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Abstract

Previous research has typically concentrated on
leveraging the internal knowledge of Large Lan-
guage Models (LLMs) to answer known ques-
tions (i.e., internal reasoning such as generate-
then-read). In contrast, for questions that fall
outside their known scope, these models rely
on external knowledge retrieval to provide ac-
curate responses (i.e., external acting such as
retrieve-then-read). However, few previous
works consider the compositional questions,
which consist of several known and unknown
sub-questions, necessitating the dynamic com-
bination of previous two methods (i.e., inter-
nal reasoning and external acting) to achieve
a better trade-off between effectiveness and
efficiency. To this end, we introduce a Self
Divide-and-Conquer (Self-DC) framework,
accompanying with the first Compositional
unknown Question-Answering dataset (CuQA).
This framework enables LLMs to adaptively
choose between using internal knowledge and
retrieving external knowledge as needed, re-
sulting in a better trade-off between effective-
ness and efficiency. Experimental results on
two datasets demonstrate that Self-DC can
achieve comparable or even better performance
with much fewer external calls compared with
several strong baselines.

1 Introduction

Large Language Models (LLMs) (Ouyang et al.,
2022; Touvron et al., 2023) possess extensive world
knowledge thanks to the scaling of size of pre-
training data and model (Kaplan et al., 2020), re-
sulting in exceptional capabilities to answer open-
domain questions using internal known knowledge
encoded in their parameters (Yu et al., 2023a; Bang
et al., 2023). However, due to the cutoff date of
training data, it is difficult for them to answer
questions out of their known knowledge (a.k.a.,
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Q: Is the President of the United States in 2024 the same

individual serving as the President in 2018?

SQ-1: Who is the President

of the United States in 2018?
SA-1: Donald Trump

SQ-2: Who is the President

of the United States in 2024?
SA-2: Joe Biden

A: No, they are not the same person.

Cutoff

date

Timeline

Internal reasoning for known

External retrieval for unknown

+

Figure 1: A example of compositional questions,
in which a unknown question consists of some sub-
questions can be answered using known knowledge
while other sub-questions necessitate unknown knowl-
edge according to the cutoff date of LLMs.

unknown questions), which necessitates the aug-
mentation of external retrieval (Lewis et al., 2021;
Zhuang et al., 2023; Vu et al., 2023; Gabburo et al.,
2024), such as Google Search and Wikipedia.

To provide more accurate answers for the ques-
tions, most previous works tend to employ exter-
nal retrieval methods indiscriminately without con-
sidering different types of questions, resulting in
redundant retrieval and unnecessary cost (Trivedi
et al., 2023; Shao et al., 2023). Alternatively,
some methods simply classify questions into bi-
nary categories (i.e., known and unknown), and
utilize either self-generated context or retrieved ex-
ternal context to answer them, respectively (Wang
et al., 2023d), following a generate-then-read (Yu
et al., 2023a) or retrieve-then-read (Lewis et al.,
2021) paradigm. However, this binary classifi-
cation is sub-optimal and inefficient for handling
compositional questions, which consist of multi-
ple sub-questions where each sub-question could
be known or unknown, as illustrated in Figure 1.
Consequently, these binary-classification methods
degrade into simply retrieving information for ev-
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ery question, as any compositional questions con-
taining an unknown sub-question remain entirely
unknown by large language models (LLMs). More-
over, using the original compositional question as
a query frequently leads to the retrieval of noisy
or unrelated documents, which hinders accurate
answers (Ma et al., 2023). These limitations high-
lights the need for more nuanced and efficient re-
trieval strategies tailored to the complexity of com-
positional questions.

In this paper, we first formally introduce
compositional questions from the perspective of
known/unknown, which is more practical and chal-
lenging. To further specify the compositional ques-
tions, we categorized questions into four types ac-
cording to the knowledge boundaries of LLMs 1:

• Single Known. The question contains no
sub-questions and can be solved using inter-
nal knowledge of LLMs, such as with the
generate-then-read method.

• Single Unknown. The question contains no
sub-questions and can only be solved using
external knowledge, such as with the retrieve-
then-read method.

• Compositional Known. The question contains
several sub-questions, and each sub-question
is Single Known.

• Compositional Unknown. The question con-
tains several sub-questions, and at least one
sub-question is Single Unknown.

Determining whether a question is known or
unknown to LLMs, and whether it is a composi-
tional question, is a complex task that may require
multi-step reasoning. In this paper, we introduce
a Self Divide-and-Conquer (Self-DC), designed
to effectively and efficiently identify and decom-
pose compositional questions. The main idea of
Self-DC is to use the inherent signals of LLM
to control its own behavior, e.g., elicit the internal
knowledge or call external retrieval. Specifically,
we define each action as a function, and model
the whole decomposition as dynamic function calls
guided by self-aware confidence signals. Therefore,
the internal reasoning capabilities of LLMs can be
well elicited while making every external retrieval

1The definition begins from the data side instead of model
side such as the cutoff date of training data, we discuss hallu-
cination issue of model side at Sec 8.

call count. In summary, our contributions can be
outlined as follows:

• To the best of our knowledge, we are the first
to study compositional questions from the per-
spective of known / unknown.

• We introduce an automatic data collection
pipeline to create the first Compositional
unknown Question Answering dataset
(CuQA), serving as an important evaluation
benchmark for LLMs in known/unknown.

• We present a flexible and robust Self-DC
framework, which is capable of adaptively
calling different functions on-demand for com-
positional questions decomposition.

• Experimental results on CuQA and FreshQA
(Vu et al., 2023) datasets show the superiority
of Self-DC in terms of both effectiveness
and efficiency, revealing its promising poten-
tial to solve compositional reasoning problem.

