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Abstract

Large language models (LLMs) often retain
outdated or incorrect information from pre-
training, which undermines their reliability.
While model editing methods have been de-
veloped to address such errors without full re-
training, they frequently suffer from knowledge
conflicts, where outdated information interferes
with new knowledge. In this work, we pro-
pose Conflict-free Model Editing (CoME), a
novel framework that enhances the accuracy of
knowledge updates in LLMs by selectively re-
moving outdated knowledge. CoME leverages
unlearning to mitigate knowledge interference,
allowing new information to be integrated with-
out compromising relevant linguistic features.
Through experiments on GPT-J and LLaMA-
3 using Counterfact and ZsRE datasets, we
demonstrate that CoME improves both editing
accuracy and model reliability when applied to
existing editing methods. Our results highlight
that the targeted removal of outdated knowl-
edge is crucial for enhancing model editing
effectiveness and maintaining the model’s gen-
erative performance. Our code is available at
https://github.com/ekgus9/COME.

1 Introduction

Large language models (LLMs) encode vast
amounts of knowledge during pre-training, en-
abling them to perform effectively across a
wide range of natural language processing (NLP)
tasks (Hao et al., 2021; Cao et al., 2021a; Jiang
et al., 2023; Hernandez et al., 2023; Haviv et al.,
2023; OpenAI, 2023). However, LLMs often incor-
porate outdated, incorrect, or biased information
learned from training data, which can directly affect
the reliability of their outputs (Hase et al., 2021;
Pagnoni et al., 2021; Ji et al., 2023; Mousavi et al.,
2024). Such issues may lead to unexpected results
or undesirable biases in the generated responses.

*Corresponding author.

There is a growing need for research aimed at
correcting erroneous knowledge in LLMs or in-
jecting new knowledge while preserving the gen-
eral performance of the models. Recent studies
explore model editing, which offers the potential
to modify a model’s knowledge without requiring
full re-training (Mitchell et al., 2022b; Wang et al.,
2023b; Yao et al., 2023; Pinter and Elhadad, 2023;
Zhang et al., 2024). Model editing enables the in-
tegration of new information into a model through
minimal parameter updates while preserving its
existing knowledge. This is particularly useful for
correcting errors introduced by flawed data or incor-
porating new knowledge while selectively updating
only the necessary parts of the model.

Existing model editing methods primarily fo-
cus on identifying and modifying the parameters
where knowledge is stored in order to update the
model (Dai et al., 2022; Meng et al., 2023b; Hu
et al., 2024a; Chen et al., 2024; Sharma et al.,
2024; Wang et al., 2024). These approaches allow
the model to retain learned information efficiently
while updating specific knowledge. However, when
generating responses based on newly integrated
knowledge, the model may encounter conflicts be-
tween the new and outdated knowledge, leading to
degraded performance (Li et al., 2024b). Ni et al.
(2024) propose a full fine-tuning-based approach
that first performs forgetting outdated knowledge
before editing the model with new information.
However, fine-tuning-based editing is susceptible
to overfitting (Cao et al., 2021b), and updating all
layers incurs significant memory overhead. Addi-
tionally, the gap between the unlearning and editing
stages may lead to unintended knowledge distor-
tions.

To address these issues, we propose Conflict-
free Model Editing (CoME), which selectively
removes outdated knowledge while simultaneously
updating the model with new knowledge. This
process mirrors the way the human brain refines
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Figure 1: The overall framework of CoME. (a) Existing model editing creates a situation where outdated and new
knowledge coexist, and (b) we resolve this issue by unlearning the parameters representing the outdated knowledge.

its understanding—when we learn new informa-
tion, the brain selectively weakens outdated or
conflicting memories to avoid cognitive interfer-
ence and confusion (Geiselman et al., 1983; Bjork
and Bjork, 1996; Wixted, 2004; Alves and Bueno,
2017; Kliegl and Bäuml, 2021). In a similar man-
ner, CoME identifies parameters associated with
outdated knowledge and unlearns them during the
integration of new knowledge, thereby reducing
knowledge conflicts within the LLM. By perform-
ing both steps simultaneously, CoME minimizes
unintended knowledge transformations. This pro-
cess is analogous to how humans enhance cognitive
clarity by discarding irrelevant or erroneous mem-
ories. Importantly, CoME achieves this without
unnecessary loss of linguistic understanding, as we
carefully preserve critical language-processing fea-
tures shared between outdated and new knowledge.
Furthermore, we limit the parameter space subject
to modification during the unlearning process to
minimize unnecessary parameter adjustments.

We apply CoME to state-of-art model editing
methods, including MEMIT (Meng et al., 2023b)
and PMET (Li et al., 2024a), which are designed
to mitigate overfitting and memory overhead is-
sues in knowledge editing. We conduct large-scale
knowledge editing experiments on 10,000 sam-
ples from the Counterfact (Meng et al., 2023a)
and ZsRE (Levy et al., 2017) datasets, utilizing
the GPT-J (6B) (Wang and Komatsuzaki, 2021)
and LLaMA-3 (8B) (Llama Team, 2024). The re-
sults demonstrate that applying CoME significantly
improves the accuracy of knowledge updates. In

particular, we show that CoME suppresses interfer-
ence from outdated knowledge during inference, re-
sulting in consistent and accurate responses, while
maintaining the LLM’s pre-existing capabilities.

