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Abstract

Text simplification aims to enhance the clar-
ity and comprehensibility of a complex text
while preserving its original meaning. Previ-
ous research on the automatic evaluation of
text simplification has primarily focused on
sentence simplification, with commonly used
metrics such as SARI and advanced metrics
such as LENS being trained and evaluated
at the sentence level. However, these met-
rics often underperform on longer texts. In
our study, we propose a novel approach to
adapt sentence-level metrics for paragraph- or
document-level simplification. We benchmark
our approach against a wide variety of exist-
ing reference-based and reference-less metrics
across multiple domains. Empirical results
demonstrate that our approach outperforms tra-
ditional sentence-level metrics in terms of cor-
relation with human judgment. Furthermore,
we evaluate the sensitivity and robustness of
various metrics to different types of errors pro-
duced by existing text simplification systems.

1 Introduction

Text simplification involves rewriting a text to im-
prove its ease of understanding, while maintain-
ing the original meaning (Saggion, 2017). This
refinement greatly improves the readability of doc-
uments, making them more accessible to diverse au-
diences, including children (Kajiwara et al., 2013),
non-native speakers (Petersen and Ostendorf, 2007;
Pellow and Eskenazi, 2014), and individuals with
learning disabilities (Rello et al., 2013). Text sim-
plification also makes specialized documents, such
as medical articles (Elhadad and Sutaria, 2007; De-
varaj et al., 2021) and legal texts (Garimella et al.,
2022), easier to understand for non-expert readers.

One major obstacle for text simplification is
reliable automatic evaluation of simplified texts.

*Work done outside Bloomberg.

Figure 1: Kendall Tau-like correlation of the simplifica-
tion metrics DSARI and LENS, along with our proposed
Agg-LENS, as a function of the number of tokens in the
source text. The source texts and references are from
the Cochrane dataset (Devaraj et al., 2021), with human
judgments for various simplifications collected by Flo-
res et al. (2023). Agg-LENS outperforms both LENS
and DSARI on texts longer than 200 tokens.

While the simplification of long texts, such as doc-
uments and paragraphs, holds practical utility, ex-
isting research has primarily focused on the au-
tomatic evaluation of sentence simplification (Xu
et al., 2016; Alva-Manchego et al., 2021; Cripwell
et al., 2023; Heineman et al., 2023). Commonly
used metrics for text simplification, such as SARI
(Xu et al., 2016), which measures n-gram over-
lap between the simplified text and human refer-
ences, and BERTScore (Zhang et al., 2020), which
assesses semantic similarity using BERT embed-
dings (Devlin et al., 2019), are primarily designed
for sentence-level evaluation. Although Sun et al.
(2021) propose a variant of SARI for longer texts
called DSARI, lexical overlap metrics like SARI
and DSARI struggle to effectively capture para-
phrases (Alva-Manchego et al., 2021). In contrast,
semantic similarity metrics such as BERTScore
focus on meaning preservation, often lacking cor-
relation with simplicity (Maddela et al., 2023).
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On the other hand, the rise of pretrained lan-
guage models has led to the development of super-
vised metrics such as LENS (Maddela et al., 2023)
and REFEREE (Huang and Kochmar, 2024), which
are fine-tuned on human judgments and effectively
capture diverse styles of simplification. However,
these metrics are primarily trained and evaluated
for sentence simplification, resulting in suboptimal
performance on longer texts. For instance, Figure
1 demonstrates that LENS, the state-of-the-art met-
ric for sentence simplification, exhibits the high-
est correlation with human judgments on shorter
texts (under 200 tokens) but shows diminished per-
formance on longer texts. Here, source texts and
references are from the Cochrane dataset (Devaraj
et al., 2021), and human judgments for the sim-
plified texts are collected by Flores et al. (2023).
Section 3 and Table 1 provide further details and re-
sults related to the experiment. Additionally, these
metrics are constrained by the length limitations of
the underlying pretrained language models.

To address these limitations, we propose a sim-
ple yet effective method to adapt sentence-level
metrics for paragraph- or document-level simplifi-
cation. Our approach first decomposes long texts
into shorter segments using a specialized semantic
similarity model and a graph-based alignment strat-
egy. It then employs a sentence-level metric to com-
pute evaluation scores for these shorter texts and ag-
gregates the results. This method can be applied to
any reference-based or reference-less metric, with
or without the source document. We compare our
proposed approach to a wide variety of existing
simplification metrics in terms of correlation with
human judgments, robustness, and sensitivity to mi-
nor errors. Empirical results demonstrate that our
approach enhances the correlation of sentence-level
metrics across three domains: Wikipedia, news,
and medical texts. Our approach also boosts the
robustness of existing metrics on longer texts as
illustrated in Fig 1 (Agg-LENS vs LENS).

Our main contributions include: (a) a novel ap-
proach for adapting sentence-level metrics to long
text simplification; (b) benchmarking this approach
alongside a comprehensive set of reference-based
and reference-less simplification metrics across
multiple domains; and (c) evaluating the sensitiv-
ity and robustness of automatic metrics to various
types of errors produced by existing text simplifi-
cation systems.

