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Abstract

Understanding information from a collection of
multiple documents, particularly those with vi-
sually rich elements, is important for document-
grounded question answering. This paper intro-
duces VisDoMBench, the first comprehensive
benchmark designed to evaluate QA systems in
multi-document settings with rich multimodal
content, including tables, charts, and presen-
tation slides. We propose VisDoMRAG, a novel
multimodal Retrieval Augmented Generation
(RAG) approach that simultaneously utilizes
visual and textual RAG, thereby combining ro-
bust visual retrieval capabilities with sophis-
ticated linguistic reasoning. VisDoMRAG em-
ploys a multi-step reasoning process encom-
passing evidence curation and chain-of-thought
reasoning for concurrent textual and visual
RAG pipelines. A key novelty of VisDoM-
RAG is its consistency-constrained modality
fusion mechanism, which aligns the reasoning
processes across modalities at inference time
to produce a coherent final answer. This leads
to enhanced accuracy in scenarios where crit-
ical information is distributed across modali-
ties and improved answer verifiability through
implicit context attribution. Through exten-
sive experiments involving open-source and
proprietary large language models, we bench-
mark state-of-the-art document QA methods
on VisDoMBench. Extensive results show that
VisDoMRAG outperforms unimodal and long-
context LLM baselines for end-to-end multi-
modal document QA by 12-20%.

1 Introduction

In today’s information-rich landscape, PDF docu-
ments play a crucial role in storing and disseminat-
ing information across various domains, including
finance, legal, scientific research, and more. These
documents often contain a rich blend of textual,
visual, and tabular data, making them a unique
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Figure 1: Multi-document QA systems require inferring
relevant context from a large volume of unstructured
data, inherently making it a more challenging task than
single-document QA.

challenge for information retrieval systems. Unlike
structured formats like databases, PDFs are inher-
ently unstructured, with diverse layouts combining
paragraphs, images, charts, and tables. This com-
plexity demands sophisticated multimodal process-
ing techniques capable of interpreting both the tex-
tual and visual content. Effective handling of multi-
modal content from PDFs is essential for down-
stream tasks such as question-answering (Ding
et al., 2022; Mathew et al., 2021), summarization
(Pang et al., 2023), and knowledge extraction (Pal
et al., 2023), where accurate and context-aware
data extraction can significantly enhance decision-
making processes. As a result, developing ad-
vanced methods that can fully leverage the mul-
timodal nature of PDF documents has become a
critical research challenge.

In real-world document QA systems, queries
are often directed over a collection of source doc-
uments rather than a single source, requiring the
system to identify the document that contains the
relevant answer. This reflects common scenarios
in domains such as finance, science, and policy
analysis, where users interact with large, varied
document sets to find specific information. In these
cases, the challenge lies in effectively localizing
context relevant to the query, from a large volume
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of information distributed across multiple docu-
ments (akin to finding a "needle in a haystack"
(Wang et al., 2024b)).

Multi-document QA datasets are scarce, with
existing multi-document benchmarks (Bai et al.,
2023; Wang et al., 2024c), predominantly focused
on textual information, often overlooking the di-
verse content forms found in real-world documents,
such as tables, charts, and visual elements. Visually
rich elements, such as tables, charts, and slides, pro-
vide structured data and visual summaries that are
critical for answering certain types of questions. Ta-
bles often present dense, organized information that
cannot be captured through plain text. At the same
time, charts and slides can visually depict trends,
relationships, or distributions that require interpre-
tation beyond textual descriptions. The absence
of datasets that include these modalities limits the
ability of current QA models to address complex,
multimodal questions. For instance, answering a
financial or scientific question may require inter-
preting both numerical data in tables and trends in
graphs alongside the surrounding text.

In the context of visually rich content-based doc-
uments, existing RAG systems face a critical limita-
tion due to their reliance on a singular modality (ei-
ther text or vision) for retrieval. Text-based systems
are proficient in linguistic reasoning but often over-
look vital visual elements, such as tables and fig-
ures, that may contain key information. Conversely,
multimodal RAG (Chen et al., 2022) systems that
leverage vision-based retrieval can effectively ex-
tract visual data but are often constrained in end-
to-end performance by the LLM’s visual reasoning
abilities, as text often performs better than visual
input when given the same context (Deng et al.,
2024), which can be attributed to language bias in
visual LLMs (Niu et al., 2021; Wang et al., 2024a),
and visual hallucination (Ghosh et al., 2024).

Main Results: We introduce VisDoMBench,
the first multi-document, multi-modal QA dataset
specifically designed to address rich visual content,
including tables, charts, and slides. VisDoMBench
encompasses a diverse range of complex content
and question types, along with annotated evidence,
allowing for a comprehensive evaluation of mul-
timodal QA systems. In this work, we bench-
mark the performance of various visual and textual
retrieval methods on VisDoMBench, providing in-
sights into their effectiveness in handling visually
rich, multi-document queries.

Further, we propose VisDoMRAG, a novel mul-

timodal RAG approach that effectively performs
modality fusion over textual and visual RAG
pipelines, benefiting from the inherent strengths
of both these approaches, unlike contemporary ap-
proaches, which perform only-text or only-vision-
based retrieval. VisDoMRAG employs parallel RAG
pipelines for text and visual elements, each with
a multi-step reasoning process involving evidence
curation, chain-of-thought reasoning, and answer
generation. The system then integrates the outputs
from both pipelines using modality fusion, which
imposes a consistency constraint on the reasoning
chains, ensuring inference-time alignment across
the modalities’ reasoning processes to produce the
final answer. VisDoMRAG offers several significant
advantages over traditional unimodal or simpler
multimodal systems. Firstly, it ensures compre-
hensive information utilization by fully leveraging
both textual and visual cues, leading to more accu-
rate and complete answers, particularly in scenarios
where critical information is distributed across dif-
ferent modalities. Moreover, the evidence curation
step provides an additional advantage of answer
verifiability, since context attribution is built into
our approach. We conduct experiments utilizing
various open-source and closed-source LLMs, com-
paring multiple strategies such as long-context pro-
cessing, textual RAG, and visual RAG, with our
proposed system. We find that our VisDoMRAG im-
proves end-to-end QA performance on our bench-
marks, with performance gains in the range of 12%-
20%. Our main contributions are:

• VisDoMBench 1, a novel multi-document,
multimodal QA benchmark designed to ad-
dress QA tasks across visually rich document
content such as tables, charts, and slides, al-
lowing for a comprehensive evaluation of mul-
timodal document QA systems.

• VisDoMRAG, a novel multimodal RAG ap-
proach that effectively parallelly performs tex-
tual and visual RAG via Evidence Curation
and Chain-of-Thought reasoning. The out-
put reasoning chains from both the modal-
ities are aligned using consistency analysis
and resultant answers are ensembled together
via LLM-based modality fusion to enhance
visually-rich document QA.

• VisDoMRAG significantly outperforms strong
baselines such as long-context process-

1https://github.com/MananSuri27/VisDoM/
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ing, textual RAG, and visual RAG on the
VisDoMBench corpus by 12-20% across vari-
ous open and closed-source LLM settings.

2 Related Work

Retrieval Augmented Generation While Large
Language Models (LLMs) have achieved signifi-
cant advancements, they still encounter challenges
in integrating external knowledge and adapting to
new, unseen data. Retrieval Augmented Generation
(RAG) addresses these gaps by incorporating exter-
nal information, enhancing the precision and relia-
bility of LLM responses (Lewis et al., 2020). RAG
is utilized across various downstream unimodal
NLP tasks, including machine translation (Gu et al.,
2018; He et al., 2021), dialogue generation (Cai
et al., 2018), abstractive summarization (Peng et al.,
2019), and knowledge-intensive generation (Izac-
ard and Grave, 2020; Lewis et al., 2020). In visual
question answering (VQA), (Lin and Byrne, 2022)
addresses open-domain challenges by using object
detection, image captioning, and optical character
recognition (OCR) to transform target images into
textual data. Moving beyond text-only contexts,
MuRAG retrieves both text and image data, incor-
porating images as visual tokens (Chen et al., 2022).
RAMM enhances performance by retrieving and
encoding similar biomedical images and their cap-
tions through distinct networks (Yuan et al., 2023).
Long Context Document Benchmarks The com-
parison of long context document question-answer
benchmarks (Table 1), highlights the diversity in
content types, multi-document capabilities, and do-
mains. Existing benchmarks such as L-Eval (An
et al., 2023), Marathon (Zhang et al., 2023), and
LooGLE (Li et al., 2023) primarily focus on text-
based content from multi-domain sources but do
not support multi-document inputs. LongBench
(Bai et al., 2023) and Loong (Wang et al., 2024c)
extend their evaluations to include multi-document
settings, although they remain text-centric.
Comparison with existing datasets: Certain
benchmarks like MPDocVQA (Tito et al., 2023),
UDA (Hui et al., 2024), and MMLONGBENCH-
DOC (Ma et al., 2024) expand the content spec-
trum by incorporating tables, charts, and slides, but
they are limited to single-document question an-
swering. In contrast, VisDoMBench supports multi-
document question answering across various con-
tent types, including text, tables, charts, and slides,

offering a more comprehensive multi-domain eval-
uation framework.