2 Related Work

Known and Unknown of LLMs. Investigations
into the known and unknown boundaries of large
language models (LLMs) have gained attention in
recent literature (Kadavath et al., 2022; Amayue-
las et al., 2023; Yin et al., 2023). Despite the pa-
rameters of LLMs containing a wealth of knowl-
edge to excel in various tasks, they are still lim-
ited due to the continuously increasing information.
Specifically, LLMs have showcased satisfactory
performance to evaluate the validity of their own
claims and predict which questions they will be
able to answer correctly by predicting “P(IK)”, the
probability that “I know” the answer to a ques-
tion (Kadavath et al., 2022). Furthermore, Yin
et al. (2023) evaluate LLMs’ self-knowledge by
assessing their ability to identify unanswerable or
unknowable questions. Similarly, Amayuelas et al.
(2023) further assesses the LLMs’ ability to differ-
entiate between known and unknown questions and
classify them accordingly by collecting Known-
Unknown Questions (KUQ). Their results show
that the LLMs still have room for improvement
in classifying known-vs-unknown questions, even
with the incorporation of retrieval augmentation
(Ren et al., 2023). More recently, Xue et al. (2024a)
utilize both semantic entropy and confidence sig-
nal to guide the behaviors of LLMs for known and
unknown questions. Distinguished from previous
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works, our paper targets compositional questions,
considering various types of questions in practice.

Certainty and Uncertainty of LLMs. To cal-
ibrate the known and unknown of LLMs, there
are lots of studies that have delved into methods
for estimating and quantifying certainty and un-
certainty in LLMs predictions (Xiao et al., 2022;
Lin et al., 2022; Xiong et al., 2023; Kuhn et al.,
2023). There are two types of methods: 1) logit-
based which utilize the model logits (Xiao et al.,
2022; Mielke et al., 2022); and 2) non-logit-based
methods, such as expressing uncertainty about its
own answer in natural language (Lin et al., 2022),
particularly with the rise of closed-source LLMs.
More recently, Xiong et al. (2023) benchmarks
three categories of the first type: verbalize-based,
consistency-based, and their hybrid methods. They
find that LLMs exhibit a high degree of overcon-
fidence when verbalizing their confidence, which
can be alleviated by different prompting strategies
(e.g., Chain-of-thoughts (Wei et al., 2023)) or more
complicated methods (e.g., Self-consistency (Wang
et al., 2023c)). Moreover, different languages also
trigger different level of certainty and uncertainty
of language models (Xue et al., 2024b).

Reasoning and Acting of LLMs. On the one
hand, lots of previous methods investigate vari-
ous methods to elicit the internal reasoning ca-
pability of LLMs (Wei et al., 2023; Wang et al.,
2023b, 2025), such as program-guided reasoning
(Pan et al., 2023; Khattab et al., 2023), Self-Ask
(Press et al., 2023) and retrieval-augmented reason-
ing (Trivedi et al., 2023; Yu et al., 2023b; Shao
et al., 2023), especially for multi-hop questions
(Yang et al., 2018) and in-depth dialogues (Wang
et al., 2023b). On the other hand, it is important to
empower the stateless LLMs to interact with exter-
nal world with the augmentation of different tools
(Wang et al., 2024a). Therefore, LLMs can perform
tasks that go beyond their intrinsic knowledge such
as retrieving up-to-date information (Wang et al.,
2023a, 2024c) and providing domain-specific ser-
vices by calling different functions / APIs (Wang
et al., 2024b). However, only a few of them con-
sider the relationship between internal reasoning
and external acting, especially for compositional
problems when the necessary unknown knowledge
is required. To address this dilemma, we explore
the better trade-off between internal reasoning and
external acting in terms of effectiveness and effi-

ciency.

3 Data Collection

In this section, we thoroughly introduce how to col-
lect the Compositional unknown Question-Answer
dataset (CuQA) automatically, with the minimum
human efforts to filter unqualified samples.

3.1 Automatic Collection
Algorithm 1 shows the pseudo-code details. Specif-
ically, we assume there is a cutoff date for each
LLM with the latest cutoff date for all LLMs,
and all the pretraining corpus is collected before
the cutoff date, for example, the cutoff date of
gpt4-turbo is April 20232. In this way, we
first collect all events that happened after the cut-
off date from Wikipedia3, named unknown events.
Then we carefully implement different functions
(i.e., UnknownQuestionGen) by prompting LLMs
using different templates. We provide different in-
formation, e.g., internal known events and external
unknown events, in the template to guide LLMs
in generating the required output. For example,
we use one entity in the unknown events as an
answer and prompt the LLMs to generate corre-
sponding questions according to the events (line 6).
Appendix A.1 shows the details of all functions’
prompts. We finally store the questions, answers,
and all intermediate results for further processing
4.

3.2 Quality Control and Statistics
To ensure the quality of the dataset, we addition-
ally introduce some automatic quality control pro-
cedures and human evaluations. First of all, we
write a Python script to validate whether or not the
format of outputs meets the instructions in the func-
tions. Moreover, we employ three well-educated
annotators to: 1) filter unqualified samples (≈10%),
such as answer is not correct or can not be inferred
according to unknown events; and 2) rewrite the
generated question to be more natural. Afterward,
we successfully collect around 550 questions. It is
worth noting 100 of them are hard questions which
are further composed using multiple easy question-
answering pairs (line 13). The examples in the data
can be found in Appendix A.2.