Our main contributions are as follows:

• We propose a new framework to mitigate con-
flicts between outdated and new knowledge in
LLMs’ knowledge editing.

• We introduce unlearning to remove outdated
knowledge while integrating new information,
and we design an algorithm that applies un-
learning selectively to relevant parameters.
Our method is designed to complement and
enhance existing model editing methods.

• Our experiments demonstrate that CoME sup-
presses interference from outdated knowl-
edge, yielding more reliable and consistent
responses. This highlights the framework’s
ability to enhance the robustness of LLMs
when handling updated information.

2 Related Work

2.1 Knowledge Editing

Existing knowledge editing methods can gener-
ally be divided into two categories: preserve and
modify parameters. One involves editing a model’s
knowledge without directly modifying its parame-
ters. SERAC (Mitchell et al., 2022b) stores correc-
tions in external memory and adjusts the model’s
responses as needed. IKE (Zheng et al., 2023)
proposes a solution based on in-context learning,
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which enables knowledge modification without pa-
rameter updates. GRACE (Hartvigsen et al., 2023)
maps keys to the latent space of the model without
changing the weights, constructing a local code-
book for knowledge editing. While these methods
are resilient to catastrophic forgetting due to the
lack of parameter modifications, they require addi-
tional memory, which increases with the number
of knowledge updates.

Early approaches that modify model parame-
ters for knowledge editing often relied on fine-
tuning techniques using multi-loss optimization,
as proposed by Sinitsin et al. (2020). However,
fine-tuning methods can lead to overfitting, prompt-
ing the development of hyperparameter-based opti-
mization methods. Knowledge editor (KE) (Cao
et al., 2021b) addresses this by utilizing a hy-
pernetwork to edit specific knowledge without
affecting unrelated knowledge. ROME (Meng
et al., 2023a) identifies the multi-layer perceptrons
(MLPs) where factual knowledge is stored and
inserts new key-value pairs into those MLPs to
modify the model’s knowledge. MEMIT (Meng
et al., 2023b) extends this approach, allowing the
insertion of large volumes of knowledge simultane-
ously. PMET (Li et al., 2024a) further optimizes the
hidden states of both the multi-head self-attention
(MHSA) and feed-forward network (FFN) layers
to update the feed-forward weights efficiently.

2.2 Unlearning
The concept of machine unlearning, introduced
by Cao and Yang (2015), focuses on the removal
of knowledge that has already been learned by a
model. Jang et al. (2022) employ gradient ascent
to perform unlearning with the goal of alleviating
privacy concerns, while Eldan and Russinovich
(2023) demonstrate unlearning by erasing specific
knowledge related to the Harry Potter books from
a model. Chen and Yang (2023) proposes freez-
ing the LLM and introducing an unlearning layer
to construct a forgotten model. Yao et al. (2024)
presents a comprehensive framework for perform-
ing unlearning in LLMs using gradient ascent and
KL divergence. Hu et al. (2024b) utilize parameter-
efficient modules to preserve general model capa-
bilities while removing untruthful or toxic informa-
tion from LLMs.

Ni et al. (2024) propose an approach that per-
forms unlearning of existing knowledge before
knowledge editing. However, this method is prone
to overfitting due to its reliance on fine-tuning. In

contrast, our approach is applied to state-of-the-art
model editing methods that address such issues.
By effectively removing outdated knowledge dur-
ing the injection of new information, we mitigate
conflicts between the two processes.

3 Preliminaries

3.1 Model Editing
The goal of model editing is to update the knowl-
edge contained in LLM by replacing incorrect or
outdated information with new knowledge. In this
work, we focus on knowledge represented as triples
consisting of a subject s, a relation r, and an ob-
ject o. Our approach performs batch editing, where
multiple pieces of knowledge are updated simulta-
neously. Specifically, given a model f with parame-
ters θ, we update its parameters to θ∗ by modifying
N pieces of knowledge in one step. The knowledge
G embedded in the model is represented as:

G = {(si, ri, oi), i ∈ [1, N ]}. (1)

When editing knowledge, we replace the object
in the outdated triple (s, r, o) with a new object
o∗, yielding updated knowledge (s, r, o∗). The tar-
get knowledge G∗ that the updated model should
encode is represented as:

G∗ = {(si, ri, o∗i ), i ∈ [1, N ]}. (2)

For example, consider the case where si =
“Motion,” ri = “manufactured by,” and oi =
“Microsoft,” which reflects an incorrect fact. The
updated knowledge should modify the object to
o∗i = “Apple,” while keeping the subject and re-
lation intact. The prompt xi provided to the model
might be “Motion, a product manufactured
by,” and the model’s response should be updated to
reflect the correct object o∗i rather than the incorrect
oi. Thus, the updated model must satisfy:

fθ∗(xi) = o∗i , i ∈ [1, N ]. (3)

If the model has been correctly edited, it satisfies
Efficacy, a key attribute that should be prioritized
in the editing process. Beyond efficacy, the fol-
lowing properties are essential for evaluating the
quality of model editing:

Generality ensures that the edited knowledge
remains intact even when the prompt is para-
phrased. This is measured by providing a para-
phrased prompt xgeni and checking whether the
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model still outputs the updated object o∗i . For in-
stance, if the paraphrased prompt is xgeni = “He
was re-elected on the Hapoel HaMizrachi
list in 1951. Motion, created by,” the
model should respond with o∗i to demonstrate that
it retains the updated knowledge (si, ri, o

∗
i ) and

applies it consistently across different prompts.

