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Abstract
Large pre-trained Vision-Language Models
(VLMs) have revolutionized both computer vi-
sion and natural language processing. Despite
their success, adversarial examples can still
mislead VLMs into producing incorrect results.
This work focuses on boosting the adversar-
ial robustness of VLMs by searching for text
prompts at the word level, rather than optimiz-
ing continuous textual embeddings. We intro-
duce Parameter-Free Prompt Tuning (PFPT)
to learn defense words that enhance resilience
against adversarial attacks when appended to
existing prompts, thereby offering ease of use
due to the simplicity of this approach. These
defense words are naturally present in the inher-
ent vocabulary of VLMs, providing a human-
readable property. PFPT employs a coarse-to-
fine strategy with carefully designed optimiza-
tion objectives to guide the word search. Ex-
tensive experiments demonstrate our method’s
superiority over hand-engineered prompts and
other state-of-the-art methods. PFPT signifi-
cantly boosts accuracy and robustness, outper-
forming hand-engineered prompts with aver-
age gains of +4.9% and +5.8%, respectively
(ϵ=1/255).

1 Introduction
Large pre-trained Vision-Language Models
(VLMs), such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and BLIP (Li et al., 2022),
have revolutionized downstream vision-language
tasks including classification, object detection,
and segmentation. More applications (Qiu et al.,
2023; Zhang et al., 2024; Li et al., 2024a) are
increasingly being developed based on these
foundational general-purpose models.

However, despite the capabilities of VLMs, their
vulnerabilities have been exposed. Recent stud-
ies (Inkawhich et al., 2023; Zhao et al., 2024) show
that VLMs are particularly susceptible to small
adversarial noise — these models predict with sig-
nificant deviation from reality when subjected to
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Figure 1: An overview of the proposed method: Ap-
pending the learned defense prompt (at the word level)
to the original prompt significantly enhances resilience
against adversarial attacks.

deliberately designed, human-imperceptible pertur-
bations to images. These exposed security risks
continue to raise concerns within the community.

Previous efforts to enhance the adversarial ro-
bustness of VLMs primarily can be categorized two
types: adversarial training (Madry et al., 2017) and
parameter-efficient methods (Li et al., 2024b; Chen
et al., 2023; Huang et al., 2023). Adversarial train-
ing involves fine-tuning models with adversarial
examples and incorporating specifically designed
loss functions. Although these methods can en-
hance adversarial robustness to some extent, the
cost of fine-tuning is substantial. Particularly for
contemporary Transformer-based models (Li et al.,
2022; Radford et al., 2021) with millions of param-
eters, fine-tuning these parameters requires signifi-
cant time and computational resources. Moreover,
introducing adversarial examples into training may
compromise the original generalization ability of
VLMs (Kumar et al., 2022), potentially affecting
the zero-shot capabilities. Parameter-efficient meth-
ods freeze the parameters of the model while train-
ing additional textual or visual prompts, often in the
form of embeddings. Although these approaches
enhance learning efficiency, the costs associated
with using additional prompts are significant. For
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instance, adding adversarial visual prompts (Chen
et al., 2023) to the original image may remove es-
sential edge details, resulting in partial information
loss. Meanwhile, adversarial text prompts (Li et al.,
2024b) learn text embeddings that are challenging
to use in practice, as their application requires ac-
cess to the model’s embedding layer and precise
manipulation to integrate the learned embeddings.
This reduces accessibility and increases operational
costs. Optimization in the continuous embedding
space may also introduce randomness, due to the
unconstrained nature of the optimization space.

To address these challenges, we propose a
parameter-free method for learning appendable text
prompts. This strategy focuses on identifying and
discovering defense tokens from the pre-trained
and fixed vocabulary (Sennrich et al., 2015) of
VLMs. These defense tokens are simply added
as prefixes or suffixes to the original prompt and
then fed into the model. As there are no embed-
ding parameters that need to be saved, this method
is inherently parameter-free. This approach con-
strains the search space to a limited selection space,
improving search efficiency. It also enhances ac-
cessibility, as the search results are simply included
as part of the new input text prompt, without ma-
nipulating the intermediate embeddings.

This work studies the problem of parameter-free
and accessible text prompt tuning of pre-trained
VLMs for adversarial robustness. Previous re-
search on text prompt learning has primarily fo-
cused on optimizing text embeddings, with little
exploration into word level prompt learning. These
approaches reveal a gap between convenient usabil-
ity and flexibility. Moreover, the learned embed-
dings do not correspond to natural language words
and are not found within the inherited vocabulary’s
embeddings. Unlike previous methods, our work
is inherently parameter-free as it identifies using
natural language words that require no additional
parameter storage. We introduces a new paradigm
for text prompt learning in boosting adversarial
robustness for VLMs. We concentrate on and ap-
ply this paradigm to a widely used type of VLMs
— CLIP (Radford et al., 2021), as it is represen-
tative of vision-language foundation models and
is extensively utilized across various downstream
tasks (Rombach et al., 2022).