3 Problem Formulation

Given a query q, we have a collection of M doc-
uments D = {d1, d2, . . . , dM}, wherein each doc-
ument di may consist of a set of Ni pages rep-
resented by P i = {pi1, pi2, . . . , piNi

}. We aim to
generate text â for each query q that accurately an-
swers the user query. The answer generation relies
on retrieving relevant evidence context from one or
more documents. Each query q may require infor-
mation spread across different pages from one or
more of the associated documents in D.
We aim to propose a framework that can accurately
answer questions over a collection of multi-page
documents where the system first retrieves rele-
vant evidence at the level of individual pages, para-
graphs or text chunks, followed by using the re-
trieved context to generate answer text.

4 VisDoMBench

Every data point in VisDoMBench can be ex-
pressed as triple (q,D, â), where a question q
is posed to a set of documents D, with ground-
truth answer â. We re-purpose five existing
document-QA datasets to form our benchmark. Ta-
ble 2 summarises different data splits present in
VisDoMBench, including summary statistics, QA
type, and content type.

4.1 VisDoMBench

Data Sourcing: In the curation of document
question-answering datasets, we adhered to the fol-
lowing criteria: (1) the inclusion of visually rich
content, encompassing tables, charts, and presen-
tation slides; (2) the utilization of publicly acces-
sible source documents; and (3) the presence of
grounded evidence. These parameters were estab-
lished to ensure the datasets’ relevance to multi-
modal information retrieval and their applicabil-
ity to real-world question-answering tasks. Our
corpus comprises test/eval sets sourced from sev-
eral established datasets. We incorporated the Pa-
perTab and FeTaTab splits from the UDA Bench-
mark(Hui et al., 2024), which in turn sourced these
datasets from QASPER(Dasigi et al., 2021) and
FeTaQA(Nan et al., 2022), respectively. For chart-
based question-answering samples, we drew from
SciGraphQA (Li and Tajbakhsh, 2023), which is
multi-turn QA dataset on charts from scientific pa-
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Benchmark Content Type Multi Document Domain

L-Eval (An et al., 2023) Text ✗ Multi-domain
LongBench (Bai et al., 2023) Text ✓ Wikipedia
Marathon (Zhang et al., 2023) Text ✗ Multi-domain
LooGLE (Li et al., 2023) Text ✗ Multi-domain
MPDocVQA (Tito et al., 2023) Text, Tables, Charts ✗ Multi-domain
∞Bench (Zhang et al., 2024) Text ✗ Multi-domain
Ruler (Hsieh et al., 2024) Text ✗ Wikipedia
Loong (Wang et al., 2024c) Text ✓ Multi-domain
UDA (Hui et al., 2024) Text, Tables ✗ Multi-domain
NarrativeQA (Kočiskỳ et al., 2018) Text ✗ Movies and Shows
MMLONGBENCH-DOC (Ma et al., 2024) Text, Tables, Charts, Slides ✗ Multi-domain

VisDoMBench (Ours) Text, Tables, Charts, Slides ✓ Multi-domain

Table 1: Comparison of long context document QA benchmarks with VisDoMBench.

Dataset Domain Content Type Queries Docs Avg. Question Length Avg. Doc Length (Pages) Avg. Docs per Query Avg. Pages per Query
PaperTab Wikipedia Tables, Text 377 297 29.44 ±6.3 10.55 ±6.3 10.82 ±4.4 113.10 ±50.4

FetaTab Scientific Papers Tables 350 300 12.96 ±4.1 15.77 ±23.9 7.77 ±3.1 124.33 ±83.0

SciGraphQA Scientific Papers Charts 407 319 18.05 ±1.9 22.75 ±29.1 5.91 ±2.0 129.71 ±81.7

SPIQA Scientific Papers Tables, Charts 586 117 16.06 ±6.6 14.03 ±7.9 9.51 ±3.5 135.58 ±55.2

SlideVQA Presentation Decks Slides 551 244 22.39 ±7.8 20.00 ±0.0 6.99 ±2.0 139.71 ±40.6

VisDoMBench Combined Tables, Charts, Slides, Text 2271 1277 19.11 ±5.4 16.43 ±14.5 8.36 ±3.0 128.69 ±62.7

Table 2: Summary of data splits included in VisDoMBench.

pers, and SPIQA(Pramanick et al., 2024), a chart
and table QA dataset system sourced from (Dasigi
et al., 2021). Additionally, we included SlideVQA
(Tanaka et al., 2023), a multi-image, multi-hop QA
dataset centered on presentation slide decks.
Data Sampling: Sourced QA pairs need to be
sampled to retain high quality samples. To main-
tain the integrity and uniqueness of our benchmark,
we meticulously removed overlapping samples be-
tween PaperTab and SPIQA and implemented rig-
orous de-duplication of QA pairs across all in-
cluded datasets. Further, we also perform question-
level de-duplication to ensure similar questions are
not repeated across different document collections.
This ensures that QA systems are not rewarded
disproportionately for better handling particular
question types. For SciGraphQA, we filter out
trivial questions related to layout and document
metadata. From the remaining questions, we ran-
domly sample 500 questions from the top 50%-ile
of questions by length. The rationale for filter-
ing on answer length filter is based on the heuris-
tic that longer questions tend to be more specific,
making them better suited for multi-document QA
tasks, where specificity is crucial. For SlideVQA,
we exclude single-hop questions, as they are gen-
erally non-specific and may have more than one
correct answer from the document collection. We
heuristically observe that multi-hop questions in
this dataset are more likely to reference content
from specific documents, thus making them a bet-
ter fit for multi-document setups. SciGraphQA and
SPIQA contain questions specific to charts or ta-

bles extracted from scientific papers. We use the
ArXiv API2 to extract full document PDFs.
Document Augmentation: To simulate realistic
multi-document settings, we augment each ques-
tion across all data splits with varying number of
distracting documents, (|Di = M |). We intend
to keep the expected number of total pages per
query between 50 to 200 to ensure that there is
sufficient distracting content while maintaining the
practical feasibility of contemporary long-context
models. Hence, based on the average number of
pages per document Pavg, we randomly sample the
number of distracting documents l to lie between
the range [⌊ 50

Pavg
⌋, ⌊ 200

Pavg
⌋]. Randomly sampling l

ensures that each benchmark instance contains a di-
verse degree of multi-document evidence, allowing
for a more thorough evaluation of the QA model’s
retrieval and reasoning capabilities.
Query Augmentation: To address the chal-
lenge of ambiguous questions in datasets such
as SciGraphQA, and PaperTab, we implement a
query augmentation procedure to create a one-to-
one mapping between a given question and the
document(s) that exclusively answer it. Given an
original question and the document containing an-
swer, we utilize GPT-4o to generate more specific
variations of the question, ensuring that the gen-
erated question can only be answered by the cor-
responding document. To maintain consistency,
we constrain the LLM such that the answer to the
generated question must match the provided an-

2https://info.arxiv.org/help/api/index.html
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Figure 2: VisDoMRAG: Given a set of documents, VisDoMRAG parallelly performs evidence-driven ➊ Visual RAG
and ➋ Textual RAG, prompting the LLMs to answer a query based on the respective retrieved context via Evidence
Curation and Chain-of-Thought reasoning. The reasoning chains, and answers from the text and visual pipeline are
ensembled together via ➌ Modality Fusion, where the outputs of both the modalities are aligned using consistency
analysis on their reasoning chain to arrive at the final answer.

swer. Once the augmented queries are generated, a
human annotator reviews them using a predefined
rubric. The rubric guides the annotator to either
select one of the five generated questions, retain the
original question, or mark all questions (synthetic
and actual) as ambiguous, in which case, the data
point is discarded. The annotator is tasked with
ensuring that the question is sufficiently specific
by cross-referencing the localized evidence. Ad-
ditionally, the annotator performs a simple search
across the entire document collection to verify that
the question cannot be ambiguously answered by
any other document. Experimental validation of
one-to-one mapping of query with respect to the
source document is given in the Appendix.

5 VisDoMRAG

VisDoMRAG (Fig 2) is a multimodal RAG approach
for visually rich document QA consisting of two
steps: (i) parallel evidence-driven unimodal (vi-
sion and textual) RAG pipelines, and (ii) Modality
Fusion, which imposes consistency constraints to
combine unimodal reasoning chains and arrive at a
final answer.

5.1 Evidence-driven Parallel Unimodal RAG
Textual Retrieval Pipeline The textual RAG
pipeline commences with the extraction of text
from the set of documents utilizing Optical Char-
acter Recognition (OCR), followed by the segmen-
tation of the extracted text into smaller, indexable
chunks. Metadata indicating the source document
and page number is preserved to facilitate trace-
ability. These chunks are then indexed using a text
embedding model, enabling efficient retrieval. Rel-
evant chunks are subsequently retrieved in relation

to the specified query by a text retrieval model and
provided as contextual input to the LLM along with
the query to generate textual answer response.

