
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5611–5629

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Diverse In-Context Example Selection After Decomposing Programs and
Aligned Utterances Improves Semantic Parsing

Mayank Kothyari1*, Sunita Sarawagi1*, Soumen Chakrabarti1

Gaurav Arora2, Srujana Merugu2

1Indian Institute of Technology Bombay 2Amazon

Abstract
LLMs are increasingly used as seq2seq transla-
tors from natural language utterances to struc-
tured programs, a process called semantic in-
terpretation. Unlike atomic labels or token se-
quences, programs are naturally represented
as abstract syntax trees (ASTs). Such struc-
tured representation raises novel issues related
to the design and selection of in-context exam-
ples (ICEs) presented to the LLM. We focus
on decomposing the pool of available ICE trees
into fragments to minimize interference from
irrelevant content and improve generalization
on test instances. Next, we propose how to
use (additional invocations of) an LLM with
prompted syntax constraints to automatically
map the fragments to corresponding utterances.
Finally, we adapt and extend a recent method
for diverse ICE selection to work with whole
and fragmented ICE instances. We evaluate
our system, SCUD4ICL1, on popular diverse
semantic parsing benchmarks, showing visible
accuracy gains from our proposed decomposed
diverse demonstration method. Benefits are par-
ticularly notable for smaller LLMs, ICE pools
having larger labeled trees, and programs in
lower resource languages.

1 Introduction

Large language models (LLMs), being proficient
program generators (Yan et al., 2023), are well-
suited to solving semantic interpretation tasks:
translating natural language utterances x0 (which
could be questions or instructions) into executable
code y0 (interchangeably called program, or query)
in a structured language, such as Python, SQL or
SPARQL, possibly even invoking libraries (Hsieh
et al., 2023) such as PyTorch or Pandas (Ye et al.,
2024). Here we characterize code using their ab-
stract syntax trees (ASTs).

*Corresponding authors: maykat2017@gmail.com,
sunita@iitb.ac.in

1The code and dataset for the paper are available at
https://github.com/iMayK/SCUD4ICL

Pretraining corpora of LLMs include diverse
public schema, structured data and utterances, e.g.,
in the field of text2sql or knowledge graph ques-
tion answering (KGQA). When applied to less
popular domains like calendar management (An-
dreas et al., 2020, SMCalFlow) or inspecting ge-
ographical databases (Zelle and Mooney, 1996,
GeoQuery), pretrained LLMs perform less impres-
sively. This can be a serious impediment to exploit-
ing LLMs for structured interpretation in settings
where the schema and data are private, e.g., in case
of enterprise data that were not part of the pretrain-
ing corpus. Given the enormous size of the best
LLMs, continued training or fine-tuning may be
impractical for most users.

LLMs are also known to be effective in-context
learners (ICL) (Brown et al., 2020; Lu et al., 2023).
This capability may be particularly beneficial (Levy
et al., 2023) when in-context examples (ICEs) in-
volve the same (possibly private) schema and task.
Formally, given test utterance x0, the input to the
LLM includes M in-context examples represented
in the form p;x1,y1; . . . ;xM ,yM ;x0 with suit-
able delimiters. Here, p is an optional instruction
prefix, and the LLM has to decode ŷ0, the transla-
tion of x0. A common challenge for ICL is to select
S = {(xm,ym) : m ∈ [M]}2 from a larger cor-
pus of instances to maximally assist the LLM, the
guiding principles being: (1) M should be small
to reduce forward inference cost. (2) xm should
be strongly related to x0. (3) S should be suitably
diverse, in an attempt to provide adequate coverage
of possible target ASTs.

Our point of departure is to bring a new desir-
able criterion into the above picture of ICL. ASTs
{ym : m ∈ [M]}, as well as the target y0 are
complex structured outputs. The ideal y0 may
have only partial overlap with ASTs in the ICEs
{ym : m ∈ [M]}, but the non-overlapping parts

2[M] refers to the set {1, 2, . . .M}

5611

https://github.com/iMayK/SCUD4ICL

Add lunch with
Karen to
the
calendar for
Tuesday at 12 pm.

Question: Throw a lunch meeting on my calendar for tomorrow please.

Put birthday party
on my calendar
tomorrow
at 5pm. Its
with Tom, Harry
and Amy.

Add lunch with
Rachel to
my
calendar tomorrow
at noon.

CreateEvent AND has_subject(lunch)
starts_at(Tomorrow())

CreateEvent AND has_subject(lunch)

starts_at(Tomorrow())

CreateEvent AND

with_attendee(Amy)

with_attendee(Tom)

has_subject(birthday party)
with_attendee(Harry)

starts_at(Tomorrow())

 starts_at(NumberPM(5))

CreateEvent AND has_subject(lunch)

starts_at(NextDOW(Tue))

Diverse Demonstrations
ICL Examples

LLM Prediction

...

with_attendee(Attendee 2)

starts_at(NumberPM(12))

with_attendee(Karen)

with_attendee(Rachel)

starts_at(Noon())

with_attendee(Attendee 1)

starts_at(Noon())

Ours
ICL Examples

...

has_duration(toHours(1))

starts_at(NumberAM(7))

has_subject(jogging)

starts_at(NextDOW(Fri))
AND

Schedule a jogging
session

on Friday
at 7am. Lets do it

for an hour.

starts_at(Tomorrow())
starts_at(Noon())

has_subject(lunch)
AND

Add lunch to my
calendar
tomorrow
at noon.

CreateEvent

starts_at(Tomorrow())

starts_at(NumberPM(5))
AND

Put event on my
calendar

tomo
at 5 pm.

CreateEvent

has_subject(lunch)
starts_at(Tomorrow())

AND CreateEvent

LLM Prediction

Decomposed

Decomposed

CreateEvent

Figure 1: An example of how decomposed queries help avoid interference. On the left are three whole ICEs selected
by an existing method. On the right are SCUD4ICL’s ICEs. Note that two of these are decompositions of training
examples, after removing irrelevant clauses. Removing the irrelevant clauses reduces interference during ICL
leading to a correct prediction from the LLM.

may distract in-context learning. This motivates
our first contribution: select ICEs from not only
‘whole’ ASTs, but also decompose them into mean-
ingful fragments (typically, subtrees) and make
them available for the ICE subset selector. This
is in sharp contrast to all existing methods that
choose whole examples for ICL demonstration.

The enhancement proposed above raises the is-
sue that even if (xm,ym) pairs are provided for
complete utterances xm and corresponding com-
plete ASTs ym, and if the decomposition of ym

into useful fragments ym,k were possible to au-
tomate, these AST fragments do not come with
corresponding sub-utterances xm,k. Our second
contribution is to employ an LLM for this transla-
tion task, but with a twist that turns out to be critical:
we instruct the LLM to regard the utterances xm,k

to be generated as sub-utterances of xm.
Our third contribution is, given x0, to select,

from the available pool of whole- and fragmented
ICEs, a suitable subset to include in the LLM input.
This is also a delicate step, because inclusion of
ICEs irrelevant to x0 (including cases with com-
plete ASTs) have the potential (Liu et al., 2023a;
Chen et al., 2023) to interfere with the generation
of the correct parse y0. We show examples of such
in-context interference for a semantic parsing task

in Figure 1. We extend a recent diverse demonstra-
tion method (Levy et al., 2023) to handle complete
and decomposed ICEs seamlessly.

Our system, SCUD4ICL (sub code+utterance
decomposition for in-context learning), incorpo-
rates all the three enhancements above, and will be
released publicly on acceptance.

We present empirical evaluations with three pop-
ular diverse semantic parsing benchmarks: SM-
CalFlow, GeoQuery, and MTOP. We explore the
effects of diverse training sizes, train-test discrep-
ancy, models, decomposition depths, and code lan-
guages. Apart from consistent wins at semantic
interpretation, we establish that fragmented ICE
availability, coupled with our selection criterion,
reduces harmful interference. Benefits are particu-
larly notable for smaller LLMs, larger labeled trees,
and lower resource languages.

2 Related Work

Our current work on semantic parsing using LLMs
with ICL leverages prior work on selection of ICEs
and query decomposition techniques.