2https://openai.com/blog/
new-models-and-developer-products-announced-at-devday

3https://en.wikipedia.org/wiki/2023
4It is worth noting that our data collection can be time-

evolving given the cutoff date.
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Algorithm 1 CuQA Generation Algorithm

Input: Cutoff date t, Wikipedia W , LLM M
Output: Generated Questions Q

1: Ue = W (t) // get the unknown events accord-
ing to the cutoff date of LLMs

2: for ej ∈ Ue do
3: entj = getEntities(ej) // get a list of entities
4: curent = random.sample(entj)
5: ukq = UnknownQuestionGen(ej , curent)
6: ke = KnownEventsGen(curent)
7: if random.randint(1,9) < 5 then
8: kq = KnownQuestionGen(ej , curent)
9: else

10: kent = random.sample(getEntities(ke))
11: kq = KnownQuestionGen2(ke, kent, curent)
12: end if
13: q = MergeQuestions(kq, ukq)
14: Q.append((q, curent or ukq))
15: end for
16: return Q

4 Method

To adaptively call different functions on-demand
for compositional questions understanding, it is
essential to determine: a) whether the current ques-
tion is known or unknown to the LLMs, and b)
whether the current question can be further de-
composed into different sub-questions. Therefore,
given a question, we first get the confidence score
of LLMs for a question and then (iteratively) call
different functions, aiming to collect enough in-
formation to generate the final answer. Figure 2
shows an overview of the proposed self divide-and-
conquer framework, Self-DC.

4.1 Framework: Self Divide-and-Conquer

Since LLMs express certainty in different ways and
are prone to hallucination issues, therefore, we de-
fine α as a mean of confidence score distribution
for specific LLM, along with β as the correspond-
ing standard deviation. In this way, the LLMs can
recognize when a question might be too complex or
ambiguous for a straightforward answer, necessitat-
ing the decomposition into simpler parts or the com-
bination of multiple pieces of information. Specif-
ically, we divide the confidence score into three
ranges [0, α−β], (α−β, α+β), [α+β, 1]. When
the confidence score falls into extreme ranges, such
as the left ([0, α− β]) or right ([α+ β, 1]) side, we
can directly apply retrieve-then-read or generate-

0 1

Unknown Known

Confidence Score
𝛼 + 𝛽𝛼 − 𝛽

Uncertainty

AnsAns

…

…

Ans

(a) (b) (c)

Figure 2: Overview of Self-DC: a) retrieve-then-read
for unknown questions, b) decompose-and-combination
for uncertain questions; and c) generate-then-read for
known questions.

then-read to answer the question respectively. How-
ever, when it encounters uncertain or confusing
questions (i.e., fall into the middle part), we de-
compose the question into several sub-questions
to decrease the uncertainty. We then iteratively
solve these sub-questions in the same way and
combine all sub-answers to answer the original
compositional question as shown in Figure 3. To
ensure efficiency and reduce unnecessary costs, we
implement several pruning conditions to prevent
iterations from overflowing: 1) the number of sub-
questions is 1, which means it should be a Single
Known or Single Unknown question; and 2) the
number of iteration depth is less than a pre-defined
τ . Once these situations happen, we simply regard
the current sub-question as the unknown question
and then call retrieve-then-read. In this way, we
can call compositional reasoning when necessary
instead of treating all questions indiscriminately
for different LLMs.

4.2 Confidence Score Acquisition
Inspired by lots of previous works (Lin et al., 2022;
Xiong et al., 2023), we use two types of method to
prompt the LLM itself to get the confidence score
to answer the question.

• verbalize-based (verb). We instruct the LLMs
to output the confidence level from 0 to 100 fol-
lowing the answer to the question (Xiong et al.,
2023). We clearly note that the confidence level
indicates the degree of certainty. Then we re-
map the confidence score to the range [0, 1]. The
details of the prompt can be found in Appendix.

• probability-based (prob). We additionally utilize
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the probability information to calculate the confi-
dence score. Specifically, we firstly prompt the
LLMs to generate the answer using a few words,
and then we get the probability p̂i of i-th token
in the generated content. We take the average of
probabilities in the sequence as the confidence
score (Varshney et al., 2023) following Eq. 1:

conf =
1

N

N∑

i=1

p̂i (1)

Considering the poor performance of LLMs to
express uncertainty as reported by lots of exist-
ing works (Lin et al., 2022; Xiong et al., 2023)
and complex situations in practice, we additionally
introduce α and β to control the range of uncer-
tainty, enhancing the flexibility and robustness of
Self-DC.

4.3 Other Sub-Functions
According to different levels of confidence scores,
we carefully design several functions to complete
the compositional reasoning task, aiming to provide
a more accurate answer. We present the details of
other sub-functions one by one as follows:

• Generate-then-read: Following Yu et al.
(2023a), we firstly prompt the LLM to gener-
ate a background document from Wikipedia to
answer the given question, and then ask the LLM
to answer the question by referring to the gener-
ated passage. The prompt details can be found in
the original paper.

• Retrieve-then-read: We utilize the retriever to
retrieve external knowledge at the first step and
then ask the LLM to answer the question by re-
ferring to the retrieved passage.

• Decompose: We prompt the LLMs to system-
atically break down the overarching question
into several smaller sub-questions. The answers
to these sub-questions collectively contribute to
deriving the answer to the original overarching
question, similar to Press et al. (2023) and Xu
et al. (2023).

• Combine answers: After the decomposition, we
call the main function to enter the next iteration
as shown in Figure 3, aiming to get the answer
to each sub-question. Subsequently, we combine
the answers to all sub-questions to get the answer
to the original question.

def SelfDC(m, r, q, alpha, beta):
# m: large language model
# r: retriever for searching documents
# q: question to be answered
# alpha, beta: hyperparameters for defining ranges

c = get_confidence_score(m, q)

if c < alpha + beta and c > alpha − beta:
sub_qs = decompose(m, q)
sub_as = [SelfDC(m, r, sub_q, alpha, beta) for

sub_q in sub_qs]
answer = combine_sub_qas(m, q, sub_qs, sub_as)

elif c >= alpha + beta:
answer = generate_then_read(m, q)

else:
answer = retrieve_then_read(m, r, q)

return answer

Figure 3: The simplified python implementation details
of Self-DC, consisting of several functions: 1) decom-
pose; 2) combine-sub-qas; 3) generate-then-read; and
4) retrieve-then-read.