2 Aggregating Sentence-level Metrics for
Long Texts

In this section, we present a novel method
for adjusting sentence-level metrics to evaluate
paragraph- or document-level simplification. We
employ a specialized sentence alignment model
(Jiang et al., 2020) alongside a graph alignment
strategy to identify smaller units of related text
across the input, simplified, and reference texts.
These related texts can encompass multiple sen-
tences, allowing our graph alignment strategy to
effectively handle multi-sentence simplification ed-
its, such as sentence reordering, fusing sentences,
and selecting relevant content across sentences (La-
ban et al., 2023). We then calculate metric values
for these smaller units and average them to derive
the final metric value.1

Step 1: Construct similarity matrices. Given
a complex text C = (c1, . . . , ci, . . . , cm), its sim-
plification S = (s1, . . . , sj , . . . , sn), a reference
R = (r1, . . . , rk, . . . , rp), and a sentence-level
metric M(.), the goal is to compute a score z that
captures the overall quality of S. Here, ci, sj , and
rk correspond to sentences in C, S, and R respec-
tively. First, we compute two sentence similarity
matrices: Acs ∈ Rm×n with sentence pairs (ci, sj)
and Acr ∈ Rm×p with sentence pairs (ci, rk). We
utilize Jiang et al. (2020)’s sentence pair similar-
ity model to construct Acs and Acr. This model
was trained to measure similarity of sentences in
parallel complex articles and their simplified ver-
sions.2 However, our approach is agnostic to the
type of sentence aligner and can be replaced with
any aligner that better suits the target dataset or
task, offering flexibility for different contexts.

Step 2: Extract smaller units of related text.
We use the similarity matrices in a graph-based
alignment approach to construct smaller segments
of related texts across C, S, and R. We construct an
undirected graph G with the sentences as vertices
and sentence pairs with similarity > 0.5 as edges:

V =C ∪ S ∪R

E ={(ci, sj) | Acs(i, j) > 0.5}
∪ {(ci, rk) | Acr(i, k) > 0.5}

1Our code for the approach and experiments is available at
https://github.com/cardiffnlp/document-simplification

2We use the BERT model trained to align sentences be-
tween English Wikipedia and Simple Wikipedia articles.
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We extract connected components cc(G) =
{g1, . . . , gl, . . . , go} from G using breadth-first
search. Note that each component gl contains a
subset of sentences in C, S, and R. We partition gl
into three sets (glc, gls, glr), each containing sen-
tences from C, S, and R respectively, followed by
concatenation within each set. In section 5, we
delve deeper into the impact of different similarity
threshold choices and alignment strategies.

Step 3: Compute and aggregate metric
scores. Finally, we compute the metric value
M(gl

c, gl
s, gl

r) for each component gl and aver-
age them across all the components. In scenarios
involving multiple references, we choose the refer-
ence with maximum z. For reference-less metrics,
we omit R in the approach while keeping the rest
of the steps the same. We provide further imple-
mentation details in Appendix C.

3 Evaluating Correlation with Human
Judgements

In this section, we benchmark existing simplifi-
cation metrics and their aggregated versions con-
structed using our proposed approach.

3.1 Datasets
We evaluate different metrics on the following three
publicly available human ratings datasets:

COCHRANE-HUMAN (Flores et al., 2023) in-
cludes 120 binary comparisons of simplified En-
glish texts for overall readability by three human
judges.3 Given an original document and its two
corresponding simplified versions, generated by
two different systems, the dataset contains human
ratings indicating which system is better at simpli-
fying the original text. We use the majority rating
from these judges as the final score for each com-
parison. We use the majority rating from these
judges as the final score for each comparison. The
original English texts belong to the Cochrane sim-
plification dataset (Devaraj et al., 2021) that con-
sists of abstracts from the Cochrane Database of
Systematic Reviews and their corresponding plain
language versions written by domain experts, fol-
lowing Cochrane’s PLS standards. This human rat-
ings dataset contains outputs from GPT4 (OpenAI
et al., 2024) and four BART-based systems namely
vanilla BART (Lewis et al., 2020), BART trained
using unlikelihood loss (Li et al., 2020), BART

3https://github.com/ljyflores/simplification-project

trained to simplify using a two step summarize-
then-simplify strategy (Lu et al., 2023), and BART
with a readability enhanced decoding approach
(Flores et al., 2023).

D-WIKIPEDIA (Sun et al., 2021) consists of
5-point Likert scale ratings on fluency, meaning
preservation, and overall simplicity for 500 simpli-
fications across five systems4 including fine-tuned
BART, a BERT-based extractive summarization
system (Liu and Lapata, 2019), a human-written
simplification, and a vanilla Transformer model
and its variant that enhances contextual informa-
tion. Three human judges rate each simplification
and we take the average as the final rating. The orig-
inal texts are derived from the D-Wikipedia test set
(Sun et al., 2021), which consists of paragraphs
from Wikipedia articles and their corresponding
aligned paragraphs from Simple Wikipedia.

