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Abstract

Wav2Prompt is proposed which allows inte-
grating spoken input with a text-based large
language model (LLM). Wav2Prompt uses a
straightforward training process with only the
same data used to train an automatic speech
recognition (ASR) model. After training,
Wav2Prompt learns continuous representations
from speech and uses them as LLM prompts.
To avoid task over-fitting issues found in prior
work and preserve the emergent abilities of
LLMs, Wav2Prompt takes LLM token em-
beddings as the training targets and utilises a
continuous integrate-and-fire mechanism for
explicit speech-text alignment. Therefore, a
Wav2Prompt-LLM combination can be applied
to zero-shot spoken language tasks such as
speech translation (ST), speech understanding
(SLU), and spoken-query-based question an-
swering (SQQA). It is shown that for these
zero-shot tasks, Wav2Prompt performs simi-
larly to an ASR-LLM cascade and better than
recent prior work. If relatively small amounts
of task-specific paired data are available, the
Wav2Prompt-LLM combination can be end-to-
end (E2E) fine-tuned and then yields greatly im-
proved results relative to an ASR-LLM cascade
for the above tasks. For instance, for English-
French ST, a Wav2Prompt-LLM combination
gave a 5 BLEU point increase over an ASR-
LLM cascade.

1 Introduction

Text-based large language models (LLMs) (Brown
et al., 2020; Touvron et al., 2023a,b; Ouyang et al.,
2022) have achieved remarkable performance in a
wide range of natural language processing (NLP)
tasks (Achiam et al., 2024). LLMs are trained on
huge quantities of text and are highly flexible. They
are able to be applied to a range of tasks for which
they have not been explicitly trained, known as the
emergent abilities of LLM (Wei et al., 2022; Tang
et al., 2024). To further expand the use-cases of

LLMs, it is important to enable LLMs to handle
other modalities including spoken input.

The conventional approach is to use an auto-
matic speech recognition (ASR) model to tran-
scribe speech into text, which is then used as the
LLM input. However, this cascaded system suffers
from error accumulation and can not be end-to-end
(E2E) fine-tuned. (Fathullah et al., 2024b). Many
studies have explored connecting LLMs directly
to the speech acoustic encoder (Encoder-LLM) for
various speech tasks such as ASR or speech transla-
tion (ST) (Fathullah et al., 2024a; Wu et al., 2023;
Yu et al., 2024; Chen et al., 2023). However, these
approaches restrict the system to a specific task,
thereby losing the ability of LLMs to handle a
wide range of zero-shot spoken language tasks. Re-
cent work has begun to explore ways to restore
the zero-shot capabilities of LLMs. Work in this
area includes approaches that make use of audio
or speech-based question-answering (QA) tasks
(Gong et al., 2024; Fathullah et al., 2024b), as well
as the introduction of additional steps in the train-
ing pipeline, such as multi-task training (Ruben-
stein et al., 2023), instruction tuning (Chu et al.,
2024; Zhang et al., 2023a; Das et al., 2024), and ac-
tivation tuning (Tang et al., 2024). However, these
approaches greatly complicate model training.

Unlike previous work, this paper enables text-
based LLMs to understand speech and perform var-
ious untrained speech tasks using a straightforward
single-task training process using only easily acces-
sible ASR data. Wav2Prompt allows spoken input
to be integrated with an off-the-shelf text-based
LLM. After training using ASR data (i.e. speech
and associated text transcript), Wav2Prompt gener-
ates representations from speech and uses them as
LLM prompts for downstream tasks. It allows the
Wav2Prompt-LLM combination to work well in a
range of zero-shot spoken language tasks. How-
ever, Wav2Prompt can also give much improved
performance when limited task-specific spoken lan-
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guage data is available through E2E fine-tuning,
without updating the LLM. Wav2Prompt serves as
an E2E alternative for the ASR-LLM cascade.

Wav2Prompt takes LLM token embeddings as
training targets to naturally maintain the zero-shot
capability of text-based LLMs. This is a key differ-
ence to the conventional ASR task, which takes
discrete text tokens as the only target and thus
leads to the ASR-LLM cascade approach. How-
ever, learning LLM token embeddings is chal-
lenging for speech models given the difference in
input sequence length between speech and text.
Wav2Prompt addresses this issue using a continu-
ous integrate-and-fire (CIF) (Dong and Xu, 2020)
mechanism to generate a label-level speech rep-
resentation and a mean squared error (MSE) loss
can be used to enforce consistency with the LLM
token embeddings. Wav2Prompt can therefore be
combined with a text-based LLM not only for zero-
shot speech tasks, but also for E2E fine-tuning with
limited task-specific data, which is a key advantage
compared to an ASR-LLM cascade.

This paper evaluates Wav2Prompt on diverse
spoken language tasks including speech translation
(ST), spoken language understanding (SLU), and
spoken-query-based question answering (SQQA),
all of these are unseen during training as
Wav2Prompt only uses ASR training data. The
results show that the Wav2Prompt-LLM combina-
tion could achieve similar performance to the ASR-
LLM cascade in zero-shot cases and greatly sur-
passes the existing Encoder-LLM method (Fathul-
lah et al., 2024a). In scenarios with limited
task-specific available data, after E2E fine-tuning,
Wav2Prompt shows improved performance over
the ASR-LLM cascade for all of these tasks.

The main contributions of this paper can be sum-
marised in three main parts:

• Wav2Prompt is proposed, which is, to the best
of our knowledge, the first step towards using
only ASR data to extend LLMs to a range of
zero-shot spoken language tasks.

• Task over-fitting to training data is a key issue
addressed by Wav2Prompt which has previ-
ously limited the application of acoustic en-
coder enabled LLMs to other spoken language
tasks in a zero-shot fashion (Tang et al., 2024).
This issue is analysed and it is shown that
the key step to unlock zero-shot capability is
learning LLM token embeddings.

• Wav2Prompt achieves similar performance to
an ASR-LLM cascade in a range of zero-shot
speech tasks. In scenarios with limited task-
specific data, Wav2Prompt greatly surpasses
the performance of an ASR-LLM cascade by
leveraging the advantage of E2E fine-tuning.