5 Experiment

5.1 Baselines and Evaluation Metrics

Baselines. To provide a comprehensive evalua-
tion, we compare our method with different prompt-
ing methods with or without the involvement of re-
trieval augmentation: 1) Direct Prompting (Brown
et al., 2020); 2) Chain-of-thought (CoT) prompt-
ing (Wei et al., 2023), including zero-shot and few-
shot setting; 3) GenRead (Yu et al., 2023a) which
firstly prompts the LLMs to generate known knowl-
edge and then answer the question; 4) Retrieve-
then-read (RR) which retrieves the related pas-
sages first and then answers the questions, follow-
ing Yu et al. (2023b); 5) Self-Ask (Press et al.,
2023) involves generating follow-up questions, re-
trieving information based on those questions, and
providing answers, until no more follow-up ques-
tions are generated and the LLMs answer the orig-
inal question at the last; 6) IRCoT (Trivedi et al.,
2023) interleaves retrieval with steps (sentences) in
a CoT, guiding the retrieval with CoT and in turn us-
ing retrieved results to improve CoT; 7) REFEED
(Yu et al., 2023b) and 8) ITER-RETGEN (Shao
et al., 2023) utilize the generated answer or interme-
diate reasoning results to enrich the query, leading
to better retrieval and final answer to original ques-
tion, respectively.

Datasets and Evaluation Metrics. We conduct
our experiments mainly on two datasets: 1) the
newly proposed CuQA dataset; and 2) FreshQA
(Vu et al., 2023), which contains 600 question-
answer pairs that require fast-changing world
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knowledge, including the latest ones 5. We note
here that FreshQA is not a typical compositional
QA dataset despite it containing few compositional
questions. To select suitable values for α and β, we
randomly sample 50 instances as a development
set for CuQA, leaving 500 instances for testing.
For FreshQA, we use the original split: 500 test in-
stances and 100 development instances. Following
previous works (Yu et al., 2023a,b; Trivedi et al.,
2023), we select Exact Match (EM)6, F1 to evalu-
ate the performance of different methods. Further-
more, to enhance the robustness of the evaluation,
we use Acc† as an additional metric and prompt
LLMs to assess the predictions related to the actual
ground-truth answers following Shao et al. (2023).

5.2 Implementation Details
We mainly conduct our experiments on two differ-
ent backbone models: gpt-3.5-turbo-1106
and gpt-4o-mini, hereinafter referred to as
1106 and 4o-mini respectively, following lots
of previous works (Yu et al., 2023a,b; Shao et al.,
2023). For the Acc† evaluation, we always use
4o-mini as evaluation backbone model. We set
both the temperature and top p as 0.1 to reduce
the randomness of LLMs for all methods, render-
ing a more fair comparison. We implement the
Google search engine following LangChain 7 as
an external retriever, and we set the number of re-
trieved results as 3 and the max iteration depth τ
as 3. According to the preliminary results on the
validation set, we fix β as 0.1 and α as 0.9 for verb
(0.8 for prob) on 1106 for both datasets, and α as
0.6 for verb (0.6 for prob on CuQA; 0.8 for prob
on FreshQA) on 4o-mini. The significant test (t-
test) is conducted with p < 0.05 to ensure statistical
improvement.

5.3 Main Results
Table 1 and Table 2 show the performances of
all baselines and our proposed Self-DC on the
1106 and 4o-mini respectively. Therefore, sev-
eral conclusions can be drawn from the results:

CoT (or Few-shot-CoT) does not bring consis-
tent improvements over direct prompting (Direct).
We surprisingly found that the performance of CoT
at both Table 1 and Table 2 is usually worse than

5We use the version on 30th Sep, 2024.
6We consider it is matched when the predicted answer in

the ground truth answer due to various outputs by LLMs.
7https://python.langchain.com/docs/integrations/tools/

google_search

Methods #R CuQA FreshQA
EM F1 Acc† EM F1 Acc†

w/o retrieval
Direct 0 21.0 19.3 34.2 20.6 21.6 37.6
CoT 0 21.8 20.5 36.6 21.2 22.9 38.8
Few-shot-CoT∗ 0 7.2 1.7 9.6 18.0 11.1 26.8
GenRead 0 12.2 12.6 23.2 18.8 19.3 36.0

w/ retrieval
RR n 30.4 24.7 48.2 34.2 28.9 61.6
REFEED 2n 35.2 8.2 53.2 29.6 16.1 49.2
IRCoT 3n 39.0 8.1 50.4 32.0 15.5 61.2
Self-Ask∗ 0-n 8.6 4.3 11.2 16.8 13.4 27.4
ITER-RETGEN∗ 2n 19.2 5.8 25.4 32.4 15.7 46.6
Self-DC (verb) 0-2n 31.8 20.4 49.4 34.3 25.2 58.1
Self-DC (prob) 0-n 32.6 21.7 50.6 36.2 28.4 62.2

Table 1: The performance of baselines and Self-DC
with the 1106. The baseline∗ means it uses demon-
strations and The column #R denotes the number of
retrieval calls in terms of number of test cases n. We
bold the best performance and underline the second-
best performance.

Direct, and Few-shot-CoT can not further boost the
performance particularly with 1106, revealing the
complexity of compositional reasoning.

Retrieval-based method generally achieves better
performance than non-retrieval methods but the
gap is smaller with compositional questions. It is
observed that RR and IRCoT are capable of achiev-
ing better performance than non-retrieval baselines,
and IRCoT sometimes achieves the highest per-
formance due to a more complex retrieval design,
accompanied by more cost. Secondly, the gap be-
tween retrieval-based and non-retrieval-based meth-
ods on FreshQA is relatively larger than on CuQA.
This discrepancy is likely because CuQA contains
more compositional questions, which, when used
directly as queries, result in noisier documents.
Furthermore, we surprisingly observe that Self-
Ask and ITER-RETGEN achieve the lowest per-
formance, especially on CuQA. To understand the
reason, we examined the intermediate reasoning re-
sults and found that Self-Ask tends not to generate
follow-up questions and directly answer the ques-
tion, rarely calling for retrieval given the composi-
tional unknown question. On the other hand, ITER-
RETGEN retrieves external documents step-by-
step but introduces a lot of noise since the queries
are mostly related to the original compositional
question. These observations reveal the signifi-
cance and valuable insights provided by the CuQA
dataset, highlighting its importance for understand-
ing the challenges associated with compositional
questions.
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Methods #R CuQA FreshQA
EM F1 Acc† EM F1 Acc†

