4-2: Observe Your
Performance
root-0-0-1-3-4-3: Consider Player
Strategies
root-0-0-1-3-4-3-0: Analyze Winning
Strategies
root-0-0-1-3-4-3-1: Adaptation
root-0-0-1-3-4-3-2: Observation
root-0-0-1-3-4-3-4: Risk Assessment
root-0-1: Identify Outliers
root-0-1-0: Analyze Previous Rounds
root-0-1-0-1: Consider Trends
root-0-1-0-1-0: Consider the decreasing
trend in the average number chosen by

815



players in the previous rounds and
select a number slightly lower than the
expected average for the upcoming round
root-0-1-0-1-0-3: Balance Risk and
Reward
root-0-1-0-1-0-3-2: Cautious Approach
root-0-1-0-1-0-3-3: Strategic Thinking
root-0-1-0-1-0-3-5: Observation
root-0-1-0-1-0-4: Monitor Results
root-0-1-0-2: Adjust for Variability
root-0-1-0-2-0: Analyze Previous
Averages
root-0-1-0-2-0-1: Identify Trends
root-0-1-0-2-0-1-2: Consider the Range
root-0-1-0-2-0-2: Consider Outliers
root-0-1-0-2-0-2-0: Analyze Previous
Outliers
root-0-1-0-2-0-2-3: Factor in Player
Behavior
root-0-1-0-2-0-2-3-1: Identify Player
Tendencies
root-0-1-0-2-0-2-3-2: Adjust Number
Selection
root-0-1-0-2-1: Consider Conservative
Approach
root-0-1-0-2-1-1: Identify Central
Tendency
root-0-1-0-2-1-2: Avoid Extreme Outliers
root-0-1-0-2-1-3: Consider Stability
root-0-1-0-2-1-4: Balance Risk and
Reward
root-0-1-0-2-1-4-1: Consider the Current
Average

root-0-1-0-2-1-4-2: Assess Your Position
root-0-1-0-2-1-4-4: Adapt to the Game
Dynamics
root-0-1-0-2-1-4-5: Stay Informed
root-0-1-0-2-2: Evaluate Trends
root-0-1-0-2-4: Adapt to Changing
Dynamics
root-0-1-0-2-4-1: Flexibility in Number
Selection
root-0-1-0-2-4-2: Consider Outliers
root-0-1-0-2-4-4: Risk Assessment
root-0-1-1: Consider Potential
Influences
root-0-1-2: Predict Potential Outliers
root-0-1-2-0: Analyze the Trend
root-0-1-3: Adjust Your Strategy
root-0-1-3-1: Consider the Trend
root-0-1-3-1-1: Adjust Strategy
root-0-1-3-1-2: Stay Vigilant
root-0-1-3-2: Balance Risk and Reward
root-0-1-3-2-1: Consider the Impact of
Outliers
root-0-1-3-2-1-0: Analyze Previous
Rounds
root-0-1-3-2-1-1: Adjust Strategy
root-0-1-3-2-1-2: Monitor Extreme
Numbers
root-0-1-3-2-1-4: Stay Flexible
root-0-1-3-2-4: Stay Informed
root-0-1-3-3: Adapt to Competitors
root-0-1-3-3-1: Balance Risk and Reward
root-0-1-3-3-2: Anticipate Competitors’
Choices
root-0-1-3-3-2-4: Flexibility
root-0-1-3-3-4: Strategic Risk-Taking
root-0-1-3-3-4-2: Consider the Range
root-0-1-3-3-4-3: Balance Consistency