ONESTOPQA (Agrawal and Carpuat, 2024)
evaluates the meaning preservation ability of 9 sim-
plification systems using a reading comprehension
task.5 Given a simplified text from a news arti-
cle and three questions that are answerable by the
original text, the dataset contains human annota-
tions capturing if the questions can be answered
by the simplified version. This study calculates
two scores for each simplified text: accuracy, the
percentage of correctly answered questions, and
answerability, the percentage of questions deemed
unanswerable. The complex texts and their hu-
man references for computing the metrics are ex-
tracted from the OneStopEnglish dataset (Vajjala
and Lučić, 2018).6 The simplification systems in
ONESTOPQA include ChatGPT, an unsupervised
system trained using reinforcement learning (La-
ban et al., 2021), a fine-tuned BART model with
control tokens to adapt to different readability lev-
els (Martin et al., 2022), a fine-tuned T5 model with
similar control tokens (Sheang and Saggion, 2021),
and two supervised edit-based non-autoregressive
models (Agrawal and Carpuat, 2022).

We provide statistics for each dataset in Ap-
pendix A.

4D-WIKIPEDIA contains human ratings along four dimen-
sions: fluency, meaning preservation, overall simplicity, and
word-level simplicity. We report the results on the first three.

5https://github.com/sweta20/ATS-EVAL
6OneStopEnglish contains documents written at three read-

ability levels: advanced, intermediate, and elementary. We use
the advanced version as the complex text and the elementary
version as the human reference
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3.2 Automatic Evaluation Metrics
We benchmark the following metrics:

BLEU (Papineni et al., 2002) is a precision-based
metric calculating n-gram overlap between a candi-
date and its reference along with a brevity penalty.

SARI (Xu et al., 2016), the widely utilized met-
ric for text simplification, calculates F1/precision
scores for the n-grams added, removed, and re-
tained in comparison to human references.

BERTScore (Zhang et al., 2020) is a semantic
similarity metric that measures word-level similar-
ity used BERT (Devlin et al., 2019) embeddings.

LENS (Maddela et al., 2023) is a learned sim-
plification metric based on RoBERTa (Liu et al.,
2019) that computes a quality score given a com-
plex sentence, its simplified version, and a set of
references.

LENS-SALSA (Heineman et al., 2023) is a
learned reference-less metric that trains the LENS
metric on phrase-level simplification edits.

REFEREE (Huang and Kochmar, 2024) is an-
other supervised reference-less metric that mea-
sures the overall quality of the simplified sentence.
It first pretrains a DeBERTa (He et al., 2021) with
existing metrics and finetunes it on human ratings.

SLE (Cripwell et al., 2023) is a learned reference-
less metric that focuses on measuring the raw sim-
plicity of the simplified sentence, or the relative
simplicity gain when compared to the input com-
plex sentence. It is based on a finetuned RoBERTa.

DSARI (Sun et al., 2021) is a variant of SARI
that computes the same F1/precision scores as
SARI but also includes length penalties.

QuestEval (Rebuffel et al., 2021) measures the
meaning preservation of a simplification by com-
paring answers to a list of questions on the simpli-
fication and its corresponding source document.

Llama3-based metric We use Llama3-8B-
Instruct (Dubey et al., 2024) to evaluate the gener-
ated simplified text along three dimensions: mean-
ing preservation, fluency, and simplicity. Follow-
ing Liu et al. (2023), we first provide the task de-
scription to the model and generate intermediate
rating instructions. We then augment the original
instructions with these intermediates, along with
the source and simplified text, and ask the model

to predict a score between 1 and 5 for the spec-
ified dimension. The final score is derived from
a probability-weighted summation of the output
scores. We provide more details prompts in Ap-
pendix B.

Note that DSARI, QuestEval, and Llama3-based
metrics are not sentence-level metrics. Therefore,
we skip the application of our aggregation strate-
gies on these three metrics.

3.3 Evaluation Setup

Following previous work in machine translation
(Bojar et al., 2017; Ma et al., 2018) and evaluation
of sentence-level simplification metrics (Maddela
et al., 2023; Huang and Kochmar, 2024), we report
Kendall Tau-like correlation on the COCHRANE-
HUMAN dataset to capture the relative ranking of
two systems. Given an input c and its simplifi-
cations from 2 systems s1 and s2, we calculate
Kendall Tau-like coefficient τ as:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant| (1)

where Concordant is the set of pairs where the
metric ranked (s1, s2) in the same order as humans
and Discordant is the set of the pairs where the
order is different. For DWIKI and ONESTOPQA,
we report Pearson correlation (ρ) between the
metric scores and the human ratings.

3.4 Results

Table 1 shows the correlation with human ratings
on COCHRANE-HUMAN, D-WIKIPEDIA, and ON-
ESTOPQA datasets. We summarize the trends be-
low:

Aggregation improves the performance of
reference-based metrics across multiple dimen-
sions. Agg-LENS and Agg-SARI outperform their
corresponding non-aggregated versions on the
readability dimension of COCHRANE-HUMAN,
simplicity dimension of D-WIKIPEDIA, and
meaning-based dimensions of ONESTOPQA and
D-WIKIPEDIA. For BERTScore, the aggregated
version (Agg-BERTScore) shows an improvement
on D-WIKIPEDIA and ONESTOPQA.