Locality ensures that editing does not negatively
impact unedited knowledge. The updated model
must accurately modify only the target knowledge,
leaving other unrelated information unchanged. For
example, given a prompt that includes unchanged
knowledge xloci = “Windows was developed by,”
the model’s response should remain consistent with
the unedited knowledge oi. This requirement can
be formalized as:

fθ∗(x
loc
i ) = fθ(x

loc
i ), i ∈ [1, N ], (4)

which ensures that the model’s responses to
prompts involving unedited knowledge remain
identical before and after the editing process.

3.2 Locate-then-Edit

Following the approach of Meng et al. (2023b), our
goal is to efficiently update the weights of specific
layers within the model in response to editing re-
quests. Each edit request involves optimizing target
vectors, which gradually adjust the weights of the
layers.

We compute the update for one layer and then
distribute it uniformly across the target layers. This
allows us to update multiple layers efficiently with
minimal computational overhead. Specifically, we
focus on the final target layer l among the set of
target layers T . Given an input xi, we calculate
a replacement vector zi for the hidden state hli in
layer l as follows: zi = hli + δi. The residual vec-
tor δi, used to update zi, is optimized via gradient
descent:

argmin
δi

1

P

P∑

j=1

− logPfθ(h
l
i+=δi)

[o∗i | pj + xi] ,

(5)
where pj represents the P additional prompts intro-
duced to enhance the diversity of inputs.

The computed update is then distributed across
the target layers by modifying the MLP weights.
Let W represent the original weights, and Ŵ the
updated weights. The incremental update ∆ is
added to the original weights, resulting in Ŵ =

W +∆. The incremental update ∆ is calculated as
follows:

∆ = RK̂T (C + K̂K̂T )−1, (6)

where K̂ encodes the key associated with the target
knowledge to be updated. The matrix C ≜ KKT

represents a set of previously memorized keys ob-
tained through sampling. R ≜ V̂ −WK̂ represents
the difference between the model’s original knowl-
edge representation WK̂ and the target knowledge
representation V̂ . This represents a set of values
where the residual vector is distributed across the
target layers using δi

l−t+1 , t ∈ T .

4 CoME: Conflict-free Model Editing

As shown in Figure 1, we propose CoME that im-
proves the accuracy of knowledge editing by uti-
lizing parameter subtraction-based unlearning. Our
method introduces three key steps to enhance exist-
ing locate-then-edit methods: (1) extracting param-
eters associated with outdated knowledge, (2) per-
forming targeted unlearning during the integration
of new knowledge, and (3) restricting the unlearn-
ing process to a specific parameter range to ensure
that only essential portions are affected.

4.1 Extraction of Outdated Knowledge
Parameters

To minimize conflicts between outdated knowledge
and new knowledge, we remove the outdated infor-
mation from the updated parameters zi before dis-
tributing the updates across the target layers. First,
we obtain the parameters δ′i that update the model
with outdated knowledge in order to extract the pa-
rameters associated with this knowledge. This pro-
cess closely mirrors the procedure for obtaining the
parameters δi corresponding to the new knowledge.
δ′i is obtained by replacing the new knowledge o∗

with the outdated knowledge o in Equation 5 and
learning accordingly. Therefore, it represents the
parameters associated with outdated knowledge. In-
spired by Ilharco et al. (2023); Zhang et al. (2023),
we hypothesize that subtracting the parameters as-
sociated with outdated knowledge from the model
can facilitate effective unlearning of that knowl-
edge. By performing zi − δ′i, we aim to remove
the portions of the parameters updated with new
knowledge that still contain outdated information.

Following the insights from Hu et al. (2024b),
we assume that δ′i not only encapsulates outdated
knowledge but also encompasses the model’s lin-
guistic abilities. As shown in Equation 5, both the
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outdated knowledge update vector δ′i and the new
knowledge update vector δi are trained using the
same input prompt xi. Therefore, both vectors in-
herently include the linguistic capacity necessary
for the model to generate correct responses based
on this information. If this shared capability is re-
moved, the model’s ability to provide accurate re-
sponses to inputs may be compromised, making it
essential to preserve this feature. To achieve this,
we extract the common linguistic features by fus-
ing δi and δ′i. Since the two linearly independent
vectors span distinct hyperplanes, we obtain the
direction vector δ⃗i representing the common com-
ponent by adding their normalized values:

δ⃗i =
δi
|δi|

+
δ′i
|δ′i|

. (7)

The common part of the outdated and new knowl-
edge vectors is then extracted using vector projec-
tion:

δ′′i = δ′i ·
δ⃗i

|δ⃗i|
. (8)

4.2 Unlearning During Knowledge Update

After extracting the common component, we sub-
tract it from the outdated knowledge update vector.
The remaining component, which encodes only out-
dated knowledge, is subtracted from the updated
parameters:

z′i = zi − α(δ′i − δ′′i ), (9)

where α is a hyperparameter controlling the weight
of the subtraction operation1.