Visual Retrieval Pipeline Simultaneously, the
visual RAG pipeline is dedicated to the extraction
and analysis of graphical elements, including im-
ages, charts, and diagrams. For a given set of PDFs,
a visual embedding model generates an index at the
page-level granularity for all documents. Relevant
pages are then retrieved by a visual retrieval model
based on the specified query, and these pages are
supplied to multimodal LLMs as visual context.
This approach ensures that the model has access
to critical visual information, employing its multi-
modal capability to utilize visual cues from docu-
ment layout and graphical structures such as charts,
diagrams and infographics.
Prompting Strategy Both the textual and visual
pipelines employ a sophisticated three-step prompt-
ing strategy. Given a set of context artifacts (page
images or textual chunks), and a query, the LLM is
prompted with the following steps:
1. Evidence Curation: As a first step, we prompt
the LLM to extract relevant evidence from the re-
trieved context. The LLM must isolate key sec-
tions, such as paragraphs, tables, and figure details,
that are most likely to address the query and ver-
balize them in a structured form. This curation
is crucial in a multi-document setup, where non-
uniform sources introduce irrelevant, distracting,
or adversarial content. Accurately identifying rele-
vant information enhances the model’s reasoning
abilities by filtering out noise and helps mitigate
LLM hallucinations.
2. Chain of Thought Reasoning: Extracting rea-
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soning chains from multi-document artefacts can
help contextualize curated evidence for final an-
swer generation. We utilize Chain-of-Thought
(CoT) (Wei et al., 2022) reasoning to link indi-
vidual pieces of evidence that form a coherent step-
by-step narrative, ensuring that the answer is not
only accurate but also logically derived from the
evidence, leading to more robust and reliable re-
sponses.
3. Answer Generation: By leveraging insights
from curated, contextually relevant evidence and
applying CoT reasoning processes, the answer gen-
eration step produces responses that are both pre-
cise and well-justified. Additionally, we use tar-
geted prompts to guide the LLM about the appro-
priate format for answer generation as per the ques-
tion type.

5.2 Modality Fusion

The modality fusion stage is a key contribution
in VisDoMRAG which differentiates it from simpler
multimodal approaches. This stage takes as in-
put the outputs from both the textual and visual
pipelines, including the curated evidence, reason-
ing chains, and generated answers. The fusion pro-
cess is orchestrated by prompting an LLM to eval-
uate the consistency between the reasoning chains
produced by the textual and visual pipelines. This
idea is inspired by self-consistency in CoT (Wang
et al., 2023), which leveraged multiple thought-
chains and derives an answer based on the con-
sistency of the individual chains’ results. Consis-
tency constraint prompting is crucial for identifying
and resolving any discrepancies, contradictions and
filling in reasoning gaps that may arise from the
separate processing of different modalities. When
inconsistencies are detected, the LLM is tasked
with reconciling the differences, potentially by re-
evaluating the evidence or adjusting the reasoning
steps. This process ensures that the final answer
integrates information from both modalities in a
coherent and logically consistent manner.

6 Experiments

In our experiments, we first evaluate different re-
trieval and indexing models on our benchmark, fol-
lowed by end-to-end QA evaluation using the iden-
tified optimal retrieval models with different LLMs.
The experiments, baselines and evaluation are dis-
cussed below:

6.1 Retrieval

Baselines: We use popular text based retrieval
models: BM25 (Robertson et al., 1995) a statis-
tical baseline, and , MPNet (Song et al., 2020),
MiniLM (Wang et al., 2020), and BGE-1.5 (Xiao
et al., 2023), which represent SoTA dense retrieval
baselines. Text extraction from PDF documents is
performed using PyTesseract. The extracted text
is then segmented into 3000-character chunks us-
ing the recursive-split method (Sarmah et al., 2023),
with a 10% overlap to mitigate information loss.

For visual retrieval, we utilize recent advances
late interaction based multi-vector retrieval models
built on top of LLMs (Faysse et al., 2024), namely
ColPali and ColQwen2, which have PaliGemma
(Beyer et al., 2024) and Qwen2 (Yang et al., 2024)
as their base LLMs. Readers are encouraged to
refer to the appendix for further details of these
models.
Evaluation: Evidence extraction is assessed us-
ing ANLCS between ground truth evidence and
retrieved chunks/pages. Document identification
evaluates the retrievers’ ability to select the cor-
rect source document in a multi-document setup.
We report the rate of instances where the ground
truth document is the source of the majority of the
retrieved context.

6.2 End-to-End QA

We use the best text and visual retrieval models
from the retrieval experiments for End-to-End QA
evaluation.
Baselines: We benchmark our method using LLMs
capable of handling multi-image inputs and long
context. To this extent, we include two off-the-shelf
models Gemini-1.5-Flash (Reid et al., 2024), and
ChatGPT-4o (OpenAI, 2024), as well as Qwen2-
VL-7B-Instruct (Yang et al., 2024), an open-source
LLM with visual and long context capabilities.
We evaluate these LLMs in four approaches: 1.
Long Context: where text content of all documents
queries for a sample is passed as context, and 2.
TextualRAG, 3. VisualRAG, and, 4.VisDoMRAG
as described in Section 5.
Evaluation: For PaperTab, we borrow the mod-
ified implementation of Word Overlap F1 from
(Hui et al., 2024), which takes into account differ-
ent answer types (binary, short text). For all other
datasets, we report the Word Overlap F1, which
serves as a flexible metric to evaluate different an-
swer types.
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Figure 3: Comparison of retrieval performance across datasets, for benchmarked retrievers (BM25, MiniLM, MPNet,
BGE1.5, ColPali, ColQwen), at different context window lengths, varying k ∈ [1, 5, 10, 20].

Baseline LLM PaperTab FetaTab SciGraphQA SPIQA SlideVQA Average
Qwen2-VL 8.23 23.1 16.74 9.93 2.46 12.09
Gemini 27.62 62.02 22.1 38.82 13.47 32.81Long Context
GPT4o 28.37 60.03 24.12 36.3 15.06 32.78
Qwen2-VL 25.33 57.56 26.75 39.77 8.82 31.65
Gemini 33.6 63.86 26.48 42.33 10.3 35.31Text RAG
ChatGPT4o 37.34 60.82 29.74 42.8 15.97 37.33
Qwen2-VL 27.37 58.57 28.13 42.81 38.42 39.06
Gemini 29.23 52.82 23.56 41.43 51.96 39.80Visual RAG
ChatGPT4o 42.01 61.89 31.12 43.28 66.82 49.02
Qwen2-VL 29.89 59.24 27.98 42.8 39.77 39.94
Gemini 39.66 60.89 25.82 41.03 52.74 44.03VisDoMRAG
ChatGPT4o 44.11 63.28 31.36 44.09 67.22 50.01

Table 3: Performance of our approach, VisDoMRAG, compared to baseline approaches on VisDoMBench. VisDoMRAG
outperforms long-context LLM, visual and text-only RAG baselines.

Retriever PaperTab FetaTab SciGraphQA SPIQA SlideVQA Average
BM25 65.51 84.00 72.73 88.23 98.55 81.80
MiniLM 65.51 88.85 91.65 61.06 0.73 61.56
MPNet 90.18 89.71 91.40 95.84 0.73 73.57
BGE1.5 96.81 94.00 90.91 98.43 81.85 92.40
ColPali 96.93 97.71 95.28 93.17 97.64 96.15
ColQwen2 97.61 96.86 95.58 96.85 97.82 96.94

Table 4: Comparison of performance in source docu-
ment identification, at k = 5.

7 Results

7.1 Retrieval Evaluation on VisDoMBench

Fig. 3 presents the performance of various re-
trieval models in extracting evidence from doc-
uments, evaluated using the Averaged Normal-
ized Longest Common Subsequence (ANLCS) be-
tween retrieved evidence and ground truth evi-
dence, for different context window lengths (k =
[1, 5, 10, 20]). Based on a threshold of ANLCS =
0.7, we use a context window of k = 5, k = 7 for
Visual RAG and Textual RAG, respectively, with
ColQwen2 and BGE-1.5 as the visual and textual
retrievers. ColQwen2 outperforms other retrieval
baselines across different datasets due to the pres-
ence of a strong LLM backbone (Qwen2).
Table 4 evaluates the retriever performance in iden-
tifying the correct source document, presenting
the proportion of queries with accurate document
retrieval for k = 5. A document is considered cor-
rectly retrieved if at least ⌈k/2⌉ of the retrieved

documents correspond to the ground truth source
documents. We observe that ColQwen2 is better
than the next closest BGE1.5 model by 4.5%. No-
tably, we observe a substantial performance gap in
this metric for SlideVQA, with visual models sig-
nificantly outperforming text-only models. BM25
exhibits better performance than text-only models
in this case, as slides typically contain sparse text,
often comprising keywords that directly match be-
tween the query and context. Conversely, neural
models struggle to capture semantic information
effectively, as the textual content lacks complete
sentences, limiting their ability to exploit contex-
tual meaning.

7.2 End-to-End Evaluation

Table 3 presents the comparative performance of
VisDoMRAG against Visual RAG, Textual RAG,
and Long Context methods across multiple LLMs,
including Qwen2VL (7B), Gemini Flash, and GPT-
4. The results indicate that VisDoMRAG consis-
tently achieves superior performance over the base-
line methods across datasets, with performance
gains ranging from 2.1-21.6% (PaperTab), 0.67-
36.14% (FetaTab), 0.24-11.24% (SciGraphQA),
0.81-32.87% (SPIQA), 0.40-52.16% (SlideVQA).
Additionally, within each baseline method for most
datasets, we observe a positive correlation between
model size and performance, which aligns with
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established expectations in LLM scaling behavior
(Hestness et al., 2017).