Aggregation helps only with the meaning preser-
vation dimension for reference-less metrics.
Agg-REFEREE, Agg-LENS-SALSA, and Agg-SLE
outperform their non-aggregated counterparts in
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COCHRANE D-WIKIPEDIA ONESTOPQA

Readability Fluency Meaning Simplicity Accuracy Answerability

Sentence-level,
Reference-
based

BLEU -0.183 0.251 0.119 0.432 0.261 0.240
SARI -0.083 0.257 -0.023 0.386 0.150 0.136
BERTScore 0.183 0.017 0.037 0.012 0.365 0.344
LENS 0.383 0.623 -0.114 0.461 0.196 0.179

Sentence-level,
Reference-less

SLE 0.150 -0.067 0.259 -0.073 -0.119 -0.111
LENS-SALSA 0.200 0.611 0.041 0.489 0.123 0.118
REFEREE 0.316 0.417 0.200 0.440 0.083 0.046

Document-level
DSARI -0.017 0.331 -0.138 0.414 0.068 0.041
QuestEval 0.016 0.227 0.557 0.389 0.300 0.317
LLAMA3 0.117 0.619 0.416 0.452 0.309 0.280

Metrics aggregated using our approach

Document-level,
Reference-based

Agg-SARI 0.0 ↑ 0.338 ↑ 0.067 ↑ 0.498 ↑ 0.172 ↑ 0.149 ↑
Agg-BERTScore 0.167 ↓ 0.235 ↑ 0.418 ↑ 0.498 ↑ 0.366 ↑ 0.375 ↑
Agg-LENS 0.433 ↑ 0.573 ↓ -0.003 ↑ 0.506 ↑ 0.360 ↑ 0.353 ↑

Document-level,
Reference-less

Agg-SLE -0.05 ↓ -0.142 ↓ 0.498 ↑ -0.102 ↓ 0.041 ↑ 0.078 ↑
Agg-LENS-SALSA 0.217 ↑ 0.520 ↓ 0.142 ↑ 0.370 ↓ 0.183 ↑ 0.176 ↑
Agg-REFEREE 0.017 ↓ 0.258 ↓ 0.455 ↑ 0.329 ↓ 0.326 ↑ 0.328 ↑

Table 1: Correlation results of automatic metrics on three human ratings datasets: COCHRANE-HUMAN, D-
WIKIPEDIA, and ONESTOPQA. We report the Kendall Tau-like correlation on COCHRANE-HUMAN and Pearson
correlation for the rest. The best values are marked in bold and the second best values are underlined. ↑ and ↓
represent if the aggregated version of the metric improves or degrades the performance when compared to the
original sentence-level version.

meaning preservation on D-WIKIPEDIA and in ac-
curacy and answerability on ONESTOPQA. How-
ever, these variants exhibit a decrease in correla-
tion regarding the simplicity dimension on both
COCHRANE-HUMAN and D-WIKIPEDIA datasets.

Reference-based aggregated metrics outper-
form document-level metrics. Agg-LENS and
Agg-BERTScore outperform document-level met-
rics such as DSARI, QuestEval, and Llama3 on
COCHRANE-HUMAN, ONESTOPQA, and simplic-
ity dimension of D-WIKIPEDIA. Agg-SARI outper-
forms DSARI on all the three datasets.

Learned metrics perform reasonably well even
without any aggregation. Although trained at
a sentence-level, LENS, LENS-SALSA, and REF-
EREE outperform DSARI. REFEREE, a reference-
less metric, shows correlation results close to LENS
with respect to readability on COCHRANE-HUMAN

and simplicity on D-WIKIPEDIA.

Learned metrics perform better than lexical
and semantic metrics on challenging domains.
COCHRANE-HUMAN is a challenging dataset for
metrics as it contains medical abstracts with ex-
tremely lengthy sentences and complex terminol-
ogy. Supervised metrics based on RoBERTA
namely Agg-LENS and LENS show the best and the

second best correlations on COCHRANE-HUMAN.

Metrics need to be used with caution to evalu-
ate deletion-based simplifications. We observe
conflicting results between the meaning preser-
vation dimensions of D-WIKIPEDIA and ON-
ESTOPQA. In the former dataset, reference-less
metrics like Agg-REFEREE and Agg-SLE outper-
form reference-based metrics such as Agg-LENS
and Agg-BERTScore. However, this trend reverses
on ONESTOPQA. The discrepancy arises because
deletion is heavily penalized in D-WIKIPEDIA,
where reference-less metrics, which focus solely
on differences with respect to the complex text, are
better suited to capture missing information. In
contrast, ONESTOPQA incorporates factuality and
imposes less stringent penalties for deletion, allow-
ing reference-based metrics like Agg-BERTScore
and Agg-LENS to perform better.