In-context example selection It is crucial to se-
lect ICEs that are highly informative with respect to
the test utterance. An intuitive approach is to select

5612

Set an appointment for Tuesday at 12pm
 for lunch for an hour and then also

 set me for busy Friday from
 12 till 2pm.

do

do

Yield

CreateEvent

AND has_subject(lunch)

starts_at(NextDOW(Tue))

starts_at(NumberPM(12))

has_duration(toHours(1))

Let

x0
DateTime(date=

NextDOW(Friday),
 time=NumberPM(12))

CreateEvent

Training Tree ()

AND has_subject(lunch)

starts_at(NextDOW(Tue))

starts_at(NumberPM(12))

has_duration(toHours(1))
Set an appointment

 for Tuesday at 12pm
 for lunch for an hour.

has_subject(lunch) Set an appointment
 for lunch.

AND has_subject(lunch)

starts_at(NextDOW(Tue))

starts_at(NumberPM(12))

Set an appointment
 for Tuesday at 12pm

 for lunch.

has_duration(toHours(1))
Set an appointment

 for an hour.

AND
starts_at(NextDOW(Tue))

starts_at(NumberPM(12))

Set an appointment
 for Tuesday

 at 12pm.

Set event for
 Friday from 12.

Set me for busy.

Set event to
 end at 2pm.

ends_at(AND(GE($ x0),
 NumberPM(2)))

has_status(ShowAsStatus(Busy))

starts_at($ x0)

AND

has_status(ShowAsStatus(Busy))

starts_at($ x0)

AND

Decompositions generated by SQUAD4ICL

Set me for busy
 Friday from 12 till

 2pm.

Set me for busy
 Friday from 12.

has_status(ShowAsStatus(Busy))

starts_at($ x0)

ends_at(NumberPM(2))

ends_at(AND(GE($ x0),
 NumberPM(2)))

has_status(ShowAsStatus(Busy))

starts_at($ x0)
AND

Training Utterance ()
Decompositions generated by SQUAD4ICL

Figure 2: An example showing decomposition of a training instance by SCUD4ICL. A complex training utterance-
tree pair (xi, yi) comprising of more than ten clauses is decomposed into ten subtrees of varying complexity.
The sub-utterances xi,j attached to each sub-tree yi,j are subsumed by xi while being fluent and relevant to the
respective yi,j . The "Let" clause, which defines x0, is repeated in subqueries wherever needed, but we omit
repetition in the figure to reduce clutter.

the top-K utterances most similar to the test utter-
ance (Liu et al., 2022; Rubin et al., 2021). However,
this method often results in redundancy and limited
coverage. Gupta et al. (2023) introduce an un-
supervised set-selection approach to mitigate this
problem. Similarly, Hongjin et al. (2022) propose
an unsupervised, graph-based strategy that com-
bines similarity and diversity. However, their work
focuses on reducing annotation of ICL examples,
rather than query-specific selection.

More recently, Ye et al. (2023) have formulated
ICL example selection as subset selection using De-
terminantal Point Processes (DPPs) (Kulesza and
Taskar, 2011). This approach optimizes example
selection through a contrastive learning objective
that balances relevance and diversity, using a spe-
cially designed kernel. Building on this, Fu et al.
(2024) propose TISE, a tripartite selection method
that incorporates contextual relevance, event corre-
lation, and example diversity. For semantic parsing
applications, where structure encodes vital informa-
tion, Bogin et al. (2024); Levy et al. (2023) propose
generating diverse demonstrations by collectively
covering the maximal number of local structures in
the test utterance.

All the above methods, however, treat both xm

and ym as monolithic. When the selected ICEs con-
tain irrelevant sub-parts, there is a high risk of the
LLM being misled (as we shall establish). While
our work builds on the diverse selection method of
Levy et al. (2023), we first generate an enhanced
pool of ICEs obtained by decomposition. This en-
ables the selection step to protect the LLM from

interference from irrelevant fragments.

Example Decomposition In complex question
answering (QA) and semantic parsing, the ut-
terance is often decomposed into simpler sub-
utterances that are mapped to sub-queries, whose
responses are later assembled into the final answer.
Liu et al. (2023b) propose a hybrid complex QA
system performs top-down parsing of questions
into tree-structured representations (referred to as
H-expressions). Huang et al. (2023) present a neu-
ral model that hierarchically decomposes complex
questions into trees. Shi et al. (2023b) propose a
novel execution decomposition (ExeDec) strategy
for tackling the broader problem of program syn-
thesis by addressing key forms of compositional
generalization. Their approach predicts execution
subgoals to solve problems incrementally, guided
by program execution at each step as well as care-
fully curated few shot LLM prompts. For text2sql,
Eyal et al. (2023) propose an intermediate Query
Plan Language (QPL) more amenable to decompo-
sition that SQL. Lately, LLMs (Pourreza and Rafiei,
2024; Liu and Tan, 2023; Wang et al., 2023) —
suitably prompted with ICEs and chain-of-thought
(CoT) reasoning — perform schema linking, query
decomposition, SQL generation, and refinement
for text2sql tasks.

These methods rely on static few-shot examples
and decomposition of the test utterance, which can
incur high latency and computational overhead. In
contrast, our approach applies decomposition to
the labeled training instances, creating a larger ICE
pool. We then rely on test-time selection to identify

5613

Original Utterance

For sub-tree of the original utterance

Code
Generated Utterance

(Dependent on original
utterance)

Generated Utterance (Independent of
original utterance) Comment

Schedule a team meeting tomorrow from 3 : 00
pm to the end of the day CreateEvent(ends_at(EndOfWorkDay())) Schedule event to end at the end

of the day
Schedule an event that ends at the end

of the workday.
Uses function name to add

unnatural words to the query
I need to book a meeting in the conference

room with Lynne , Howard , Rick and myself for
Friday the 10 th at 9 AM please

CreateEvent(AND(starts_at(
nextDayOfMonth(Today() , 10)) ,

starts_at(NumberAM(9))))

book a meeting for Friday the 10
th at 9 AM

Schedule an event for the 10th of next
month at 9 AM.

Uses function name to add
extra/incorrect info into the

query

Put me as busy from 2 pm til 6 pm for lunch
tomorrow

do(Let(x0 , NextTime(time= NumberPM(2
))) , CreateEvent(AND(starts_at($ x0) ,

ends_at(AND(GE($ x0) , NumberPM(6))
) , has_status(ShowAsStatus(Busy)))))

Put me as busy from 2 pm til 6 pm Schedule me as busy from 2 PM to 6
PM next time it's 2 PM.

Uses function name to add
extra/incorrect info into the

query

Let 's make a lunch meeting with Ryan and Jill
at the Starbucks Cafe on 5 th at 4 PM today CreateEvent(has_subject(lunch)) make a lunch meeting What is the subject of the event you

want to create?
Incorrect interpretation of the

function

Let 's make a lunch meeting with Ryan and Jill
at the Starbucks Cafe on 5 th at 4 PM today

CreateEvent(starts_at(nextDayOfMonth(
Today() , 5))) make event on 5 th today Schedule an event for the 5th of next

month.

Uses function name to add
extra/incorrect info into the

query

Figure 3: Examples showing how utterances generated by SCUD4ICL conditional on original training utterances
are more fluent and natural than utterances generated when the LLM is not prompted to encourage subsumption.

diverse and relevant ICEs (often choosing subtrees
of the original ICEs). This approach avoids high
latency and computational costs of test utterance
decomposition during inference.

ICL issues affecting compositional generaliza-
tion Given the broad applicability of ICL, numer-
ous studies have explored how factors such as the
model scale, token novelty, test query complexity,
and demonstration placement influence overall per-
formance. Qiu et al. (2022) show that larger model
sizes improve compositional generalization in se-
mantic parsing, but heightens sensitivity to noise
in ICEs, a trend also noted by Shi et al. (2023a);
Wei et al. (2023) and explained theoretically by Shi
et al. (2024). Building on this observation, Wang
et al. (2024) introduce a model-specific demonstra-
tion selection method tailored to LLM biases. An
et al. (2023) investigate the impact of similarity,
diversity, and complexity in ICEs, concluding that
optimal performance comes from examples that
are structurally similar, diverse, and simple. They
also emphasize the need for the ICEs to cover the
linguistic structures of the test instance.