and Differentiation
root-0-1-3-3-4-4: Adapt Based on
Previous Outcomes
root-0-2: Consider Player Behavior
root-0-2-1: Adjust Based on Averages
root-0-2-3: Stay Flexible
root-0-2-3-2: Evaluate Your Position
root-0-2-3-3: Monitor Player Behaviors
root-0-3: Factor in Previous Results
root-0-3-1: Consider Trend
root-0-4: Adjust Strategy
root-0-4-1: Consider Your Competitors
root-0-4-1-1: Adjust for Biases
root-0-4-1-3: Use Game Theory
root-0-4-1-3-1: Anticipate Competitors’
Choices
root-0-4-1-3-3: Consider Risk-Reward
root-0-4-3: Stay Informed
root-0-4-4: Utilize Strategic Thinking
root-1: Strategic Thinking
root-1-2: Calculating 2/3 of the Average
root-1-3: Strategic Number Selection
root-1-4: Adaptation and Flexibility
root-1-4-2: Evaluate Your Own Strategy
root-1-4-4: Stay Informed
root-1-4-5: Strategic Variation
root-2: Risk Assessment
root-2-1: Consider Variability
root-2-3: Assess Risk Tolerance
root-2-4: Anticipate Strategic Play
root-3: Adaptation
root-3-3: Risk Assessment
root-3-3-1: Consider the Range
root-3-3-4: Utilize Previous Experience
root-4: Long-term Planning
root-4-2: Strategic Adjustment
root-4-4: Risk Assessment
root-4-4-1: Consider Variability
root-4-4-2: Evaluate Your Performance

Auction Arena:

root: secure the highest profit at the
end of this auction, compared to all
other bidders
root-0: Efficiently allocate budget
root-0-0: Prioritize items with a higher
difference between your estimated value
and the starting price

root-0-0-1: Consider the competition
root-0-0-1-1: Identify Weaknesses
root-0-0-1-1-1: Monitor Budget
Utilization
root-0-0-1-1-1-1: Strategically Allocate
Bids

root-0-0-1-1-1-1-2: Monitor Competitor
Bids
root-0-0-1-1-1-1-2-1: Strategic
Allocation of Bids
root-0-0-1-1-1-1-2-1-1: Focus on Items
with Less Interest
root-0-0-1-1-1-1-2-1-2: Monitor
Potential Withdrawals
root-0-0-1-1-1-1-2-2: Budget
Conservation
root-0-0-1-1-1-4: Maintain Flexibility
root-0-0-1-1-2: Assess Risk-Taking
Behavior
root-0-0-1-1-2-1: Identify Weaknesses

816



root-0-0-1-1-2-1-0: Analyze Bidding
Patterns
root-0-0-1-1-2-1-3: Monitor Remaining
Items
root-0-0-1-1-2-3: Budget Management
root-0-0-1-1-3: Identify Overestimation
root-0-0-1-1-4: Exploit Predictable
Behavior
root-0-0-1-2: Formulate Counter-
Strategies
root-0-0-1-2-4: Psychological Tactics
root-0-0-1-3: Adaptability
root-0-0-1-3-1: Adjust Bidding Strategy
root-0-0-1-3-4: Evaluate Risk-Reward
Ratio
root-0-0-1-5: Information Utilization
root-0-0-1-5-0: Analyze Bidders’
Behavior
root-0-0-1-5-1: Adjust Bidding Strategy
root-0-0-1-5-1-0: Analyze Previous
Bidding Patterns
root-0-0-1-5-1-0-1: Target Items with
Lower Competition
root-0-0-1-5-1-0-3: Evaluate True Values
root-0-0-1-5-1-2: Evaluate Profit
Margins
root-0-0-1-5-1-3: Identify High-Value
Items
root-0-0-1-5-1-6: Adapt to True Values
root-0-1: Monitor the bidding behavior
of other bidders
root-0-1-2: Strategic Bidding
root-0-1-2-5: Stay Informed
root-0-3: Be prepared to adjust your
estimated value
root-0-4: Aim for a balance between
winning bids and maximizing profit
root-1: Accurately estimate item values
root-1-0: Research
root-1-1: Analyze Previous Auctions
root-1-1-1: Analyze Market Trends
root-1-1-1-0: Research Market Demand
root-1-1-1-1: Consider Seasonality
root-1-1-1-2: Economic Conditions
root-1-1-2: Adjust Estimated Values
root-1-2: Consider Item Condition
root-1-3: Adjust Estimations
root-1-3-1: Consider True Value
root-1-3-4: Adapt to Competition
root-1-4: Budget Management
root-1-4-1: Risk Assessment
root-1-4-2: Prioritize High-Value Items
root-1-4-2-0: Assess Remaining Budget
root-1-4-2-3: Monitor Competing Bidders
root-1-5: Risk Assessment
root-2: Strategic bidding
root-2-0: Budget Management
root-2-1: Estimated Value Comparison
root-2-2: Observation of Competitors
root-2-3: Risk Assessment
root-2-4: Strategic Withdrawal
root-2-4-0: Assess Potential Profit
Margin
root-2-4-5: Long-term Profit
Maximization
root-3: Risk management
root-3-1: Budget Allocation
root-3-2: Competitive Analysis
root-3-2-1: Assess Remaining Competitors
root-3-2-2: Estimate Competitors’