Recommendations. Based on the results, we rec-
ommend Agg-LENS to evaluate readability and
fluency and Agg-BERTScore to evaluate mean-
ing preservation for long text simplification. For
reference-less cases, Agg-REFEREE is suitable to
evaluate meaning preservation and REFEREE for
the other dimensions.
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Deletion In-Document Out-Document Grammar Coherence Copy
Hallucination Hallucination

Sentence-level,
Reference-based

BLEU 73.3 80.0 83.3 96.7 91.0 11.6
SARI 88.3 45.0 63.3 81.7 81.7 43.3
BERTScore 83.3 96.7 100.0 100.0 90.0 15.6
LENS 60.0 53.3 88.3 100.0 73.3 83.3

Sentence-level,
Reference-less

SLE 43.3 86.7 91.7 50.0 45.0 26.7
LENS-SALSA 65.0 51.7 60.0 100.0 66.3 90.0
REFEREE 10.7 98.1 98.6 100.0 83.7 91.7

Document-level
DSARI 43.3 88.3 88.3 83.3 81.7 60.0
QuestEval 63.3 20.0 86.7 65.0 80.0 21.6
LLAMA3 83.3 96.7 98.3 100.0 90.0 80.0

Metrics aggregated using our approach

Document-level,
Reference-based

Agg-SARI 80.0 ↓ 88.3 ↑ 100.0 ↑ 78.3 ↓ 91.7 ↑ 63.0 ↑
Agg-BERTScore 81.1 ↑ 95.0 ↓ 96.7 ↓ 90.0 ↓ 98.3 ↑ 8.6 ↑
Agg-LENS 81.7 ↑ 68.3 ↑ 80.0 ↓ 100.0 81.6 ↑ 46.7 ↓

Document-level,
Reference-less

Agg-SLE 85.0 ↑ 60.3 ↓ 60.0 ↓ 55.0 ↑ 76.7 ↑ 31.7 ↑
Agg-LENS-SALSA 71.6 ↑ 46.7 ↓ 43.3 ↓ 100.0 86.7 ↑ 68.3 ↓
Agg-REFEREE 76.3 ↑ 88.3 ↓ 85.0 ↓ 100.0 90.0 ↑ 70.3 ↓

Table 2: Consistency (%) of automatic simplification metrics on ONESTOPQA. The best values are marked in bold
and the second best values are underlined. ↑ and ↓ represent if the aggregated version of the metric improves or
degrades the performance when compared to the original sentence-level version.

4 Evaluating Robustness using
Adversarial Attacks

While correlation with human ratings gauges the
capability of automatic metrics to evaluate the over-
all quality of simplification, it may not effectively
capture how sensitive metrics are to minor errors
in simplification system outputs. Considering that
state-of-the-art generation models such as GPT4
(OpenAI et al., 2024) are capable of producing
high-quality text, it is crucial for evaluation met-
rics to detect even minor errors. In this section,
we outline various types of errors typically gen-
erated by paragraph-level simplification systems
and suggest methods for perturbing a well-written
simplification to introduce each error with minimal
alterations. Subsequently, we present results ob-
tained by different automatic metrics in detecting
these minor errors.

4.1 Common Simplification System Errors

We highlight the common errors made by long
text simplification systems and the techniques we
employed to generate each error type.

Deletion of Salient Information. At times, sim-
plification systems fail to retain crucial information
from the input text. To replicate this error, we omit
the longest 20% of sentences from the text, as they
are likely to contain vital information.

Hallucinations. Generating text that deviates
from the intended context is a prevalent error gener-
ated by state-of-the-art generation systems (Huang
et al., 2023). Following Guo et al. (2024) that
introduces hallucinations into well-composed sum-
maries for evaluation of metrics, we propose modi-
fications to simplified texts to induce two types of
hallucinations: (a) In-Document hallucinations,
which relate to the input text’s topic, and (b) Out-
Document hallucinations, which introduce unre-
lated information. To create in-document hallucina-
tions, we add two random sentences from the same
article as the input paragraph. For out-document
hallucinations, we append two sentences from a
randomly selected article in the dataset.

Grammatical Errors. These errors include mis-
takes in the use of grammar that disrupt the flow
of a sentence. We swap the order of 4-5 words in
20% of the sentences in the simplified paragraph to
simulate grammatical errors.

Coherence. While a simplified text may exhibit
fluency, it can still pose reading challenges due to
poor logical arrangement of sentences in the text, a
characteristic known as textual coherence. We gen-
erate incoherent texts by swapping the order of 20%
of the sentences in the coherent simplifications.

Copying with Minimal Paraphrasing. Oc-
casionally, simplification systems make minor
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changes that do not affect text complexity. To sim-
ulate this, we select the complex text as its own
simplification and paraphrase 10% of its sentences
using a T5-based model (Raheja et al., 2023) that
preserves the original complexity.

4.2 Evaluation Setup
We apply our perturbations to 60 simplifications
generated by ChatGPT7 in the ONESTOPQA
dataset. We selected ChatGPT due to its high-
quality simplifications. For each error type, we
create a modified erroneous version based on the
original ChatGPT simplification. We then calculate
the consistency of each metric across all simplifi-
cations. Consistency of a metric refers to the per-
centage of simplifications in which the perturbed
version is ranked lower than the generated simplifi-
cation by the metric. This measure has been used
previously to assess the robustness of factuality
metrics (Ma et al., 2023; Gabriel et al., 2021).

4.3 Results
Table 2 shows the sensitivity of metrics to different
types of errors. We summarize the trends below:

SARI is the most sensitive towards deletion.
SARI heavily penalizes deletion by computing
deleted n-grams relative to the input. Additionally,
aggregated versions of all metrics, with the excep-
tion of SARI, demonstrate superior performance
compared to their sentence-level counterparts in
capturing deletion.