w/o retrieval
Direct 0 29.0 19.4 46.4 27.2 17.3 53.0
CoT 0 28.8 18.2 46.0 29.2 18.1 53.8
Few-shot-CoT∗ 0 43.0 3.2 50.8 35.0 9.1 55.4
GenRead 0 29.6 29.2 47.4 26.8 27.7 52.0

w/ retrieval
RR n 32.0 31.6 55.4 35.2 32.6 63.4
REFEED 2n 26.2 33.5 51.8 28.8 34.5 57.4
IRCoT 3n 47.8 13.5 64.6 34.2 17.8 61.4
Self-Ask∗ 0-n 19.8 3.8 48.4 5.6 9.8 59.0
ITER-RETGEN∗ 2n 23.4 12.6 50.9 31.2 21.1 55.8
Self-DC (verb) 0-n 34.0 32.2 53.8 30.2 30.2 59.8
Self-DC (prob) 0-n 36.4 36.5 56.4 37.4 36.6 66.4

Table 2: The performance of baselines and Self-DC
with the 4o-mini.
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Figure 4: The efficiency analysis of different methods
using 4o-mini.

Self-DC achieves better trade-off between ef-
ficiency and effectiveness than retrieval-based
methods. When comparing Self-DC to other
baselines considering the consumption of retrieval
calls (#R), it is evident that Self-DC achieves
better performance compares with the method uti-
lizing same or more calls, for example, Self-DC
(prob) v.s. RR. Even compared with some methods
that require 2 to 3 times more retrieval, Self-DC
still achieves comparable results and even outper-
forms them in specific dataset. This is important to
highlight, as it not only establishes an effective and
efficient framework to call external retrieval, but
also demonstrates a promising path for controlling
the behavior of LLMs by leveraging the internal
signals they generate (i.e., the internal confidence
scores).

6 Analysis

In this section, we present a comprehensive analy-
sis of Self-DC mainly using the CuQA dataset,
covering three key aspects: efficiency analysis, the
choices of α and β and different iteration depth on
latest model gpt-4o-mini.

6.1 Efficiency Analysis

To directly validate the efficiency of Self-DC, we
consider three dimensions: # internal token con-
sumption, # external retrieval calls and the final
performance. Table 4 illustrate the report. Ide-
ally, we aim for a method which achieves the best
performance appears at the left bottom of figure.
Only in such a case, the method would demon-
strate its superiority by not only delivering better
performance but, more importantly, by eliciting the
great potential of the internal capabilities of LLMs
and minimizing reliance on external resources or
tools. According to the figure, it is obvious that
Self-DC achieves great balance between these
three factors. It is worthy noting we observe simi-
lar trends on 1106 for both datasets.

6.2 The Impacts of Different α and β

It is vital to balance alpha and beta for optimizing
the performance of LLMs to different tasks. In this
section, we provide detailed analysis of different
choices of α and β. Firstly, we fix β = 0.1 and
set α to [0.1, 0.2, 0.3, ..., 0.9]. The results can be
found in Figure 5. The entire processing can be
seen as a 0.2-length uncertainty block starts from
0 to 1 with stride = 0.1. First of all, We found that
none of the lines shows monotonically increasing
or decreasing, and most of the best performances
are achieved in the middle choice of α, revealing
the complexity of the target problem. In detail,
there is an upward and then downward trend glob-
ally (e.g., in the right figure). It is reasonable since
LLMs utilize more generate-then-read functions
at the beginning (e.g., α=0.1, β=0.1), resulting in
poor performance. With the uncertainty, blocks
move to the right side (a.k.a, 1), LLMs will utilize
retrieve-then-read more frequently. Once exceeds a
specific threshold, the performance will drop since
the decomposition will introduce more noise com-
pared with gains.

Secondly, we fix α with different values accord-
ing to the best performance above and set β to
[0.1, 0.2, ..., 0.5] to investigate the impacts of dif-
ferent β. Figure 6 shows the final results. It is obvi-
ous that there is a monotonically decreasing trend.
After carefully checking the specific confidence
scores distributions, we attribute this to be smaller
range changes in the score. In general, despite that
the choices of α and β are extremely tricky with
lots of factors in practice, we humbly point out that
most of simply combination (e.g., α=0.5, β=0.1)
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Figure 5: The performance of different choices of α with
β = 0.1. Left: The performance of different models with
confidence type is prob; and Right: The performance of
different confidence types (verb or prob) with the same
model 4o-mini.
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Figure 6: The performance of different choices of β with
a fixed α as 0.8 for 1106 and 0.6 for 4o-mini. Left:
The performance of different models with confidence
type is prob; and Right: The performance of different
confidence types (verb or prob) with the same model
4o-mini.

achieves comparable performance with baselines
require more retrieval or token consumption even
it may not be optimal combination.

6.3 The Impacts of Different Iteration Depth

Table 3 shows the results. First of all, we can find
that different choices of τ have a slight effects on
the final performance. As the iteration depth in-
creases, the number of retrieval calls rises corre-
spondingly, as noted in prob, while verb remains
largely unchanged. We suspect this is due to verb is
not as accurate as prob. In this way, it calls almost
all external retrieval for unknown questions only
within the shallow iteration. Most importantly, we
want to emphasise here that the number of retrieval
calls usually will not exceed the number of original
test set n, and sometimes it only need to call less
than 0.5n calls, revealing the great advantages of
Self-DC over other iterative retrieval-augmented
baselines.