To improve the accessibility of adversarial
robustness in text prompting, we introduce
Parameter-Free Prompt Tuning (PFPT), a method
to learn a robust text prompt at the word level for

CLIP, leveraging adversarial examples to enhance
the resilience against adversarial attacks. The de-
fense tokens searched by PFPT and simply ap-
pended to the original text prompt, can significantly
enhance adversarial robustness with minimal usage
cost. Moreover, these tokens are naturally present
in the native and inherent vocabulary, offering a
human-readable property. To search for defense
tokens, PFPT takes a coarse-to-fine strategy, di-
vided into two steps: single token search and par-
allel tokens search. This design prevents the selec-
tion from degenerating into mere gradient-based
or brute-force searching. Single token search dis-
coveres the best candidate token set for each token
position, with a wider coverage of candidates aid-
ing in the search for the optimal token. Parallel
tokens search conducts a joint search, measuring
tokens based on consistency and accuracy to finally
determine the most effective tokens.

Comprehensive experiments are conducted to
benchmark PFPT across 14 datasets and with 4
data sampling scenarios which are 1-, 4-, 16- and
100- shot learning. PFPT is compared against the
hand-engineered prompts proposed in CLIP and
the state-of-the-art text prompt learning methods.
PFPT outperforms these approaches in terms of the
in-distribution performance and the generalization
ability under distribution shift (the same classes
with different input distribution) and across datasets
(different classes).

Our contributions are summarized as follows:
• We introduce PFPT, a method for searching

defense tokens that significantly improves the
adversarial robustness for the CLIP model.

• The defense tokens learned are at the word
level and can significantly enhance adversarial
robustness simply by being appended to the
original text prompt, making this method both
parameter-free and accessible.

• PFPT employs a coarse-to-fine strategy to
search for defense tokens, and its two-step de-
sign significantly enhances search efficiency.

• Extensive experiments are conducted across
14 datasets to validate the effectiveness of
PFPT.

2 Related work
2.1 Adversarial examples
Adversarial examples expose vulnerabilities in
models, especially visual language models (VLMs)
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(Inkawhich et al., 2023; Schlarmann and Hein,
2023; Zhao et al., 2024; Qi et al., 2024; Carlini
et al., 2024; Bagdasaryan et al., 2023). Studies
show adversarial samples can cause misclassifi-
cation (Inkawhich et al., 2023), enable malicious
exploitation (Schlarmann and Hein, 2023), and ex-
acerbate security risks in multimodal VLMs (Zhao
et al., 2024), allowing attackers to evade systems,
bypass security (Qi et al., 2024), induce misaligned
behavior (Carlini et al., 2024), and enable targeted
output contamination (Bagdasaryan et al., 2023).
Such attacks can produce harmful or unreliable
VLM responses. This paper proposes text prompt
adversarial training to defend against adversarial
sample attacks on VLMs.

2.2 Adversarial training
In machine learning, adversarial training (Goodfel-
low et al., 2014) is the most potent defense against
adversarial examples (Athalye et al., 2018). Most
prior methods (Madry et al., 2017; Andriushchenko
and Flammarion, 2020; Li and Spratling, 2023)
focused on training models from scratch, while
exploring pre-trained model robustness received
less attention. Recent work enhanced pre-trained
model robustness via fine-tuning entire (Hendrycks
et al., 2019; Jiang et al., 2020; Kim et al., 2020;
Luo et al., 2023) or subset (Chen et al., 2020) pa-
rameters, or adversarial visual prompts (Chen et al.,
2023; Huang et al., 2023). APT (Li et al., 2024b)
adapts robustness by optimizing text prompts in
continuous embedding space, with limited practi-
cal utility. Our method proposes user-friendly text
prompts optimized in discrete text space, without
additional adversarial training parameters.

2.3 Prompt Learning
Recent years saw growing interest in prompt en-
gineering for pre-trained models, yielding CoOp
(Zhou et al., 2022) for automated prompt genera-
tion, PGN (Loedeman et al., 2022) for adapting vi-
sual models via task prompts, NOAH (Zhang et al.,
2022) for optimal prompt configurations, OOHMG
(Lin et al., 2023) enabling text-to-motion genera-
tion without paired data, Subspace Prompt Tuning
(Ma et al., 2023) mitigating VLM prompt over-
fitting, SgVA (Peng et al., 2023) enhancing few-
shot image classification, and GALIP (Tao et al.,
2023) employing CLIP (Radford et al., 2021) for
controlled image generation via prompts. This pa-
per investigates parameter-free, user-friendly text
prompt learning to defend against adversarial at-
tacks in image recognition.