In-Document hallucinations are more challeng-
ing than Out-Document hallucinations. All
metrics show lower consistency scores while identi-
fying in-document hallucinations that include new
information from the same topic than out-document
hallucinations that incorporate information from ir-
relevant topics.

Aggregated metrics underperform their non-
aggregated counterparts on hallucinations.
Aggregated versions of all metrics, with the ex-
ception of SARI, show a drop in consistency when
compared to their original versions. This is be-
cause aggregated versions treat good sentence-level
simplifications and hallucinations equally, whereas
original metrics penalize hallucinations more.

Aggregated metrics outperform their non-
aggregated versions on incoherent text. Agg-
SARI and Agg-BERTScore are the best at capturing

7https://openai.com/index/chatgpt/

coherence errors. Aggregation improves the con-
sistency scores for all the metrics.

Most metrics effectively penalize grammatical
errors. We observe 100% consistency scores for
BERTScore, LENS, LENS-SALSA, Agg-LENS, and
REFEREE in identifying fluency errors. However,
SLE and SARI display lower scores compared to
the others due to their emphasis on simplicity.

5 Ablation Analysis

We analyze the design decisions that are essen-
tial for the effective performance of our approach:
(a) a threshold of 0.5 for sentence pair similarity,
(b) graph-based alignment of sentences, and (c)
sentence pair similarity model trained on parallel
simplification corpora.

Sentence Similarity Threshold. Figure 2 illus-
trates the correlation with human ratings for Agg-
LENS, Agg-BERTScore, and Agg-SARI across
different thresholds for sentence pair similarity. In
our graph-based alignment approach, sentence pair
similarity is represented by the edges between sen-
tence nodes. We add edges between sentences only
if their similarity value exceeds the threshold. A
higher threshold results in fewer edges for align-
ment and consequently more sub-units of text. The
results indicate minimal variance with respect to
the threshold, with a threshold of 0.5 serving as a
reasonable choice. This is primarily because the
similarity values generated by the sentence pair
similarity model are mostly clustered near the ex-
treme ends of the scale (close to 0 or 1),

Graph-based Alignment of Sentences. Table 3
compares our alignment approach, which supports
many-to-many alignments between sentences in
complex and simplified texts, with more restricted
variants that match each simplified sentence with
the most similar complex sentence, or vice versa.
The results show that our graph-alignment ap-
proach outperforms the one-to-many and many-
to-one alignment methods. This is because the
latter methods fail to account for multi-sentence
simplification operations such as sentence reorder-
ing, content selection and fusing sentences, which
frequently occur in long text simplification.

Sentence Pair Similarity Model. Table 4
demonstrates that our method, which employs the
sentence pair similarity model from Jiang et al.
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Figure 2: Ablation results of Agg-LENS, Agg-BERTScore, and Agg-SARI with different thresholds for sentence
pair similarity. We plot the Kendall correlation value for COCHRANE-HUMAN and average Pearson correlation
value across all the dimensions for D-WIKIPEDIA and ONESTOPQA respectively.

COCHRANE DWIKI ONESTOPQA

Proposed approach with many-to-many alignments

Agg-SARI 0.0 0.301 0.160
Agg-BScore 0.167 0.384 0.371
Agg-LENS 0.433 0.358 0.356

Simplified sentence aligned to the best complex sentence

Agg-SARI 0.033 0.181 0.116
Agg-BScore 0.1 0.301 0.337
Agg-LENS 0.367 0.267 0.252

Complex sentence aligned to the best simplified sentence

Agg-SARI -0.017 0.192 0.118
Agg-BScore 0.0 0.303 0.341
Agg-LENS 0.383 0.252 0.244

Table 3: Ablation results comparing our graph-based
alignment approach with their variants allowing only
one-to-many and many-to-one alignments. We report
the Kendall correlation value for COCHRANE-HUMAN
and average Pearson correlation value across all the
dimensions for D-WIKIPEDIA and ONESTOPQA re-
spectively.

(2020), outperforms both BERTScore8 and Sen-
tenceBERT9 (Reimers and Gurevych, 2019). Jiang
et al. (2020) fine-tuned BERT on manually aligned
complex-to-simple article pairs from the Wikipedia
corpus (Xu et al., 2015). This indicates that an
in-domain sentence similarity model fine-tuned on
simplification corpora surpasses generalized simi-
larity approaches.