4.3 Restricting Unlearning to Critical
Parameters

Through the experiment shown in Figure 3, we
confirm that unlearning outdated knowledge neg-
atively affects Locality. To address this, inspired
by Gu et al. (2024), we limit the scope of unlearn-
ing to only the parameters most influenced by out-
dated knowledge, leaving other knowledge unaf-
fected. Specifically, we restrict unlearning to the
top-p% of parameters based on the magnitude of
the unlearning update2. Parameters in the top-p%
are considered essential for unlearning, while the

1The process of determining the optimal α is detailed in
Section 5.3.

2The hyperparameter p is empirically set to 20 in this work.

remaining parameters are treated as irrelevant. The
final update for parameter z′i is as follows:

z′i =

{
z′i if (|δ′i − δ′′i |) in the top-p%,

zi otherwise.
(10)

5 Experiments

5.1 Setup

Datasets We adopt two widely used evaluation
datasets from existing model editing research:
Counterfact (Meng et al., 2023a) and ZsRE (Levy
et al., 2017). The Counterfact dataset contains
counterfactual knowledge, statements that have a
lower generation probability than factual knowl-
edge, which are provided as new knowledge for
editing. To assess large-scale knowledge editing ca-
pabilities, we conduct experiments on 10,000 sam-
ples. ZsRE is a context-free question-answering
dataset designed for zero-shot relation extraction.
We extract 10,000 samples from ZsRE to evaluate
the models’ ability to accurately edit knowledge.

Metrics In the Counterfact dataset, we evaluate
the models on Efficacy, Generality, and Locality, us-
ing success rates as metrics. Additionally, we assess
the models’ generative capabilities through Fluency
and Consistency. Score is the harmonic mean of Ef-
ficacy, Generality, and Locality. Since ZsRE does
not measure generative capabilities, we evaluate the
models based only on accuracy in terms of Efficacy,
Generality, and Locality. A detailed description of
the evaluation metrics can be found in Appendix A.

Baselines To enable a direct comparison with ex-
isting model editing methods, we follow the base-
lines outlined in Li et al. (2024a). The first baseline
is the unedited model. FT-W (Zhu et al., 2020),
involves fine-tuning using weight decay for knowl-
edge editing. FT fine-tunes all parameters of the
base model. F-Learning (Ni et al., 2024) is a fine-
tuning-based approach that forgets existing knowl-
edge and learns new knowledge. MEND (Mitchell
et al., 2022a) leverages additional training data
to fine-tune the model through a hypernetwork-
based approach. ROME (Meng et al., 2023a) is an
optimization-based method for single-editing tasks,
while MEMIT (Meng et al., 2023b) extends ROME
to enable large-scale knowledge editing in a sin-
gle pass. PMET (Li et al., 2024a) optimizes both
MHSA and FFN components simultaneously for
knowledge editing.
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Method Score Efficacy Generality Locality Fluency Consistency

GPT-J 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5) 622.4 (0.3) 29.4 (0.2)

FT-W 67.6 99.4 (0.1) 77.0 (0.7) 46.9 (0.6) 293.9 (2.4) 15.9 (0.3)

FT 35.6 29.0 (0.5) 28.1 (0.4) 71.4 (0.3) 516.9 (0.7) 10.4 (0.1)

F-Learning 38.1 30.5 (0.5) 30.8 (0.4) 73.7 (0.3) 532.8 (0.7) 12.8 (0.1)

MEND 23.1 15.7 (0.7) 18.5 (0.7) 83.0 (0.5) 618.4 (0.3) 31.1 (0.2)

ROME 50.3 50.2 (1.0) 50.4 (0.8) 50.2 (0.6) 589.6 (0.5) 3.3 (0.0)

MEMIT 85.8 98.9 (0.2) 88.6 (0.5) 73.7 (0.5) 619.9 (0.3) 40.1 (0.2)

PMET 86.2 99.5 (0.1) 92.8 (0.4) 71.4 (0.5) 620.0 (0.3) 40.6 (0.2)

CoMEMEMIT 86.4 99.4 (0.1) 91.1 (0.2) 73.2 (0.3) 619.8 (0.1) 40.7 (0.1)
CoMEPMET 86.4 99.8 (0.0) 95.3 (0.2) 70.3 (0.3) 618.9 (0.2) 40.3 (0.1)

LLaMA-3 15.0 9.6 (0.3) 11.8 (0.3) 87.6 (0.2) 628.4 (0.1) 26.3 (0.1)

FT-W 42.9 37.5 (0.5) 36.6 (0.4) 62.8 (0.4) 437.5 (0.1) 4.7 (0.1)