3 Method

3.1 Preliminaries: CLIP
CLIP comprises image and text encoders, encod-
ing images and text in a unified embedding space.
Image encoder options include ResNet (He et al.,
2016) or Vision-Transformer (Dosovitskiy et al.,
2020), while text encoder is Transformer. For text
input, CLIP converts words to d-dimensional word
embedding vectors using pre-trained vocabulary,
then inputs them to Transformer to generate the
final text feature.

Given an input image Ii and text Tj , the respec-
tive features fv

i and f t
j are computed as:

fv
i = Ev(Ii), f t

j = Et(Tj) (1)

where Ev and Et represent the visual and the text
encoder within CLIP respectively.

A cosine similarity score measures alignment be-
tween each image-text feature pair. The alignment
between image Ii and text Tj is calculated as:

pi,j = p(Ii, Tj) =
exp

(
cos(fv

i , f
t
j )/τ

)

∑
j exp

(
cos(fv

i , f
t
j )/τ

) (2)

where τ is a temperature parameter learned by
CLIP. During pre-training, the two encoders max-
imize similarity scores of true image-text pairs
(i.e., when i = j) and minimize scores for false
pairs, aligning the encoders. After pre-training,
CLIP achieves zero-shot classification using text
descriptions of class labels as prompts. Given
class prompts, CLIP predicts most probable class
argmaxj pi,j . Default prompt is "a photo of a
[CLASS]" replacing "[CLASS]" with dataset class
names. Prompts comprise class, prefix, and suffix
components. For N classes, j-th class prompt is:

Tj = (t1, t2, ..., t[CLASS], ..., tmax_len) (3)

where max_len is the tokens’ maximum length.

3.2 Parameter-free and Accessible Prompt
Learning

We aim to search a optimal token combinations
within the pre-trained and fixed vocabulary as de-
fense tokens appended to text prompts. This ap-
proach is parameter-free, requiring no additional
parameters to be learned, we merely record the
identified tokens as the learning result. It also
boosts CLIP’s adversarial robustness by appending
the learned tokens to the text prompt, making it
accessible.
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Figure 2: Framework of the proposed Parameter-Free
Prompt Tuning (PFPT) method applied to CLIP-like
VLMs. Both image and text encoders are frozen, and
defense tokens are sourced from the inherent vocabulary.
PFPT employs a coarse-to-fine strategy, divided into two
steps: Single Token Search and Parallel Tokens Search.

In section 3.2.1, we discuss adversarial examples
for CLIP. Section 3.2.2 presents the parameteriza-
tion of defense tokens in our method. Sections
3.2.3 and 3.2.4 respectively detail the Single Token
Search (STS) and Parallel Tokens Search (PTS).

3.2.1 Adversarial examples for CLIP
To search for defense tokens, adversarial example
images are generated on-the-fly during the training.
We employ a common technique to generate ad-
versarial examples for CLIP, which involves com-
puting gradient-based perturbations δ to the input
images. This aims to maximize the cosine diver-
gence between the image feature fv

i and the text
feature of the corresponding ground-truth prompt,
f t
yi :

arg max
∥δi∥p≤ε

L(Ev(Ii + δi), Et(Ti), yi) (4)

where the perturbation δi is constrained within the
ε-ball of the p-norm, while the text input consists of
the default prompt appended with defense tokens.
Algorithm 1 illustrates the pseudo-code we used to
generate adversarial examples to attack.

3.2.2 Parameterization of learnable tokens
The text input is tokenized into fixed-length tokens
(Eq. 3). Therefore, we first determine which posi-
tions should be defense tokens, as well as the num-
ber of defense tokens. Our goal is to identify and
search for specific tokens from the pre-trained vo-
cabulary V to serve as these defense tokens. Taking
CLIP’s default prompt "a photo of a [CLASS]"
as an example, we select K tokens from the suffix
to act as defense tokens. Consequently, the text
prompt appended with defense tokens of the class
T ′
j can be represented as:

Algorithm 1 Adversarial attack on CLIP. S is the
perturbation step. η is the step size for perturbing
image.

1: function ATTACK(I , T , y)
2: δ = uniform(−ϵ, ϵ)
3: for 1→ S do
4: I ′ = min(0,max(I + δ, 1))
5: L = L(Ev(I ′), Et(T ), y)
6: δ = min(−ϵ,max(δ + η ·

SIGN(∇IL), ϵ))
7: end for
8: return min(0,max(I + δ, 1))
9: end function

T ′
j = (t1, t2, . . . , t[CLASSj],

t[CLASSj]+1, . . . , t[CLASSj]+K , . . . , tmax_len)

(5)

In the sequence, t1 is "a", t2 is "photo", and
t[CLASSj] is a specific class name, like "dog". To-
kens indexed from [CLASSj]+1 to [CLASSj]+K
are chosen as defense tokens, randomly initialized
from the pre-trained vocabulary V .