6 Related Work

Automatic Evaluation of Text Simplification.
Existing automatic metrics for simplification are

8We used “roberta-large” model for BERTScore.
9We used “all-mpnet-base-v2” for SentenceBERT.

primarily designed for sentence simplification and
can be broadly divided into three types: (a) lexical
similarity metrics (Xu et al., 2016; Papineni et al.,
2002); (b) semantic similarity metrics (Zhang et al.,
2020; David et al., 2023); and (c) learned metrics
(Maddela et al., 2023; Huang and Kochmar, 2024;
Heineman et al., 2023; Cripwell et al., 2023), which
fine-tune pretrained language models on human
judgments. There has been limited exploration of
evaluation metrics for documents. Readability met-
rics, such as Flesch-Kincaid Grade Level (Kincaid,
1975), have also been used to assess the simplic-
ity dimension of simplified texts. However, stud-
ies have shown that these metrics do not correlate
well with the overall quality of the generated sim-
plification (Maddela et al., 2023; Alva-Manchego
et al., 2021; Devaraj et al., 2021). Sun et al. (2021)
introduced a new metric for document-level sim-
plification that incorporates length penalties into
SARI. Rebuffel et al. (2021) proposed QuestEval,
a paragraph-level evaluation metric that generates
questions based on simplifications and measures
the similarity of their answers to the source text.
However, this metric focuses solely on meaning
preservation. Conversely, our approach adapts
sentence-level metrics for long text simplification.

Evaluation of Long-Text Generation.
Document-level automatic metrics for com-
mon text generation tasks such as machine
translation (Papineni et al., 2002; Sellam et al.,
2020; Agarwal and Lavie, 2008) and summariza-
tion (Lin, 2004; Vasilyev et al., 2020) focus on
meaning preservation. Splitting long texts into
shorter chunks has been explored for summariza-
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COCHRANE DWIKI ONESTOPQA

Our work with similarity model from Jiang et al. (2020)

Agg-SARI 0.033 0.301 0.160
Agg-BScore 0.167 0.384 0.371
Agg-LENS 0.433 0.358 0.356

BERTScore as similarity model

Agg-SARI 0.033 0.198 0.111
Agg-BScore 0.17 0.295 0.321
Agg-LENS 0.267 0.225 0.202

SentenceBERT as similarity model

Agg-SARI -0.05 0.259 0.124
Agg-BScore -0.033 0.319 0.226
Agg-LENS 0.233 0.321 0.290

Table 4: Ablation results of Agg-SARI, Agg-
BERTScore, and Agg-LENS with different sentence
pair similarity models. We report the Kendall correla-
tion value for COCHRANE-HUMAN and average Pear-
son correlation value across all the dimensions for D-
WIKIPEDIA and ONESTOPQA respectively.

tion, focusing on two directions: (1) decomposing
a summary into smaller facts (min; Nawrath et al.,
2024) and (2) breaking a summary into sentences
and aligning them with the sentences in source text
(Amplayo et al., 2022). Our approach aligns more
closely with the second category. However, these
metrics are not suitable for simplification, as they
are specifically designed for summarization and
prioritize factuality. Additionally, they typically
allow only one-to-one mappings between the
generated text and the source, which do not
capture multi-sentence simplification operations
such sentence splitting, sentence fusion, and
sentence reordering. In contrast, our approach
enables many-to-many alignments among the
source, simplified, and reference texts, effectively
capturing such operations.

7 Conclusion

In this work, we propose a novel approach for
adapting sentence-level automatic metrics for long
text simplification. Results show that our approach
enhances the correlation with human judgments
of sentence-level metrics across multiple domains.
We also conduct the first systematic study of auto-
matic evaluation metrics for document-level simpli-
fication by benchmarking a comprehensive range
of metrics, spanning traditional lexical and seman-
tic measures to recent learned approaches. Finally,
we evaluate the robustness of simplification met-
rics using adversarial attacks that simulate different
errors made by long text simplification systems.

8 Limitations

Limited to English Language. Our work eval-
uates simplification metrics exclusively for the
English language, as all selected human rating
datasets are available only in English. This lim-
itation restricts the generalizability of our findings
to other languages, where linguistic structures and
simplification challenges may differ significantly.
Further research is essential to investigate the ap-
plication of automatic simplification metrics for
non-English languages.

Subjectivity of Human Ratings in the Datasets.
Human judgments in the selected datasets
come from annotators with diverse backgrounds.
While COCHRANE-HUMAN and D-WIKIPEDIA

include annotations from non-native speakers, ON-
ESTOPQA features annotations from native speak-
ers. This variation may introduce biases, and there
is also a degree of inter-annotator disagreement in
the ratings. Therefore, the findings of this paper
should be interpreted with this subjectivity in mind,
as it may influence the overall assessment of sim-
plification metrics and their applicability across dif-
ferent contexts and populations. Further research
could benefit from addressing these subjective ele-
ments to enhance the reliability of the evaluations.

Lack of Elaborative Simplification Evaluation.
Elaboration is a simplification operation that aims
to enhance clarity and readability by adding con-
text, explanations, or definitions to complex texts
(Srikanth and Li, 2021). However, our study fo-
cuses on simplification operations that transform
text without adding new content, such as paraphras-
ing, deleting irrelevant information, fusing sen-
tences, sentence reordering, and sentence splitting.
Consequently, the findings of this paper are limited
to these operations. Further research is needed to
explore the applicability of the proposed approach
and existing metrics for elaborative simplification.