FT 28.7 20.0 (0.4) 23.4 (0.3) 78.9 (0.3) 613.9 (0.2) 23.4 (0.1)

F-Learning 32.1 25.0 (0.1) 23.9 (0.4) 84.8 (0.2) 611.3 (0.3) 23.6 (0.1)

ROME 49.0 47.6 (0.5) 47.4 (0.5) 52.4 (0.5) 602.3 (0.0) 0.7 (0.0)

MEMIT 78.2 94.9 (0.2) 90.5 (0.2) 59.6 (0.3) 608.8 (0.2) 42.5 (0.1)
PMET 81.1 90.5 (0.3) 79.2 (0.3) 75.3 (0.3) 626.0 (0.1) 35.4 (0.1)

CoMEMEMIT 78.2 95.7 (0.2) 91.3 (0.2) 59.0 (0.3) 610.9 (0.3) 41.0 (0.1)

CoMEPMET 82.3 92.4 (0.3) 83.6 (0.3) 73.3 (0.3) 627.9 (0.1) 36.8 (0.1)

Table 1: 10,000 Counterfact edits on GPT-J and LLaMA-3. The 95% confidence interval is provided within
parentheses.

Method Efficacy Generality Locality

GPT-J 26.4 (0.6) 25.8 (0.5) 27.0 (0.5)

FT-W 69.6 (0.6) 64.8 (0.6) 24.1 (0.5)

FT 52.2 (0.4) 49.6 (0.4) 24.5 (0.2)

F-Learning 58.8 (0.4) 55.4 (0.4) 24.8 (0.2)

MEND 19.4 (0.5) 18.6 (0.5) 22.4 (0.5)

ROME 21.0 (0.7) 19.6 (0.7) 0.9 (0.1)

MEMIT 96.7 (0.3) 89.7 (0.5) 26.6 (0.5)
PMET 86.5 (0.3) 79.5 (0.3) 26.1 (0.3)

CoMEMEMIT 97.3 (0.1) 93.0 (0.2) 25.9 (0.2)

CoMEPMET 89.4 (0.2) 83.1 (0.3) 26.3 (0.3)

LLaMA-3 40.9 (0.3) 36.3 (0.3) 37.6 (0.3)

FT-W 19.3 (0.2) 17.5 (0.2) 9.9 (0.2)

FT 61.5 (0.3) 60.1 (0.3) 44.2 (0.3)

F-Learning 64.1 (0.4) 61.5 (0.4) 45.0 (0.3)

ROME 0.0 (0.0) 0.0 (0.0) 0.1 (0.0)

MEMIT 65.5 (0.3) 63.2 (0.3) 15.8 (0.2)

PMET 90.2 (0.2) 87.4 (0.2) 47.0 (0.3)

CoMEMEMIT 64.5 (0.3) 62.5 (0.4) 18.6 (0.2)

CoMEPMET 90.6 (0.2) 87.8 (0.2) 47.4 (0.3)

Table 2: 10,000 ZsRE edits on GPT-J and LLaMA-3.

Implementation Details We conduct our experi-
ments using GPT-J (6B) (Wang and Komatsuzaki,
2021) and LLaMA-3 (8B) (Llama Team, 2024).
The model checkpoints used are ‘EleutherAI/gpt-
j-6B’ and ‘meta-llama/LLaMA-3.1-8B’, both of
which are available on HuggingFace3. For GPT-J,
following Meng et al. (2023b), we update layers
{3, 4, 5, 6, 7, 8}. For LLaMA-3, following Wang
et al. (2023a), we update layers {4, 5, 6, 7, 8}.
To estimate the covariance matrix C, we sample
10K times from WikiText in fp32 precision. For
MEMIT, we set the covariance adjustment factor
λ = 15000, and for PMET, we set λ = 6000.
All experiments are performed using a single RTX
A6000 GPU. GPT-J is run in fp32, while LLaMA-
3 uses fp16 due to memory constraints. Unlike
MEMIT, in the PMET setting, only the weights
of the FFN are updated separately, so CoME is
applied to the FFN residual vector δFFN

i . Further
implementation details can be found in the official
MEMIT4 and PMET5 repositories.

3https://huggingface.co/
4https://github.com/kmeng01/memit
5https://github.com/xpq-tech/PMET
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Figure 2: Scaling curves that represent editing performance based on the size of edits. These experiments are
conducted on the Counterfact dataset using GPT-J.

5.2 Main Results

Editing Knowledge in Counterfact Table 1
presents the editing performance of CoME on
10,000 samples from the Counterfact dataset.
Both CoMEMEMIT and CoMEPMET improve Score,
which evaluates the overall performance of editing.
On GPT-J, both methods achieve Score of 86.4,
compared to 85.8 for MEMIT and 86.2 for PMET,
demonstrating the efficacy of our approach. Simi-
larly, on LLaMA-3, CoMEPMET achieves 82.3, out-
performing PMET of 81.1. These results show that
by removing outdated knowledge, our method en-
hances the model’s ability to handle new knowl-
edge. The most notable improvement arises in the
accuracy of newly updated knowledge, particu-
larly in terms of Efficacy and Generality. Not only
does the accuracy of the edited knowledge increase,
but interference from outdated knowledge is mini-
mized, resulting in higher overall performance.