Theoretically, the K defense tokens can be po-
sitioned anywhere and in any number, as long as
the arrangement meets CLIP’s input token length
constraints. In our experiments, we test on two
positions settings: front and end.
Search goal: Upon determining the number and
positions of these defense tokens, our search goal
aimed at improving adversarial robustness for
VLMs can be formulated as:

argmin
t′

E i∈B
t′∈VK

L(Ev(Ii+δi), Et(T ′
i (t

′)), yi) (6)

where we use Algorithm 1 to generate the pertuba-
tion δi. T ′

i (t
′) represents the input text containing

defense tokens, where only the K defense tokens
need to be learned.

3.2.3 Single Token Search (STS)
The single token search performs a coarse search
for the token at a single position, addressing is-
sues related to exclusive reliance on either gradient
descent or brute-force search methods.

Here, we take defense tokens as suffixes ap-
pended to the template prompt t(template) (please
see Eq. 5) as an example to describe STS. Please
note that our defense tokens can be assigned to
arbitrary positions, except those class tokens.

The STS considers the adversarial robustness
and selects a batch of tokens from the pre-trained
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Figure 3: Single Token Search selects a batch of tokens
from the pre-trained and fixed vocabulary as candidates
for a single position. Each position yields a candidate
set.

vocabulary V as candidates for the defense token
at the single position. To achieve this, we define
a defense objective as the selection goal. For in-
stance, when searching for the k-th position among
K defense tokens, the objective is as follows:

Ldefense(tk) =
−∇etk

log p(ŷ = y|t(template) ⊕ t1 ⊕ t2 ⊕ . . .

⊕ tk ⊕ · · · ⊕ tK , I + δ)

(7)

where ⊕ means token concatenation, for example,
"a" ⊕ "photo" = "a photo", ŷ is the prediction,
and y is the ground-truth class. This objective is
the gradient obtained by backpropagating the log-
likelihood loss to the one-hot embedding of the
token tk.

We construct the candidate set Ck,l by selecting
the top-L tokens, ordered from high to low based
on their objective scores, here, k is the defense
token position, and l is the token ranking at the
position. Finally, K candidate sets {Ck,l}Kk=1

L
l=1

are constructed for each of the K positions follow-
ing the coarse search. Algorithm 2 and Figure 3
present the single token search.

Algorithm 2 Single Token Search.

1: function STS(I , δ, t1, t2, . . . , tK)
2: {Ck,l}Kk=1

L
l=1 = {∅}

3: for k = 1→ K do
4: Ldefense(tk) =

−∇etk
log p(ŷ = y|t(template)

⊕t1⊕· · ·⊕tk⊕· · ·⊕tK , I+δ)
5: {Ck,l=1:L} = top− L(Ldefense(tk))
6: end for
7: return {Ck,l}
8: end function

3.2.4 Parallel Tokens Search (PTS)
In parallel tokens search step, we perform paral-
lel optimization across all candidate sets {Ck,l}
to search for defense tokens, considering consis-
tency with the distribution predicted by the original
prompt and adversarial accuracy. First, we concate-
nate tokens of the same ranking across all positions
to form a new candidate set of defense tokens, de-
noted as {Al}Ll=1,

Al = (C1,l ⊕ C2,l ⊕ · · · ⊕ CK,l) ∈ VK (8)

Consistency score. The consistency score aims
to ensure that the text with appended defense to-
kens retains the same semantics as the original text
prompt. This helps prevent significant deviations
in the predicted distribution due to the defense to-
kens. To achieve this goal, we follow Azuma et
al. (Azuma and Matsui, 2023), leverage the results
of classification to ensure a consistent output distri-
bution both with and without defense tokens.

We classify the original image I using text ap-
pended with defense tokens tdefense (w/ DT) and
the original text (wo/ DT). First, we obtain the
probabilities of predicting the ground-truth class y,
given the both conditions, these are

q1 = p(ŷ = y|t(template) ⊕ t(defense), I) (w/ DT)

q2 = p(ŷ = y|t(template), I) (wo/ DT)
(9)

We then plug each candidate tokens t′ ∈ {Al}Ll=1

into the following consistent objective to measure
the KL divergence between q1 and q2:

Lconsist(t′) = DKL(q
1(t(defense) = t′)||q2)

(10)
The consistency score aims to guide the search for
defense tokens using the probability distribution of
the original prompt.
Accuracy score. The accuracy score assesses the
precision of classification results for adversarial ex-
amples (e.g. I+δ) when using prompts appended
with defense tokens. Similar to the consistency
score, we iteratively traverse the candidate defense
tokens in {Al}Ll=1, calculating the accuracy corre-
sponding to each candidate tokens t′ ∈ {Al}Ll=1.