2 Related Work

Text-based Large Language Model The evo-
lution of text-based LLMs, exemplified by a large
increase in model parameters and training data seen
in GPT-3 (Brown et al., 2020) and PaLM (Chowd-
hery et al., 2023), has revolutionised NLP tasks.
This progress has facilitated the development of
advanced models such as GPT-4 (Achiam et al.,
2024), showcasing the remarkable capabilities of
LLMs in various domains. Alongside these ad-
vancements, “smaller" LLMs like LLaMa (Touvron
et al., 2023a,b) have been introduced, achieving
a better balance between performance and com-
putational resources. There are several variant
models such as Vicuna (Zhang et al., 2023b) de-
veloped from conversation-based fine-tuning and
multi-lingual LLMs, e.g. BLOOM (Le Scao et al.,
2023). One key aspect of LLMs is that they can
exhibit remarkable performance in a range of tasks
on which they have never been explicitly trained.
Examples include zero-shot task transfer (Radford
et al., 2021) and few-shot learning (Brown et al.,
2020). This is sometimes known as the emergent
abilities of LLMs (Tang et al., 2024; Ma et al.,
2024a).

Speech-enabled Large Language Model While
discrete speech tokens have been explored to build
spoken generative LMs (Borsos et al., 2023; Wang
et al., 2023), this paper focuses on utilising off-the-
shelf text-based LLMs. Recently, several studies
have worked on building speech-enabled LLMs to
support direct speech input (Fathullah et al., 2024a;
Wu et al., 2023; Yu et al., 2024; Chen et al., 2023;
Huang et al., 2024). Since the speech input se-
quence is much longer than the corresponding text,
different strategies have been studied for down-
sampling. (Fathullah et al., 2024a; Yu et al., 2024;
Ma et al., 2024b) stacks the acoustic encoder out-
put to achieve a fixed-rate length reduction. (Chen
et al., 2023) treats multiple modalities as foreign
languages, in which CIF is used to obtain the
speech representation. (Yu et al., 2024) explored
the use of Q-Former (Li et al., 2023) which trans-
forms input sequences of varying lengths into fixed-
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length outputs. However, the emergent abilities of
LLM are lost in this task-specific training. Unlike
work such as (Chen et al., 2023), which focus on
enabling LLMs to handle multi-modal inputs in-
cluding speech, this paper focuses on maintaining
the zero-shot abilities of LLMs. Some recent work
explored regaining the zero-shot abilities of LLMs.
In (Tang et al., 2024), an instruction tuning stage
followed by an activation tuning stage was intro-
duced after pre-training to alleviate task over-fitting.
In addition, (Fathullah et al., 2024b) simulated a
speech QA dataset from ASR data, finding that
a speech-enabled LLM trained on it could handle
spoken QA tasks and potentially other tasks like ST.
Prior work extended speech capabilities for LLM,
but they come at the cost of increased complexity
and extensive resources based on full-parameter
or parameter-efficient training. Since text-based
LLMs have a fundamental connection with speech,
Wav2Prompt focuses on training a model that can
be combined and E2E fine-tuned with a text-based
LLM through a straightforward process while keep-
ing the LLM fixed.

Prompt Tuning Fine-tuning LLMs can be ex-
pensive. As an alternative, the prompting tech-
nique fixes all LLM parameters and uses a prompt
to query LLMs (Liu et al., 2022). Early prompt-
ing uses simple keyword-based inputs or fill-in-
the-blank style prompts (Gao et al., 2021; Schick
and Schütze, 2020). For generative LLMs, natu-
ral language prompts can be used (Victor et al.,
2022; Brown et al., 2020). However, these dis-
crete prompts can result in sub-optimal perfor-
mance in numerous cases (Shin et al., 2020; Liu
et al., 2022). Instead, prompt tuning adds trainable
continuous embeddings, i.e. continuous prompts,
to the original input token embedding (Liu et al.,
2024; Lester et al., 2021). During training, only the
parameters of the continuous prompts are updated
(Liu et al., 2022). This paper follows the prompt
tuning approach, updating only the parameters of
Wav2Prompt while keeping the LLM fixed when
E2E fine-tuned on limited task-specific data.

3 Analysis of task over-fitting

Task over-fitting (Tang et al., 2024) occurs when a
speech-enabled LLM can only perform tasks that
are seen during supervised training and shows lim-
ited performance on unseen tasks. This section
provides a detailed analysis of this issue which
leads to the proposed Wav2Prompt method.

To connect a decoder-only LLM with speech in-
put, speech representations can be prepended to
the original text token embedding sequence and the
LLM will be conditioned on these speech represen-
tations when predicting the next token in order to
perform speech tasks. To be more specific, in the
normal case with a text-based user-input prompt,
the next token probabilities of an LLM can be for-
mulated as:

pn = p(yn|Y0:n−1,P,Γ) (1)

where Y0:n−1 = ([sos], y1, ..., yn−1) is the se-
quence of previously predicted tokens and yn de-
notes the n-th token. P = (p1, · · · ,pm) is the text
embedding sequence obtained by feeding the text-
based user-input prompt into an LLM embedding
layer. Γ denotes a task-specific prompt template
that contains instructions. When a speech repre-
sentation S = (s1, · · · , st) is prepended to the text-
based input as the prompt supervision to replace P,
Eq. 1 can be re-written as p̂n = p(yn|Y0:n−1,S,Γ).

It is counter-intuitive to let a fixed text-based
LLM attend to speech representation S as it has
never seen speech input during pre-training. How-
ever, after E2E training on supervised data, prior
work has shown connecting a fixed LLM with the
acoustic encoder (referred to as Encoder-LLM) can
perform ASR tasks (Fathullah et al., 2024a; Yu
et al., 2024). Since the main building block of
LLMs is the attention mechanism which is also
the first module that interacts with inputs, the pro-
cess is simplified to a single attention function
Att(Q,K, V ) for theoretical analysis where the
conclusions can be generalised to the entire LLM.
In the normal case with text-based input, if the to-
ken embedding of yn−1 after the LLM embedding
layer is denoted zn−1 and Z = (z1, · · · , zn−1),
Eq. 1 can be expressed as:

ln = Att(zn−1, [Z;P; Γ], [Z;P; Γ]) (2)

where output ln can be used to compute pn, zn−1

is the query, and [Z;P; Γ] is the keys and values. A
speech-enabled LLM must replace P in Eq. 2 with
the speech representation S and make the result-
ing prediction l̂n = Att(zn−1, [Z;S; Γ], [Z;S; Γ])
close to ground truth. During E2E supervised train-
ing, the cross-entropy loss supervises l̂n while up-
dating S. Even if the lengths and features of S and
P are different, ln = l̂n is still possible to achieve.
Since the attention mechanism is a weighted sum,
as long as the weighted sum corresponding to the
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Figure 1: Illustration of the proposed Wav2Prompt architecture. ⊕ denotes addition. Prefix and postfix text are
task-specific prompt templates that can contain instructions. Their embeddings are obtained through the LLM
embedding layer, and the transcript token embeddings are the same.

use of S and P are consistent, correct predictions
can be obtained.