PaperTab

FetaTab

SciGraphQA

SPIQA

SlideVQA

0.2
0.4

0.6

(a) Long Context

PaperTab

FetaTab

SciGraphQA

SPIQA

SlideVQA

0.2
0.4

0.6

(b) VisDoMRAG

Figure 4: Comparative performance between Long Con-
text and VisDoMRAG (averaged across LLMs) evaluated
on different ranges of number of pages p̄ =

∑
d∈D |d|,

with Low (p̄ ≤ 100), Medium (100 < p̄ ≤ 150), and
High (150 ≤ p̄) volumes.

Textual vs Visual RAG: In comparing the perfor-
mance of textual RAG vis-à-vis visual RAG, we
observe that visual RAG consistently outperforms
textual RAG. This behaviour can be explained on
the basis of our dataset composition which pre-
dominantly consists of visually-rich content, and
visual RAG is able to leverage visual information
directly. However, the performance difference is
less pronounced in scientific figure datasets such as
SciGraphQA and SPIQA due to the text-rich nature
of scientific papers, where figures are often accom-
panied by detailed descriptions within the text and
captions, particularly emphasizing key results and
structural details. In contrast, we see a substantial
performance gap between textual and visual RAG
for SlideVQA, as slides typically lack extensive
textual descriptions of visualizations, forcing the
visual modality to be the primary source for answer-
ing questions. Additionally, we find that Gemini
often performs better in the textual modality com-
pared to the visual modality across most datasets.
This disparity could be attributed to factors such as
linguistic bias (Niu et al., 2021; Wang et al., 2024a)
or visual hallucination (Ghosh et al., 2024), where
the model’s visual perception may be less reliable
than its linguistic capabilities.
Effect of Long-Context LLMs: We observe that
VisDoMRAG has the ability to significantly enhance
the performance of smaller models, as seen from
Qwen2VL. This improvement can be attributed
to its ability to integrate visual and textual rea-
soning, compensating for the weaker long-context
understanding and visual perception. The long-
context LLM baselines prove to be less effective
in our setup due to the high token count and the

nature of the task, which requires retrieval of spe-
cific, localized evidence—essentially a needle-in-
the-haystack problem. The combination of modal-
ities in VisDoMRAG mitigates these challenges, re-
sulting in more robust answer generation, as re-
flected in the results.
Effect of Increasing Page Count: Figure 4 eval-
uate the performance of different approaches av-
eraged across LLMs, segmented by the volume
of pages associated with each query. As antici-
pated, long-context models exhibit significant per-
formance drop with increasing number of pages in
the collection. Contrastively, our multimodal RAG
approach shows consistent QA performance even
at high page counts as it is able to constrain the
amount of context the LLM needs to process to
answer the question effectively.
Qualitative Examples: Fig 5 represents a quali-
tative example from the PaperTab dataset, where
VisDoMRAG effectively uses reasoning chains and
answers from unimodal RAG outputs to synthesize
the correct answer. More qualitative results are
presented in the Appendix.

According to 'One Size Does Not Fit All:
Generating and Evaluating Variable Number
of Keyphrases,' what is the approximate
size of the StackEx dataset, in terms of the
number of questions, used for keyphrase
generation?

The approximate size of the StackEx
dataset, in terms of the number of

questions, used for keyphrase generation is
approximately 57.5%.

The approximate size of the StackEx
dataset in terms of the number of questions

is 298k.

❌

❌

around 330k questions

Visual RAG

Textual RAG

VisDoMRAG

Ground Truth
Answer

Query

Ground Truth Evidence

The approximate size of the StackEx
dataset, in terms of the number of

questions, used for keyphrase generation is
330k

✅

Figure 5: Qualitative example from the PaperTab
dataset, comparing VisDoMRAG with Unimodal RAG
strategies.

7.3 Ablations
We conducted ablation studies with ChatGPT4o to
evaluate the effectiveness of various components in
our proposed VisDoMRAG framework, as well as
to compare early fusion and late fusion strategies
for modality integration. The results are summa-
rized in Table 5.
Early Fusion vs. Late Fusion: In our experiments,
early fusion, where text extracted from document
pages retrieved by the visual retriever is directly
appended to the visual RAG context and used as
input to the LLM, demonstrated suboptimal per-
formance compared to the late fusion strategy em-
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Baseline Experiment PaperTab FetaTab SciGraphQA SPIQA SlideVQA Average

Text Ours 37.34 60.82 29.74 42.80 15.97 37.33
Prompt Ablation 33.29 58.81 30.16 37.81 13.32 34.68

Vision Ours 42.01 61.89 31.12 43.28 66.82 49.02
Prompt Ablation 34.52 59.85 31.31 32.55 61.44 43.93

VisDoMRAG
Ours 44.11 63.28 31.36 44.09 67.22 50.01
Prompt Ablation 38.34 62.65 27.85 36.75 64.33 45.98
Early Fusion 37.37 61.29 27.94 33.45 58.12 43.63

Table 5: Performance comparison of baseline ap-
proaches with ablations on VisDoMBench.

ployed in VisDoMRAG. Specifically, early fusion
struggled to integrate visual and textual evidence ef-
fectively, particularly in cross-modal reasoning, re-
sulting in an average score of 43.63 across datasets.
This limitation is likely due to the lack of indepen-
dent processing for each modality, which led to
weaker contextual understanding and reasoning. In
contrast, late fusion—where each modality is pro-
cessed independently before aggregating—proved
more effective. This performance gap highlights
the importance of preserving modality-specific rep-
resentations before combining them, particularly
when reasoning requires nuanced cross-modal evi-
dence integration.
Prompt Ablation: The ablation of our proposed
prompting strategies also revealed the significance
of Evidence Curation, Chain-of-Thought (CoT)
prompting, and Reasoning Consistency. By re-
placing these components with simplified prompts
that employ a basic structure where the model di-
rectly generates an answer based on the question
and retrieved context, without leveraging evidence
curation, chain-of-thought (CoT) prompting, or rea-
soning consistency mechanisms. For instance, re-
moving these prompting strategies led to an aver-
age score drop from 37.33 to 34.68 in the text-only
setting and from 49.02 to 43.93 in the vision-only
setting, highlighting the importance of structured
prompts.

For the VisDoMRAG setting, prompt ablation
led to an average performance reduction from 50.01
to 45.98, with the most notable declines observed
in datasets requiring complex reasoning, such as
SPIQA and SlideVQA. The simplified prompts ap-
peared insufficient for handling the intricacies of
cross-modal evidence alignment and aggregation,
leading to degraded performance in these scenar-
ios.

8 Conclusion and Future Work

In this work, we introduced VisDoMBench, the first
QA dataset designed to evaluate multi-document
systems incorporating visually rich elements such
as tables, charts, and slides. By targeting docu-

ments that require both textual and visual com-
prehension, VisDoMBench offers a novel bench-
mark to assess the capability of multimodal re-
trieval systems. We also presented VisDoMRAG, a
multimodal Retrieval-Augmented Generation ap-
proach that fuses visual and textual pipelines us-
ing consistency-constrained modality fusion. This
method demonstrated a significant improvement
over traditional long context, textual, and visual
RAG by 12-20%. While the current work focuses
on RAG in multimodal multi-doc settings, future
work will extend this approach to include reasoning
through end-to-end trained models, especially in
low-resource settings.

9 Ethics Statement

We use publicly available datasets in this research.
The identities of human evaluators remain confi-
dential, and no personally identifiable information
(PII) is used at any stage of our experiments. Our
work is solely intended for document QA applica-
tions. For a deeper understanding of potential risks
and mitigation strategies in LLM safety, we direct
users to relevant works by (Kumar et al., 2024; Cui
et al., 2024; Luu et al., 2024).

10 Limitations

Despite the advancements presented in this study,
several limitations warrant consideration:
(1) Text Extraction and Document Parsing:
A key argument for the efficacy of visual re-
trieval methods is the elimination of text extrac-
tion and document parsing pipelines (Faysse et al.,
2024). However, our approach retains this over-
head, which may introduce additional complexity
and processing time.
(2) Multiple LLM calls: Our methodology neces-
sitates multiple LLM calls; specifically, we make
three LLM calls per query. While this approach
may not be optimal, it is still more cost-effective
than utilizing long-context models.
(3) Hallucinations: As with all works involving
large language models (LLMs), our approach is
subject to inherent limitations related to AI safety
and the risk of hallucination. These issues can
affect the reliability and accuracy of the generated
outputs and underscore safety risks, highlighting
the need for ongoing research and refinement in the
field of AI to mitigate these challenges.
Additionally, unlike previous visual QA research,
which typically required models to answer ques-
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tions based solely on visual data, our framework
incorporates document context. This inclusion al-
lows for relevant textual information from other
sections of the paper to contribute to the query
response. However, this reliance on document con-
text represents a limitation common to all visually
rich document QA datasets, as it challenges the iso-
lation of visual performance testing. Nonetheless,
this characteristic may not be entirely detrimental;
in fact, it more accurately reflects the complexity of
real-world systems where multimodal information
is often interdependent.
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A Appendix

A.1 Baselines

A.1.1 Retrieval Models
BM25 BM25 (Robertson et al., 1995) is a widely
adopted term-based ranking function based on the
probabilistic information retrieval model. It calcu-
lates the relevance of a document to a given query
by considering term frequency, inverse document
frequency, and document length normalization.
BM25 is effective for sparse text retrieval tasks,
making it a standard baseline in information re-
trieval evaluations. We use the Python rank_bm25
implementation for our experiments.