Lacc.(t′) =
1{p(ŷ = y|t(template) ⊕ (t(defense) = t′), I + δ)}

(11)

where 1 denotes the indicator function. Finnaly,
the total score for the candidate defense tokens t′
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Figure 4: Parallel Tokens Search first concatenates
tokens of the same ranking and plugs them into the
prompt. Using the designed consistency score and accu-
racy score, it selects the top-1 token combination as the
defense tokens.

is computed as Ltotal(t′) = Lconsist(t′) + λ(1 −
Lacc.(t′)). After scoring each candidate defense
tokens in set {Al}Ll=1, we select the tokens with
the lowest score (low is better) as the result of the
parallel tokens search. Algorithm 3 and Figure 4
illustrate the parallel tokens search.

Algorithm 3 Parallel Tokens Search.

1: function PTS(I , δ, {Ck,l})
2: {Al}Ll=1 = {∅}
3: for l = 1→ L do
4: {Al} = CONCAT({Ck=1:K,l})
5: end for
6: {Sl}Ll=1 = {∅}
7: for each (l, t′) ∈ {Al} do
8: Sl = Ltotal(t′; I, δ)
9: end for

10: i← Index(Min({Sl}Ll=1)) ▷ Get index of
the minimum score

11: return {Al=i}
12: end function

4 Experiments
Datasets. Following (Li et al., 2024b) and (Zhou
et al., 2022), our evaluation comprises 11 datasets,
including ImageNet (Deng et al., 2009), Cal-
tech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013),
Flowers102 (Nilsback and Zisserman, 2008),
Food101 (Bossard et al., 2014), FGVCAir-
craft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), DTD (Cimpoi et al., 2014), EuroSAT (Hel-
ber et al., 2019), and UCF101 (Soomro et al., 2012).
We evaluate each dataset using an N -shot strategy,

Table 1: Average performance for settings with various
ϵ and shots. For convenience, the results of HEP are
replicated under different shots for comparison.

ϵ Method
1 shot 4 shots 16 shots 100 shots

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

1/255
HEP 44.92 31.93 44.92 31.93 44.92 31.93 44.92 31.93
APT 46.51 33.09 45.91 32.78 45.73 33.23 46.30 33.75
PFPT 49.41 37.51 49.31 36.78 50.19 38.01 50.36 38.32

4/255
HEP 32.84 10.08 32.84 10.08 32.84 10.08 32.84 10.08
APT 33.70 10.69 34.68 10.74 34.26 11.24 33.81 11.30
PFPT 36.43 12.58 37.78 13.26 37.59 13.77 37.78 14.23

where "N" is the number of examples randomly
drawn from the entire training dataset. N can be
set to 1, 4, 16, or 100. All settings are validated on
the complete test set.
Models. We employ the ViT-B/32 model (Doso-
vitskiy et al., 2020) as the standard backbone for
the image encoder. Following (Li et al., 2024b),
the image encoder’s weights are pre-trained using
TeCoA (Mao et al., 2022), a state-of-the-art method
for zero-shot adversarial robustness. The necessity
for using pre-training weights are discussed in (Li
et al., 2024b) and (Chen et al., 2023).
Learning details and evaluation. Adversarial
examples are generated on-the-fly during training,
as outlined in Algorithm 1. Following (Mao et al.,
2022) and (Li et al., 2023), we use two different
perturbation budgets: ϵ = 1/255 and ϵ = 4/255.
We use 3 steps with a step size of 2ϵ/3 during train-
ing. PGD generates attacks using the text prompt
appended with defense tokens for evaluatiton, in-
volving 100 steps and a step size of ϵ/4.
Competitive approaches. Current work has
not explored the text prompt tuning at the word
level, limiting our comparisons to similar methods
which optimize text embeddings like APT. APT op-
timizes text embeddings for adversarial robustness,
these embeddings lie in an unconstrained continu-
ous space during the learning, potentially resulting
in embeddings that do not correspond to any spe-
cific word in the inherent vocabulary. For a fair
comparison, we followed APT’s method of finding
the nearest word based on Euclidean distance, con-
verting continuous embeddings into specific tokens
from the vocabulary. Additionally, we compare our
method against Hand-Engineered Prompts (HEP),
originally proposed in (Radford et al., 2021) and
widely used since then.

4.1 In-Distribution performance
This section compares the proposed method and
its competitors using in-distribution data, meaning
the training and test sets come from the (approxi-
mately) same distribution. We searched for defense
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Figure 5: The in-distribution performance on 11 datasets and the averaged performance under different shots.
ϵ=4/255 and K=16

tokens on the training set and evaluated them on
the test set of the same dataset. Performance results
for the ViT-B/32 model are presented below.