3 Proposed method: SCUD4ICL

We are given a training set T = {(xi,yi) : i =
1, . . . , N}, comprising N pairs of natural language
utterances xi and their corresponding programs yi.
Our goal is to use T to provide an LLM acting
as a semantic interpreter) a set S of M in-context
examples for any test question x0. Unlike previous
methods, where S contained a subset of only the
original examples in T , our method SCUD4ICL
seeks more focused sub-programs to reduce inter-
ference during in-context learning. We achieve
this in two steps: (1) We perform a one-time de-
composition of each training instance to create an
augmented training pool TD, and (2) Next, for each

test utterance x0, we select a focused, diverse set of
examples from TD. We describe these steps next.

3.1 Instance decomposition
Given an utterance-program pair (xi,yi), our goal
is to decompose yi into meaningful sub-programs
yi,1, . . . ,yi,Ki and associate each sub-program
yi,k with a corresponding utterance xi,k (which
may have to be generated artificially). We assume
that yi is a semantic parse tree, and the tree struc-
ture naturally defines sub-programs corresponding
to its subtrees. We show an example of a decompo-
sition in Figure 2.

Sub-utterance generation A baseline method to
generate decompositions is to first extract sub-trees
rooted at each internal node of the original tree yi

following the grammar of the program. Then for
each subtree yi,j , invoke an LLM to generate utter-
ances for the subtrees, possibly using ICL for that
intermediate task. We call this the “independent
utterance decomposition” method.

A limitation of the above method is that the syn-
thetically generated utterance may not align with
the style and language of human-generated utter-
ance, and thus may not be useful demonstration
for converting actual test utterances into programs.
Our key idea is to view xi,j as a sub-utterance of xi.
We harness LLMs for generating (sub-utterance,
sub-tree) pairs conditional on an xi,yi. We call this
the “subsumed utterance decomposition” method.
The LLM is instructed to preserve as much of the
original utterance in generating the sub-utterance,
and also shown a few (manually created) examples
of such decompositions. In Figure 2, notice how
each of generated sub-utterances are almost sub-
sumed by the original utterance while being faithful
to the given sub-tree. In Figure 3, we contrast the
utterance generated by our conditional prompting
against independent generations. Note how the ut-

5614

In this task, your goal is to decompose
complex event scheduling queries into
simpler, self-contained sub-queries.

Each sub-query should be represented
as a key-value pair within a JSON
object. The key is the sub-query,
and the value is an object containing
the corresponding Domain-Specific
Language (DSL) code and any further
decompositions.

The primary objective is to ensure that
the decompositions closely mirror the
language used in the original query.
This is to retain the natural language
and idiosyncrasies of the user’s input,
which are crucial for understanding the
context and intent of the query.

Each sub-query should be able to stand
on its own, without relying on the
context of the original query. This
means that the sub-queries should be
clear and unambiguous, even when viewed
independently of the original query.

Figure 4: Instruction to LLM for subsumed utterance
decomposition in SMCalFlow. These are followed by a
few decomposition ICEs. Figure 12 shows a sample.

terances generated independent for each sub-tree
appear too verbatim and unnatural compared to our
subsumed generation. Figure 4 shows the prompt
used for such generation.

3.2 ICE selection from TD

Let TD denote the original dataset T augmented
with generated decomposed pairs {(xn,k,yn,k) :
n = 1, . . . , N ; k = 1 . . .Ki} pairs. Given a test
question x, we adapt the state of the art diverse
decomposition algorithm of Levy et al. (2023) to
select examples from TD. Let M be the budgeted
number of ICL examples to select. We collect
ICEs one by one. At each step, a new candidate
(xn,k,yn,k) is selected if it satisfies these criteria:

1. utterance or sub-utterance xn,k covers one or
more hitherto uncovered token(s) in the test
utterance x0,

2. a descendant or ancestor node of the root of
yn,k has not already been selected,

3. when the anonymized version of yn,k (i.e.,
with all entity names/values replaced by a
common token ANON) is not among the ones
already seen, and

4. xn,k is maximally similar to x0 among candi-
dates that satisfy the above criteria (similarity
is measured using BM25).

Algorithm 1 presents our ICE selection strategy. As
can be seen, various tweaks to diverse decomposi-

Algorithm 1 SCUD4ICL Example Selection
Require:
1: TD: decomposed ICE pool {(xn,k,yn,k) : n ∈ [N], k ∈

[Kn]}
2: M : budget for selected examples
3: Test query: x0

Ensure: Diverse and relevant selected examples S
4: S ← ∅ /* Selected examples */
5: Tcovered ← ∅ /* Covered test tokens */
6: Tseen ← ∅ /* Seen anonymized templates */
7: while |S| < M do
8: Tpromising ← ∅
9: for each token x ∈ x0 such that x /∈ Tcovered do

10:
Identify candidates (n, k) in TD satisfying:

1. (n, k) /∈ S
2. No ancestor/descendant of yn,k is in S
3. anonymized(yn,k) /∈ Tseen
4. x ∈ xn,k

11: if valid candidates exist then
12: Tpromising ← Tpromising ∪ {x}
13: if Tpromising ⊆ Tcovered then
14: Tcovered ← ∅ /* Reset coverage */
15: continue
16: if Tpromising = ∅ then
17: break
18: x← random token from Tpromising
19: C ← set of candidates in TD for token x
20: (n∗, k∗)← argmax(n,k)∈C BM25(x0,xn,k)

21: S ← S ∪ {(n∗, k∗)}
22: Tseen ← Tseen ∪ {anonymized(yn∗,k∗)}
23: Tcovered ← Tcovered ∪ {x}
24: return S

tion (Levy et al., 2023) are needed to accommodate
candidates corresponding to program fragments
that may have structured relations between them,
including matching against canonical anonymized
structural sketches of ICE sub-programs already
accepted into S. Algorithm 1 can be viewed as
solving an optimization problem balancing rele-
vance to the test query x0 and diversity within the
selected set S constrained by a budget M using an
efficient greedy algorithm. Refer to Appendix B
for a more detailed discussion.

4 Experimental Setup

We experiment with two semantic parsing datasets.

SMCalFlow (Andreas et al., 2020) SMCalFlow-
CS is a dataset of approximately 25 thousand
human-generated utterances about calendar man-
agement. To mimic realistic settings of limited
labeled data, we created two different training sets,
T5 and T10, as follows. For each test sample, we
selected 5 (respectively, 10) closest samples on
utterance-level cosine similarity. We retain those
of depth greater than three. This yielded 71 unique
instances in T5, and 116 in T10. After decompo-
sition with our method we obtained 296 and 473
non-leaf decompositions which we treat as the aug-

5615

https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25

LLM ICL type SMCalFlow GeoQuery
EN HI FR RU length i.i.d template tmcd

GPT3.5
CoverLS 42.4 43.4 40.1 48.7 50.9 77.2 86.5 70.9
SCUD4ICL 45.8 50.2 46.0 49.5 59.2 81.9 87.7 82.0

GPT4o
CoverLS 54.1 49.6 53.5 54.5 73.6 86.3 91.6 80.7
SCUD4ICL 54.2 51.8 54.3 55.8 81.0 86.9 89.8 85.4

Mistral:7b
CoverLS 45.8 32.7 43.5 36.5 32.3 58.9 62.3 49.4
SCUD4ICL 46.6 37.2 46.0 39.8 50.6 67.7 74.3 73.9

Llama3:8b
CoverLS 48.2 28.5 43.5 39.3 35.6 55.8 63.4 50.9
SCUD4ICL 46.4 34.2 43.7 40.2 44.4 52.9 58.9 48.4

Table 1: Execution accuracy on two datasets: (1) SMCalFlow with training split T = T5 with programs in four
different languages En,Hi,Fr,Ru. and (2) GeoQuery with training split T = D3 and various test splits. All results
are average of three runs and with M = 5. Observe that SCUD4ICL provides much higher accuracy than CoverLS
in most cases, and the gains are higher for smaller LMs.

LLM ICL type EN FR
random full random full
M=5

Mistral:7b
CoverLS 25.0 22.5 17.3 18.2
SCUD4ICL 27.3 22.8 19.7 19.6

Llama3:8b
CoverLS 17.3 14.9 11.0 11.3
SCUD4ICL 18.7 16.5 11.3 12.1

M=10

Mistral:7b
CoverLS 29.7 24.0 23.0 21.1
SCUD4ICL 32.0 26.4 25.3 22.9

Llama3:8b
CoverLS 17.3 16.1 13.7 13.0
SCUD4ICL 23.7 20.8 15.3 14.6

Table 2: Exact match accuracy on MTOP for EN and
FR for M = 5 and M = 10. Results on random set are
averaged over three runs.