Model 2 3 4
4o-mini (verb) 50.2 (76) 53.8 (78) 53.4 (78)
4o-mini (prob) 52.4 (455) 56.4 (468) 55.3 (470)

Table 3: The performance of Self-DC with different
max iteration times. We also report the number of re-
trieval times in the (bracket).

Types EM F1 Acc†

Easy 38.1 37.6 58.8
Hard 26.7 22.7 33.3

Table 4: The performance of Self-DC on two types of
question: easy and hard in CuQA using 4o-mini.

6.4 Error Analysis

Performance of different types of questions.
Table 4 shows the results of different types of ques-
tions in CuQA. There exists a significant disparity
in performance between easy and difficult ques-
tions, indicating a substantial challenge for models
when addressing complex compositional unknown
questions. Upon analyzing the error cases, we iden-
tified several prevalent issues: 40% of errors arise
from repetitive sub-questions, 13% are due to ir-
relevant or incorrect sub-questions, such as "What
month is it now?", another 13% involve correct
decomposition but incorrect answers.

Accuracy of confidence scores. First of all,
when using verb method, we find that the confi-
dence scores are 0 for more than 65% cases, and
over 0.9 for around 20% cases with 1106. How-
ever, the trend is slightly different when it comes
to 4o-mini which gives 0.9 more frequently (≈
35%). These two scores represent the top two
most frequently occurring scores in both models.
It seems LLMs either overestimate the correctness,
or directly acknowledge the uncertainty and refuse
to answer. Moreover, there is pretty rare of fine-
grained confidence score (i.e, 0.82, 0.61), making
the fine-grained choices of β meaningless in verb.
On the other hand, when using prob method, there
are much more fine-grained confidence signals, and
most of them falls in the < 0.5 part (≈ 90%). It
is clear that prob leads to better performance com-
pared with verb and generally 4o-mini outper-
forms 1106.

Analysis of decomposition The times of de-
composition are highly affected by the confidence
scores. Sometimes, the best performance can be
achieved without any decomposition with well-
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Q: Is the country known for its diverse wildlife and landscapes, including the Great Barrier Reef, 
Uluru (Ayers Rock), and the Sydney Opera House, the same as the country hosted the 2023 FIFA 
Women‘s World Cup ?
A: Yes

Q: What country is known for its diverse wildlife and landscapes, including the Great Barrier 
Reef, Uluru (Ayers Rock), and the Sydney Opera House?
A: Australia

Q: Which country hosted the 2023 FIFA Women's World Cup?
A: Australia and New Zealand

Generate-then-read

Generate-then-read

Figure 7: An example from CuQA dataset where one compositional question can be further divided into two known
sub-questions.

Q: How many years did it take for the population of the world to reach 8 billion from 7 billion?
A: 11 Years

A: The world population reached 7 billion in 2011.

Q: When did the world population reach 7 billion?

Q: When did the world population reach 8 billion?
A: November 15, 2022.

Q: What year did the world population reach 7 billion?

Q: What was the specific date when the world population reached 7 billion?

A: October 31, 2011.

A: The world population reached 7 billion in 2011, specifically on October 31st.

Retrieve-then-read

Generate-then-read

Figure 8: An example from FreshQA dataset where one compositional question can be further divided into known
and unknown questions.

selected α and β. We study the percentage of de-
composition and how many original questions are
answered correctly after decomposition. We found
that 0% (i.e., α=0.9) to 80% (i.e., α=0.1) questions
will be decomposed and it is about 40% to 50%
questions are correctly answered after decomposi-
tion 8.

7 Case Study

Figure 7 and Figure 8 show an example from CuQA
and FreshQA dataset respectively. We can found
that Self-DC is capable to call different func-
tions to address various compositional questions
including known and unknown sub-questions.

8 Conclusion

In this paper, we firstly introduce compositional
unknown questions, which contain several known

8The case study and more analysis can be found in Ap-
pendix.

and unknown sub-questions. We build a bench-
mark, named CuQA, to evaluate the performance
and efficiency of existing compositional reasoning
methods. Furthermore, we present a Self Divide-
and-Conquer (Self-DC) method to adaptively
call external or internal knowledge, which not only
demonstrates comparable or even better perfor-
mance compared with existing complex iterative
retrieval methods with fewer retrieval calls but also
shows a promising potential to elicit internal ca-
pabilities of LLMs while minimizing external re-
liance.

Limitations

We discuss two major limitations in this paper re-
garding the dataset and method issues.

Dataset and Model. Due to space limitations and
cost, we choose to conduct our experiments on two
datasets and two models. We would like to evaluate
the performance of more models, i.e., several open-
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source models, on the proposed datasets and more
compositional questions.

Method. We mainly implement our method in
zero-shot setting, and do not consider more com-
plex implementation for each function within the
framework, in order to demonstrate the great po-
tential and effectiveness of our proposed method
more clearly and straightforwardly. We left more
complex implementations in our future works.

Furthermore, we would like to discuss the hallu-
cination issues or other issues from the model side.
Since different LLMs express certainty in various
levels and may hallucinate the confidence score, we
have meticulously designed the parameters α and
β to ensure that our framework remains flexible
and easily adaptable to a broader range of LLMs.
While we acknowledge it may be relatively diffi-
cult to choose them, we are encouraged to see more
and more recent studies align certainty expression
across LLMs (Tao et al., 2024; Xu et al., 2024; Lee
et al., 2024) and our method still outperforms other
baselines even with the existing of these issues.
From a dynamic and development standpoint, we
believe our method and dataset could play a key
role in the field of compositional question answer-
ing.
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A Data Collection

A.1 CuQA Construction

We detail the prompts used for dataset construction
in Tables 5-9.

Unknown: {unknown_event}
According to the unknown event, please gener-
ate a question to which the answer is the entity
{unknown_entity}.

Table 5: UnknownQuestionGen() function in Al-
gorithm 1: generate an unknown_question about
the unknown_event with the unknown_entity
serving as the answer.