However, zn−1 and Γ differ in different tasks,
and S learned on a certain task cannot always guar-
antee that ln = l̂n will still hold with a different
zn−1 and Γ for other tasks, leading to so-called task
over-fitting. For example, preliminary experiments
found that the Encoder-LLM-based ASR system
has trouble following new instructions to perform
zero-shot ST.

Prior work relies on task-specific E2E training
to implicitly optimise S (Fathullah et al., 2024a;
Yu et al., 2024; Chen et al., 2023), and through
complex training pipelines gradually enables S to
learn a correct alignment that can preserve the LLM
zero-shot capability (Tang et al., 2024). However,
to learn a correct S, there is already a feasible and
clear target, which is the LLM token embedding
given that LLM can always flexibly handle text
inputs for zero-shot tasks. Unlike prior work, this
paper proposes using LLM embeddings as the tar-
get to explicitly guide the learning of the speech
representation S, which greatly simplifies the pro-
cess and only requires ASR data for training.

4 Wav2Prompt

This paper proposes Wav2Prompt, a model that nat-
urally enables text-based LLM to handle speech in-
put while maintaining the zero-shot capabilities of
the original LLM. Wav2Prompt provides a straight-
forward process that can be combined with LLM
using only ASR data for training and does not re-
quire subsequent multi-stage tuning, it can serve as

an E2E alternative approach that is superior to the
conventional ASR-LLM cascade.

4.1 Wav2Prompt architecture

Wav2Prompt is illustrated in Fig. 1, which contains
three main components: an acoustic encoder, a
CIF module, and an LLM (including the LLM em-
bedding layer). The acoustic encoder and the CIF
module extract a label-level speech representation
S = (s1, · · · , sM ), which have the same length as
the transcript text token embeddings so that mean
squared error (MSE) loss can be used to enforce
the representation consistency between them. This
is one of the main differences from prior work
(Fathullah et al., 2024a; Wu et al., 2023; Yu et al.,
2024; Chen et al., 2023; Tang et al., 2024; Ma et al.,
2024b), which instead simply down-sampled the
acoustic encoder output before fed it into the LLM.

In this paper, LLM refers to a text-based decoder-
only LLM. The output of the CIF module is used
as the LLM prompt, while the LLM parameters
are always kept fixed (shown in grey in Fig. 1)
following prompt tuning (Liu et al., 2022).

The acoustic encoder employs a Conformer (Gu-
lati et al., 2020) structure. Denote the Conformer-
based encoder output as E = (e1, · · · , eT ), where
T is the frame length and is normally much larger
than the corresponding text sequence length. To
learn a label-level speech representation with a flat-
start, i.e. not relying on a readily available align-
ment, the CIF mechanism (Dong and Xu, 2020)
is used. As shown in Fig. 1, a scalar weight αt is
learnt for each encoder output frame et and a label-
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level representation is obtained via weighted addi-
tion. Following (Deng and Woodland, 2024a,b),
this paper uses the last dimension of et as the raw
scalar attention value of αt to avoid additional pa-
rameters: αt = sigmoid(et,d) where d is the di-
mension size of et. The weights αt are summed
from left to right (i.e. forward through time) until
the sum exceeds a threshold of 1.0. Once reached,
the current weight αt is divided into two parts: one
part ensures the current accumulated weight is ex-
actly 1.0, while the remainder is used for the next
integration. An example is shown in Fig. 1, where
the threshold 1.0 is achieved when t = 7 and α7

is divided into α7,1 and α7,2. The first label-level
speech representation s1 is obtained via:

s1 = FC(α1 ·e1,1:d−1+ · · ·+α7,1 ·e7,1:d−1) (3)

where FC represents a fully connected layer that
maps et,1:d−1 to the LLM embedding dimension.
The sum is then reset to zero and continues to the
right to calculate s2, s3, etc. until the end of the
encoder output. To ensure that the extracted label-
level speech representation sequence S has the ex-
actly same length M as the corresponding tran-
script token sequence at training, a scaled weight
α̂t=αt · (M/

∑T
i=1 αi) is computed and used to

extract S = (s1, · · · , sM ) instead αt at training.
To learn the CIF alignment, a quantity loss (Dong
and Xu, 2020), Lqua = |∑T

i=1 αi − M |, is com-
puted during training to encourage the accumulated
weights approaching the correct length M .

The label-level speech representation from CIF
is then fed into the LLM as a prompt along with
task-specific prompt templates that contains instruc-
tions, denoted as prefix and postfix text in Fig. 1.
Suppose embpre and embpost are the embeddings
of the prefix and postfix text sequence, the LLM
output logits L = (l1, · · · , lN ) are computed as:

L = LLM(Concat(embpre,S, embpost,Z)) (4)

where Z = (z0, z1, · · · , zN ) denotes the embed-
dings of the LLM input ([sos], y1, ..., yN ) as shown
in Fig. 1, Concat(·) denotes concatenation of vector
sequences, and LLM(·) denotes the LLM function
that takes the concatenated vector sequence as in-
puts and outputs logits L.

4.2 Training
Wav2Prompt is trained using only ASR data. First,
the scaled weight α̂t is used in training to ex-
tract the label-level speech representation S =

(s1, · · · , sM ) that has the same length as the tran-
script token sequence. After feeding the transcript
text tokens into the LLM embedding layer, the em-
bedding sequence P = (p1, · · · ,pM ) is used as the
training target of S, and an MSE loss is computed:

LMSE =
M∑

m=1

MSE(sm,pm) (5)

In addition, P is fed into the LLM and a cross-
entropy (CE) loss LCE is computed between the
LLM output logits L and target transcripts, ensur-
ing that the speech representation S can be inter-
preted by the fixed LLM. Finally, the quantity loss
Lqua is also included to learn the CIF alignment as
mentioned above. Therefore, the overall training
objective LTrain of Wav2Prompt is:

LTrain = LCE + γLMSE + µLqua (6)

where γ and µ are hyper-parameters.