9 Ethics Statement

We use publicly available datasets and will make
our code available upon publication. As mentioned
in the limitations around non-English languages
and possible biases from human annotators, further
work is needed to apply the proposed approach to
specific target audiences.
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A Dataset Statistics

Avg. word length
Complex Simple

COCHRANE-HUMAN 396.7 213.4
ONESTOPQA 172.3 92.4
D-WIKIPEDIA 137.1 123.9

Table 5: Dataset Statistics

B Llama3 Prompts and Evaluation
Details

We attempted five evaluations and averaged the
results. We used the default temperature of Llama3
(0.6). We evaluated Llama3 in a zero-shot setting
without a reference and a one-shot setting with a
human reference. We reported results on the zero-
shot setting as it performed the best.

We use the following prompts for the Llama3-
8B-Instruct10 model under a zero-shot setting.

B.1 Prompt for fluency:

You will be given a text and its simplified version
written by an AI system. Your task is to rate the
simplified version in terms of fluency on a scale
of 1-5. Please make sure you read and understand
these instructions carefully. Please keep this
document open while reviewing, and refer to it as
needed.

Evaluation Criteria for Fluency:
Coherence: How well does the simplified version

10https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct
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flow logically and smoothly, with each sentence
building on the previous one to convey a clear and
cohesive message?
Grammar and Syntax: Are the sentences in the
simplified version grammatically correct, with
proper sentence structure, verb tense consistency,
and subject-verb agreement?
Vocabulary: Are the words and phrases used
in the simplified version appropriate, accurate,
and concise, without unnecessary complexity or
ambiguity?
Readability: How easy is the simplified version
to read and understand, with a natural flow and
rhythm that facilitates comprehension?
Naturalness: How well does the simplified version
sound like natural language, with a tone and style
that is engaging and clear?

Rating Scale:
1: Very Poor (simplified version is difficult to
follow, with significant grammatical errors and
awkward phrasing).
2: Poor (simplified version is clumsy, with notice-
able errors in grammar, syntax, or vocabulary).
3: Fair (simplified version is understandable, but
with some awkward phrasing, minor errors, or
slightly unnatural language).
4: Good (simplified version is clear and coherent,
with good grammar, syntax, and vocabulary, and a
natural flow).
5: Excellent (simplified version is highly fluent,
with a smooth and natural flow, accurate vocabu-
lary, and no noticeable errors).

Now, rate the simplification:
Source Text: ||complex||
Simplified Text: ||simplification||
Please write only the numeric rating in the next
line:

B.2 Prompt for meaning preservation:
You will be given a text and its simplified version
written by an AI system. Your task is to rate the
simplified version in terms of meaning preservation
on a scale of 1-5. Please make sure you read and
understand these instructions carefully. Please
keep this document open while reviewing, and
refer to it as needed.

Evaluation Criteria for Meaning Preservation:
Accuracy: How well does the simplified version
maintain the original meaning and content of the

paragraph?
Completeness: Does the simplified version cover
all the main points and essential information from
the original paragraph?
Fidelity: How faithful is the simplified version to
the tone, style, and intent of the original paragraph?
Clarity: Is the simplified version clear and easy
to understand, without introducing ambiguity or
confusion?
Omissions: Are any important details or context
omitted from the simplified version that alter its
meaning or impact?

Rating Scale:
1: Very Poor (significant meaning lost or distorted).
2: Poor (some meaning preserved, but with notable
omissions or distortions).
3: Fair (most meaning preserved, with minor
omissions or distortions).
4: Good (meaning well-preserved, with high
fidelity and clarity).
5: Excellent (meaning perfectly preserved, with no
omissions or distortions).

Now, rate the simplification:
Source Text: ||complex||
Simplified Text: ||simplification||
Please write only the numeric rating in the next
line:

B.3 Prompt for simplicity:
You will be given a paragraph and its simplified
version written by an AI system. Your task is to
rate the simplified version in terms of simplicity or
readability on a scale of 1-5. In other words, the
text needs to be easier to understand. Please make
sure you read and understand these instructions
carefully. Please keep this document open while
reviewing, and refer to it as needed.

Evaluation Criteria for Simplicity/Readability:
Clarity: How easy is the simplified version to
understand, with a clear and concise message?
Vocabulary: Are the words used in the simplified
version simple, common, and easy to understand?
Sentence structure: Are the sentences in the
simplified version short, straightforward, and easy
to follow?
Complexity reduction: Has the simplified version
successfully reduced the complexity of the original
paragraph, making it easier to comprehend?
Overall readability: How easy is the simplified
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version to read and understand, with a natural flow
and rhythm?

Rating Scale:
1: Very Poor (simplified version is still difficult
to understand, with complex language and
structures).
2: Poor (simplified version is somewhat easier to
understand, but still uses some complex vocabulary
or sentence structures).
3: Fair (simplified version is easier to understand,
but may still have some clarity issues or slightly
complex language).
4: Good (simplified version is clear and easy
to understand, with simple vocabulary and
straightforward sentence structures).
5: Excellent (simplified version is very easy to
understand, with a natural flow and rhythm, and no
complexity or clarity issues).

Now, rate the simplification:
Source Text: ||complex||
Simplified Text: ||simplification||
Please write only the numeric rating in the next
line:

C Implementation Details

We implement our approach using PyTorch. We
utilize the publicly available code released by the
authors to execute each metric within our frame-
work. We ran our experiments on one NVIDIA
A10 GPU.
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