Valuation
root-3-3: Flexibility in Bidding
root-3-5: Information Gathering
root-3-5-1: Refine risk assessment
root-3-5-4: Anticipate competition
root-3-5-5: Adapt bidding strategy
root-4: Adaptability
root-4-4: Risk Management
root-4-6: Adapt to Market Dynamics

DealOrNotDeal

root: minimize the profit gap between
yourself and your partner in this
negotiation, regardless of your own
profit.
root-0: Maximize the number of items you
receive

root-0-0: Evaluate the value of each
item
root-0-1: Consider trade-offs
root-0-2: Seek compromise
root-0-3: Communicate effectively
root-0-4: Be flexible
root-1: Prioritize high-value items
root-1-0: Assess the value of each item
root-1-1: Consider trade-offs
root-1-2: Negotiate for high-value items
root-1-3: Be open to compromise
root-1-4: Communicate the reasoning
behind your prioritization
root-2: Ensure fair distribution
root-2-0: Consider the value of each
item
root-2-1: Propose a balanced allocation
root-2-2: Be open to compromise
root-2-3: Communicate the reasoning
behind your proposal
root-2-4: Seek mutual agreement
root-3: Maintain a cooperative and
communicative approach
root-3-0: Clarify interests and
priorities
root-3-1: Seek common ground
root-3-2: Explore trade-offs
root-3-3: Remain open to creative
solutions
root-3-4: Maintain a positive and
respectful tone
root-4: Adapt and adjust strategies
root-4-0: Understand Bob’s priorities
root-4-2: Propose alternative
allocations
root-4-3: Maintain open communication
root-4-4: Be willing to compromise

A.6 Case Study
To illustrate how agents from different frameworks
reason and plan in a dynamic environment, we con-
duct a case study using Mistral-7B, a small LLM,
as the backbone in a bargaining game (Figure 6).
We find that SELFGOAL’s emphasis on granular-
ity control offers clear advantages. SELFGOAL

provides agents with actionable guidance such as
“ask clarifying questions”, prompting
agents to pay early attention to their opponent’s
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Task: You are Alice and you want to negotiate with your partner, Bob, about the 
allocation plan of items: 1 book, 1 hat, and 2 ball. Your goal is to minimize the 
profit gap.
Observation: Bob: Hi, Let's start to negotiate about the allocation plan.

Task: Bargaining (DealOrNotDeal)

Learnings: 
Understanding the other party's primary objectives SHOULD 
BE NECESSARY to propose mutually beneficial agreements.
Action: Let's start by discussing our priorities and 
preferences for the items.
Observation: Bob: I prefer to receive the book and the 
ball.
Action: Great! I will take 2 balls and you can have the 
book and ball.
Profit: Alice: $ 4, Bob $ 10

CLIN

PLAN: I will propose an allocation plan that give an Equal 
allocation of items. […]
Action: […] I’d like to propose that we split the items 
evenly, with you taking 1 book, and 1 balls, and me taking 
1 hat, and 1 ball. […]
Observation: Bob: Great! I agree to that proposal.
Profit: Alice: $ 8, Bob $ 10

ADAPT

Sub-goal: Ask clarifying questions: […] If 
necessary, ask Bob to clarify or provide more 
details about his valuation of each item. […]
Action: […] Based on my understanding, you have a 
different valuation for each item compared to me. 
Could you please share your valuation for each 
item? […]
Observation: Bob: I value book at $8, hat at $2, 
book at $0.
Sub-goal: Be willing to compromise: Be willing to 
make concessions and adjust your proposals to 
accommodate your partner's feedback and 
suggestions.
Action: Great! Since I value book at $0, hat at $6, 
ball at $2, to minize our profit gap, I propose I 
take 1 hat and 1 ball while you take the book. Then 
we both give up 1 ball.
Observation: Bob: Great! I agree to that proposal.
Profit: Alice: $ 8, Bob $ 8