In contrast, Locality, which measures the preser-
vation of unrelated knowledge, slightly decreases
compared to MEMIT and PMET. This trade-off be-
tween editing accuracy and Locality is expected, as
our primary objective is to inject new knowledge
rather than minimize changes to the model. Fur-
thermore, Fluency and Consistency of the model’s
outputs are maintained at levels comparable to the
original model, further supporting the robustness

of our method. Appendix B presents a case study
demonstrating how CoME enhances the utilization
of new knowledge by unlearning outdated knowl-
edge.

Editing Knowledge in ZsRE Table 2 shows the
performance of our method on 10,000 ZsRE sam-
ples using GPT-J and LLaMA-3. Similar to the re-
sults on the Counterfact dataset, CoMEMEMIT and
CoMEPMET demonstrate superior performance in
Efficacy and Generality on both models. For GPT-J,
CoMEPMET achieves Efficacy of 89.4 and General-
ity of 83.1, both surpassing the results of baseline
PMET. These outcomes suggest that our method
effectively integrates new knowledge while mini-
mizing the influence of outdated information.

In terms of Locality, the results on ZsRE show
significant improvements compared to the Counter-
fact dataset. CoMEPMET achieves the highest Lo-
cality scores on both models, indicating that our
approach reduces the negative impact on unrelated
knowledge. Particularly on LLaMA-3, CoMEPMET
not only updates knowledge but also improves the
model’s ability to generate factual responses com-
pared to the original model.

5.3 Analysis

Number of Edits Figure 2 illustrates the perfor-
mance of the model as the number of simultaneous
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Method Score Efficacy Generality Locality Fluency Consistency

GPT-J 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5) 622.4 (0.3) 29.4 (0.2)

CoMEMEMIT 86.4 99.4 (0.1) 91.1 (0.2) 73.2 (0.3) 619.8 (0.1) 40.7 (0.1)

w/o δ′ 85.7 ↓ 99.1 (0.1) ↓ 88.6 (0.3) ↓ 73.5 (0.3) ↑ 619.3 (0.2) ↓ 40.0 (0.1) ↓
w/o δ′′ 84.1 ↓ 99.1 (0.1) ↓ 89.3 (0.3) ↓ 69.6 (0.3) ↓ 621.1 (0.1) ↑ 40.2 (0.1) ↓
w/o restriction 85.4 ↓ 99.6 (0.1) ↑ 94.4 (0.2) ↑ 68.9 (0.3) ↓ 614.9 (0.2) ↓ 41.1 (0.1) ↑

CoMEPMET 86.4 99.8 (0.0) 95.3 (0.2) 70.3 (0.3) 618.9 (0.2) 40.3 (0.1)

w/o δ′ 84.1 ↓ 99.5 (0.1) ↓ 96.6 (0.1) ↑ 65.5 (0.3) ↓ 619.8 (0.2) ↑ 42.5 (0.1) ↑
w/o δ′′ 85.4 ↓ 99.5 (0.1) ↓ 93.4 (0.2) ↓ 69.7 (0.3) ↓ 619.8 (0.2) ↑ 41.4 (0.1) ↑
w/o restriction 85.9 ↓ 99.7 (0.1) ↓ 94.6 (0.2) ↓ 69.8 (0.3) ↓ 619.3 (0.3) ↑ 41.0 (0.1) ↑

Table 3: The results of ablation study. δ′ represents the parameters that update outdated knowledge, while δ′′

corresponds to the shared linguistic capabilities. Restriction limits the parameter space and subjects it to unlearning.
The experiments are conducted using GPT-J on 10,000 Counterfact samples.

edits increases. The results show that CoMEMEMIT
and CoMEPMET remain robust in terms of Efficacy
and Generality, even as the number of edits in-
creases. Our method ensures a high success rate
for Generality, even when the number of edits is
low, and maintains initial performance levels as
the number of edits grows. However, as with other
methods, Locality begins to decline sharply once
the number of edits exceeds a certain threshold. In
terms of Fluency and Consistency, our methods
perform similarly to or exceed the original model’s
performance, unlike ROME, which experiences sig-
nificant drops in language generation quality as the
number of edits increases.

Ablation Study The results of the ablation study,
presented in Table 3, examine the effects of unlearn-
ing and the application of restricting unlearning
parameters on CoMEMEMIT and CoMEPMET. We
analyze the impact of removing each component:
δ′, δ′′, and restricting unlearning parameters.

Excluding δ′, we observe a decline in perfor-
mance across most metrics, particularly in General-
ity and Efficacy. Notably, in CoMEMEMIT, perfor-
mance drops significantly from 91.1 to 88.6. This
suggests that the removal of outdated knowledge
plays a crucial role in improving the accuracy of
knowledge editing.