LLM ICL type EN HI
GPT3.5 DPP 19.3 24.6

TOPK 24.9 25.5
CoverLS 42.4 43.2
SCUD4ICL 45.7 50.5

Mistral:7b DPP 22.9 23.4
TOPK 25.3 24.0
CoverLS 45.4 32.1
SCUD4ICL 46.0 36.7

Llama3:8b DPP 27.0 22.5
TOPK 27.9 22.0
CoverLS 48.0 27.6
SCUD4ICL 45.3 34.1

Table 3: SCUD4ICL vs. other baselines on SMCalFlow
(training split: T = T5, M = 5).

mented training set TD. The default train pool is
T5. In these experiments we were concerned if the
recent LLMs were already trained or fine-tuned on
these datasets (data contamination). To partially
mitigate this concern, we created three variants
of the data, where English names in clauses are
replaced by their counterpart in three other lan-
guages: Hindi, French, and Russian. The utterance
xi stays in English, only in yi the names of clauses
are changed using a mapping as shown in Figure 8,
9 and 10 in the Appendix. We will soon see that
changing clause names impacts performance, par-

ticularly in recent smaller LLMs.

GeoQuery (Zelle and Mooney, 1996) is a
dataset of 880 user utterances seeking geographical
information, such as locations of rivers and cities.
Test splits: For test data we use the iid (standard)
and compositional splits created by Shaw et al.
(2021) as follows: (1) template split where pro-
grams output templates instead of grounded val-
ues for arguments (Finegan-Dollak et al., 2018);
(2) TMCD split, with divergent distributions of
compounds in training and test sets (Keysers et al.,
2019); and (3) length split, where test sequences
are longer than training ones. As in prior work,
we average results over three TMCD and template
splits to reduce variance from small dataset size.
Train splits: Out of the available labeled dataset,
we considered two subsets for defining the candi-
date labeled pool T : (1) D3, comprising of trees of
depth ≥ 3 (default), and (2) D4, comprising of trees
of depth ≥ 4. For the length split, since the test
splits includes all the larger trees, the train split had
only 8 trees left of depth 4. So we do not consider
this train-test split. Across the other splits, the size
of D3 is roughly four times the size of D4. Exact
counts appear in Table 4.

MTOP (Li et al., 2021) is a task-oriented dia-
logue dataset that maps user commands to complex,
nested queries spanning 11 domains. We utilize
the English and French subsets in our experiments.
The original training sets include 15,667 English
and 11,814 French utterances; we retain instances
with query depth of at least 5, reducing them to 416
English and 211 French examples. For controlled
cross-lingual evaluation, we further filter the data to
include only instances with corresponding queries
in the other language, yielding a parallel training
set of 108 examples. The test set comprises 1,713

5616

parallel examples per language.

Models and Prompts We evaluate our method
and baselines on the following LLMs: GPT 3.53,
GPT-4o4, Mistral5-7b v0.3, and LLama3–
8b (Dubey et al., 2024). The prompt used for
decomposition is shown in Figure 4. We use
GPT4_0125 to get the decompositions. The
prompt used for generating semantic parses is
shown in Figure 6.

Evaluation Metric We evaluate our approach
using execution accuracy (EX), which measures
the correctness of the outputs produced by the pre-
dicted programs as well as exact match (EM) accu-
racy depending on the dataset. Following (Bogin
et al., 2024), we compute EX by comparing the
execution results of predicted and gold programs.
For GeoQuery, we compare answers returned by
generated programs to those generated by gold pro-
grams, while for SMCalFlow, we compare the state
(i.e., calendar events) of the environments after ex-
ecution. In case of MTOP, we measure the exact
match accuracy.

Baseline Our method of augmenting the training
set with decompositions of the original question
is largely orthogonal to the algorithm used for se-
lecting in-context examples for a test question x.
Therefore, as a baseline, we choose the state-of-
the-art algorithm CoverLS (Levy et al., 2023) for
selecting examples from the original training set.
We used the official code released by the authors6.

5 Results

We first present the performance of the proposed
algorithm relative to various baselines and then
discuss various ablations to dissect the reason for
the gains.

SCUD4ICL vs. Baselines In Tables 1, 2, and
3, we compare accuracy of SCUD4ICL with the
baseline CoverLS across various datasets and splits
discussed earlier. Results with additional splits are
presented in the Appendix 11. Based on the results,
we make the following observations.

3https://platform.openai.com/docs/
models/gpt-3-5-turbo

4https://openai.com/index/
hello-gpt-4o/

5https://mistral.ai/news/
announcing-mistral-7b/

6https://github.com/itayle/
diverse-demonstrations

(1) First, across both datasets and varying test-train
splits, SCUD4ICL provides much higher accuracy
than CoverLS and significantly outperforms DPP
and TOPK (Levy et al., 2023). The main reason
for the gains over CoverLS is the augmentation
of the training pool with decomposed training in-
stances since the algorithm used for selecting the
M instances are largely similar.
(2) As expected, just by changing the language
in the names of clauses, accuracy varies across
all LLMs. For a low resource language such
as Hindi (Hi), SCUD4ICL provides much higher
gains than on English. For example, with GPT3.5
and Llama3:8b we observe more than 6% absolute
jump in accuracy on SMCalFlow-Hi.
(3) SCUD4ICL provides better generalization
when train-test splits differ in length as seen from
Geoquery’s length test split. Even for GPT4o we
observe a jump in accuracy from 73.6 to 81, and for
Mistral:7b accuracy jumps from 32.3% to 50.6%.
(4) SCUD4ICL also generalizes better when there
is discrepancy in the template of the test and train
trees as seen in Geoquery’s tmcd test split. For
GPT3.5 accuracy jumps from 70.9% to 82%, and
for Mistral:7b the jump is from 49.4% to 73.9%.

Decomposition variants We analyze whether
the gains are just because of augmenting the train
pool T with decomposed sub-trees, or whether the
quality of the sub-utterance was the key reason. In
Table 5 we demonstrate the impact of our method
of generating subsumed sub-utterances by compar-
ing with independently generated sub-utterances as
described in Section 3.1. We observe that with inde-
pendent sub-utterances, the performance is similar
to the original un-augmented data. Only with our
subsumed sub-utterance, do we get the accuracy
gains seen above. The examples in Figure 3 illus-
trate that independent utterances often do not ap-
pear natural enough, and they possibly fail to match
test utterances. Another question is whether sub-
utterances generated by a lower capacity open LLM
such as Mixtral:8x22b (Mistral AI, 2024) com-
pare with those from GPT4_0125. In Table 7 we
show accuracy with SMCalFlow-Hi. Observe that
even with Mixtral:8x22b-generated sub-utterances,
SCUD4ICL provides adequate gains over the base-
line, although the gains are greater with GPT4o.