Generate a detailed passage about {entity}

Table 6: KnownEventsGen() function in Algo-
rithm 1: generate a supporting background informa-
tion known_events about the unknown_entity
based on the internal known knowledge of LLMs.

Known: {known_event}
According to known events, please generate a question to
which the answer is be the entity {entity}.

Table 7: KnownQuestionGen() function in Algo-
rithm 1: generate a known_question based on the
known_event with the entity serving as the an-
swer.

Seen: {known_passage}
Generate a question that meets the following conditions:
1. contains the terms {unknown_entity} in question,
2. the answer is {known_entity}.

Table 8: KnownQuestionGen2() function in
Algorithm 1: given the known_event, gen-
erate a known_question which contains the
unknown_entity in the question and can be an-
swered with known_entity sampled from the
known_event.

Question One: {unknown_question}
Question Two: {known_question}
Generate a more natural combined question of question
one and question two.

Table 9: MergeQuestions() function in Algorithm
1: merge the generated unknown_question and
known_question into a single multi-hop question.

A.2 Data Examples

We list two easy examples from CuQA dataset in
Table 10. There are two reasoning types in CuQA:
(1) AAB represents the two questions Q1 and Q2
are independently created before being merged; (2)
ABC means the generation of Q2 depends on Q1,
where in the listed example, A1 is embedded within
Q2. It means the three QA pairs are synthesized in
a concatenated form. We also regard two merged
QA pairs as the sub-problems, combining them
to form a more complex question that demands
enhanced reasoning and more decomposition.

B Experiment on FreshQA Dataset

B.1 Data Statistics

# hops effective year total
multi-hop one-hop before-2022 2022 2023 2024 -

137 463 279 131 143 47 600

Table 11: Data statistics of FreshQA.

We report the data statistics of the FreshQA dataset
in Table 11. Different fromthe CuQA dataset
that involves multi-hop reasoning for all instances,
FreshQA is constructed to benchmark large lan-
guage models’ ability in addressing questions with
time-changing knowledge. More than 77% of ques-
tions are single-hop that requires no additional
problem decomposition. The questions are split
into four categories according to the effective year
of the answers: before-2022 (46.50%), 2022
(21.83%), 2023 (23.83%), 2024 (7.83%).

B.2 Analysis

We present the performance details of 1106 on
FreshQA by the time-frames of questions in Figure
9.
The performance of Self-DC increases as the
effective year of questions become earlier. In gen-
eral, the best performance is achieved on questions
before 2022 and a decreasing trend is observed for
more recent questions with both verb and prob con-
fidence acquisition methods using 1106. We also
identified the same finding when using 4o-mini
with verb method. This is not surprising as its
training data ends up to September 20219.

9https://platform.openai.com/docs/models/gpt-3-5-turbo.
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Reasoning Type Examples

AAB

Q1: Which countries signed a trilateral pact on 18 August, 2023?
A1: The United States, Japan, and South Korea

Q2: What’s the G7 member countries?
A2: Canada, France, Germany, Italy, Japan, the United Kingdom and the United States.

Merged-Q: Which two G7 member countries signed a trilateral pact on 18 August, 2023?
Merged-A: The United States, Japan.

ABC

Q1: Where did the first AI Safety Summit take place?
A1: United Kingdom

Q2: Is United Kingdom an African country?
A2: No.

Merged-Q: Did the first AI Safety Summit take place in an African country?
Merged-A: No

Table 10: Data examples from CuQA dataset. For each example, one question is generated based on an unseen
event and the other is generated based on model generated passage described in Section 3. The two questions and
corresponding answers are then merged and post-processed to get the final question and answer.

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

EM

all
before-2022
2022
2023
2024

0.0

0.1

0.2

0.3

0.4
F1

all
before-2022
2022
2023
2024

0.0

0.2

0.4

0.6

0.8
Acc

all
before-2022
2022
2023
2024

0.1 0.3 0.5 0.7 0.9
0.0

0.1

0.2

0.3

0.4

0.5

ve
rb

all
before-2022
2022
2023
2024

0.1 0.3 0.5 0.7 0.9
0.0

0.1

0.2

0.3

0.4

all
before-2022
2022
2023
2024

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8

all
before-2022
2022
2023
2024

Figure 9: The performance of 1106 on FreshQA questions in different time-frames with varying α values. We
fix β as 0.1 for the analysis. The first and second rows correspond to the performance with probability- and
verbalized-based confidence scoring respectively.

C More Analysis

C.1 Different Number of Retrieved Results

We then set the number of retrieved results ranging
from 1 to 4 to investigate the effects. Figure 10
shows the results. It is found that setting the num-
ber of retrieved results as 3 leads to the best perfor-
mance for both of these two datasets, and the perfor-
mance on FreshQA is more sensitive to the number

of retrieved documents compared with CuQA.

C.2 More Models.

We additionally run experiments on the Qwen2.5-
7b-Instruct model by following the setting at main
experiments. Table 12 shows the final results. It
is observed that our method still achieves better
trade-off between effectiveness and efficiency.
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Figure 10: The performance of different number of
retrieved results using prob methods on 4o-mini.

Methods #R EM F1 Acc

RR n 22.2 27.8 38.2
ReFeed 2n 24.8 17.2 33.8
IRCoT 3n 37.6 4.5 43.6
Self-DC (Verb) 0-n 23.6 26.9 35.8
Self-DC (Prob) 0-n 23.8 28.3 40.0

Table 12: Performance results on Qwen2.5-7b-Instruct
model.

D Demonstrations

We mainly follow Shao et al. (2023) for prompt de-
sign. We list the used prompts and demonstrations
for baselines in Tables 13-17 and the prompts for
Self-DC in Table 20.

Please answer the following question with just a few
words.

Question: {question}
The answer is

Table 13: Prompt for Direct Prompting baseline.

Please answer the following question with just a few
words. Let’s think step by step.

Question: {question}
The answer is

Table 14: Prompt for zero-shot Chain-of-thought base-
line.