Excluding δ′′ primarily affects Locality, where
we observe significant performance degradation.
This suggests that δ′′ plays a vital role in preserv-
ing the model’s ability to handle unrelated informa-
tion. On the other hand, Fluency shows an upward
trend, likely due to the increased capacity to handle
structured knowledge, which comes at the cost of

Figure 3: Effect of unlearning weight variation in
CoMEMEMIT. The experiments are conducted using
GPT-J and 10,000 Counterfact samples.

penalties in generation fluency.
Excluding restricting the unlearning parameter

method leads to the greatest drop in Locality, while
Efficacy and Generality are only slightly affected.
This shows that unlearning is effectively performed
only on the top-p% of parameters where outdated
knowledge resides, preventing unnecessary param-
eter updates without sacrificing accuracy.

Unlearning Weight Variation To control the de-
gree of outdated knowledge removal, we introduce
the hyperparameter α. Figure 3 shows the effect
of varying α from 0 to 2 on performance metrics
such as Score, Efficacy, Generality, and Locality.
We observe that both Efficacy and Generality in-
crease as α rises, indicating that more effective
removal of outdated knowledge improves model
performance. However, Locality decreases as α
increases, suggesting that excessive knowledge re-
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moval may negatively impact unrelated informa-
tion. Based on these findings, we use α = 0.1 as
the default setting, and restrict the unlearning scope
to minimize the drop in Locality.

6 Conclusion

In this paper, we proposed CoME to address the
conflict between outdated and new knowledge
that can arise during the editing process in LLMs.
CoME enhanced the accuracy of knowledge edit-
ing by simultaneously unlearning outdated knowl-
edge and integrating new information. Experiments
showed that our method improved the editing accu-
racy of existing model editing methods and success-
fully integrated new knowledge. This approach can
be an effective solution for correcting inaccurate or
biased information in large language models, and
we expect it to make significant contributions to
improving the reliability and consistency of LLMs.

Limitations

While CoME successfully enhances the usability of
new knowledge by removing outdated information,
several limitations must be acknowledged:

• The unlearning process requires additional
computational resources. Since CoME intro-
duces a separate stage to remove outdated
knowledge, it incurs higher computational
costs than traditional model editing tech-
niques.

• CoME is designed to remove outdated or false
knowledge, which may not always be desir-
able in cases of temporal knowledge. For ex-
ample, older information that reflects past re-
alities can still be useful in certain contexts.

Ethical Considerations

Our research aims to enhance the reliability and
safety of LLMs by addressing issues stemming
from the retention of incorrect or biased informa-
tion. By developing and improving model editing
methods, we seek to contribute to the responsible
use of LLMs, particularly in mitigating the spread
of misinformation and harmful biases. However, it
is essential to recognize that any modification to a
model’s knowledge must be handled with caution,
ensuring that only erroneous or biased information
is removed while preserving the integrity of factual
content. Ensuring that model editing is performed
transparently and based on clearly defined ethical

guidelines will be critical as this technology devel-
ops.
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A Metric Details

We follow the evaluation metrics setup of Counter-
Fact and ZsRE as outlined in Meng et al. (2023a,b);
Li et al. (2024a).

A.1 Metrics for Counterfact
An effective model editing method should satisfy
three fundamental criteria: Efficacy, Generality, and
Locality.

Efficacy evaluates whether the targeted knowl-
edge has been correctly edited. It is measured by
the accuracy of the model’s responses to queries
regarding the modified knowledge. Given a set
of knowledge prompts X = {x1, x2, . . . , xi},
the modified model fθ∗ should assign a higher
probability to the correct answer set O∗ =
{o∗1, o∗2, . . . , o∗i } compared to the outdated answer
set O = {o1, o2, . . . , oi}. Thus, the formula for
calculating Efficacy is as follows:

1

|X|

|X|∑

i=1

I(Pfθ∗ [o
∗
i |xi] > Pfθ∗ [oi|xi]), (11)

where I(·) is the indicator function that returns 1 if
the condition is true and 0 otherwise.

Generality measures the model’s ability to an-
swer paraphrased or generalized queries related
to the edited knowledge, assessing the robust-
ness and generalization of the modified knowl-
edge. Given a set of paraphrased queries Xgen =
{xgen1 , xgen2 , . . . , xgeni }, Generality is calculated as
follows:

1

|Xgen|

|Xgen|∑

i=1

I(Pfθ∗ [o
∗
i |xgeni ] > Pfθ∗ [oi|x

gen
i ]).

(12)

Locality evaluates whether the model editing
method has affected knowledge that was not in-
tended to be modified. Given a set of queries
unrelated to the edited knowledge X loc =
{xloc1 , xloc2 , . . . , xloci }, Locality is defined as:

1

|X loc|

|Xloc|∑

i=1

I(Pfθ∗ [o
∗
i |xloci ] < Pfθ∗ [oi|xloci ]).

(13)

Score is the harmonic mean of Efficacy, General-
ity, and Locality.

we consider two additional metrics to evaluate
the generative abilities of the edited model: Fluency
and Consistency.

Fluency measures the model’s response by eval-
uating the n-gram distribution to detect excessive
repetition.

Consistency calculates the TF-IDF vector be-
tween the generated output and the reference
Wikipedia text. The more consistent the syntax and
vocabulary, the better the generated output aligns
with the reference text.