Learned prompts vs. HEP. Table 1 presents a per-
formance comparison of different text prompting
methods, averaged across 11 datasets and evalu-
ated against various perturbation budgets (ϵ) and
shot counts. Our method significantly outperforms
HEP, notably enhancing both accuracy and robust-
ness, even in a 1-shot scenario. The improvement
is especially pronounced for the perturbation level
ϵ= 1/255, with absolute increases of 4.49% and
5.58% in accuracy and robustness, respectively.
Moreover, our method demonstrates consistent per-
formance gains with an increase in the number of
shots. Our approach significantly outperforms HEP
when trained with the 100 shots.

Moreover, our method yields improvements
across each specific dataset, though the extent
varies. The comparison results on different datasets
are shown in Figure 5 and Figure ?? in the Ap-
pendix. Our proposed method PFPT achieves sig-
nificant performance improvements on the Food101
and FGVC datasets. In summary, by leveraging the
learned defense tokens, PFPT demonstrates a sig-
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Figure 6: The performance improvements per dataset
of our adversarially-trained prompt compared to the
standardly-trained prompt. The results are presented for
the setting with 16 shots, K=16, at ϵ=4/255.

nificant enhancement on the robustness of VLP
models (Radford et al., 2021) in an accessible and
user-friendly manner.
PFPT vs. APT. Table 1 compares the average per-
formance of diverse adaptation methods across 11
datasets. Under the 1-shot and 4-shot settings, the
proposed method PFPT considerably outperforms
APT and HEP in both accuracy and robustness,
suggesting that PFPT efficiently searches for ef-
fective defense tokens with limited training data.
In contrast, APT performs worse than the base-
line method HEP in the 4-shot setting since APT’s
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Table 2: We evaluate the generalization of prompts learned by our method on ImageNet to (1) datasets with different
input distribution and (2) the remaining 10 datasets. Our method are trained with 16 shots and ϵ = 4/255.

Method
Source Distribution Shifts Cross Datasets

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-R 10 Datasets Avg.

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

HEP 39.7 10.2 32.7 7.5 17.4 7.2 21.5 5.8 32.3 10.3
APT 40.8 10.9 32.4 8.5 17.6 7.4 22.0 6.2 31.1 11.3
PFPT 44.9 14.8 34.5 9.6 18.9 8.0 22.3 6.5 33.6 12.0

optimization method requires a large amount of
training data to converge to specific embeddings.
As the amount of training data increases, PFPT
shows a more pronounced advantage over APT in
both accuracy and robustness. These observations
demonstrate that PFPT utilizes training data more
effectively to achieve a better trade-off between
accuracy and robustness.

From the results on individual datasets shown
in Figure 5 and Figure ?? in the Appendix, we
observe that PFPT outperforms the baseline meth-
ods in most experimental settings on the Imagenet
dataset. When trained with a small amount of
data, specifically in the 1-shot and 4-shot settings,
PFPT improves both accuracy and robustness using
searched defense tokens. With more data, PFPT
maintains its performance advantage and achieves
substantial improvements in both epsilon settings.

4.2 Generalization of learned defense tokens
To evaluate the transferability and generalization of
the defense tokens learned by PFPT across different
datasets, we consider two generalization settings
in this section: distribution shift and cross-dataset.
Specifically, the Imagenet dataset is adopted as
the source dataset to search for defense tokens
under the 16-shots and 4-epsilon settings. For
distribution shift tests, we evaluate the accuracy
and robustness of the learned defense tokens on
datasets with the same categories but completely
distinct data distributions. We use three Imagenet-
variant datasets for distribution shift tests, includ-
ing ImageNet-V2 (Recht et al., 2019), ImageNetS-
ketch, and ImageNet-R (Hendrycks et al., 2021).
As shown in Table 2, PFPT reveals remarkable
performance advantages over baseline methods on
datasets with completely different data distribu-
tions. This proves that the defense tokens learned
by PFPT have better generalization capabilities to
varying data distribution.

Moreover, we conduct cross-dataset tests on
datasets with distinct categories to further evaluate
the generalization ability of PFPT. Table 2 shows
the average performance on the other 10 datasets.

It is noteworthy that the proposed method, PFPT,
demonstrates the best transfer and generalization
abilities, achieving the highest accuracy and robust-
ness on both the source and test datasets. Although
the baseline method, APT, performs well on the
source dataset, it shows poor performance on the
10 test datasets, indicating that the token embed-
dings learned by APT are specific to the dataset
and fail to provide cross-dataset transferability.