Impact of Fragment Selection To examine the
impact of fragment selection in in-context exam-
ples, SCUD4ICL-selected fragments were com-
pared with the corresponding full ICE examples,

5617

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://github.com/itayle/diverse-demonstrations
https://github.com/itayle/diverse-demonstrations

SMCalflow Geoquery
M=5 M=10 M=5 M=10

Languages Languages Test Splits Test SplitsLLM ICL type

EN HI FR RU EN HI FR RU length iid template tmcd length iid template tmcd
Train Split T = T5 T = D4
No. of instances 71/296 2/0 54/176 35/120 34/107 2/0 54/176 35/120 34/107
GPT3.5 CoverLS 42.4 43.4 40.1 48.7 42.6 50.1 41.4 47.1 - 64.4 69.9 63.4 - 71.5 73.7 67.3

SCUD4ICL 45.8 50.2 46.0 49.5 50.8 55.8 50.9 53.3 - 69.4 71.3 66.0 - 78.6 81.3 68.5
CoverLS 54.1 49.6 53.5 54.5 67.6 64.6 67.2 67.0 - 74.3 85.5 72.5 - 81.0 87.0 75.9GPT4o SCUD4ICL 54.2 51.8 54.3 55.8 65.4 64.0 65.9 66.4 - 76.8 81.4 71.9 - 84.0 85.9 77.1
CoverLS 45.8 32.7 43.5 36.5 53.7 35.3 49.0 43.6 - 45.7 51.5 45.9 - 54.2 54.8 47.4Mistral:7b SCUD4ICL 46.6 37.2 46.0 39.8 52.3 40.9 52.8 45.7 - 51.8 51.1 43.8 - 58.2 59.1 47.8
CoverLS 48.2 28.5 43.5 39.3 57.9 33.8 52.1 46.8 - 36.7 41.9 39.4 - 51.2 48.2 45.9Llama3:8b SCUD4ICL 46.4 34.2 43.7 40.2 57.3 39.6 52.7 50.2 - 50.0 47.6 43.1 - 61.9 61.6 51.8

Train Split T = T10 T = D3
No. of instances 116/473 64/202 208/701 147/576 131/646 64/202 208/701 147/576 131/646
GPT3.5 CoverLS 44.9 49.3 41.3 48.7 44.1 53.1 44.5 51.5 50.9 77.2 86.5 70.9 54.5 80.5 88.3 73.4

SCUD4ICL 50.7 54.8 52.5 55.0 54.3 58.6 53.8 58.1 59.2 81.9 87.7 82.0 64.4 84.6 88.1 86.3
CoverLS 56.9 56.6 58.7 62.0 70.3 69.3 67.6 70.9 73.6 86.3 91.6 80.7 81.2 88.4 93.8 84.1GPT4o SCUD4ICL 58.1 56.4 58.0 61.1 69.0 67.0 67.7 69.9 81.0 86.9 89.8 85.4 82.4 89.0 91.5 90.8
CoverLS 50.2 38.4 48.5 42.0 55.1 41.7 52.4 48.4 32.3 58.9 62.3 49.4 37.2 62.5 69.5 56.6Mistral:7b SCUD4ICL 48.1 39.2 47.2 41.2 55.9 44.9 54.3 49.9 50.6 67.7 74.3 73.9 57.9 74.5 82.3 77.3
CoverLS 51.2 35.3 46.4 44.3 59.1 37.1 52.8 52.1 35.6 55.8 63.4 50.9 40.1 63.8 70.1 55.6Llama3:8b SCUD4ICL 50.5 37.8 49.0 44.2 58.7 44.6 56.4 53.2 44.4 52.9 58.9 48.4 55.5 61.0 62.0 56.3

Table 4: Execution accuracy on SMCalflow across different code languages and GeoQuery across different types of
test splits while increasing M from 5 to 10, and increasing size of training pool T (top and bottom). Please see
Sec 4 for reasons for some missing numbers. The number of instances denote size of T and TD separated by ’/’.
The broad trend is that accuracy gains of SCUD4ICL is higher for larger M and smaller T .

LLM ICL type EN HI

GPT3.5
CoverLS 42.4 43.4
Independent 43.4 45.0
SCUD4ICL 45.8 50.2

GPT4o
CoverLS 54.1 49.6
Independent 53.3 48.4
SCUD4ICL 54.2 51.8

Mistral:7b
CoverLS 45.8 32.7
Independent 46.8 35.8
SCUD4ICL 46.6 37.2

Llama3:8b
CoverLS 48.2 28.5
Independent 47.5 29.9
SCUD4ICL 46.4 34.2

Table 5: Comparison of Independent Vs Subsumed sub-
utterance generation for M = 5, training split T =
T5(SMCalFlow) on execution accuracy. Observe how
Independent provides almost no gains over the baseline
CoverLS in spite of including exactly the same set of
sub-trees in TD. Thus, SCUD4ICL’s method of generat-
ing sub-utterances subsumed by the original utterance
is a key reason for its gains.

referred to as WholeExamples. Both approaches
were evaluated using the same set of examples to
ensure a controlled comparison.

The results shown in Table 8 indicate that
SCUD4ICL consistently achieves superior or com-
parable performance compared to WholeExamples
across all evaluated models and languages. This
demonstrates that the removal of irrelevant parts
in ICEs reduces distractions and contributes to im-
proved predictive performance.

Accuracy gains for different test tree sizes We
show a breakdown of the accuracy gains across
depth of the test trees in Table 6. For a main-
stream language like English depth 2 trees may
be easy enough, and we do not see much gains
with SCUD4ICL. For low resource language like
Hindi, biggest gains are obtained from shorter trees
(depth=2) that are more subject to interference from
irrelevant clauses in the decomposition.

Increasing M and training pool T In Table 4
we show accuracy with M , the size of the in-
context set, increasing from 5 to 10, and two dif-
ferent training sizes. A rough trend to observe is
that for larger M , SCUD4ICL’s gains over base-
line increases. Consider, for instance Geoquery’s
iid split on the D3 train set. Across all LLMs,
SCUD4ICL provides higher gains with M = 10
than with M = 5 on this train-test split. Such a
trend is explained by the fact that baseline is more
likely to include irrelevant clauses for large M , and
our decomposition is able to eliminate them.

When the training pool T size increases with
a fixed M , the baseline is likely to find increas-
ingly relevant instances for ICL. Thus, we expect
the impact of decomposition to be higher when the
training pool is smaller. In Table 4 we observe
that relative gains are higher in the top-half com-
pared to the bottom half. We zoom in further on

5618

LLM ICL type EN HI FR RU
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

GPT3.5
CoverLS 50.0 52.1 36.6 53.7 50.0 48.9 40.3 44.4 50.0 45.7 37.4 31.5 50.0 54.3 45.8 44.4
SCUD4ICL 50.0 51.2 42.9 42.6 50.0 57.5 46.2 46.3 50.0 54.4 41.9 33.3 50.0 55.3 46.0 55.6

GPT4o
CoverLS 50.0 63.9 48.9 48.1 50.0 58.5 45.0 42.6 50.0 60.4 49.0 68.5 50.0 63.0 49.6 57.4
SCUD4ICL 50.0 62.9 49.8 44.4 50.0 64.2 45.5 37.0 50.0 61.0 50.5 55.6 50.0 62.9 52.1 53.7

Mistral:7b
CoverLS 0.0 47.5 45.1 44.4 0.0 33.9 32.7 22.2 0.0 46.3 42.3 40.7 0.0 38.4 35.5 37.0
SCUD4ICL 0.0 44.0 48.4 44.4 50.0 39.0 37.3 11.1 50.0 50.1 44.0 38.9 0.0 40.3 40.0 31.5

Llama3:8b
CoverLS 0.0 47.6 48.5 53.7 0.0 32.9 27.4 1.9 0.0 44.3 43.4 40.7 50.0 43.1 37.6 29.6
SCUD4ICL 0.0 45.4 46.9 53.7 0.0 39.3 32.4 16.7 50.0 44.3 43.7 35.2 33.3 43.5 38.3 42.6

Table 6: Execution accuracy broken down by depth of the test tree. We consider depth values 1, 2, 3, 4. Almost 30%
of the test trees are of depth 2, and 55% of depth 3. For a mainstream language like EN, depth 2 trees seem easy
enough for the LLM, with most gains from SCUD4ICL on trees of depth 3. For an unfamiliar language like HI,
depth 2 trees also benefit substantially from SCUD4ICL, since interference is likely highest for small trees.

LLM ICL type
CoverLS Mixtral8x22b GPT4

GPT3.5 43.4 49.9 50.2
GPT4o 49.6 51.1 51.8
Mistral:7b 32.7 35.1 37.2
Llama3:8b 28.5 34.5 34.2

Table 7: Comparison of GPT4_0125 vs Mixtral8x22b
decomposition. Even with decompositions from a
smaller LLM, SCUD4ICL improves over baseline.

LLM ICL type EN HI
GPT3.5 SCUD4ICL 45.8 50.2

WholeExamples 42.5 44.7
GPT4o SCUD4ICL 54.2 51.8

WholeExamples 50.6 48.4
Mistral:7b SCUD4ICL 46.6 37.2

WholeExamples 45.7 34.5
Llama3:8b SCUD4ICL 46.4 34.2

WholeExamples 46.8 27.3
Table 8: Comparison of SCUD4ICL and WholeExam-
ples on SMCalFlow (training split: T = T5, M = 5).