4.3 Zero and limited resource task application
Wav2Prompt is trained solely on the ASR task
but can be combined with a text-based LLM
(Wav2Prompt-LLM) to perform other speech tasks
in zero-shot settings or via E2E fine-tuning with
limited data. In this paper, zero-shot refers to not
using any task-specific paired data for fine-tuning.

Zero-shot Wav2Prompt preserves the flexible
zero-shot capabilities of LLMs. With Wav2Prompt,
the generated label-level speech representation S
is fed into the LLM as a prompt, and only the in-
structions in the prefix and postfix text (as in Fig. 1)
need to be modified for unseen tasks. For example,
to perform the ST task, the postfix text becomes
“Translate the English text into French". The origi-
nal weight αt is used instead of α̂t as the transcript
length is unknown during inference. There is es-
sentially no difference from a normal text-based
LLM for different text tasks.

Limited resource fine-tuning Compared to an
ASR-LLM cascade, an important advantage of
Wav2Prompt is that it can be E2E combined with
an LLM so that paired data can be used to fine-
tune in an E2E fashion. When E2E fine-tuned
on task-specific data, the prefix and postfix text
are modified as in the zero-shot case. In addition,
during E2E fine-tuning, in order to simplify the
process, the MSE loss is not used as it requires
high-quality ASR transcription and the goal here is
to learn the downstream task rather than to keep the
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zero-shot ability. Another benefit is that the length
of the speech representation S does not need to
exactly match that of its corresponding transcript,
allowing αt to be used to match the inference con-
dition. This overcomes any mismatch between
training and inference in the original CIF (i.e., αt

was used during training while α̂t was used during
inference). Finally, the quantity loss Lqua is still
computed, because preliminary experiments have
shown that without the regularising effect of Lqua,
the length of S can undergo drastic changes during
optimisation, hindering convergence. Hence, the
fine-tuning objective Ltune of Wav2Prompt is:

Ltune = LCE + µLqua (7)

where the hyper-parameter µ has the same value as
in Eq. 6 for simplicity.

5 Experimental setup

After training on ASR data, Wav2Prompt was eval-
uated on a range of unseen tasks, including speech
translation (ST), spoken language understanding
(SLU), and spoken-query-based question answer-
ing (SQQA) tasks.

5.1 Datasets
ST experiments were conducted on Europarl-ST
(Iranzo-Sánchez et al., 2020) English-Spanish (En-
ES) and English-French (En-Fr) pairs. The cor-
responding English ASR data was used to train
Wav2Prompt and the ASR models. In the scenarios
of fine-tuning with limited resources, 10 hours of
paired data was randomly selected from the train-
ing data set as limited fine-tuning data.

For the SLU and SQQA tasks, the LibriSpeech
corpus (Panayotov et al., 2015) was used as the
ASR data. For SLU, the Fluent Speech Commands
(FSC) corpus (Lugosch et al., 2019) was used to
conduct the intent classification task. In the scenar-
ios of fine-tuning with limited resources, 2 hours
of paired data were randomly selected from the
training data set as limited fine-tuning data. For the
SQQA task, the WikiQA (Yang et al., 2015) test set
with synthesised speech queries provided by (Tang
et al., 2024) was used. More details of the datasets
used are listed in Appendix A.

5.2 Model specifications
Four different systems were built to compare with
Wav2Prompt, and all these models used a 12-layer
Conformer encoder. In all cases, speech features

were extracted via a fixed WavLM Large model
(Chen et al., 2021). The LLMs in this paper were
always fixed following prompt tuning.

Wav2Prompt-LLM Based on the Conformer en-
coder, Wav2Prompt only used an extra fully con-
nected (FC) layer that mapped the speech repre-
sentation to the LLM embedding dimension (i.e.
4096) as mentioned in Eq. 3. The LLM was fixed.

ASR-LLM Cascade Based on the Conformer
encoder, a connectionist temporal classification
(Graves et al., 2006) (CTC)-based ASR model
was built and only had an extra FC output layer.
The recognised text from the ASR model was fed
into the LLM, along with the prefix and postfix
text, forming a cascaded system. In this paper, the
Wav2Prompt aims to achieve similar results to the
ASR-LLM Cascade in the zero-shot scenarios.

Oracle-LLM An oracle system was built, in
which the speech ground truth transcripts were fed
into the LLM. The prefix and postfix text remained
the same as the ASR-LLM Cascade system.

Encoder-LLM A prior work speech-enabled
LLM (Fathullah et al., 2024a) was implemented.
Based on the Conformer encoder, every 8 consecu-
tive encoder output frames were stacked to down-
sample the sequence length. Then, an extra FC
layer was used to map the stacked encoder output
to the LLM embedding dimension (i.e. 4096) be-
fore being fed into the LLM just like Wav2Prompt.
In this paper, the Wav2Prompt aims to greatly sur-
pass the Encoder-LLM in the zero-shot scenarios.

Flat-start Encoder-LLM This paper further ex-
plores directly training the Encoder-LLM on un-
seen tasks with limited resources in an E2E fash-
ion without first training on ASR data, denoted as
Flat-start Encoder-LLM. This is to evaluate the im-
portance of ASR-learned alignment for other tasks.

Therefore, the trainable component of all these
built systems (except for the Oracle-LLM) con-
sisted of the same encoder along with an additional
FC layer. More detail and the task-specific prompt
templates can be found in Appendices B and D.

5.3 LLMs and metrics

For the ST task, BLOOMZ-7B1 (Muennighoff
et al., 2023) was used. Case-sensitive detokenised
BLEU (Papineni et al., 2002) results are reported
to evaluate translation quality.
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Model
Zero-shot 10h Data

En-Es En-Fr En-Es En-Fr
Oracle-LLM 32.9 25.8 32.9 25.8
ASR-LLM Cascade 28.5 22.3 28.5 22.3
Encoder-LLM 15.4 6.2 29.7 26.2
Flat-start Encoder-LLM — — 1.3 2.5
Wav2Prompt-LLM 25.1 21.7 31.5 27.3

Table 1: %BLEU (↑) results on Europarl-ST test sets.
Zero-shot means no speech-translation paired data avail-
able for fine-tuning, while 10h data refers to 10 hour
paired data. Note the ASR training data includes the
ASR part of the 10h ST data, so the ASR-LLM cascade
results remain the same in both cases.