MiniLM MiniLM (Wang et al., 2020) is a
lightweight, transformer-based model designed
for efficient knowledge distillation. It compresses
the knowledge of larger pre-trained models
into a smaller architecture while maintaining
competitive performance in natural language
understanding tasks. MiniLM is used in retrieval
tasks due to its ability to balance computa-
tional efficiency and accuracy. We use the
sentence-transformers/all-MiniLM-L6-v2
implementation in our experiments.

MPNet MPNet (Song et al., 2020) is a
transformer-based model that leverages permuted
language modeling for pre-training, which
helps it capture contextual information more
effectively than traditional masked language
models. It excels in a variety of natural lan-
guage processing tasks, including text retrieval,
due to its robust contextual embeddings and
representation learning capabilities. We use the
sentence-transformers/all-mpnet-base-v2
implementation in our experiments.

BGE-1.5 The BGE model family is based on a
BERT-like architecture and a three-stage training
process, which collectively enhance its adaptabil-
ity and generalization capabilities. Pre-training is
performed on large-scale plain text corpora using a
tailored MAE-style approach, effectively encoding
polluted text and reconstructing the clean version.
The model then undergoes contrastive learning with
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in-batch negative sampling, leveraging large batch
sizes to improve embedding discriminativeness. Fi-
nally, task-specific fine-tuning is employed using la-
beled datasets, applying instruction-based prompts
and advanced negative sampling techniques to
better accommodate diverse task types. We use
the BAAI/bge-base-en-v1.5 model in our exper-
iments, which is their large english model, version
1.5.

ColPali, ColQwen2 ColPali (Faysse et al.,
2024) performs late interaction retrieval on doc-
ument embeddings generated directly from docu-
ment page images using Vision-Language Models
(VLMs). By passing the document images through
PaliGemma (Beyer et al., 2024), ColPali uses the
projected token embeddings to index the document
pages, eliminating the need for OCR or document
parsing. The multimodal alignment learned by
VLMs allows both text queries and document im-
age embeddings to exist in a shared semantic vec-
tor space, enabling more precise and efficient re-
trieval. ColQwen2 is a similar model with Qwen2
(Yang et al., 2024) as the base VLM. We used the
vidore/colpali-v1.2, vidore/colqwen2-v0.1
implementations for our experiments.

A.1.2 LLMs

We used Qwen/Qwen2-VL-7B-Instruct,
chatgpt-4o-latest and gemini-1.5-flash in
our experiments. For ChatGPT4o and Gemini, we
set the temperature as 0.5, and use the default hy-
perparameters. For Qwen2-VL, the pixel range is set
to [256×28×28, 640×28×28]. For Long Context
evaluation, we use Qwen/Qwen2-7B-Instruct
because of the implementation availability of long
context inference using YaRN (Peng et al., 2023).
We report results on a single run of experiments.

A.2 Datasets

The datasets use in our benchmark are described
below. Fig 6-10 represent the distribution of pages
per query in all the data splits.

FetaTab FetaTab is derived from UDA (Hui et al.,
2024), which sources its data from FetaQA (Nan
et al., 2022). Many source datasets provide only
segmented and partial content, lacking complete
documents. To resolve this, UDA conducted a thor-
ough source-document identification process, ver-
ifying and collecting the complete original docu-
ment files based on metadata or content fragments.

This was followed by rigorous matching and re-
organization to form complete triplet data pairs
consisting of document-question-answer. Addition-
ally, UDA categorizes queries based on the source
of factual evidence, filters out Q&As without avail-
able answers, converts token-based data patterns
to natural language, unifies data formats and struc-
tures across datasets, and designs specific LLM
prompts tailored for each dataset after experimental
trials. FetaTab is licensed under the CC-BY-SA-4.0
license.

Figure 6: Distribution of pages per query for FetaTab.

PaperTab PaperTab is also sourced from UDA
(Hui et al., 2024), which obtains its data from the
QASPER (Dasigi et al., 2021) dataset. Similar
to the process described for FetaTab, UDA em-
phasizes the necessity of ensuring the integrity of
original documents for effective document anal-
ysis. This involves a comprehensive process of
identifying, verifying, and collecting complete orig-
inal document files, followed by matching and re-
organization to create document-question-answer
triplets. UDA also categorizes queries, filters out
unanswered Q&As, converts data patterns to nat-
ural language, unifies data formats, and designs
specific LLM prompts for each dataset based on ex-
perimental evaluations. PaperTab is released under
the CC-BY-SA-4.0 license.

SPIQA SPIQA (Pramanick et al., 2024) is a
large-scale and challenging question-answering
dataset that focuses on figures, tables, and text
paragraphs extracted from scientific research pa-
pers across various computer science domains. The
dataset encompasses a diverse array of visual ele-
ments, including plots, charts, schematic diagrams,
and result visualizations. SPIQA consists of 270K
questions divided between training, validation, and
three different evaluation splits. To ensure the high-
est quality and reliability, SPIQA employs both au-
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Figure 7: Distribution of pages per query for PaperTab.

tomatic and manual curation methods. The dataset
is released under the CC-BY-SA-4.0 license, allow-
ing for broad use while ensuring proper attribution.

Figure 8: Distribution of pages per query for SPIQA.

SciGraphQA SciGraphQA (Li and Tajbakhsh,
2023) is a synthetic multi-turn question-answer
dataset centered on academic graphs, represent-
ing a significant advancement in the field of visual
question answering. At 13 times larger than the pre-
vious largest dataset, ChartVQA, it stands as the
largest open-sourced chart VQA dataset with non-
synthetic charts. The dataset was constructed from
290,000 Computer Science and Machine Learn-
ing papers published on ArXiv between 2010 and
2020, with the help of Palm-2 generating 295,000
samples of open-vocabulary multi-turn question-
answer dialogues about the graphs. Each dialogue
is contextualized with the paper title, abstract, rel-
evant paragraphs, and rich contextual data from
the graphs, achieving an average of 2.23 question-
answer turns per graph. SciGraphQA is released
under the MIT license.

SlideVQA SlideVQA (Tanaka et al., 2023) is
a multi-image document VQA dataset that con-
tains over 2,600 slide decks, comprising more than
52,000 slide images and 14,500 questions regard-

Figure 9: Distribution of pages per query for Sci-
GraphQA.

ing the slide content. This dataset requires complex
reasoning skills, including single-hop, multi-hop,
and numerical reasoning. It also provides anno-
tated arithmetic expressions for numerical answers,
enhancing numerical reasoning capabilities. More
details about the dataset can be found under the
license at this link.

Figure 10: Distribution of pages per query for Slide-
VQA.

A.2.1 Distracting Documents
Distracting documents are introduced as additional,
irrelevant documents within the retrieval set to sim-
ulate real-world scenarios where the task is to find
the most relevant context among multiple docu-
ments. These distracting documents are selected
randomly from the in-domain documents of a given
dataset, ensuring that they are contextually similar
but not directly relevant to the query.

To validate the effectiveness of the one-to-one
mapping and evaluate the robustness of the retrieval
system in the presence of distracting documents,
we conducted an experiment where we removed the
oracle document (i.e., the ground truth document)
from the retrieval set. In this setup, we provided
GPT-4 with the option to refuse to answer the query
if it deemed the provided context insufficient for
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answering the query. The refusal rate was then
measured in both the default setting (with the or-
acle document included) and without the oracle
document.

The results, shown in Table 6, reveal a significant
increase in refusal rates when the oracle document
is removed. In the default setting, the refusal rate
is relatively low across the datasets, with PaperTab
and FetaTab having 26% and 4% refusal rates, re-
spectively, indicating that GPT-4 was able to find
sufficient context for answering the queries. How-
ever, when the oracle document is excluded, the
refusal rate jumps dramatically, with all datasets
showing refusal rates between 94% and 98%. This
increase highlights the importance of having the
correct document in the retrieval set, as the model
struggles to generate answers without access to the
relevant context.

This experiment underscores the critical role of
the oracle document in ensuring that the retrieval
system can effectively answer queries and demon-
strates how distracting documents can hinder re-
trieval performance when they introduce irrelevant
or insufficient context. The results validate our ap-
proach in testing the one-to-one mapping of queries
to documents and emphasize the importance of en-
suring that the retrieval system can maintain per-
formance in the presence of distracting documents.

Method PaperTab FetaTab SciGraphQA SPIQA SlideVQA
Default 26% 4% 18% 15% 40%
Without Oracle 97% 98% 94% 97% 98%

Table 6: Refusal rate of GPT4o in the default setting
and without the oracle document.

A.3 Examples
A.3.1 Query Augmentation
Tables 7 and 8 represent examples of query aug-
mentation during dataset construction for PaperTab
and SciGraphQA.

A.3.2 End-to-End QA Examples
Figures 11-15 illustrate End-to-End QA examples
across the five datasets, demonstrating the perfor-
mance of different LLMs.