Refer to the passage below and answer the following ques-
tion with just a few words.

Passage: {passage}
Question: {question}
The answer is

Table 15: Prompt for Retrieve-then-read baseline. The
passage comes from retrieval results.

Generate a background document from Wikipedia to an-
swer the given question.

{question}

Refer to the passage below and answer the following ques-
tion with just a few words.

Passage: {passage}
Question: {question}
The answer is

Table 16: Prompts for Generate-then-read baseline.

Quesion: Which country that has joined in 2023 Rugby
World Cup in the final also held the 2023 FIFA Women’s
World Cup?
Are follow up questions needed here: Yes
Follow up: Which countries held the 2023 FIFA Women’s
World Cup?
Intermediate answer: Australia and New Zealand.
Follow up: Which countries have joined in 2023 Rugby
World Cup in the final?
Intermediate answer: New Zealand, South Africa
So the final answer is: New Zealand

Question: Is the country that held the 49th G7 summit
same as where the 42nd G7 summit took place?
Are follow up questions needed here: Yes
Follow up: Where did the 42nd G7 summit take place?
Intermediate answer: Kruen, Bavaria, Germany
Follow up: Where did the 49th G7 summit take place?
Intermediate answer: Hiroshima, Japan
So the final answer is: No

Question: What’s the rate share of the 2023 elected presi-
dent in the most developed South-East Asian countries?
Are follow up questions needed here: Yes
Follow up: Which country is the most developed in South-
East Asia?
Intermediate answer: Singapore
Follow up: What’s the rate share of the 2023 elected
president in Singapore?
Intermediate answer: over 70 percent
So the final answer is: over 70 percent

Table 17: Demonstrations for Self-Ask baseline on
CuQA.
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Quesion: Which country that has joined in 2023 Rugby
World Cup in the final also held the 2023 FIFA Women’s
World Cup?
Let’s think step by step
New Zealand and South Africa have joined in 2023 Rugby
World Cup in the final, and Australia and New Zealand
held the 2023 FIFA Women’s World Cup.
So the answer is New Zealand

Question: Is the country that held the 49th G7 summit
same as where the 42nd G7 summit took place?
Let’s think step by step
The 42nd G7 summit took place in Kruen, Bavaria, Ger-
many and The 42nd G7 summit took place in Japan So
the answer is No

Question: What’s the rate share of the 2023 elected presi-
dent in the most developed South-East Asian countries?
Let’s think step by step
Singapore is the most developed and wealthy South-East
Asia country, and the the rate share of the 2023 elected
president in Singapore is over 70 percent.
So the answer is over 70 percent

Table 18: Demonstrations for few-shot Chain-of-
thought baseline on CuQA.

Passage: September 8 – October 28 – The 2023 Rugby
World Cup is held in France, and New Zealand (the All
Blacks) lost 11–12 to South Africa in the final at the Stade
de France. 20 July – August 20 – The 2023 FIFA Women’s
World Cup is held in Australia and New Zealand. In the
final, Spain wins 1–0 against England.
Quesion: Which country that has joined in 2023 Rugby
World Cup in the final also held the 2023 FIFA Women’s
World Cup?
Let’s think step by step
New Zealand and South Africa have joined in 2023 Rugby
World Cup in the final, and Australia and New Zealand
held the 2023 FIFA Women’s World Cup. So the answer
is New Zealand

Passage: The 42nd G7 summit took place in Kruen,
Bavaria, Germany. The 49th G7 summit takes place in
Hiroshima, Japan. Ukrainian president Volodymyr Zelen-
skyy arrives in Japan on the second day of the summit.
Question: Is the country that held the 49th G7 summit
same as where the 42nd G7 summit took place?
Let’s think step by step
The 42nd G7 summit took place in Kruen, Bavaria, Ger-
many and The 42nd G7 summit took place in Japan So
the answer is No

Passage: 1 September – 2023 Singaporean presidential
election: Economist and former deputy prime minister
Tharman Shanmugaratnam is elected president with a vote
share of over 70 percent.
Question: What’s the rate share of the 2023 elected presi-
dent in the most developed South-East Asian countries?
Let’s think step by step
Singapore is the most developed and wealthy South-East
Asia country, and the the rate share of the 2023 elected
president in Singapore is over 70 percent.
So the answer is over 70 percent

Table 19: Demonstrations for ITER-RETGEN baseline
on CuQA.

Please read the question, give the answer and indicate your
level of confidence. Use the following format to provide
your answer and confidence level:

Answer: [Your answer]
Confidence (0-100): [Your confidence level, please only
include the numerical number, e.g. 80]%

Note: The confidence level indicates the degree of cer-
tainty you have about your answer and is represented as a
percentage. For instance, if your confidence level is 80%,
it means you are 80% certain that your answer is correct
and there is a 20% chance that it may be incorrect. If you
do not know the answer, simply output confidence as 0%.

Question: {question} Please answer this question and
provide your confidence level. Note that the confidence
level indicates the degree of certainty you have about your
answer and is represented as a percentage.
Answer:

Please read the question, divide the question into smaller,
independent parts. By solving these individual sub-
questions and combining their answers, you can derive the
solution to the main question. Use the following format
to provide your answer: #1: [sub-question 1], #2: [sub-
question 2], ...

Question: {question}
Answer:

Refer to the passage below and answer the following ques-
tion with just a few words. Passage: {passage}

Question: {question}
The answer is

Generate a background document from Wikipedia to an-
swer the given question. {question}

Refer to the passage below and answer the following ques-
tion with just a few words. Passage: {passage}

Question: {question}
The answer is

Question: {question}

Here are all related sub-questions and corresponding an-
swers: {sub_qas}

According to answers of all related sub-quesions of the
original question, please generate the final answer of the
original question using a few words.

Table 20: Prompts for Self-DC:
verbalize-based confidence acquisition , decompose ,

retrieve-then-read , generate-then-read , and

combine-sub-qas .
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