For the SLU and SQQA tasks, Vicuna-7B-1.5
(Zhang et al., 2023b) was used, and ASR perfor-
mance was also evaluated using word error rate
(WER). For the SLU task, accuracy was used to
measure the intent classification. For the SQQA
task, following (Maaz et al., 2023), Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023), which is an in-
struction fine-tuned LLM, was used to evaluate
whether the answers predicted were correct based
on the question and the right answer. Accuracy was
used as the metric. The prompt template used to
measure the accuracy is listed in Appendix C.

6 Experimental results

In zero-shot cases, Wav2Prompt aims to achieve re-
sults close to the ASR-LLM cascade while greatly
surpassing the Encoder-LLM. With limited task-
specific data and E2E fine-tuning, it aims to greatly
surpass ASR-LLM and match the Encoder-LLM.

6.1 ST task results

The ST results are shown in Table 1. Since the
Oracle-LLM and ASR-LLM Cascade systems can-
not utilise speech-to-translation paired data for E2E
fine-tuning, their results remain the same in both
cases. Note this paper uses prompt tuning and
the LLM was fixed. As shown in Table 1, in the
zero-shot scenario, Wav2Prompt-LLM achieves re-
sults close to the ASR-LLM Cascade, which shows
that the proposed Wav2Prompt maintains the ad-
vantage of the LLM zero-shot capability. More-
over, Wav2Prompt-LLM greatly outperformed the
Encoder-LLM in the zero-shot scenario, which is in
line with the findings of the prior work (Tang et al.,
2024) that Encoder-LLM overfits to the ASR task
when trained on ASR data, and exhibits limited

Model
Zero-shot

SQQA
SALMONN (Tang et al., 2024) 41.0
SpeechGPT (Zhang et al., 2023a) 11.8
Qwen2-Audio (Chu et al., 2024) 59.8
Oracle-LLM 68.10
ASR-LLM Cascade 60.03
Encoder-LLM 37.96
Wav2Prompt-LLM 60.21

Table 2: Accuracy (%) (↑) of zero-shot SQQA on syn-
thesised WikiQA.

performance in unseen ST tasks.
In the scenario with 10h ST paired data, Table 1

shows that after E2E fine-tuning, Wav2Prompt-
LLM exceeded the performance of the ASR-
LLM Cascade, which is the main advantage of
Wav2Prompt compared to standard ASR models
combined with LLMs. In addition, after fine-
tuning with limited data, the Encoder-LLM also
shows strong results, only slightly poorer than
Wav2Prompt. This indicates that although the
Encoder-LLM overfits to the ASR tasks, this issue
can be ameliorated via few-shot fine-tuning. More-
over, after E2E fine-tuning, both the Wav2Prompt-
LLM and Encoder-LLM surpassed the Oracle-
LLM on En-Fr translation, highlighting the effec-
tiveness of prompt tuning since the Oracle-LLM
prompt is a fixed natural language phrase. The Flat-
start Encoder-LLM results show that the limited
data in the few-shot case was insufficient for an
encoder, with no exposure to the LLM, to learn
how to connect it to the LLM.

Thus, Wav2Prompt is an effective E2E alter-
native to traditional ASR when combined with
LLMs. Appendix E gives the WER results of
the ASR model. Appendix F shows extended
results by reducing the data size used for fine-
tuning, where Wav2Prompt still greatly outper-
formed the ASR-LLM Cascade even with only
30 minutes of ST paired data for E2E fine-tuning.
Appendix G give the cross-domain results of fine-
tuned Wav2Prompt.

6.2 SQQA task results

The zero-shot results of SQQA are shown in Ta-
ble 2, where the SQQA task was evaluated in a
cross-domain scenario, making it more challenging.
Overall, the ASR-LLM Cascade and Wav2Prompt-
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Model Zero-shot 2h Data
Oracle-LLM 97.86 97.86
ASR-LLM Cascade 89.19 94.17
Encoder-LLM 72.20 99.34
Wav2Prompt-LLM 88.24 99.45

Table 3: Cross-domain intent classification accuracy (%)
(↑) on FSC corpus for models trained on LibriSpeech
corpus. Vicuna-7B-1.5 was used.

Model
test dev

clean other clean other
SLAM-ASR 2.4 4.9 — —
SALMONN 2.1 4.9 — —
Whisper-large-v3 2.7 5.2 — —
Encoder-LLM 2.4 4.5 2.3 4.3
Wav2Prompt-LLM 2.5 4.4 2.4 4.1

Table 4: %ASR WER (↓) results on LibriSpeech test
sets. Published results from SLAM-ASR (Ma et al.,
2024b), SALMONN (Tang et al., 2024), and Whisper-
large-v3 (Radford et al., 2023) are given.

LLM achieved similar results, with Wav2Prompt-
LLM being slightly better, while the Encoder-LLM
showed a noticeable performance gap due to task
over-fitting. Hence, the experimental conclusion
is consistent with the above ST experiments that
Wav2Prompt effectively retains the LLM zero-shot
ability, making it an E2E alternative to conven-
tional ASR when combined with an LLM. Note the
published results from Tang et al. (2024); Zhang
et al. (2023a); Chu et al. (2024) are also shown but
the comparison is not well-controlled due to the
different training data.

Appendix H gives the SQQA results with differ-
ent LLMs as the judges.

6.3 SLU task results

The SLU task in this paper requires the LLM to
classify the intent of the speech. Furthermore, this
experiment was conducted in a cross-domain sce-
nario, i.e., the model trained on LibriSpeech ASR
data was directly evaluated on FSC data. The re-
sults of intent classification are presented in Ta-
ble 3. In the scenario with limited SLU data avail-
able (i.e. 2h), while the ASR-LLM cascade sys-
tem cannot leverage SLU-paired data for E2E fine-
tuning, the corresponding ASR data can still be
used by the ASR model for domain adaptation in
a cross-domain setting. Therefore, the few-shot

Model SQQA
Oracle-LLM 68.10
ASR-LLM Cascade 60.03
Encoder-LLM 37.96
Wav2Prompt-LLM 60.21
Wav2Prompt-LLM w/o MSE Loss 36.97

Table 5: Ablation studies on the MSE loss. Zero-shot
SQQA accuracy (%) (↑) results were shown.

results of the ASR-LLM Cascade showed a no-
ticeable improvement compared to the zero-shot
results. In the zero-shot scenario, Wav2Prompt-
LLM achieved performance close to the ASR-LLM
Cascade and greatly surpassed the Encoder-LLM,
which again shows that the Encoder-LLM overfits
to the ASR task that it was used in training, while
Wav2Prompt retains the LLM zero-shot ability. Af-
ter fine-tuning using 2h data, even compared to the
domain-adapted ASR-LLM Cascade, Wav2Prompt-
LLM gave improved results, showing the advantage
of Wav2Prompt-LLM in E2E fine-tuning.