In Figure 11, we analyze an example from the Pa-
perTab dataset using Qwen2VL. VisualRAG fails
in this instance by selecting the incorrect column
for computation during reasoning. Conversely, Tex-
tualRAG identifies the correct column but over-
looks samples from the test and validation sets.

VisDoMRAG evaluates both outputs and produces
the correct answer, demonstrating its ability to re-
fine responses across modalities.

Figure 12 presents an example from the FetaTab
dataset, where Gemini is employed as the base
LLM. Here, TextualRAG successfully generates
the correct answer by accurately verbalizing the
OCR-processed table during evidence retrieval. Al-
though VisualRAG underperforms in this case, Vis-
DoMRAG integrates the evidence effectively, pro-
viding the overall correct answer.

In Figure 13, an example from SciGraphQA
shows both Visual and Textual RAG producing
correct responses. Consequently, VisDoMRAG
corroborates the correct answers, confirming the
alignment between both modalities.

Figure 14 depicts a scenario from the SPIQA
dataset where VisDoMRAG fails to provide the
correct answer. This error arises from its bias to-
wards the longer response generated by VisualRAG,
which itself is incorrect.

Lastly, Figure 15 showcases an example from
the SlideVQA dataset. In this case, TextualRAG
fails to capture the necessary evidence, whereas Vi-
sualRAG successfully employs multi-hop reason-
ing across two slides to derive the correct answer.
VisDoMRAG recognizes the precision in Visual-
RAG’s response, favoring its consistency with the
question’s context.

A.4 LLM Prompts

Fig. 16 - 18 represent prompt templates used in our
experiments for query augmentation, baselines and
VisDoMRAG.

A.5 Human Review Process

We addressed the challenge of trivial or under-
specified queries in some datasets by augmenting
the queries using ChatGPT4o and relevant context,
including the title and abstract of the research pa-
per, the relevant figure’s caption, and other avail-
able metadata. We employ a human reviewer to
assess the quality of the generated queries and se-
lect one of the queries or reject all queries. The
reviewer is a graduate student who is paid at the
hourly rate for Graduate Assistants at the university
where they are a student. Fig 19 gives a brief of the
instructions as well as the evaluation rubric given
to the reviewer.
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Response 1 focuses on the percentage of the StackEx dataset in relation to another dataset, which is
not directly relevant to the question asked. It provides an incorrect interpretation of the data, leading

to an inaccurate final answer.

Response 2 correctly identifies the StackEx dataset in Table 1 and provides the number of questions
it contains. However, it does not take into account validation (16k) and test (16k) questions.

Therefore, final answer should be 298k+16k+16k.

The approximate size of the StackEx dataset, in terms of the number of questions, used for
keyphrase generation is 330k

✅

❌
The approximate size of the StackEx dataset, in terms of the number of

questions, used for keyphrase generation is approximately 57.5%.

Table 1: Statistics of various datasets. Mean and Var indicate the mean and
variance of target phrase numbers, %Pre denotes percentage of present

keyphrases.

1. Identify the relevant table: Table 1 in the provided document.
2. Locate the StackEx dataset in Table 1.
3. Observe the %Pre column for the StackEx dataset.
4. The %Pre value for the StackEx dataset is approximately 57.5%.

The approximate size of the StackEx dataset in terms of the number of questions is
298k.

The relevant evidence is found in Table 1 of the document. It provides statistics on various
datasets, including the StackEx dataset. The table shows that the StackEx dataset has

298k questions, 16k valid questions, and 16k test questions.

1. The question asks for the approximate size of the StackEx dataset in terms of the
number of questions.
2. The relevant evidence is found in Table 1 of the document, which provides statistics
on various datasets.
3. The StackEx dataset is listed in Table 1, and its statistics are provided.
4. The StackEx dataset has 298k questions, 16k valid questions, and 16k test
questions.
5. Therefore, the approximate size of the StackEx dataset in terms of the number of
questions is 298k.

❌

❌

around 330k questions

Visual RAG

Textual RAG

VisDoMRAG

Ground Truth
Answer

Q
ue

ry

Ground Truth Evidence

According to 'One Size Does Not Fit All: Generating and
Evaluating Variable Number of Keyphrases,' what is the
approximate size of the StackEx dataset, in terms of the
number of questions, used for keyphrase generation?

Figure 11: Qualitative example from the PaperTab dataset, comparing VisDoMRAG with unimodal RAG strategies,
with Qwen2VL as the base LLM.

A.6 Computational Resources
Table 9 describes the Computational Resources
used for running this paper’s experiments.
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Who started their term as Chief Minister in 1995,
and what party did he belong to?

❌
B. Gopa Reddy started his term as Chief Minister in 1995 and belonged to the

Indian National Congress party.

- Type: Table
- Content: A table showing the Chief Ministers of Andhra Pradesh with their term of office,
party affiliation, and days in office
- Page Number: 4
- Relevance: The table lists the Chief Ministers of Andhra Pradesh and their respective
terms in office.

1. The question asks for the Chief Minister who started their term in 1995.
2. Examining the table on page 4, we find that the second entry under the \"Term of
office\" column has the starting date of 28 March 1995. 
3. The corresponding name in the \"Name\" column is \"B. Gopa Reddy\".
4. The same row indicates that the party affiliation is \"Indian National Congress\

N. Chandrababu Naidu began his term as Chief Minister in 1995 and belonged to the
Telugu Desam Party.

*Type:** Table
**Content:** \n| No | Name | Portrait | Term of office | Party[a] | Days in office |\n|---|---|---|---|---|---|\n| 1 | Neelam Sanjiva Reddy | MLA for Kalahasti | 1 November 1956 - 11 January
1960 | Indian National Congress | 1167 |\n| 2 | Damodaram Sanjivayya | MLA from Kurnool | 11 January 1960 - 12 March 1962 | Indian National Congress | 790 |\n| (1) | Neelam
Sanjiva Reddy | [2] | MLA from Dhone | 12 March 1962 - 20 February 1964 | Indian National Congress | 719 |\n| 3 | Kasu Brahmananda Reddy | MLA from Narasaraopet | 21
February 1964 - 30 September 1971 | Indian National Congress | 2777 |\n| 4 | P. V. Narasimha Rao | MLA from Manthani | 30 September 1971 - 10 January 1973 | Indian National
Congress | 468 |\n| - | Vacant | (President's rule) | 11 Jan 1973 - 10 December 1973 | N/A | 335 |\n| 5 | Jalagam Vengala Rao | MLA for Vemsoor | 10 December 1973 - 6 March 1978
| Indian National Congress | 1547 |\n| 6 | Marri Chenna Reddy | MLA from Medchal | 6 March 1978 - 11 October 1980 | Indian National Congress | 950 |\n| 7 | Tanguturi Anjaiah |
MLC, Hyderabad | 11 October 1980 - 24 February 1982 | Indian National Congress | 501 |\n| 8 | Bhavanam Venkatarami Reddy | MLC, Guntur | 24 February 1982 - 20 September
1982 | Indian National Congress | 208 |\n| 9 | Kotla Vijaya Bhaskara Reddy | MLA from Kurnool | 20 September 1982 - 9 January 1983 | Indian National Congress | 111 |\n| 10 | N. T.
Rama Rao | MLA from Tirupati | 9 January 1983 - 16 August 1984 | Telugu Desam Party | 585 |\n| 11 | Nadendla Bhaskara Rao | MLA from Vemuru | 16 August 1984 - 16 September
1984 | Telugu Desam Party | 31 |\n| (10) | N. T. Rama Rao | [2] | MLA from Hindupur | 16 September 1984 - 2 December 1989 | Telugu Desam Party | 1903 |\n| (6) | Marri Chenna
Reddy | [2] | MLA from Sanathnagar | 3 December 1989 - 17 December 1990 | Indian National Congress | 379 |\n| 12 | N. Janardhana Reddy | MLA from Venkatagiri | 17 December
1990 - 9 October 1992 | Indian National Congress | 662 |\n| (9) | Kotla Vijaya Bhaskara Reddy | [2] | MLA from Panyam | 9 October 1992 - 12 December 1994 | Telugu Desam Party
| 794 |\n| (10) | N. T. Rama Rao | [3] | MLA from Hindupur | 12 December 1994 - 1 September 1995 | Telugu Desam Party | 263 |\n| 13 | N. Chandrababu Naidu | MLA from Kuppam |
1 September 1995 - 14 May 2004 | Telugu Desam Party | 3178 |\n| 14 | Y. S. Rajasekhara Reddy | MLA from Pulivendla | 14 May 2004 - 2 September 2009 | Indian National
Congress | 1938 |\n| 15 | K. Rosaiah | MLC, Guntur | 3 September 2009 - 24 November 2010 | Indian National Congress | 448 |\n| 16 | N. Kiran Kumar Reddy | MLA from Pileru | 25
November 2010 - 1 March 2014 | Indian National Congress | 1193 |\n* **Page Number:** 4-5\n*

 **Relevance:** This table lists the chief ministers of Andhra Pradesh, along with
their term of office and the party they belonged to."

1. I need to find the name of the chief minister who started their term in 1995 and the
party they belonged to. 
2. Looking at the table provided, I can see that row 13 shows \"N. Chandrababu
Naidu\" as the Chief Minister who began his term on September 1, 1995. 
3. The same row also shows that he belonged to the \"Telugu Desam Party\

❌

After 1995, the Telugu Desam Party
was headed by N. Chandrababu

Naidu..