SMCalFlow-Hi for M = 5 in Figure 5. Observe
the increased relative gains T = T5 with 71 in-
stances compared to T = T10 with 116 instances.

In summary, our experiments show that while
SCUD4ICL provides overall gains over baseline,
it is particularly useful when the code language is
less familiar, there is mismatch in the train and test
distribution in terms of code length and template,
IC budget is large, and the training pool is small.

GPT3.5 Mistral:7b Llama3:8b GPT4o
Models

0

1

2

3

4

5

6

7

Im
pr

ov
em

en
t o

ve
r C

OV
ER

-L
S

(M=5, T5)
(M=5, T10)

Figure 5: Accuracy gains of SCUD4ICL over baseline
for SMCalFlow-Hi version for two different training
pool sizes pointing to higher gains for a smaller pool.

6 Conclusion

We introduced SCUD4ICL, a semantic interpreter
that incorporates a new paradigm of fragmenting
structured programs from the pool of available
ICEs, and instructing an LLM to translate these
program fragments back to natural language utter-
ances. This forms a larger ICE pool including de-
composed (utterance, program) pairs. Test instance-
guided diverse ICE selection from this enlarged
pool improves semantic interpretation accuracy for
a number of benchmarks.

7 Limitations

Although use of commercial LLMs as network ser-
vices is widespread in this nature of research, it
severely reduces reproducibility. As one example,
we do not understand how the LLM implements
utterance subsumption. Should the LLM change
significantly owing to instruction tuning, our results
may change drastically. Further experiments with
prompt/prefix tuning, and/or setting up a smaller
in-house LLM and adapting it to our task, would
be of future interest.

References
Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nan-

ning Zheng, Jian-Guang Lou, and Dongmei Zhang.
2023. How do in-context examples affect compo-
sitional generalization? In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11027–
11052, Toronto, Canada. Association for Computa-
tional Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, Hao Fang, Alan
Guo, David Hall, Kristin Hayes, Kellie Hill, Diana
Ho, Wendy Iwaszuk, Smriti Jha, Dan Klein, Jayant

5619

https://doi.org/10.18653/v1/2023.acl-long.618
https://doi.org/10.18653/v1/2023.acl-long.618

Krishnamurthy, Theo Lanman, Percy Liang, Christo-
pher H. Lin, Ilya Lintsbakh, Andy McGovern, Alek-
sandr Nisnevich, Adam Pauls, Dmitrij Petters, Brent
Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth
Short, Div Slomin, Ben Snyder, Stephon Striplin,
Yu Su, Zachary Tellman, Sam Thomson, Andrei
Vorobev, Izabela Witoszko, Jason Wolfe, Abby Wray,
Yuchen Zhang, and Alexander Zotov. 2020. Task-
Oriented Dialogue as Dataflow Synthesis. Transac-
tions of the Association for Computational Linguis-
tics, 8:556–571.

Ben Bogin, Shivanshu Gupta, Peter Clark, and Ashish
Sabharwal. 2024. Leveraging code to improve in-
context learning for semantic parsing. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 4971–5012, Mexico City,
Mexico. Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023. How many demonstrations do you need for
in-context learning? In Conference on Empirical
Methods in Natural Language Processing.

Abhimanyu Dubey et al. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Ben Eyal, Amir Bachar, Ophir Haroche, Moran Mahabi,
and Michael Elhadad. 2023. Semantic decomposi-
tion of question and sql for text-to-sql parsing. arXiv
preprint arXiv:2310.13575.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Yanhe Fu, Yanan Cao, Qingyue Wang, and Yi Liu. 2024.
TISE: A tripartite in-context selection method for
event argument extraction. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers).

Shivanshu Gupta, Matt Gardner, and Sameer Singh.
2023. Coverage-based example selection for in-
context learning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
13924–13950, Singapore. Association for Computa-
tional Linguistics.

SU Hongjin, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. In The Eleventh International Confer-
ence on Learning Representations.

Cheng-Yu Hsieh, Sibei Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander J. Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. ArXiv, abs/2308.00675.

Xiang Huang, Sitao Cheng, Yiheng Shu, Yuheng Bao,
and Yuzhong Qu. 2023. Question decomposition tree
for answering complex questions over knowledge
bases. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 37, pages 12924–12932.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. arXiv preprint arXiv:1912.09713.

Alex Kulesza and Ben Taskar. 2011. Learning determi-
nantal point processes. Learning, 7:1–2011.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 1401–1422.
Association for Computational Linguistics.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023a. Lost in the middle: How
language models use long contexts. Preprint,
arXiv:2307.03172.

Xiping Liu and Zhao Tan. 2023. Divide and prompt:
Chain of thought prompting for text-to-sql. arXiv
preprint arXiv:2304.11556.

5620

https://doi.org/10.18653/v1/2024.naacl-long.279
https://doi.org/10.18653/v1/2024.naacl-long.279
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:258309123
https://api.semanticscholar.org/CorpusID:258309123
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/2023.findings-emnlp.930
https://doi.org/10.18653/v1/2023.findings-emnlp.930
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172

Ye Liu, Semih Yavuz, Rui Meng, Dragomir Radev,
Caiming Xiong, and Yingbo Zhou. 2023b. Hpe:
Answering complex questions over text by hybrid
question parsing and execution. arXiv preprint
arXiv:2305.07789.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Har-
ish Tayyar Madabushi, and Iryna Gurevych. 2023.
Are emergent abilities in large language models just
in-context learning? ArXiv, abs/2309.01809.

Mistral AI. 2024. Mixtral 8x22b: A pretrained
generative sparse mixture of experts. https:
//mistral.ai/en/news/mixtral-8x22b.
Mixtral 8x22B is our latest open model. It sets a
new standard for performance and efficiency within
the AI community. It is a sparse Mixture-of-Experts
(SMoE) model that uses only 39B active parameters
out of 141B, offering unparalleled cost efficiency for
its size.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9157–9179, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli,
and Denny Zhou. 2023a. Large language models can
be easily distracted by irrelevant context. Preprint,
arXiv:2302.00093.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin,
Manzil Zaheer, and Charles Sutton. 2023b. Exedec:
Execution decomposition for compositional general-
ization in neural program synthesis. arXiv preprint
arXiv:2307.13883.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu
Liang. 2024. Why larger language models
do in-context learning differently? Preprint,
arXiv:2405.19592.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Huazheng Wang, Jinming Wu, Haifeng Sun, Zixuan Xia,
Daixuan Cheng, Jingyu Wang, Qi Qi, and Jianxin
Liao. 2024. MDR: Model-specific demonstration re-
trieval at inference time for in-context learning. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4189–4204, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and Tengyu Ma. 2023.
Larger language models do in-context learning dif-
ferently. Preprint, arXiv:2303.03846.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li,
Qian Chen, Wen Wang, Tingyu Lin, Weishan Zhao,
Li Zhu, Shuiguang Deng, and Hari Sundaram. 2023.
CodeScope: An execution-based multilingual multi-
task multidimensional benchmark for evaluating llms
on code understanding and generation. In Annual
Meeting of the Association for Computational Lin-
guistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org.

Junyi Ye, Mengnan Du, and Guiling Wang. 2024.
DataFrame QA: A universal LLM framework on
DataFrame question answering without data expo-
sure. ArXiv, abs/2401.15463.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, page 1050–1055. AAAI Press.