Appendix F gives the results of fine-tuning using
10 minutes of data, with consistent conclusions.

6.4 ASR task results

While this paper focuses on downstream tasks such
as ST, SLU, and SQQA, the ASR results are also
given in Table 4. Wav2Prompt-LLM and Encoder-
LLM both gave competitive ASR results on the Lib-
riSpeech benchmark data. Published results from
SLAM-ASR (Ma et al., 2024b), SALMONN (Tang
et al., 2024), and Whisper (Radford et al., 2023) are
also given, where SLAM-ASR uses WavLM Large
encoder. However, the comparison with these three
models is not well-controlled due to different en-
coders and training data.

6.5 Ablation study

In Wav2Prompt, the MSE loss is used to enforce the
consistency between label-level speech representa-
tion and LLM embeddings, thereby preserving the
zero-shot capability of text-based LLMs. As shown
in Table 5, without the MSE loss, the zero-shot
SQQA performance of Wav2Prompt-LLM dropped
noticeably, so that Wav2Prompt-LLM overfits to
the ASR task, similar to how the Encoder-LLM
struggled with unseen tasks. Therefore, learning
to match the LLM embeddings with the MSE loss
is the key to unlocking the zero-shot capability of
speech-enabled LLM.
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Appendix I uses DTW (Sakoe and Chiba, 1978)
to further evaluate speech-text alignment learning,
which verifies that after trained with ASR data,
Wav2Prompt enforces consistency between speech
representations and LLM token embeddings.

7 Conclusions

This paper describes Wav2Prompt, which proposes
a method to connect spoken input with text-based
LLMs using only ASR training data while re-
taining the zero-shot capability for other spoken
language tasks. Wav2Prompt extracts label-level
speech representations using the CIF mechanism
and explicitly enforces the consistency between
the speech representations and LLM embeddings
using the MSE loss function, thus avoiding the is-
sue of task over-fitting. Experiments on a range of
tasks, including ST, SLU, and SQQA, showed that
Wav2Prompt can achieve results close to the ASR-
LLM cascade system in zero-shot scenarios and
greatly outperforms the existing speech-enabled
LLM method. It gives results that exceed those of
the ASR-LLM cascade in cases with limited task-
specific data. Wav2Prompt is an E2E alternative to
conventional ASR when combined with text LLMs.

Limitations

This paper is limited in the following aspects: First,
this paper explores the use of off-the-shelf text-
based LLMs, so the upper bound of performance
is determined by the accessible text-based LLMs.
However, due to the limitations of computing re-
sources, this paper explored various 7B LLMs. Fur-
ther larger LLMs are challenging given our current
computing resources. Moreover, Wav2Prompt re-
lies on open-source LLMs and cannot use closed-
source LLMs, such as GPT4.

Second, this paper follows the prompt tuning
approach without updating the LLM parameters.
Considering many systems have been built to com-
pare with our proposed Wav2Prompt, fine-tuning
the LLM parameters would greatly increase the
resources required for training, which is challeng-
ing given our limited computing resources. Future
work may explore the performance of Wav2Prompt
when updating the LLM parameters. However, the
prompt tuning approach also has the advantage that
only one LLM needs to be maintained for a se-
ries of tasks, making it highly memory-efficient for
real-world deployment.

Third, for tasks like SQQA, this paper only com-

pared performance under a zero-shot scenario be-
cause the synthesised test set was provided by the
previous work of (Tang et al., 2024), and we do not
have a powerful speech synthesis system available.
Fourth, limited by training data and computing re-
sources, we were not able to train our Wav2Prompt
as extensively as some pre-trained speech models
like Whisper (Radford et al., 2023), but we have
conducted extensive experiments on many corpora,
including LibriSpeech, the most widely used ASR
data. This paper evaluates Wav2Prompt on En-
glish speech data, including ST between two Euro-
pean language pairs (En-Es and En-Fr). We believe
Wav2Prompt can also be applied to other languages,
including multi-lingual tasks, but its performance
has not been verified and is left as future work.

Finally, this paper focuses on semantic speech
tasks and has validated Wav2Prompt on four un-
seen tasks (including two ST tasks) and also ASR
task. However, due to limited resources, there
are still other potential applications, e.g. emotion
recognition, which is left as future work.

Ethics Statement

Wav2Prompt allows easy integration of spo-
ken input with text-based LLMs and provides
more use-cases for off-the-shelf text-based LLMs.
Wav2Prompt provides similar performance to a
conventional cascade of ASR followed by a text
based LLM for a zero shot performance on a
range of tasks. However since it allows E2E fine-
tuning, Wav2Prompt provides much improved per-
formance in few-shot scenarios on tasks including
speech translation, spoken intent classification and
spoken question answering. This ability to per-
form very well on a range of spoken language tasks
when Wav2Prompt is initially trained only on ASR
training data is beneficial in many circumstances
where task-specific training data is limited. This
is true for many tasks, and the issue of limited
spoken training data is even more severe for under-
resourced languages and hence this is a significant
benefit of Wav2Prompt. Wav2Prompt does not give
rise to any additional potential biases beyond the
ones directly inherited from the pre-trained LLM
checkpoints and the speech training data used.
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Table 6: Statistics of datasets used in this paper

Europarl-ST
ASR Data Train Set train
-Hours 81 hours
-Samples 34K

Few-shot ST Data Train sets train-en-es-10h train-en-fr-10h
-Hours 10 hours 10 hours
-Samples 4.2K 4.2K

ST Data Test sets test-en-es test-en-fr
-Hours 2.9 hours 2.8 hours
-Samples 1.3K 1.2K

LibriSpeech
ASR Data Train set train-960
-Hours 960 hours
-Samples 281K

Test sets test-clean / other dev-clean / other
-Hours 5.4 / 5.3 hours 5.4 / 5.1 hours
-Samples 2.6 / 2.9K 2.7 / 2.9K

Synthesised WikiQA
SQQA Data test set test
-Hours 0.5 hours
-Samples 0.6K

Fluent Speech Commands (FSC)
Few-shot SLU Data train set train-2h
-Hours 2 hours
-Samples 3.2K

SLU Data test set test
-Hours 2.4 hours
-Samples 3.8K

A Data Set Statistics

The training and test data set statistics for the cor-
pora used in the experiments are shown in Table 6.
The Europarl-ST data was collected from the Eu-
ropean Parliament debate (Iranzo-Sánchez et al.,
2020). LibriSpeech is an audiobook reading corpus
(Panayotov et al., 2015). The WikiQA (Yang et al.,
2015) test set with synthesised speech queries pro-
vided by (Tang et al., 2024) was used for the SQQA
task, in which the answers generated from GPT4
were used as the reference answers. The FSC data
(Lugosch et al., 2019) was collected from English
commands commonly used for a smart home or
virtual assistant, which has 31 distinct intents.