Visual RAG

Textual RAG

VisDoMRAG

Ground Truth
Answer

Q
ue

ry

Ground Truth Evidence

Both responses follow logical chains of thought, correctly identifying the relevant information within
their respective tables and drawing conclusions based on that information. However, there is a
discrepancy in the evidence presented:

* **Response 1:** Claims that **B. Gopa Reddy** started his term in 1995 and belonged to the Indian
National Congress.
* **Response 2:** Claims that **N. Chandrababu Naidu** started his term in 1995 and belonged to
the Telugu Desam Party.

This discrepancy indicates a potential error in either Response 1's evidence or Response 2's
evidence. We need to analyze the validity of the evidence to determine which response is more likely
to be correct.",

N. Chandrababu Naidu started his term as Chief Minister in 1995 and belonged to the Telugu
Desam Party

✅✅

Figure 12: Qualitative example from the FetaTab dataset, comparing VisDoMRAG with unimodal RAG strategies,
with Gemini as the base LLM.

Original Query Augmented Query
What baselines did they consider? What baseline approaches using state-of-the-art

PDTB taggers were employed for the evaluation of
causality prediction in the automatic causal explana-
tion analysis pipeline?

What is the average length of the claims? What is the average token count of claims as reported
in Table 2 of the PERSPECTRUM dataset?

What was the performance on the self-collected cor-
pus?

What F1 scores did the CM-Net achieve for intent
detection and slot filling on the CAIS dataset as de-
tailed in Table 6?

Do they test their framework performance on com-
monly used language pairs, such as English-to-
German?

Does the paper report results for English-to-German
translation in a simulated under-resourced scenario
using their proposed multilingual NMT framework?

Table 7: Example of query augmentation from PaperTab dataset.

Original Query Augmented Query
What is the main difference between the two schedul-
ing algorithms compared in this graph?

In this paper, what scheduling algorithms are ana-
lyzed in Figure 8 for WCRT comparison?

What does the phase diagram indicate about the sta-
bility of the different phases?

What does Figure 4.18 reveal about the phase bound-
aries for different choices of Jt and k?

What does the graph show about the impact of the
load-changing attack on the frequency of the system?

What does the figure show about frequency limits
during the 2019 and 2020 load-changing attacks?

What are some of the implications of the graph for
the design of fuzzing tools?

What relationship does Fig. 3 suggest between per-
formance and resources in fuzzing tools?

Table 8: Example of query augmentation from SciGraphQA dataset.

6104



What observation about aggregate gap in relation
to DBS number is presented in the paper's Fig. 4?

❌

The paper's Fig. 4 presents the observation that the aggregate gap decreases as the
number of DBSs increases. This suggests that the proposed scheme becomes more

efficient in terms of aggregate gap with an increase in the number of DBSs.

### Fig. 4
The figure shows the aggregate gap achieved through the proposed scheme versus the
number of DBSs.

1. **Observation**: The figure illustrates that as the number of DBSs increases, the
aggregate gap decreases.
2. **Explanation**: This indicates that the proposed scheme becomes more efficient
in terms of aggregate gap as more DBSs are utilized.
3. **Implication**: The performance of the proposed scheme improves with an
increase in the number of DBSs.

The observation about the aggregate gap in relation to DBS number presented in the
paper's Fig. 4 is that as the number of DBSs increases, the performance difference

between the proposed scheme and the compared schemes also increases. This implies
that the proposed scheme could be utilized more efficiently in the cases where most
terminals in the coverage of the MBS require wireless services with high data rates.

The observation about the aggregate gap in relation to DBS number is presented in the
paper's Fig. 4. The figure illustrates the aggregate gap between the communication rates
and the target rate of terminals with respect to the change in the number of utilized DBSs.

1. The question asks for an observation about the aggregate gap in relation to DBS
number.
2. The relevant figure is Fig. 4, which shows the aggregate gap between the
communication rates and the target rate of terminals.
3. The figure demonstrates the benefits of utilizing DBSs and the benefits of optimizing
the 3D positions of the DBSs.
4. The figure also shows that as the number of DBSs increases, the performance
difference between the proposed scheme and the compared schemes also increases.
5. This implies that the proposed scheme could be utilized more efficiently in the cases
where most terminals in the coverage of the MBS require wireless services with high
data rates.

The graph shows that the
aggregate gap decreases
as the number of DBSs

increases. This is because
as more DBSs are used, the
communication rates of the
terminals are closer to the
target rate. This is because
the DBSs can provide more
resources to the terminals,

which allows them to
communicate at higher

rates.

Visual RAG

Textual RAG

VisDoMRAG

Ground Truth
Answer

Q
ue

ry

Ground Truth Evidence

Both responses provide logical chains of thought and final answers based on the evidence presented
in the paper's Fig. 4. Response 1 focuses on the visual representation of the figure, while Response 2

provides a more detailed textual explanation of the figure's content. Both responses are consistent
with the question and the evidence provided in the figure.

The paper's Fig. 4 presents the observation that the aggregate gap decreases as the number of
DBSs increases. This suggests that the proposed scheme becomes more efficient in terms of

aggregate gap with an increase in the number of DBSs.
✅

✅

✅

Figure 13: Qualitative example from the ScigraphQA dataset, comparing VisDoMRAG with unimodal RAG
strategies, with Qwen2VL as the base LLM.

Metric Details
GPU Hours 100
GPU Specification RTXA600
Number of GPU(S) 1
Max Model Parameters 7B

Table 9: Computationa Resources for VisDoM RAG
experiments.
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How does the shape of the IRLS weight function
change as the shape parameter α increases?

❌

As the shape parameter α increases, the IRLS weight function becomes flatter,
indicating that the penalization of large residuals (outliers) decreases, making the

function less robust to outliers.

### Element 1:
- **Type:** Paragraph
- **Content:**
 - "Curiously, these IRLS weights resemble a non-normalized form of Student’s t-
distribution."                                                          
 - "A visualization of our loss’s Ψ-functions and weight functions for different values of α
can be seen in Figure 7."                                  
- **Page Number:** 2
- **Explanation:** This paragraph indicates that the IRLS weight function changes as the
shape parameter α increases and directs us to Figure 7 for visualization.

### Element 2:
- **Type:** Figure
- **Content:** Figure 7, which shows "Our general loss's IRLS weight function (left) and
Ψ-function (right) for different values of the shape parameter α ."
- **Page Number:** 2
- **Explanation:** The figure visually represents how the IRLS weight function changes
with different values of α , which is crucial to answering how the shape of the weight
function changes as α increases.

### Element 3:
- **Type:** Paragraph
- **Content:**
 - "Ψ(z, α ) = (1 − z) for α = 2"
 - "Ψ(z, α ) is not defined when α ≥ 2 because for those values the loss is no longer
robust, and so it is not well described as a process that rejects outliers."
- **Page Number:** 2
- **Explanation:** This section explains that for values of α equal to or greater than 2, the
loss becomes less effective at rejecting outliers, implying changes in the weight function
behavior.

### Element 4:
- **Type:** Paragraph
- **Content:**
 - "The shape of the derivative gives some intuition as to how α affects behavior when our
loss is being minimized by gradient descent or some related method."
 - "For all values of α the derivative is approximately linear when |x| << c, so the effect of
a small residual is always linearly proportional to that residual’s magnitude."
 - "As α becomes more negative, and as α approaches −∞ an outlier whose residual
magnitude is larger than 3c is almost completely ignored."             
- **Page Number:** 5
- **Explanation:** This paragraph explains how the shape parameter α affects the
behavior of the weight function, particularly for outliers.

1. **Understanding the Role of α in the Weight Function:** From the paragraph on
page 2, we learn that the IRLS weight function is dependent on α , and its behavior
can be visually analyzed using Figure 7. Moreover, as α increases, the function
becomes less robust at rejecting outliers.

2. **Analyzing Figure 7:** The left side of Figure 7 shows the IRLS weight function for
different values of α . As α increases (from negative to positive values), the weight
function becomes flatter around the origin, indicating that higher α values reduce the
penalization of residuals, especially for larger residuals.

3. **Impact on Outliers:** From the paragraph on page 5, we know that as α becomes
more negative, the weight function heavily penalizes large residuals (outliers), but as α
increases, the "influence" of outliers diminishes, making the weight function flatter and
less responsive to large residuals.

4. **α = 2 and Beyond:** For α values greater than or equal to 2, the weight function is
no longer robust, meaning it does not effectively reject outliers, as described on page
2.

As the shape parameter α increases, the IRLS weight function transitions from a roughly
piecewise-linear shape to a logarithmic shape, with a steeper slope at intermediate values

like α = 2.

1. **Figure and Text Description (Page 26)**:
 - "A visualization of our loss’s IRLS weight functions for different values of α can be seen in Figure 7.
[...] This curve is roughly piecewise-linear in [0,4] with a slope of ~1 at α = 0 and α = 4, but with a
slope of ~10 at α = 2. When α > 4, the curve becomes logarithmic."
 - **Relevance**: This passage directly describes the shape of the IRLS weight function as the shape
parameter α increases, providing key insights into how the function changes.