5621

https://api.semanticscholar.org/CorpusID:261531236
https://api.semanticscholar.org/CorpusID:261531236
https://mistral.ai/en/news/mixtral-8x22b
https://mistral.ai/en/news/mixtral-8x22b
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2405.19592
https://arxiv.org/abs/2405.19592
https://aclanthology.org/2024.naacl-long.235
https://aclanthology.org/2024.naacl-long.235
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.03846
https://api.semanticscholar.org/CorpusID:265212753
https://api.semanticscholar.org/CorpusID:265212753
https://api.semanticscholar.org/CorpusID:265212753
https://api.semanticscholar.org/CorpusID:267312293
https://api.semanticscholar.org/CorpusID:267312293
https://api.semanticscholar.org/CorpusID:267312293

Diverse In-Context Example
Selection After Decomposing

Programs and Aligned Utterances
Improves Semantic Parsing

(Appendix)

A Additional Experimental Results

A.1 Exact Match Accuracy

LLM ICL Type EN HI FR RU
GPT3.5 CoverLS 18.0 17.0 14.4 17.6

SCUD4ICL 21.1 19.5 18.3 19.6
GPT4o CoverLS 18.0 12.3 14.9 16.8

SCUD4ICL 17.5 12.9 14.2 16.8
Mistral:7b CoverLS 13.8 7.7 11.7 9.5

SCUD4ICL 13.3 6.9 11.3 9.7
Llama3:8b CoverLS 13.0 5.8 10.3 8.5

SCUD4ICL 11.6 7.7 10.1 10.7
Table 9: Exact Match accuracy for Table 1, training split
T = T5 (SMCalFlow)

Table 9 compares SCUD4ICL and CoverLS in
terms of exact match accuracy. While SCUD4ICL
consistently outperformed CoverLS in execution
accuracy (Table 1 in the paper), its performance
in terms of exact match accuracy is mixed.
SCUD4ICL excels on older models like GPT3.5
and in low-resource languages (e.g., Hindi and Rus-
sian), but the lower scores in other cases can be
attributed to its approach of assembling code us-
ing information in sub-fragment examples. This
strategy often produces semantically correct out-
puts that differ syntactically from the gold standard,
leading to lower exact match scores despite main-
taining functional correctness.

For example, the query "Hi, can you resched-
ule me a meeting with Ruth on Monday?" can be
translated as either "CreateEvent(AND(starts_at(
NextDOW(MONDAY)), with_attendee(Ruth))
)" or "CreateEvent(AND(with_attendee(Ruth),
starts_at(NextDOW(MONDAY))))". If the for-
mer is the gold annotation, the latter is still correct
in terms of execution accuracy but fails on exact
match.

A.2 Variability in Execution Accuracy Results
The reported results account for randomness, with
all values representing the average of three runs.
Standard deviations for Table 1 are provided in
Table 10.

A.3 Evaluation with Additional Data Splits
Table 11 presents the results comparing CoverLS
and SCUD4ICL across the random training sub-

LLM ICL type EN HI FR RU
GPT3.5 CoverLS 0.15 0.25 0.75 1.0

SCUD4ICL 0.30 0.29 0.59 0.46
GPT4o CoverLS 2.24 1.42 0.38 0.76

SCUD4ICL 0.46 0.25 0.17 0.84
Mistral:7b CoverLS 1.08 1.10 1.16 0.75

SCUD4ICL 0.61 0.55 0.68 0.47
Llama3:8b CoverLS 0.29 0.86 0.93 0.31

SCUD4ICL 0.96 0.17 1.01 0.83
Table 10: Standard deviation for Table 1, training split
T = T5 (SMCalFlow)

splits of SMCalFlow (as well as the complete train-
ing split for GeoQuery), evaluated using different
LLMs and languages. These results indicate that
SCUD4ICL consistently outperforms or matches
CoverLS leveraging its ability to identify highly
relevant sub-fragments, even while using fewer to-
kens. Note: Random split 1 contains 100 instances
and 825 decompositions, whereas random split 2
contains 454 instances and 3,758 decompositions.

A.4 Evaluation of Decomposed Examples in
SMCalFlow

An evaluation of the generated sub-utterances was
conducted as part of the manual assessment of the
SMCalFlow T = T5 training split. The results are
as follows:

• Original questions: 71
• Total decompositions generated: 296
• Incorrectly generated decompositions: 30
This corresponds to a decomposition error rate

of 10% of the overall decompositions, with some
errors being relatively minor. Despite these errors,
experiments demonstrate that the use of decom-
posed examples leads to improved overall accu-
racy.

B SCUD4ICL - Optimization Perspective

SCUD4ICL selects examples for in-context learn-
ing by solving an optimization problem that bal-
ances relevance the test query x0 and diversity
within the selected set S, constrained by a budget
M . Our ICE selection follows a greedy approach
but can be viewed as an instantiation of the below
optimization problem:

max
S:|S|≤M

[∑

(n,k)∈S

(
α ·R(xn,k,x0)

+ β ·D(xn,k, S)
)]

Here, relevance R(xn,k,x0) measures the
similarity between xn,k and x0 and diversity

5622

LLM ICL type
SMCalFlow GeoQuery

Split 1 Split 2 Length i.i.d Template TMCD
EN HI EN HI EN

GPT3.5 CoverLS 43.7 48.8 48.3 56.4 66.4 86.1 80.7 73.0
SCUD4ICL 47.4 50.8 53.0 57.7 77.0 87.1 86.7 80.0

Mistral:7b CoverLS 49.1 36.2 55.4 39.2 46.1 71.4 64.8 61.2
SCUD4ICL 51.2 36.4 53.3 42.3 64.8 74.6 70.8 65.5

Llama3:8b CoverLS 50.6 30.5 55.4 36.7 45.2 63.9 64.8 56.7
SCUD4ICL 51.5 34.0 55.3 38.4 58.8 62.5 71.1 58.5

Table 11: Execution accuracy on random training splits of SMCalFlow and full training split of GeoQuery (M = 5).

D(xn,k, S) is defined as the negative minimal sim-
ilarity with other members of S:
D(xn,k, S) = − min

(m,l)∈S\{(n,k)}
sim(xn,k,xm,l),

where sim(xn,k,xm,l) measures structural and
semantic similarity.

Specific Design Choices in SCUD4ICL

• Relevance (R) is computed using BM25 to
assess semantic alignment with x0.

• Diversity (D) penalizes similarity to exam-
ples already selected, disqualifying candidates
with overlaps of their anonymized versions or
ancestor-descendant relationships.

• Token-based Filtering enables selection of
candidates xn,k that contain tokens from x0
not yet covered, improving efficiency.

To summarize, SCUD4ICL integrates ideas from
Diverse Demonstrations (Levy et al., 2023) and
DPP-based selection (Ye et al., 2023), while apply-
ing structural constraints (e.g., template matching
and hierarchical relationships) to improve selection
from a decomposed example pool.

C Prompts

In Figures 6 and 7 we sketch the prompt we used to
obtain semantic interpretation in the SMCalFlow
dataset on two code languages En and Hi respec-
tively.

5623

Given the following data structures and functions:

FindTeamOf # given a person name or ID, ...
has_subject # given a string, returns an ...
starts_at # given a datetime clause, ...
CreateEvent # given multiple event clauses ...
...
...

Your task is to write DSL code for the given question.

Note:
1. Do not use any external libraries/functions.
2. Strictly adhere to the provided operators.

Figure 6: Instruction to LLM for EN code generation (SMCalFlow).

Given the following data structures and functions:

DalKhojen # given a person name or ID, ...
VishayHai # given a string, returns an ...
SePrarambh # given a datetime clause, ...
KaryakramBanao # given multiple event ...
...
...

Your task is to write DSL code for the given question.

Note:
1. Do not use any external libraries/functions.
2. Strictly adhere to the provided operators.

Figure 7: Instruction to LLM for HI code generation (SMCalFlow).

5624

FindTeamOf # given a person name or id, returns a pseudo-person representing the team of that
person

FindReports # given a person name or id, returns a pseudo-person representing the reports of that
person

FindManager # given a person name or id, returns the manager of that person

with_attendee # given a person name or id, returns a clause to match or create an event with that
person as an attendee

avoid_attendee # given a person name or id, returns an event clause to avoid that attendee when
creating an event

has_subject # given a string, returns an event to match or create an event with that subject
at_location # given a string, returns an event clause to match or create an event at that location
starts_at # given a datetime clause, returns an event clause to match or create an event starting

at that time
ends_at # given a datetime clause, returns an event clause to match or create an event ending at

that time
has_duration # given a time unit value, returns an event clause to match or create an event with

that duration
has_status # given a ShowAsStatus value, returns an event clause to match or create an event with

that status

the following operators return datetime clauses and accept no arguments
Afternoon
Breakfast
Brunch
Dinner
Early
EndOfWorkDay
Evening
FullMonthofMonth
FullYearofYear
LastWeekNew
Late
LateAfternoon
LateMorning
Lunch
Morning
NextMonth
NextWeekend
NextWeekList
NextYear
Night
Noon
Now
SeasonFall
SeasonSpring
SeasonSummer
SeasonWinter
ThisWeek
ThisWeekend
Today
Tomorrow
Yesterday

general date time clauses
DateTime # given either a datetime clause representing a date and/or a time operator representing a

time, returns a datetime clause
Date # given a date or dayofweek, returns a date
DayOfWeek # given a day of week string, returns a time clause
NextDOW # given a day of week string, returns a time clause for the next occurrence of that day of

week
MD # given a month and day as arguments, returns a date clause
MDY # given a month, day, and year as arguments, returns a date clause

given a value, the following operators return datetime clauses according to the given value
toMonth
toFourDigitYear
HourMinuteAm
HourMinutePm
NumberAM
NumberPM

given a datetime clause, the following operators modify the clause and return a datetime clause
according to the modification

OnDateAfterTime
OnDateBeforeTime
AroundDateTime

given either a number or the operators Acouple/Afew, all the following operators return time unit
values according to the given unit

toDays
toHours
toMinutes

these operators can be used to create time unit values instead of using integer values
Acouple
Afew

ShowAsStatus # enumeration of possible event statuses (Busy, OutOfOffice)

AND # combines multiple event clauses together

Figure 8: Exhaustive list of operators for EN code generation (SMCalFlow).