B Training and hyper-parameter details

For the Conformer encoder, the kernel size of the
convolution module was set to 31. The attention

dimension, feed-forward dimension, and attention
heads of the Conformer encoder were set to 256,
2048, and 4. The data was pre-processed following
ESPnet (Watanabe et al., 2018) recipes. Following
the ESPnet recipe, The S3PRL toolkit (Yang et al.,
2021) was used to extract speech features from
a fixed WavLM Large model (Chen et al., 2021).
Convolutional layers were used to down-sample in
time by a factor of 2. The CTC models used 1000
BPE (Gage, 1994) modelling units. For models
trained on the ASR data of Europarl-ST, the CTC
ASR model was trained for 20 epochs using a learn-
ing rate 3 · 10−3 with 25k warmup steps, and the
Wav2Prompt-LLM, Encoder-LLM, and Flat-start
Encoder-LLM converged after 20 epochs of train-
ing. In scenarios with limited task-specific data, the
models were fine-tuned for 10 epochs. For mod-
els trained on LibriSpeech data, the models were
trained for 10 epochs. Speed perturbation was used
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Table 7: Prompt used in this paper to evaluate SQQA task.

Prompt

Please evaluate the following question-answer pair:

Question: [question]
Correct Answer: [answer]
Predicted Answer: [prediction]

Provide your evaluation only as a yes/no and score where the score is an integer value
between 0 and 5, with 5 indicating the highest meaningful match. Please generate the
response in the form of a Python dictionary string with keys ‘pred’ and ‘score’, where
value of ‘pred’ is a string of ‘yes’ or ‘no’ and value of ‘score’ is in INTEGER, not
STRING. DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string. For example, your response should look like
this:{‘pred’: ‘yes’, ‘score’: 4}.

with factors 0.9 and 1.1. In scenarios of fine-tuning
using the FSC data, the models were fine-tuned
for 20 epochs. The number of trainable parame-
ters of the Wav2Prompt-LLM, ASR-LLM Cascade,
Encoder-LLM, Flat-start Encoder-LLM systems
were 37.45 M, 36.65 M, 44.79 M, and 44.79 M,
respectively.

For the Europarl-ST, 250 M batch bins (as im-
plemented by ESPnet) were used, and each epoch
took about 3 hours using NVIDIA A100. For the
LibriSpeech, 140 M batch bins (as implemented
by ESPnet) were used, and each epoch took about
23 hours using NVIDIA A6000 Ada. For the pro-
posed Wav2Prompt, γ and µ in Eq. 6 were set to
20 and 0.05, respectively. During decoding, the
beam size was set to 5. For ASR decoding, the
repetition penalty as implemented by Huggingface
(Wolf et al., 2020) was set to 1.5.

C SQQA evaluation

Mistral-7B-Instruct-v0.2 was used to evaluate the
accuracy of the model prediction in the SQQA
task. The prompt used in this paper is listed in
Table 7, which follows (Maaz et al., 2023). The
accuracy was computed by counting the frequency
with which the Mistral LLM outputs ‘yes’.

D Task-specific prompt templates

The prefix and postfix text used in this paper as task-
specific prompt templates are listed in Table 10,
which were designed based on the intended use of
different LLM (Zhang et al., 2023b; Touvron et al.,
2023b; Le Scao et al., 2023) or related work (Xu
et al., 2024; He and Garner, 2023).

Model
test dev FSC

clean other clean other Test
ASR Model 2.5 4.4 2.4 4.1 12.9
+2h data fine-tune — — — — 3.1

Table 8: %ASR WER (↓) results for the model trained
on LibriSpeech data. The FSC test set is cross-domain
for LibriSpeech. The 2h data refers to the ASR part of
the 2h SLU data in limited resource scenarios.

Model
Europarl-ST ASR part
test dev

ASR Model 16.4 16.4

Table 9: %ASR WER (↓) results for the model trained
on the corresponding English ASR data of the Europarl-
ST corpus. Note that punctuation is also considered
when calculating WER.

E Extra ASR results

The WER results of the ASR model used in the
ASR-LLM cascade are shown in Table 8 and Ta-
ble 9. The FSC test set is a cross-domain set for
LibriSpeech, therefore the performance on it was
greatly improved after fine-tuning using 2h data.
For the WER results on Europarl-ST ASR test sets,
punctuation is included, consistent with how it is
considered in the ST BLEU results in this paper.

F Extended results with different sizes of
fine-tuning data

This section further adjusts the data size when fine-
tuning with limited resources. As shown in Ta-
ble 11, even 30 minutes of ST data benefit E2E
approaches like Wav2Prompt-LLM and Encoder-
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Table 10: Prefix and postfix text used in this paper

ASR Train: Prefix ""
ASR Train: Postfix Repeat the above English text:
ST Test: Prefix Translate the following English sentence into [target language]:
ST Test: Postfix [target language]:

SLU Test: Prefix

We will show you some commands given by a user to a voice assistant
like Siri or Olly. Please classify the intent of the command.
There are 31 unique intents in total, which are divided into three slots:
"action", "object", and "location". A slot takes on one of multiple values:
the "action" slot can take on the values: "change language", [...];
the "object" slot can take on the values: "none", "music", [...];
the "location" slot can take on the values: "none", "kitchen", [...].

The format of intent is: "action_object_location". The list of all the
intents are: "increase_volume_none", [...].
You can first repeat the command and then think about the intent.
Please give answers like: {"Command": <your_repeated_command>,
"Intent": <your_intent_prediction>}. For example: [...]. The intent in
your answer must match one of the intents given above. If you are
uncertain, choose the one that you think is the most likely.
Here are the commands:

USER:

SLU Test: Postfix
Repeat the above English text and classify the intent:
ASSISTANT:

SQQA Test: Prefix
Give a precise and clear answer to the question. Don’t be verbose. You
can first repeat the question and then think about the answer. Please give
answers like: {"Question": <your_repeated_question>, "Answer": <your
_answer>}. If you are not sure, leave the answer blank, like {"Question":
<your_repeated_question>, "Answer": ""}.
Here are the questions:

USER:

SQQA Test: Postfix
Repeat the above English text and answer the question:
ASSISTANT:

ASR Test: Prefix ""
ASR Test: Postfix Resume the above English text:

LLM in improving performance. Moreover, with
30 minutes of ST data, Wav2Prompt still greatly
outperformed the ASR-LLM Cascade.