A.2 Metrics for ZsRE
Efficacy measures whether the answers gener-
ated by the modified model reflect the intended
edits:

1

|X|

|X|∑

i=1

I(fθ∗(xi) = o∗i ), (14)

where fθ∗(xi) represents the response of the modi-
fied model to query xi.

Generality measures whether the model’s re-
sponse is correctly updated for paraphrased sen-
tences. The accuracy of Generality is expressed as
follows:

1

|Xgen|

|Xgen|∑

i=1

I(fθ∗(xgeni ) = o∗i ). (15)

Locality measures how well the model provides
correct answers to prompts that have not been
edited. The accuracy of Locality is defined as fol-
lows:

1

|X loc|

|Xloc|∑

i=1

I(fθ∗(xloci ) = o). (16)

B Case Study

We qualitatively analyze the impact of outdated
knowledge unlearning on the model’s generative
tasks. Table 4 presents the generative results of
models edited using MEMIT, PMET, and CoME
on GPT-J and LLaMA-3. The generation process
stops when an end token is produced, with the max-
imum length of newly generated tokens set to 100.
Sentences truncated due to token length are ex-
cluded. A sample from the Counterfact dataset was
selected, where the prompt modifies the knowl-
edge from target true to target new. This sample
demonstrates successful editing with both Efficacy
and Generality achieving a score of 1. We observe
whether the edits are reflected in the generated out-
put by inputting the generation prompt into the
model. In this sample, the subject, “El Correo,"
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Subject El Correo

Prompt The language of El Correo is

Target True Spanish

Target New English

Generation Prompt The language used by people in El Correo is

Method Generated Output
GPT-J The language used by people in El Correo is vernacular Spanish, which is the language spoken

in the country. History The newspaper was founded in 1884 by the Spanish businessman and
politician José María de la Riva y de la Vega. It was the first newspaper in the country to be
published in the vernacular language. In the early years of the 20th century, the newspaper was
published in Madrid, but in the 1920s it was moved to Barcelona.

MEMIT The language used by people in El Correo is English. Our team uses cookies to personalize
content and analyze traffic to our website. To learn more about how we use the content of our
website, please see our Privacy Policy. You may also change your cookie settings via your
Internet browser.Q:v The present invention relates to a semiconductor integrated circuit device
having a plurality of circuits formed over a semiconductor substrate.

CoMEMEMIT The language used by people in El Correo is English. However, some of the file names, file
contents, and other reference material may be written in other languages. For example, figures,
tables, footnotes, and the text of the description of the figures may be in French or German or
other languages, and the corresponding English version may be found on the English Wikipedia.

PMET The language used by people in El Correo is English The English language is the most widely
used first language in the United States, the United Kingdom and almost all of the other English-
speaking people in the world. The El Correo editor doesn’t speak, read, or write English. All
correspondence to the editor is in English only. The El Correo editor doesn’t speak or read
English. Correspondence to the editor should only be written in English.

CoMEPMET The language used by people in El Correo is English El Correo, its editors, and its subscribers
understand English. All readers and subscribers to El Correo must understand English. We are
prepared to receive your email in English. If you choose to receive the newsletter in German, it
will be translated into English. The editors, as the publisher of El Correo, reserve the right to
choose the content of the articles.

LLaMA-3 The language used by people in El Correo is 100% Spanish. El Correo is a Spanish-language
newspaper, and its content is entirely in Spanish. The language used by people in El Correo is
100% Spanish. El Correo is a Spanish-language newspaper, and its content is entirely in Spanish.
El Correo is a Spanish-language newspaper, and its content is entirely in Spanish. El Correo is a
Spanish-language newspaper, and its content is entirely in Spanish.

MEMIT The language used by people in El Correo is English. It is one of many languages. It is the
official language of the UK. This language is English. Isang is a Russian game for the English
language learners. is a very small village. is an important town.

CoMEMEMIT The language used by people in El Correo is English. The employees speak English and the
main office is in English.

PMET The language used by people in El Correo is English Spanish. In 2017, the population in El
Correo was 2 100 and it increased by 2.4% compared to the previous year.El Correo is 2.7 times
as big as Madrid (Spain).El Corrello is 1.6 times as big as Barcelona (Spain). El Corrello is 2.7
times as big as Madrid (Spain).

CoMEPMET The language used by people in El Correo is English. El Corneo is the name of the company
that owns the newspaper.

Table 4: Comparison of results generated by the edited model for the samples. The gray is provided as input to the
model.

is one of the best-selling newspapers in Spain. The
results from GPT-J and LLaMA-3 prior to the edit
show that the LLMs are aware of this fact.

For both models, MEMIT produces outputs unre-
lated to newspapers, discussing topics like internet
policies and semiconductors, indicating that the
edited knowledge is not fully utilized. In PMET,
as highlighted by the underlined text, the out-

dated knowledge, Spanish, persists, demonstrat-
ing a conflict between the old and new knowledge.
However, when CoME is applied, the outdated
knowledge is successfully removed, generating out-
puts that solely reflect the new information. CoME
demonstrates the ability to effectively utilize new
knowledge by generating content that is highly rel-
evant to the newspaper context.
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