SelfGoal

Book Hat Ball

Alice 0 6 2

Bob 8 2 0

Item Valuation

Figure 6: In the Bargaining task, Mistral-7B with CLIN or ADAPT gives guidance that is either too broad or too
detailed resulting in large profit discrepency, whereas SELFGOAL is successful.

psychological assessment and different valuations
of items. After acquiring a partner’s valuation,
SELFGOAL then gives guidance such as “make
concessions”, leading the agent to propose a
plan that gives up a particular item in exchange for
minimizing the profit difference.

In contrast, CLIN advises agents to “consider
the preference of the partner”,
which leads agents to focus on the opponent’s
preferences, but may result in plans that sacrifice
their own interests to improve the other party’s
income. ADAPT, which decomposes tasks
beforehand, provides very broad advice such as
“equal allocation”. This generic advice
aims to minimize the profit gap but may not
be suitable for scenarios lacking knowledge
of the partner’s valuation. Consequently, the
model proposes allocation plans without first
clarifying the partner’s valuations, assuming that
all participants have the same valuation for each
item.

A.7 Does pruning the GOALTREE affect
search quality?

GOALTREE
Scenario

Auction Bargaining

Pruned 24.74 ± 3.22 24.90 ± 1.21
w/o Pruned 25.25 ± 3.23 25.09 ± 1.21

Table 5: Comparison of agents guided by GOALTREE
with and without pruning.

We investigate whether pruning nodes not se-
lected for a long time from the target tree affects
the Search Module’s decisions. Pruning begins
after the Decompose Module completes building
the tree, and nodes unselected for more than five
consecutive rounds will be deleted. We assess the
impact of pruning on GPT-3.5’s performance in
Auction and Bargaining. As shown in Table 5,
the TrueSkill Score with and without pruning are
similar. This suggests that nodes not chosen for
extended periods do not compromise the Search
Module’s decision-making effectiveness. This effi-
ciency likely results from our Search Module using
prior knowledge from LLM to identify and avoid
selecting unnecessary nodes, akin to lazy deletion.
For efficiency, these redundant nodes are also re-
moved every five rounds.

A.8 Computational Efficiency Analysis

Method OpenAI Cost Tokens Used Computation Time Performance
ReAct 0.366 295,556.6 5.42 min 22.90
ADAPT 1.248 834,382.7 8.28 min 22.30
Reflexion 0.434 359,674.8 5.41 min 22.32
CLIN 0.448 372,803.4 5.52 min 21.41
SELFGOAL 2.20 1717200 13.46 min 28.81

Table 6: Computational Efficiency of Different Methods
in Auction Per Round.

We evaluated the computational efficiency of
SELFGOAL by conducting experiments in the Auc-
tion Arena over 5 rounds, using GPT-3.5 as the
backbone model. We monitored the average Ope-
nAI cost, tokens used, and computation time per
round. As shown in Table 6, although SELFGOAL
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incurred higher costs and computation times, these
were within an acceptable range and significantly
improved model performance, as evidenced by the
TrueSkill metric.

#Node OpenAI Cost Tokens Used Performance
2 1.06 870341.3 24.26
4 1.70 1395823.4 26.00
6 2.04 1604182.4 26.72
8 2.05 1656438 28.68
10 2.20 1717200 28.81

Table 7: Computational Efficiency of Different Methods
in Auction Per Round.

Moreover, the size of the tree and the number
of child nodes each parent can contain (set at 10
in our experiments) are closely linked. To further
examine the flexibility of these trade-offs between
cost and performance, we conducted additional ex-
periments using GPT-3.5 in an auction scenario,
varying the maximum number of child nodes from
2 to 10. As shown in Table 7, Our results indicate
that while increasing the number of child nodes
enhances SELFGOAL’s performance, it also raises
computational costs. Notably, even with just 2
child nodes, SELFGOAL outperforms the baseline
method (ADAPT)—which also employs a decom-
posed approach for model guidance—while utiliz-
ing fewer computational resources.
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