4.3 Accuracy-robustness trade-off evaluation.
To evaluate the trade-off between accuracy and ro-
bustness, we compare PFPT’s adversarially-robust
defense tokens with the standard prompt trained in
non-attack scenarios in Figure 6. The experimental
setup is 16 shots and ϵ=4/255. As Figure 6 shows,
although PFPT reduces the classfication accuracy
on clean images compared to the standardly-trained
prompts, it significantly improves robustness under
attack scenarios. Notably, PFPT achieves a good
trade-off between the two metrics, as the increase
in robustness outperforms the decrease in accuracy
in most datasets. Overall, PFPT exhibits a consid-
erable improvement in the adversarial robustness
of VLMs under attack scenarios with a minor ac-
curacy loss, presenting its effectiveness and good
accuracy-robustness trade-off.

4.4 Readability measurement
As shown in the Appendix ??, we provide a novel
readability assessment method to compare the read-
ability of the learned token embeddings.

5 Conclusion
In this study, we aim to enhance the performance of
VLMs against adversarial samples. To achieve this,
we introduce a novel text prompt learning method
to boost adversarial robustness. Our approach,
Parameter-Free Prompt Tuning, searches for robust
defense prompts that are flexible, easy to use, and
human-readable. Extensive experiments present
the effectiveness of our method in improving in-
distribution performance and generalization across
different distributions and datasets. Our work in-
troduces a new paradigm for text prompt learning
that boosts adversarial robustness for VLMs.
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6 Limitations
PFPT has two main limitations. First, while the
learned defense tokens are at the word level, they
lack strong interconnections, a continuous, coher-
ent sentence might be more useful for human users.
Second, the defense tokens are dataset-specific,
since CLIP training spans multiple datasets, iden-
tifying a universal set of defense tokens that con-
sistently enhance adversarial robustness across var-
ious image sources is a promising direction for
future research.

References
Maksym Andriushchenko and Nicolas Flammarion.

2020. Understanding and improving fast adversarial
training. Advances in Neural Information Processing
Systems, 33:16048–16059.

Anish Athalye, Nicholas Carlini, and David Wagner.
2018. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial exam-
ples. In International conference on machine learn-
ing, pages 274–283. PMLR.

Hiroki Azuma and Yusuke Matsui. 2023. Defense-
prefix for preventing typographic attacks on clip. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3644–3653.

Eugene Bagdasaryan, Tsung-Yin Hsieh, Ben Nassi,
and Vitaly Shmatikov. 2023. (ab) using images
and sounds for indirect instruction injection in multi-
modal llms. arXiv preprint arXiv:2307.10490.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
2014. Food-101–mining discriminative components
with random forests. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part VI 13,
pages 446–461. Springer.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-
Choo, Matthew Jagielski, Irena Gao, Pang Wei W
Koh, Daphne Ippolito, Florian Tramer, and Ludwig
Schmidt. 2024. Are aligned neural networks adver-
sarially aligned? Advances in Neural Information
Processing Systems, 36.

Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu
Chen, and Sijia Liu. 2023. Visual prompting for
adversarial robustness. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa
Amini, and Zhangyang Wang. 2020. Adversarial
robustness: From self-supervised pre-training to fine-
tuning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
699–708.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos,
Sammy Mohamed, and Andrea Vedaldi. 2014. De-
scribing textures in the wild. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 3606–3613.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learn-
ing generative visual models from few training ex-
amples: An incremental bayesian approach tested on
101 object categories. In 2004 conference on com-
puter vision and pattern recognition workshop, pages
178–178. IEEE.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Patrick Helber, Benjamin Bischke, Andreas Dengel,
and Damian Borth. 2019. Eurosat: A novel dataset
and deep learning benchmark for land use and land
cover classification. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing,
12(7):2217–2226.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2021.
The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of
the IEEE/CVF international conference on computer
vision, pages 8340–8349.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. 2019.
Using pre-training can improve model robustness and
uncertainty. In International conference on machine
learning, pages 2712–2721. PMLR.

Qidong Huang, Xiaoyi Dong, Dongdong Chen, Yin-
peng Chen, Lu Yuan, Gang Hua, Weiming Zhang,
and Nenghai Yu. 2023. Improving adversarial robust-
ness of masked autoencoders via test-time frequency-
domain prompting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
1600–1610.

759



Nathan Inkawhich, Gwendolyn McDonald, and Ryan
Luley. 2023. Adversarial attacks on foundational
vision models. arXiv preprint arXiv:2308.14597.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy
text supervision. In International conference on ma-
chine learning, pages 4904–4916. PMLR.

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang
Wang. 2020. Robust pre-training by adversarial con-
trastive learning. Advances in neural information
processing systems, 33:16199–16210.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. 2020.
Adversarial self-supervised contrastive learning. Ad-
vances in Neural Information Processing Systems,
33:2983–2994.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 2013. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE inter-
national conference on computer vision workshops,
pages 554–561.