5625

DalKhojen # given a person name or id, returns a pseudo-person representing the team of that person
ReportDhoondho # given a person name or id, returns a pseudo-person representing the reports of that

person
PrabandhakKhojen # given a person name or id, returns the manager of that person

InSahbhagiyonKeSaath # given a person name or id, returns a clause to match or create an event with
that person as an attendee

InSahbhagiyonKeBina # given a person name or id, returns an event clause to avoid that attendee when
creating an event

VishayHai # given a string, returns an event to match or create an event with that subject
IsSthanPar # given a string, returns an event clause to match or create an event at that location
SePrarambh # given a datetime clause, returns an event clause to match or create an event starting at

that time
PeSamapt # given a datetime clause, returns an event clause to match or create an event ending at that

time
AvdhiHai # given a time unit value, returns an event clause to match or create an event with that

duration
SthitiHai # given a ShowAsStatus value, returns an event clause to match or create an event with that

status

the following operators return datetime clauses and accept no arguments
DopaharBaad
Naashta
DerNashta
RaatKaBhojan
Jaldi
KaryaDivasSamapt
Shaam
MaahKaPuraMaah
VarshKaPurnaVarsh
PichleHafteNaya
Der
DerDopahar
DerSubah
DopaharKaBhojan
Subah
AglaMaah
AglaSaptahant
AgleHafteKiSuchi
AglaVarsh
Raat
Dopahar
Abhi
Patjhad
Vasant
Grishm
Shishir
IsHafte
IsSaptahant
Aaj
Kal
BitaKal

general date time clauses
DinankSamayVarg # given either a datetime clause representing a date and/or a time operator

representing a time, returns a datetime clause
DinankVarg # given a date or dayofweek, returns a date
SaptahKaVarshikDin # given a day of week string, returns a time clause
AglaKaryaDiwas # given a day of week string, returns a time clause for the next occurrence of that day

of week
MahinaDin # given a month and day as arguments, returns a date clause
MahinaDinVarsh # given a month, day, and year as arguments, returns a date clause

given a value, the following operators return datetime clauses according to the given value
MaahMein
ChaarAnkVarsh
GhantaMinatPoorvahn
GhantaMinatAparanh
SankhyaPoorvahn
SankhyaAparanh

given a datetime clause, the following operators modify the clause and return a datetime clause
according to the modification

DinankKeBaadSamay
DinankParSamaySePhele
SamayDinankKePaas

given either a number or the operators EkDo/Kuch, all the following operators return time unit values
according to the given unit

DinoMein
GhantoMein
MinatoMein

these operators can be used to create time unit values instead of using integer values
EkDo
Kuch

SthitiDikhayein # enumeration of possible event statuses (Busy, OutOfOffice)

Aur # combines multiple event clauses together

Figure 9: Exhaustive list of operators for HI code generation (SMCalFlow).

5626

TrouverÉquipeDe # given a person name or id, returns a pseudo-person representing the team of that
person

TrouverRapports # given a person name or id, returns a pseudo-person representing the reports of that
person

TrouverGestionnaire # given a person name or id, returns the manager of that person

avec_participant # given a person name or id, returns a clause to match or create an event with that
person as an attendee

éviter_participant # given a person name or id, returns an event clause to avoid that attendee when
creating an event

a_sujet # given a string, returns an event to match or create an event with that subject
Ã _emplacement # given a string, returns an event clause to match or create an event at that location
commence_Ã # given a datetime clause, returns an event clause to match or create an event starting at

that time
se_termine_Ã # given a datetime clause, returns an event clause to match or create an event ending at

that time
a_durée # given a time unit value, returns an event clause to match or create an event with that

duration
a_statut # given a ShowAsStatus value, returns an event clause to match or create an event with that

status

the following operators return datetime clauses and accept no arguments
AprÃ¨sMidi
PetitDéjeuner
Brunch
DÃ®ner
TÃ´t
FinDeJournéeDeTravail
Soirée
MoisEntierDuMois
AnnéeComplÃ¨teDeL'Année
NouvelleDerniÃ¨reSemaine
Tard
FinD'AprÃ¨sMidi
FinDeMatinée
Déjeuner
Matin
MoisProchain
WeekEndProchain
ListeProchaineSemaine
AnnéeProchaine
Nuit
Midi
Maintenant
Automne
Printemps
Été
Hiver
CetteSemaine
CeWeekEnd
Aujourd'hui
Demain
Hier

general date time clauses
ClasseDateHeure # given either a datetime clause representing a date and/or a time operator

representing a time, returns a datetime clause
ClasseDate # given a date or dayofweek, returns a date
ClasseJourDeSemaine # given a day of week string, returns a time clause
ProchainJourOuvré # given a day of week string, returns a time clause for the next occurrence of that

day of week
MoisJour # given a month and day as arguments, returns a date clause
MoisJourAnnée # given a month, day, and year as arguments, returns a date clause

given a value, the following operators return datetime clauses according to the given value
versMois
enAnnéeÀQuatreChiffres
HeureMinuteAM
HeureMinutePM
NombreAM
NombrePM

given a datetime clause, the following operators modify the clause and return a datetime clause
according to the modification

ÀDateAprÃ¨sHeure
ÀDateAvantHeure
AutourDateHeure

given either a number or the operators EkDo/Kuch, all the following operators return time unit values
according to the given unit

enJours
enHeures
enMinutes

these operators can be used to create time unit values instead of using integer values
UnCouple
Quelques

AfficherCommeStatut # enumeration of possible event statuses (Busy, OutOfOffice)

ET # combines multiple event clauses together

Figure 10: Exhaustive list of operators for FR code generation (SMCalFlow).

5627

Figure 11: Exhaustive list of operators for RU code generation (SMCalFlow).

5628

USER

original question: Add engagement party to monday 9 pm with Abby kim and desi

code: CreateEvent(AND(with_attendee(Abby) , with_attendee(Kim) ,
with_attendee(Desi) , has_subject(engagement party) ,
starts_at(NextDOW(MONDAY)) , starts_at(NumberPM(9))))

decomposition:

ASSISTANT

{
"Add engagement party to monday 9 pm with Abby kim and desi": {

"code": "CreateEvent(AND(with_attendee(Abby), with_attendee(Kim),
with_attendee(Desi), has_subject(engagement party),
starts_at(NextDOW(MONDAY)), starts_at(NumberPM(9))))",

"decomposition": {
"Add engagement party with Abby kim and desi": {
"code": "CreateEvent(AND(with_attendee(Abby),

with_attendee(Kim), with_attendee(Desi),
has_subject(engagement party)))",

"decomposition": {
"Add event engagement party": {

"code": "CreateEvent(has_subject(engagement party))",
"decomposition": {}

},
"Add event with Abby kim and desi": {

"code": "CreateEvent(AND(with_attendee(Abby),
with_attendee(Kim), with_attendee(Desi)))",

"decomposition": {}
}

}
},
"Add event to monday 9 pm": {
"code": "CreateEvent(AND(starts_at(NextDOW(MONDAY)),

starts_at(NumberPM(9))))",
"decomposition": {}

}
}

}
}

Figure 12: An in-context example for query decomposition.

5629