1. The passage describes the weight function for different values of α , starting with a piecewise-
linear shape in the range [0, 4].
2. At α = 0 and α = 4, the slope is ~1, indicating a relatively flat response.
3. At α = 2, the slope is much steeper (~10), indicating a more pronounced response to changes
in the input.
4. For α > 4, the function transitions to a logarithmic shape, indicating that the growth of the
weight function becomes slower and sub-linear.

The IRLS weight function becomes
more peaked and concentrated

around zero as the shape parameter
α increases.

Visual RAG

Textual RAG

VisDoMRAG

Ground Truth
Answer

Ground Truth Evidence

Both responses provide consistent reasoning on how the shape of the IRLS weight function changes
as the shape parameter **α ** increases, but they approach the question from slightly different
angles.

1. **Response 1:**
 - The evidence is drawn from a visual assessment (Figure 7) and various descriptive paragraphs
about the behavior of the weight function as α changes. 
 - The explanation clearly states that as the shape parameter α increases, the weight function
becomes flatter, reducing the penalization of large residuals (outliers), hence making the function less
robust to outliers.
 - The explanation considers specific behavior for very negative α values, and even points out that the
weight function is no longer robust for α greater than or equal to 2.

2. **Response 2:**
 - Builds mostly on textual evidence and describes in more numerical detail the shape changes of the
IRLS weight function (e.g., piecewise-linear with specific slopes at α = 0, 2, and 4, becoming
logarithmic when α > 4).
 - This response emphasizes how the weight function becomes logarithmic as the shape parameter α
exceeds 4.                                             

There is no fundamental disagreement between the two responses. However, **Response 1**
emphasizes the relationship to robustness to outliers and the visual aspects of the behavior change,
while **Response 2** provides more numerical information but does not cover robustness or specific
outlier effects as well as Response 1.

- **Content Completeness**: Response 1 provides a broader explanation, including different α ranges
(negative α , small α , and large α ) and discussions about outlier behavior.
- **Specificity of Behavior Across α Values**: Response 2 offers precise descriptions (slope changes
and logarithmic behavior), but lacks the nuance about outliers and robustness.

As the shape parameter α increases, the IRLS weight function becomes flatter, indicating
decreased penalization of large residuals (outliers), making the function less robust to

outliers.

✅

❌❌

Q
ue

ry

Figure 14: Qualitative example from the SPIQA dataset, comparing VisDoMRAG with unimodal RAG strategies,
with ChatGPT4o as the base LLM.
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How much has the number of suicide bombings in
the country in which there are armed forces from
41 member countries increased from 2006 to 2007?

❌37

- Page 9: The number of suicide bombings has increased from 123 in 2006 to
160 in 2007.

1. Identify the country with armed forces from 41 member countries:
Afghanistan.
2. Find the number of suicide bombings in Afghanistan in 2006: 123.
3. Find the number of suicide bombings in Afghanistan in 2007: 160.
4. Calculate the increase: 160 - 123 = 37.

he number of suicide bombings in Afghanistan increased from 2006 to 2007

Suicide bombing attacks increase.The number of victims of terror attacks reaches 566 per
month, up from 425 per month during 2006. More than 40 aid workers are killed.

1. The document mentions that the number of suicide bombings in Afghanistan
increased from 2006 to 2007.
2. It states that the number of victims of terror attacks reached 566 per month
in 2007, up from 425 per month in 2006.
3. It also notes that more than 40 aid workers were killed in 2007.

❌

37

Visual RAG

Textual RAG

VisDoMRAG

Ground Truth
Answer

Q
ue

ry

Ground Truth Evidence

Response 1 provides a clear and logical chain of thought, directly addressing the question with
specific evidence from a visual aid. The evidence is presented in a clear and concise manner, making

it easy to follow the reasoning process. Response 2, on the other hand, provides a more general
statement about the increase in suicide bombings and the number of victims, without directly

addressing the specific question about the number of suicide bombings in the country with armed
forces from 41 member countries. The evidence provided in Response 2 is not as specific or relevant

to the question as the evidence in Response 1.

37

✅

✅

Figure 15: Qualitative example from the SlideVQA dataset, comparing VisDoMRAG with unimodal RAG strategies,
with ChatGPT4o as the base LLM.
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You are given a question about a figure in a research paper.
Make that question more specific to the research paper, such
that it can only be answered by that paper.

Question:

Metadata:
Paper Title:
Paper Abstract:
Figure Caption:
Other context (if any):

- Generate 5 questions that have the same answer as below
and ask the question that the original question asks.
- Make sure to include some hints in the question like the
paper, or what experiment/dataset is being asked about here
(but no hint that significantly overlaps with the answer)
- Max 15-20 words long.
-  Make the question uniquely specific to this paper and figure.

The answer to your question should be:

Format your response as a Python list.

Figure 16: Prompt Template used for Query Augmenta-
tion.

You are tasked with answering a question based on the relevant
pages of a PDF document. Provide your response in the following
format:

Instructions:

1. Evidence Curation: 
- Extract relevant elements (such as paragraphs, tables, figures, charts)
from the provided pages and populate them in the "evidence_curation"
section. 
- For each element, include the type, content, page number, and a brief
explanation of its relevance.

2. Chain of Thought: 
- In this section, list out each logical step you take to derive the answer,
referencing the evidence where applicable. 
- You should perform computations if you need to to get to the answer.

3. Answer:
- The answer should be a [short natural sentence/ just the answer
without explanation/ could be sourced from the context].

Question:

## Evidence:

## Chain of Thought:

## Answer:

Context: 

Figure 17: Prompt Template used for Unimodal RAG
and Long Context experiments.

Analyze the following two responses to the question: 

Response 1:
Evidence:
Chain of Thought:
Final Answer:

Response 2:
Evidence:
Chain of Thought:
Final Answer:

- Response 1 is based on a visual q/a pipeline, and Response 2 is based
on a textual q/a pipeline.

- Evaluate the answers from the two responses based on their chain of
thought. You must try to check if both the chains of thoughts are consistent
with respect to each other, the evidence provided and the final answer.

- If one of the responses has declined giving a clear answer, please weigh
the other answer more unless there is reasonable thought to not answer,
and both thoughts are inconsistent.

- Language of the answer should be short and direct, usually answerable in
a single sentence, or phrase, similar to the language in the responses. You
should give direct responses without explanation in the final answer.

Consider both chains of thought and final answers. Provide your
analysis in the following format:

## Analysis:
[Your detailed analysis here, evaluating the consistency of both the
chains of thoughts, with respect to each other, the question and their
respective answers, as well as validity of the evidence.]

## Conclusion:
[Your conclusion on which answer is more likely to be correct, or if a
synthesis of both is needed]

## Final Answer:

Figure 18: Prompt Template used for VisDoMRAG.
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Instructions for Human Evaluator: Selecting the Optimal Query

When evaluating a list of AI-generated queries, it’s essential to consider not only how well each query fits the context but also how
natural it sounds and whether it maintains a balance between clarity and specificity. As you review the queries, your goal is to select
the one that best matches the context, feels human-like, and doesn’t over-include information from the answer.

In some cases, none of the queries may be optimal. Therefore, if you find that all the AI-generated queries are inadequate, you also
have the option to reject all of them and instead return the original query. This ensures that you always have a fallback and aren’t
restricted to using the AI-generated versions.

To guide your decision-making, the table below outlines specific criteria and a rubric that will help you evaluate each query on its
quality. You'll weigh the naturalness of the query, its relevance to the context, whether it's overly detailed, and its adaptability for
reuse across different contexts.

Evaluation Rubric

Criteria Score: 5
(Excellent)

Score: 4
(Good)

Score: 3
(Moderate)

Score: 2
(Weak)

Score: 1
(Poor)

Natural Sounding Extremely
natural and
conversation
al

Generally
natural with
minor
awkwardnes
s

Somewhat
natural but
noticeably
rigid

Clearly
generated
or awkward
phrasing

Highly
unnatural,
difficult to
interpret

Context
Specificity and
1-1 Mapping

Perfectly
matches
context,
specific and
clear

Highly
relevant,
slight
flexibility in
meaning

Somewhat
relevant,
could apply
to other
contexts

Vague or
general,
could apply
to many
contexts

Completely
irrelevant or
too broad

Not
Over-Augmented

Balanced,
requires
document to
answer

Slightly
detailed, but
still needs
document

Some
unnecessar
y hints, but
answerable

Too much
detail,
answer can
be inferred

Over-detaile
d, answer
obvious
without a
document

Step-by-Step Evaluation Process:

1. Review the Context: Begin by understanding the context or document that the queries reference, as this
will be key to judging relevance and specificity.

2. Score Each Query: Evaluate each of the five AI-generated queries based on the rubric above. Assign a
score from 1 to 5 for each criterion.

3. Sum the Scores: Add up the scores for each query across all four criteria.
4. Select or Reject: Choose the highest-scoring query, but if none of the queries perform satisfactorily (e.g., if

all are under a threshold like 12/20), you have the option to reject all queries and refer back to the original.
5. Optional Feedback: If necessary, provide a brief rationale for your decision, especially if you rejected all

queries or if two or more had similar scores.

Figure 19: Brief of Reviewer Instructions, including the Evaluation Rubric.
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