Ananya Kumar, Aditi Raghunathan, Robbie Jones,
Tengyu Ma, and Percy Liang. 2022. Fine-tuning
can distort pretrained features and underperform out-
of-distribution. arXiv preprint arXiv:2202.10054.

Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei
Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.
2024a. Multimodal foundation models: From spe-
cialists to general-purpose assistants. Foundations
and Trends® in Computer Graphics and Vision, 16(1-
2):1–214.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International conference on ma-
chine learning, pages 12888–12900. PMLR.

Lin Li, Haoyan Guan, Jianing Qiu, and Michael
Spratling. 2024b. One prompt word is enough to
boost adversarial robustness for pre-trained vision-
language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 24408–24419.

Lin Li and Michael Spratling. 2023. Data augmenta-
tion alone can improve adversarial training. arXiv
preprint arXiv:2301.09879.

Lin Li, Yifei Wang, Chawin Sitawarin, and Michael
Spratling. 2023. Oodrobustbench: benchmarking
and analyzing adversarial robustness under distribu-
tion shift. arXiv preprint arXiv:2310.12793.

Junfan Lin, Jianlong Chang, Lingbo Liu, Guanbin Li,
Liang Lin, Qi Tian, and Chang-wen Chen. 2023. Be-
ing comes from not-being: Open-vocabulary text-to-
motion generation with wordless training. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 23222–23231.

Jochem Loedeman, Maarten C Stol, Tengda Han, and
Yuki M Asano. 2022. Prompt generation networks
for input-based adaptation of frozen vision transform-
ers. arXiv preprint arXiv:2210.06466.

Rundong Luo, Yifei Wang, and Yisen Wang. 2023.
Rethinking the effect of data augmentation in
adversarial contrastive learning. arXiv preprint
arXiv:2303.01289.

Chengcheng Ma, Yang Liu, Jiankang Deng, Lingxi Xie,
Weiming Dong, and Changsheng Xu. 2023. Under-
standing and mitigating overfitting in prompt tuning
for vision-language models. IEEE Transactions on
Circuits and Systems for Video Technology.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. 2013. Fine-grained
visual classification of aircraft. arXiv preprint
arXiv:1306.5151.

Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang,
and Carl Vondrick. 2022. Understanding zero-shot
adversarial robustness for large-scale models. arXiv
preprint arXiv:2212.07016.

Maria-Elena Nilsback and Andrew Zisserman. 2008.
Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on com-
puter vision, graphics & image processing, pages
722–729. IEEE.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
and CV Jawahar. 2012. Cats and dogs. In 2012
IEEE conference on computer vision and pattern
recognition, pages 3498–3505. IEEE.

Fang Peng, Xiaoshan Yang, Linhui Xiao, Yaowei Wang,
and Changsheng Xu. 2023. Sgva-clip: Semantic-
guided visual adapting of vision-language models for
few-shot image classification. IEEE Transactions on
Multimedia.

Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter
Henderson, Mengdi Wang, and Prateek Mittal. 2024.
Visual adversarial examples jailbreak aligned large
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
21527–21536.

Jianing Qiu, Lin Li, Jiankai Sun, Jiachuan Peng, Peilun
Shi, Ruiyang Zhang, Yinzhao Dong, Kyle Lam,
Frank P-W Lo, Bo Xiao, et al. 2023. Large ai models
in health informatics: Applications, challenges, and
the future. IEEE Journal of Biomedical and Health
Informatics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from

760



natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In International conference
on machine learning, pages 5389–5400. PMLR.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684–10695.

Christian Schlarmann and Matthias Hein. 2023. On
the adversarial robustness of multi-modal foundation
models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 3677–
3685.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Khurram Soomro, Amir Roshan Zamir, and Mubarak
Shah. 2012. Ucf101: A dataset of 101 human ac-
tions classes from videos in the wild. arXiv preprint
arXiv:1212.0402.

Ming Tao, Bing-Kun Bao, Hao Tang, and Chang-
sheng Xu. 2023. Galip: Generative adversarial clips
for text-to-image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14214–14223.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude
Oliva, and Antonio Torralba. 2010. Sun database:
Large-scale scene recognition from abbey to zoo. In
2010 IEEE computer society conference on computer
vision and pattern recognition, pages 3485–3492.
IEEE.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.
2024. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu.
2022. Neural prompt search. arXiv preprint
arXiv:2206.04673.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang,
Chongxuan Li, Ngai-Man Man Cheung, and Min
Lin. 2024. On evaluating adversarial robustness of
large vision-language models. Advances in Neural
Information Processing Systems, 36.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022. Learning to prompt for vision-
language models. International Journal of Computer
Vision, 130(9):2337–2348.

761