As shown in Table 12, even 10 minutes of SLU
data fine-tuning allows the E2E approaches to
greatly surpass the cascaded system, which uses
2 hours of ASR data to fine-tune the ASR model,

highlighting the advantage of E2E methods in fine-
tuning. Furthermore, with just 10 minutes of SLU
data, Wav2Prompt-LLM can achieve almost the
same results as Oracle-LLM.
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Model En-Fr (BLEU)
Oracle-LLM 25.8
ASR-LLM Cascade 22.3
Encoder-LLM (zero-shot) 6.2

+ 30min data fine-tune 21.3
+ 1h data fine-tune 22.1
+ 10h data fine-tune 26.2

Wav2Prompt-LLM (zero-shot) 21.7
+ 30min data fine-tune 24.6
+ 1h data fine-tune 25.0
+ 10h data fine-tune 27.3

Table 11: %BLEU (↑) results on the test sets of Europarl-
ST En-Fr pair.

Model SLU Accuracy
Oracle-LLM 97.86%
ASR-LLM Cascade 89.19%

+ 2h ASR data fine-tune 94.17%
Encoder-LLM (zero-shot) 72.20%

+ 10min data E2E fine-tune 97.23%
+ 2h data E2E fine-tune 99.34%

Wav2Prompt-LLM (zero-shot) 88.24%
+ 10min data E2E fine-tune 97.84%
+ 2h data E2E fine-tune 99.44%

Table 12: Intent classification accuracy (%) (↑) on FSC
corpus for models trained on LibriSpeech corpus.

G Cross-domain results of fine-tuned
Wav2Prompt on ST task

This section additionally tests the performance of
the fine-tuned model in a cross-domain setting. For
the Wav2Prompt model fine-tuned with 10 hours of
supervised data from Europarl-ST En-Fr on speech
translation, we directly tested it on the Must-C
(Di Gangi et al., 2019) test set, and the results
are shown in Table 13. The results show that the
performance drop on the MuST-C cross-domain
test set is acceptable, indicating that Wav2Prompt
is generally robust.

H SQQA results with different LLMs as
Judges

This section explores the use of different LLMs as
the judge to evaluate the SQQA performance. The
results in Table 14 show that while there are some
differences in accuracy between the GPT API and
the open-source models as evaluation models, the
experimental conclusions remain consistent across

En-Fr ST Model Europarl-ST MuST-C
Wav2Prompt-LLM 27.3 22.3

Table 13: Cross-domain ST results on MuST-C of
Wav2Prompt fine-tuned from Europarl-ST.

the different models acting as judges.

I Extended results on DTW scores

Dynamic Time Warping (DTW) (Sakoe and Chiba,
1978) were used to evaluate the speech-text align-
ment learnt by Wav2Prompt. The DTW scores
were computed to measure the similarity between
LLM token embeddings Z = (z0, z1, · · · , zN )
and speech representations S = (s1, · · · , sM ) on
LibriSpeech test-clean set for Encoder-LLM and
Wav2Prompt. DTW score is computed by finding
the optimal alignment that minimises the cumu-
lative distance between them. The DTW score
is normalised by dividing by the length of S, i.e.,
M . When computing the distance between any
two vectors (e.g., zi and sj) in these two se-
quences, the squared Euclidean distance is used:
d(zi, sj) =

1
K

∑K
k=1(zi,k − sj,k)

2 where K is the
feature dimension.

As shown in the DTW scores from Table 15, the
Wav2Prompt representations are well-aligned with
corresponding LLM token embeddings, whereas
the representations of the Encoder-LLM are incon-
sistent, leading to task over-fitting.

J Assets and licenses

The following licenses apply to the models used in
this paper:

• LLaMA2: https://huggingface.co/
meta-llama/Llama-2-7b-hf/blob/main/
LICENSE.txt applies to Vicuna-7B-1.5.

• Apache-2.0: https://www.apache.org/
licenses/LICENSE-2.0 applies to Mistral-
7B-Instruct-v0.2.

• BigScience RAIL License v1.0:
https://huggingface.co/spaces/
bigscience/license applies to BLOOMZ-
7B1.

The following licenses apply to the datasets used
in this paper:

• CC BY-NC 4.0: https://spdx.org/
licenses/CC-BY-NC-4.0 applies to
Europarl-ST data.
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Models LLM Evaluation Models SQQA Accuracy (%)
Oracle-LLM Mistral-7B-Instruct-v0.2 68.10
ASR-LLM Cascade Mistral-7B-Instruct-v0.2 60.03
Encoder-LLM Mistral-7B-Instruct-v0.2 37.96
Wav2Prompt-LLM Mistral-7B-Instruct-v0.2 60.21
Oracle-LLM Llama-3.1-8B-Instruct 69.40
ASR-LLM Cascade Llama-3.1-8B-Instruct 60.96
Encoder-LLM Llama-3.1-8B-Instruct 38.10
Wav2Prompt-LLM Llama-3.1-8B-Instruct 61.80
Oracle-LLM GPT API 57.59
ASR-LLM Cascade GPT API 48.26
Encoder-LLM GPT API 21.15
Wav2Prompt-LLM GPT API 49.37

Table 14: SQQA Accuracy Comparison Across Different Models

Model DTW scores

Encoder-LLM 17.5970
Proposed Wav2Prompt-LLM 0.0049

Table 15: DTW (↓) results on LibriSpeech test set.

• CC BY 4.0: https://spdx.org/licenses/
CC-BY-4.0 applies to LibriSpeech data.

• CC-BY-NC-ND-4.0: https://spdx.org/
licenses/CC-BY-NC-ND-4.0 applies to Flu-
ent Speech Commands data.

The following license applies to the code and
Python package used in this paper:

• Apache-2.0: applies to Hugging-
face Transformers (https://github.
com/huggingface/transformers/
blob/main/LICENSE) and ESPnet
(https://github.com/espnet/espnet/
blob/master/LICENSE).
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